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Abstract

A fundamental open problem in quantum computing is to understand when quantum systems
can or cannot be efficiently classically simulated. In this thesis, we study when cluster state
quantum circuits with alternative input states (parameterised by a radius r) and measurements
in the Z basis and XY -plane, can or cannot be efficiently classically simulated.

In the first part of this thesis, we study when such a system can be efficiently classically
simulated. The main technical tool we consider is a generalised notion of separability in
terms of cylindrical operators. We first show that if a CZ gate acts on cylindrical operators
with radius r, then the output can be given a separable decomposition provided the radius
of the cylindrical operators in the decomposition grows by a constant λ > 0. By combining
this with a modified version of a previous algorithm, we find that this enables an efficient
classical simulation algorithm that can sample from the output distribution to within additive
error. We then use a coarse-graining approach to increase the range of input states that can be
efficiently classically simulated. We then compute the equivalent of λ for arbitrary diagonal
two-qubit gates. Lastly, we use alternative notions of entanglement to show that there are
state spaces that can improve the region of input states that can be classically simulated.

In the second part, we examine potential obstacles that may arise when attempting to
efficiently classically simulate an increased range of quantum input states. Using a percolation
based approach, we show that if the input states are permitted with sufficient radius, then BQP
can be supported and efficient classical simulation is unlikely. Furthermore, using conjectures
about the polynomial hierarchy, we show that there is a threshold for which cluster states
with alternative inputs cannot be efficiently classically simulated with multiplicative error.
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Chapter 1

Introduction

1.1 Overview

It is believed that quantum computers can potentially solve certain problems more efficiently
than classical computers [1, 2]. However, it is not fully understood how and why these
quantum algorithms provide a quantum speed-up. Finding the source of this speedup is an
open problem, that is, what features of a quantum computation are necessary to provide
an advantage over classical computations? This question can be answered by investigating
when a quantum computer can or cannot be efficiently classically simulated. Moreover, what
we mean is that if we restrict certain aspects of a quantum computation, can it be efficiently
classically simulated? We will refer to these models of computing as restricted models of
quantum computing. Restricted models of quantum computing can be useful as they allow
us to probe the boundary between quantum and classical computation and, from a practical
point of view, they can describe situations where there are experimental restrictions.

One way to address this question is to consider when can we efficiently classically simu-
late a quantum computation. A theorem that contributes towards answering this question is
the celebrated Gottesman-Knill theorem [3]. It states that, quantum circuits, composed of
Clifford gates and Pauli measurements, can be efficiently classically simulated. Subsequent
research has also explored extensions to the Gottesman-Knill theorem, aiming to quantify
and identify the resources that enable the full power of quantum computation [4, 5]. A widely
studied feature of quantum computing, believed to contribute to its advantage over classical
computing, is entanglement. It has been shown that in some settings, a lack of, or limited
amount of entanglement can lead to efficient classical simulation algorithms [4, 6–8]. On
the other hand, it has also been shown that weak amounts of entanglement can be sufficient
for quantum computation [9, 10]. A useful way to investigate the feature of entanglement is
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provided in the setting of measurement-based quantum computing [11, 12]. In this setting,
entanglement is already present in the resource state, and operations are carried out in the
form of measurements. In this thesis, we explore the computational power of such a model
by considering a specified set of measurements and varying the input state. In particular, a
key tool will be the notion of generalised entanglement [13, 14], which can be leveraged to
enable a new type of classical simulation algorithm [15].

On the other hand, we can consider when a restricted model of quantum cannot be
efficiently classically simulated. However, we currently have limited tools and methods
for determining this. An approach to demonstrate classical intractability of a restricted
model is to add certain features to it and show that it can nevertheless support universal
quantum computation. This, in turn, makes it highly unlikely for the restricted model to be
efficiently simulated classically. Another approach stemming from recent quantum supremacy
experiments [16–18] has been developed, which can rule out efficient classical simulation
of quantum computations based on widely believed complexity-theoretic conjectures [19–
22]. Moreover, this approach has also been used to establish that some restricted models of
quantum computing are hard to classically simulate [23–25]. Recent research in this direction
has further focused on strengthening the conjectures and considering settings involving noise
[26–29].

1.2 Organisation and Results of Thesis

This thesis is partly based on:

[30]: S. Atallah, M. Garn, S. Jevtic, Y. Tao, and S. Virmani, “Efficient classical simulation of
cluster state quantum circuits with alternative inputs,” arXiv preprint arXiv:2201.07655,
2022.

[31] S. Atallah, M. Garn, Y. Tao, and S. Virmani, “Classically efficient regimes in mea-
surement based quantum computation performed using diagonal two qubit gates and
cluster measurements,” arXiv preprint arXiv:2307.01800, 2023.

In this thesis, we explore the computational power of cluster state quantum circuits with
alternative inputs. In the first half of this thesis, we show that such a system can be efficiently
classically simulated. In the second half, we examine potential obstacles that may arise when
attempting to efficiently classically simulate an increased range of quantum input states. In
further detail, this thesis is organised as follows.

https://arxiv.org/abs/2201.07655
https://arxiv.org/abs/2201.07655
https://arxiv.org/abs/2307.01800
https://arxiv.org/abs/2307.01800
https://arxiv.org/abs/2307.01800
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In chapter 2, we begin by reviewing preliminary material. We then introduce measurement-
based quantum computing (MBQC) and explain how it enables universal quantum computing.
By modifying the inputs states to a typical MBQC scheme, we will see that we end up with
a restricted model of quantum computation, which we refer to as a cluster state with alter-
native inputs. We then introduce the notion of generalised entanglement, which will serve
as one of the main technical tools in this thesis. Lastly, we define what it means to sim-
ulate a quantum computation, before reviewing some important results in classical simulation.

In chapter 3, we study when a cluster state with alternative inputs can be efficiently
classically simulated. The main tool that we will use is a generalised notion of entanglement.
This notion allows for operators that return non-negative probabilities for the permitted mea-
surements. Applying this notion to the cluster state systems we consider, where the permitted
measurements are XY -plane and Z-basis measurements (i.e. measurements with projectors
of the form: (I +Z)/2 and (I + cosθX + sinθY )/2), allows us to consider operators that are
drawn from cylindrically shaped state spaces. That is, we permit operators to be drawn from
the following set:

Cyl(r) := {ρ|ρ = ρ
†,Trρ = 1,x2 + y2 ≤ r2,z ∈ [−1,1]}, (1.1)

with r ≤ 1, and where x,y,z are the Bloch expansion coefficients of ρ . In Sec.3.2.2, we
present our first result that a CZ gate that acts on input operators that are drawn from cylin-
ders of radius r, can be given a separable decomposition if the operators in the separable
decomposition are drawn from cylinders of radius λ r, with constant λ > 0. By combining
this result with an existing classical algorithm (for systems that do not generate quantum
entanglement) we develop a classical simulation algorithm based on cylinder radii growth.
This provides lower bounds for regions of input cylinders, initialised with r ≤ 1/λ D, where
D is the degree of the lattice, that can be efficiently classically simulated.

In chapter 4, we then focus on ways to improve and generalise our classical simulation
algorithm. First, in Sec.4.2, we show that by considering a coarse graining approach, we
can improve the bound on the parameter r that can be efficiently classically simulated. The
idea of the approach is to partition the underlying lattice into blocks and treating each block
as a single particle on a new lattice. Then by constructing separable decompositions over
these blocks, we can analytically show that we can increase r for which we can efficiently
classically simulate.
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In Sec.4.3, we explicitly compute λ for any two-qubit diagonal gate, thus generalising
and extending the result of Sec.3.2.2 beyond CZ gates. This result demonstrates that, for
any finite-degree graph, a two-parameter family of pure entangled quantum states can be
efficiently classically simulated within a non-trivial region for the permitted measurements.
Consequently, for these systems, we are able to plot figures (see fig 4.6) that include regions
that can be efficiently classically simulated. Note that the proof of this result uses similar
techniques based on cylinder separability as in Sec.3.2.2.

The classical simulation methods presented so far are in the context of input state spaces
that are cylinders. However, as we are ultimately only interested in simulating systems with
quantum inputs, we may wonder whether it is possible to change our state spaces to obtain a
greater range of quantum inputs that can be efficiently simulated classically. In Sec.4.4 we
investigate this problem with linear programming methods. In Sec.4.4.4, we show that the
range of r can be very slightly improved if one considers a state space (that we refer to as the
Cylinder-Cone state space) that allows for variations in the height of the extremal points of
that set. This demonstrates that the bounds on r are not tight, suggesting that there may be
potential alternative methods that can expand the region of r that can be classically simulated.

In chapter 5, we examine potential obstacles that may arise when attempting to efficiently
classically simulate an increased range of quantum input states. Moreover, we consider
two approaches, based on percolation and quantum supremacy arguments, that potentially
rule out efficient classical simulation for cluster state quantum circuits with input states of
sufficient radius.

Using the first approach, based on percolation, we demonstrate in Sec.5.2.2 that a re-
stricted cluster state on a degree 5 lattice, with input states of sufficient radius, can efficiently
prepare a 2D cluster state. The underlying idea is that if the probability of successfully
creating a |+⟩ state on unmeasured qubits exceeds a threshold determined by the lattice’s
percolation thresholds, it becomes possible to implement a cluster state quantum computation.

The second approach is based on the quantum supremacy arguments [16], which show
that if widely-believed complexity theoretic conjectures hold, then there cannot exist an
efficient classical simulation algorithm. These arguments were developed in [19], in which
it was show, that if IQP circuits could be weakly classically simulated up to multiplicative
error, then this would cause the so-called polynomial hierarchy to collapse. Using similar
arguments, we will show in Sec.5.3.2 that a cluster state on a degree 5 lattice, with input states
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initialised with radii above rc = 0.3398, cannot be classically simulated up to multiplicative
error. As a next step, we would want to rule out efficient classical simulation of cluster states
with alternative inputs under the more realistic notion of additive error. However, in this
direction, we encountered challenges in applying previous existing methods [20, 21] and
were unable to show this for the systems we were considering. Nevertheless, in Sec.5.3.3 we
will briefly review the works of [32–34] that show how the approach has been adapted to
cluster states with perfect inputs but with restrictions on the permitted measurements.





Chapter 2

Preliminaries

In this chapter, we will first introduce basic concepts from quantum information theory. In
Sec.2.2 we will then give an overview of the principles of measurement-based quantum
computing, followed by Sec.2.4 where we introduce a generalised notion of entanglement.
Lastly, in Sec.2.5 we give an overview of classical simulation results that are relevant to the
work within this thesis.

2.1 Mathematical Preliminaries

In this section, we briefly introduce key concepts and techniques in quantum information
required for this thesis. Further details can be found in references, such as [35] and [36].

2.1.1 Quantum Mechanics: State Spaces, Evolution and Measurement

In quantum mechanics, a quantum system is represented by a state vector with unit norm,
defined on a Hilbert Space H = Cd . That is, the usual d-dimensional complex space Cd

endowed with an inner product. A simple quantum system that we will refer to is the quantum
bit (qubit), which has a two-dimensional state space. The state of a qubit |ψ⟩ ∈ C2 can be
expressed as

|ψ⟩= α|0⟩+β |1⟩, (2.1)

where |0⟩, |1⟩ are basis states, and α , β are complex numbers such that |α|2+ |β |2 = 1. Two
possible states for a qubit are the states

|0⟩ ≡

(
1
0

)
, |1⟩ ≡

(
0
1

)
(2.2)
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which correspond to the classical bits 0 and 1, respectively. The states |0⟩ and |1⟩ are referred
to as computational basis states. State vectors denoted by |ψ⟩ are commonly said to be
pure states. When combining quantum systems, the state space of the composite system is
the tensor product of the state spaces of the component systems. For example, the Hilbert
space HAB of two component Hilbert spaces HA and HB is given by HAB = HA ⊗HB.
In the qubit case, supposing we have n qubits, the Hilbert space of the quantum system is
H = H1 ⊗H2 . . .⊗Hn, where each Hi = C2 is the component state space of each qubit.

The pure state description however, does not provide a complete description of quantum
systems. More generally, the state of a quantum system can be a probabilistic mixture of
pure states, called a mixed state. This is a more general description of a quantum system and
is characterised by the density operator formalism. The density operator for the system is
given by the equation:

ρ = ∑
i

pi |ψi⟩⟨ψi| , (2.3)

where pi ∈ [0,1] and ∑i pi = 1, and the |ψi⟩ are pure states. Furthermore, the density operator
ρ is Hermitian, and is in fact a non-negative operator, denoted ρ ≥ 0, with unit trace. It can
therefore be shown that ρ can be written as

ρ =
I + r⃗ · σ⃗

2
, (2.4)

where r⃗ = (rx,ry,rz) ∈ R3, and σ⃗ denotes the vector of Pauli matrices

σx = X =

(
0 1
1 0

)
, σy = Y =

(
0 −i
i 0

)
, σz = Z =

(
1 0
0 −1

)
. (2.5)

The property that ρ must be non-negative imposes the condition that ∥r∥ ≤ 1. Note that if
r = (0,0,0), then this represents the maximally mixed state ρ = I/2.

The evolution of a (closed) quantum system is described by a unitary transformation. Let
ρ denote the state of the system at time t0, and ρ ′ represent its state at time t. These states
are connected by a unitary operator U , that depends only on the times t0 and t:

ρ
′ =UρU†, (2.6)
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where U† is the Hermitian conjugate of U .

In quantum mechanics, a measurement has an incidence on the quantum system. That
is to say, observing the system results in an interaction that makes the system no longer
closed. The postulate, also known as Born’s rule, provides a means to describe the effects
of measurements on quantum systems. Quantum measurements are described by a set of
measurement operators {Mm} that satisfy the completeness equation:

∑
m

M†
mMm = I. (2.7)

The index m refers to the measurement outcomes that may occur. If the state of the quantum
system is ρ immediately before the measurement, then the probability that the result m occurs
is given by

p(m) = tr
(

M†
mMmρ

)
. (2.8)

The post-measurement state is given by

ρ
′ =

MmρM†
m

tr
(

M†
mMmρ

) . (2.9)

2.1.2 The Schmidt Decomposition and the PPT criterion

A bipartite pure state |ψ⟩ ∈ HAB is said to be separable if it can be written as a product state,

|ψ⟩= |ϕa⟩⊗ |ϕb⟩ (2.10)

for some |ϕa⟩ ∈ HA and |ϕb⟩ ∈ HB. A state is said to be entangled if it is not a product state.
Determining whether a given bipartite pure state is separable is a straightforward task that
can be accomplished through the use of the Schmidt decomposition.

Theorem 2.1.1. (Schmidt decomposition [35])
If |ψ⟩ is a pure state of a composite system, AB, then it can be given the decomposition

|ψ⟩= ∑
i

λi |iA⟩ |iB⟩ , (2.11)

where |iA⟩,|iB⟩ are orthonormal states for systems A,B, respectively. The Schmidt coefficients
λi are non-negative real numbers satisfying ∑i λ 2

i = 1.
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Proof. A proof of this can be found in [35].

The Schmidt decomposition allows us to determine whether a bipartite pure state |ψ⟩ is
separable. For example, it can be shown that the reduced states ρA and ρB are pure states if
and only if |ψ⟩ is a product state. Moreover, the state |ψ⟩ is entangled if and only if it has a
Schmidt rank greater than 1. On the other hand, checking separability of mixed states is not
as straightforward as it is for pure states. A bipartite mixed state is said to be separable if it
can be expressed as an ensemble of separable pure states:

ρAB = ∑
i

pi |ψi⟩⟨ψi|A ⊗|ϕi⟩⟨ϕi|B (2.12)

= ∑
i

piρ
A
i ⊗ρ

B
i . (2.13)

where pi are non-negative probabilities that sum to 1, and ρA
i ,ρ

B
i are density operators of the

respective subsystems. Generally, testing whether a given state is separable is a challenging
task [37, 38]. However, an efficient method for determining separability (in some systems) is
the Positive Partial-Transpose (PPT) criterion [39, 40]. Specifically, a bipartite state ρ in a
Hilbert space of dimension 2×2 (or 2×3) is separable if and only if its partial transpose is
non-negative. That is, the PPT criterion states that if ρAB is separable, then

ρ
TA
AB = (T ⊗ id)ρAB = ∑

i
pi
(
|ψi⟩⟨ψi|A

)T⊗|ϕi⟩⟨ϕi|B (2.14)

is non-negative, where T is the transpose map.

For states in higher dimensional Hilbert spaces, the PPT criterion is no longer a sufficient
test for separability. This is because there exist entangled states in higher dimensions that
are both positive and PPT. Therefore, while the PPT criterion can efficiently determine
separability for systems of dimension 2×2 (or 2×3), it cannot be relied upon for all cases.

As a side note, it is important to point out that other approaches for determining separa-
bility do exist [41–44]. However, we will not make use of these methods. Instead, in section
4.4, we will use an approach based on linear programming.
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U |ψ⟩

|ψ⟩

|+⟩

Fig. 2.1 Circuit demonstrating one-bit teleportation. This is achieved by performing a CZ gate
on the input state |ψ⟩ and |+⟩, and then measuring the first qubit in the X-basis. This teleports
the state |ψ⟩ from the first qubit to the second and induces the operation U = XmH, where m
is either 0 or 1 depending on the measurement outcome. Note that if the measurement is a
XY -plane measurement, then this instead induces the operation U = XmHUZ , where UZ is
the rotation operator about the Z-axis.

2.2 Measurement-Based Quantum Computation

In the quantum circuit model, an input state is first prepared, followed by the application of a
unitary circuit (consisting of a sequence of gates), and the output is subsequently measured
[35]. In this model, information is processed by manipulating the state of qubits through
a sequence of unitary gates. An alternative universal model of quantum computation is
measurement-based quantum computation (MBQC) [11, 12]. In MBQC, information is
processed by first preparing an initial multiparty entangled state, and then performing mea-
surements in a selected pattern. The measurements induce a non-unitary operation, which
can nevertheless be used to simulate gates within the circuit model.

The key idea behind measurement-based quantum computation can be understood through
the concept of one-bit teleportation [45, 46]. Consider the quantum circuit illustrated in
figure 2.1, which is designed to “teleport” the state |ψ⟩ = α |0⟩+ β |1⟩ to another qubit.
The teleportation scheme works as follows. The input state to the circuit is |ψ⟩ |+⟩, where
|±⟩= (|0⟩± |1⟩)/

√
2. Next, we apply a control-Z gate, denoted

CZ = |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|− |11⟩⟨11| ,

between the two qubits, resulting in:

CZ (|ψ⟩ |+⟩) =CZ (α |0⟩ |+⟩+β |1⟩ |+⟩) (2.15)

= α |0⟩ |+⟩+β |1⟩ |−⟩ . (2.16)
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Now, measuring the first qubit in the X-basis {|+⟩ , |−⟩} has the effect of projecting the
second qubit onto the state

α |+⟩+(−1)m
β |−⟩= HZm (α |0⟩+β |1⟩) , (2.17)

where H = |+⟩⟨0|+ |−⟩⟨1| is the Hadamard gate and m ∈ {0,1} is the measurement out-
come. From this we can see that measuring the first qubit, has the effect of teleporting the
state to the second qubit, up to a known unitary operation HZm = XmH. Similarly, if instead
we had measured the first qubit in the XY -plane, then the resultant unitary operation on the
second qubit is XmHUz, where Uz(θ) = e−iθZ/2 is the rotation operator about the Z-axis.
Note that the measurement in the XY -plane corresponds to a measurement in the X-basis
transformed by a Uz rotation. This is illustrated in figure 2.1.

We will now see how through single qubit measurements we can implement an arbitrary
single qubit rotation operation. To demonstrate this, we will introduce the 1D cluster state.
The 1D cluster state, illustrated in figure 2.2, is created by initialising a chain of qubits in the
|+⟩ state and applying CZ gates between nearest neighbour qubits:

n−1

∏
i

CZi,i+1 |+⟩⊗n . (2.18)

For example, if n = 4, then we have CZ1,2CZ2,3CZ3,4 |+⟩⊗4, which can be written explicitly
as

|0⟩ |+⟩ |0⟩ |+⟩+ |1⟩ |−⟩|0⟩ |+⟩+ |0⟩ |−⟩|1⟩ |−⟩+ |1⟩ |+⟩ |1⟩ |−⟩ . (2.19)

Repeating the procedure in figure 2.1, we perform XY -plane measurements on the first three
qubits, leaving the state of the 4th qubit as

Xm3HUz (θ3)Xm2HUz (θ2)Xm1HUz (θ1) |+⟩ , (2.20)

By standard commutation relations, this can be rewritten1 as

Xm3Zm2Xm1HUz [(−1)m2θ3]Ux [(−1)m1θ2]Uz [θ1] |+⟩ . (2.21)

where Ux(θ) = e−iθX/2. It is known that a general rotation of a single qubit can be de-
composed as Uz(α)Ux(β )Uz(γ), where α,β ,γ are angles [35]. Therefore, this shows that

1Where we first use XmH = HZm. Next, add in H2 = I to transform a Z-rotation into a X-rotation. And
lastly, use commutations such as XUz(θ) =Uz(−θ)X to achieve the desired form.
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. . .

Fig. 2.2 The 1D cluster state is obtained by initialising |+⟩ states on the nodes of the 1D
lattice and applying CZ gates (depicted by edges) between nearest neighbour qubits.

through single qubit measurements, we can implement a unitary operator that implements
any single qubit rotation [47]. Note that by adaptively choosing the measurement basis, we
can ensure a deterministic computation. Furthermore, the Pauli corrections arising through
measurements do not pose a problem, as they can be factored into the final result through
classical post-processing.

Extending the above example, we can extend the concept of a 1D cluster state to a lattice
of degree D. This is known as a graph state. A graph state is a pure-entangled state of n
qubits, corresponding to a graph G = {E,V} of n vertices. Every vertex i ∈V represents a
qubit, and each edge (i, j) ∈ E represents a CZ gate. The graph state, denoted as |G⟩, is then
given by:

|G⟩= ∏
(i, j)∈E

CZi, j |+⟩⊗n

where (i, j) represents pairs of neighbouring vertices in the lattice and CZi, j is the controlled-
Z gate applied to qubits i and j.

Note that in the literature, a cluster state is sometimes referred to as a graph state on a
2-dimensional lattice. Similar to the 1D cluster state example, on a 2D cluster state we can
implement a sequence of 1 and 2 qubit gates by measuring selected qubits on the lattice [47].
If we allow for XY -plane and Z-basis measurements, then from the previous section, it is clear
that we can implement arbitrary single qubit rotations. It is then straightforward to implement
a two-qubit gate, such as a CZ or CNOT = |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨11|+ |11⟩⟨10|, as
demonstrated in figure 2.3. Together, these operations, along with H,UZ(θ), form a universal
gate set, enabling cluster state quantum circuits to implement universal quantum computation.
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Fig. 2.3 The 2D cluster state is obtained by preparing qubits in the |+⟩ state and placing
them on the vertices of the 2D lattice (figure on the left), and interacting them with CZ gates
connected by edges. The figure on the right is a brickwork state (of 5 columns, 2 rows).
By performing measurements in the X-basis, the input qubits in the first column can be
teleported from left to right. When a vertical CZ is encountered, the unitary acting on the
qubits acquires a CZ gate.

2.3 Understanding Non-Classical Computation through Re-
stricted Models of Quantum Computing

In the quantum circuit model, restrictions can be placed on the input states or permitted
measurements, and it is common to restrict various aspects of the circuit, such as the circuit’s
structure (e.g. only allowing nearest neighbour gates), depth, or available gate set.

Placing such restriction on models of quantum computing can be useful as they allow
us to explore the computational power between quantum and classical computations. By
imposing restrictions on certain features of a quantum computation, we can potentially deter-
mine which features are necessary to retain full quantum computing power. From a more
practical point of view, restricted models are useful as they can describe situations where
there is an experimental limitation. We will now briefly introduce a well-known restricted
model of quantum computing, known as Instantaneous Quantum Computation (IQP), that
will be useful later on when discussing the quantum supremacy arguments.

The circuits used in Instantaneous Quantum Computation (IQP), are characterised by the
restriction of using only commuting gates. This restricted model was initially introduced
in [48] and further discussed in [19]. The structure of an IQP circuit is as follows: the
input states are initialised as |0⟩⊗n, and each gate in the circuit is diagonal in the X-basis.
Specifically, the gates take the form:
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Fig. 2.4 Example an IQP circuit [21] where each qubit must begin and end with a Hadamard
gate. The gates in-between are diagonal gates that commute and in principle can be applied
simultaneously.

U = eiθ(Xi1⊗...⊗Xik), (2.22)

where θ is a parameter, and the subset i1, . . . , ik is permitted to act on O(n) lines of the circuit.
Lastly, a computational basis measurement is performed on a specified set of output lines.
An alternative description of an IQP circuit, as shown in figure 2.4, involves the insertion of
HH = I gates before and after the circuit. This modification results in the gates within the
circuit being diagonal in the Z-basis. In subsequent work [19, 21, 49–52], the computational
power of IQP circuits under different constraints has been explored. In [21], it was shown
that IQP circuits, that consist of Z and CZ gates, together with a CCZ gate defined as

CCZ = |0⟩⟨0|⊗ I ⊗ I + |1⟩⟨1|⊗CZ,

along with a layer of Hadamard gates at the beginning and end of the circuit, are hard to
classically simulate.

2.3.1 Cluster State Quantum Circuits with Alternative Inputs

The scheme that will be of focus in this work can be considered to be a restricted model of
measurement-based quantum computation. As described in section 2.2, the typical cluster
state scheme can be described in three stages. First, qubits are prepared in the |+⟩ state,
and placed at the vertices of a lattice. Second, CZ gates are performed on qubits connected
by lattice edges. Finally, single qubit measurements are performed on the lattice. If the
measurements are adaptive, and are in the Z-basis and the XY -plane, then it is known that
this cluster state quantum computation can support universal quantum computation.
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In this work, we will be interested in exploring the computational power of a cluster state
computation, wherein we vary the initial state preparation step. Instead of initialising the
inputs as |+⟩ states, we will instead consider pure states of the form

|θ⟩= cos(θ/2) |0⟩+ sin(θ/2) |1⟩ , (2.23)

with angle θ , where we will be interested in the computational power of this scheme as we
vary the angle θ . It is clear that if the input states are |0⟩ or |1⟩, then the CZ gates would act
trivially, and this scheme can be efficiently classically simulated. On the other hand, if the
input states are close to the equator. Then it has been shown that, through a measurement
process that requires certain POVMs and reusing measured qubits, this scheme can support
universal quantum computation [53, 54]. In the subsequent work, we will consider cluster
state schemes that have inputs of the form (2.23) and destructive measurements (i.e. measured
qubits cannot be reused) in the XY -plane and Z-basis.

2.4 Generalised Separability

The usual notion of quantum separability:

ρAB = ∑
i

piρ
A
i ⊗ρ

B
i , (2.24)

where ρA
i and ρB

i are normalised and non-negative operators, is based on the established
concept of a single particle quantum state space. In this thesis, we will be interested in
modifying the single particle state space, departing from the usual quantum version and
introducing a more generalised notion of entanglement.

The idea that the notion of entanglement can be generalised was introduced in [13, 55].
However, for the purposes of this work, we will consider a more concrete and narrower
framework. Specifically, we will consider relaxing the requirement that ρA

j and ρB
j must be

non-negative operators, and instead allow the local operators to be drawn from the dual set of
permitted measurements. That is, let M be the set of single-particle measurement operators.
Then the normalised dual set M ∗ of operators ρ to M is defined as:

M ∗ = {ρ | tr[ρ] = 1, tr[ρM]≥ 0,∀M ∈ M }. (2.25)
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In other words, the dual set M ∗ contains operators that, through the Born rule, yield positive
probabilities for a given set of measurement operators. Using the definitions of [56, 57], we
now define a generalised notion of separability.

Definition 2.4.1. Consider a convex set of local operators SA,SB acting on systems A,B,
respectively. A bipartite state ρAB is (SA,SB)-separable if it can be given the decomposition

ρAB = ∑
i

piρ̃
A
i ⊗ ρ̃

B
i , (2.26)

where pi are non-negative and sum to 1, and ρ̃A
i , ρ̃

B
i are operators drawn from SA and SB

respectively. We refer to SA and SB as the local state spaces.

To distinguish the usual quantum separable notion to the more generalised separable
notion, we will usually emphasise this by referring to being quantum separable or separable
w.r.t to the local state spaces in question.

In particular, we will consider definition 2.4.1 in the context where the operators are
drawn from the dual set as defined in (2.25). It is important to point out that these operators
can, in fact, be non-physical operators. However, by placing restrictions on the permitted
measurements and managing any negatives that may potentially occur, these operators can
still be used to enable efficient classical simulation algorithms [58, 15]. In particular, in
chapter 3 we will make use of this framework in the context of cluster states. This will lead
us to consider various state spaces and consider when these can be a given a generalised
separable decomposition. Furthermore, as we will see later on when developing our classical
simulation algorithm, of particular interest will be when the separable decompositions exhibit
minimal growth w.r.t to the output state spaces.

2.5 Classical Simulation

2.5.1 Notions of Efficient Classical Simulation

Before reviewing the literature on classical simulation, it is necessary to define what it means
to simulate a quantum computation. The notions described below are based on the definitions
in [59].
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There are two main established notions of classical simulation: strong simulation and
weak simulation. Let p(x) to be the probability distribution that describes the statistics of the
measurement outcomes for a given quantum circuit. Then a strong simulation of a quantum
circuit, requires that the simulator has to be able to compute the probability p(x) to arbitrary
accuracy for each measurement outcome x. It has been argued in the literature that such a
notion is considered to be unnecessarily challenging form of classical simulation [60, 59] as
a quantum computer would not simulate to multiplicative error. Instead, a more appropriate
choice is considered to be that of weak simulation. In a weak simulation, the simulator has to
be able to sample an outcome x according to a distribution p̃(x) that approximates the target
distribution p(x). Within weak simulations, several different notions of approximation have
been considered, two of which are multiplicative and additive approximations.

1. The approximate weak simulation is multiplicative, if for every x,

|p̃(x)− p(x)| ≤ ε p(x), (2.27)

with fixed ε > 0.

2. The approximate simulation is additive if,

∑
x
|p̃(x)− p(x)| ≤ ε, (2.28)

where ε is some small-fixed constant.

The notion of multiplicative approximation is considered to be a strict and unrealistic
notion of simulation, and was used in early quantum supremacy type arguments [19, 24]. A
weaker, more appropriate notion is that of additive approximation, which has been used as
the standard in quantum supremacy type arguments to demonstrate hardness [20, 21].

2.5.2 Review of Classical Simulation

In this section, we will review classical simulation results that are relevant to the work within
this thesis.

A key theorem in classical simulation results is the Gottesman-Knill theorem [3].
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Theorem 2.5.1. (Gottesman–Knill) A quantum computation involving only: state prepara-
tions in the computational basis, polynomial-sized circuits consisting of Clifford gates, and
Pauli measurements, can be efficiently simulated on a classical computer.

The Gottesman-Knill theorem describes a highly non-trivial class of computations that can
generate highly entangled systems and demonstrate phenomena like quantum teleportation.
Furthermore, by relaxing the constraints and allowing for one non-Clifford gate in the allowed
gate set, such as a T gate2, universal quantum computation can be restored [3]. To implement
a T gate, one can introduce a resource called the “magic” state |ψ⟩= 2−1/2(|0⟩+ eiπ/4|1⟩).
By using this magic state and constructing a T -gadget, which resembles a teleportation
scheme, it is possible to incorporate a T gate into a Clifford circuit and thus restore universal
quantum computing [61].

The Gottesman-Knill theorem provides a direction in which we can identify the resources
required to lift a computation that can be efficiently classically simulated to one that that has
the full power of quantum computation [60]. This raises the question of what other features
and resources could be added to Clifford circuits to enable quantum computation. For exam-
ple, Jozsa and Van den Nest [4] investigated whether Clifford circuits, when supplemented
with various additional features such as general input product states, intermediate adaptive or
non-adaptive measurements can be efficiently classically simulated, where different notions
of simulation were considered. It is not straightforward to determine generally the extent to
which restricted models of quantum computing can be efficiently classically simulated due to
the plethora of models, resources, and features that can be considered. However, by exploring
the computational power of restricted models of quantum computing, we can establish a
boundary between classical and quantum computing. Two well-known restricted models are
IQP [48, 19] and matchgate [62, 63] circuits. Nearest neighbour matchgate circuits encode
the physics of non-interacting fermions [62, 63]. These circuits can be efficiently classically
simulated, although the addition of the swap gate allows for universal quantum computation
[64, 65]. IQP circuits are circuits that consist of gates that are all diagonal in the X-basis,
and measurements are performed in the computational basis. The classical simulation of
these circuits has been studied under a variety of notions and features, such as noisy circuits,
circuit depth, and short/long-range interaction gates [49, 21, 50].

2T = |0⟩⟨0|+ eiπ/4 |1⟩⟨1|.
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A feature of quantum computing that has been widely studied is entanglement. It has
been demonstrated that without entanglement, a quantum pure state computation can be
classically efficiently simulated [66]. Furthermore, if there is limited entanglement, one
can use tensor network type approaches [67–69] to provide efficient classical simulations
[6, 70, 7]. However, the computations permitted by the Gottesman-Knill theorem clearly
allow for highly entangled systems, and yet can also be classically simulated. On the other
hand, it has been shown that weak amounts of entanglement can, in fact, be sufficient for
quantum computation, [9, 10]. One avenue for exploring the effect of entanglement on
classical simulation is to consider a more general framework of entanglement, introduced in
[13]. By utilising this more general notion, classical simulation methods have been developed
that can simulate pure systems that are nevertheless quantum entangled [58, 30].

A useful way to investigate the feature of entanglement is provided in the setting of
measurement based quantum computing [11, 12]. In this setting, the entanglement is already
present in the resource state, and non-clifford operations are carried out in the form of
adaptive measurements to enable universal quantum computation. By imposing restrictions
on certain parts of an MBQC (measurement-based quantum computation) scheme, it has
been demonstrated that even with limitations such as, only measuring in the XY -plane [71],
or utilising entangling unitaries of the form e−i π

2n Z⊗Z [72], or employing lattices with specific
degrees (e.g. a brickwork state [73] ), the scheme supports universal quantum computation.
Another aspect that one can restrict in an MBQC scheme it the input state. This has been
explored in [54, 53], where it was shown that if the input states are sufficiently close to the
equatorial state, a filtering operation can be employed that recovers universal quantum com-
putation. Recent methods have been developed, known as quantum supremacy arguments,
that prove that if classically computers can efficiently simulate quantum computers, then
this would violate widely believed complexity theoretic conjectures [16]. This approach has
been used to demonstrate that certain restricted models of computing cannot be efficiently
simulated [19–21, 25, 74–80, 32, 33]. Recent research in this direction has also focused on
tackling the outstanding conjectures required in this approach, as well as settings involving
noise [26–29, 34, 50]. Therefore, these arguments provide a tool that can be used to poten-
tially establish that a restricted model of quantum computing cannot be efficiently classically
simulated.



Chapter 3

Classical Simulation of Cluster State
Quantum Circuits with Alternative Inputs

3.1 Introduction

In the previous chapter, we saw that a cluster state computation in its original form is known
to support universal quantum computation. However, what happens if the input state is
replaced by a pure state of the form cos(θ/2) |0⟩+ sin(θ/2) |1⟩? The answer to this is not
obvious even for small θ , as states that are locally close to product states can still support
universal quantum computation [9]. In this chapter, we will develop an efficient classical
simulation algorithm that can simulate a cluster state scheme with inputs that are “close
enough” to diagonal in the computational basis.

3.1.1 Overview and Related Work

It has been demonstrated that with certain types of limited entanglement, a pure state quantum
computation can be efficiently classically simulated [66, 6, 7]. However, the computations
permitted by the Gottesman-Knill theorem allow for highly entangled systems, and yet can
also be efficiently classically simulated. It has also been shown that weak amounts of entan-
glement can, in fact, be sufficient for universal quantum computation [9, 10]. An approach
for exploring the effect of entanglement on classical simulation is to consider a more general
framework of entanglement [13, 55] and, in some cases, one can develop efficient classical
simulation methods that can simulate quantum computations that are entangled [58].

A useful approach to investigating the role of entanglement arises in measurement-based
quantum computing. Consider the typical cluster state scheme, which can be described in



22 Classical Simulation of Cluster State Quantum Circuits with Alternative Inputs

three stages. First, qubits are prepared in the |+⟩ state, and placed at the vertices of a lattice.
Second, CZ gates are performed on qubits connected by lattice edges. Finally, single qubit
measurements are performed on the lattice. If the measurements are adaptive, and are in the
Z-basis and the XY -plane, then it is known that this scheme can support universal quantum
computation. If, however, the input qubits are prepared in the |0⟩ or |1⟩ state, then the CZ
gates act trivially, generating no entanglement. On the other hand, if the input states are
close enough to the equator, then it has been shown that, through a measurement process that
requires certain POVMs, such schemes can support universal quantum computation [53, 54].
In this work, we will be interested in exploring the computational power of a cluster state
computation, wherein we vary the initial state preparation step. Instead of initialising the
input state as a |+⟩ state, we will instead consider pure states of the form

|θ⟩= cos(θ/2) |0⟩+ sin(θ/2) |1⟩ , (3.1)

with angle θ . Throughout this thesis, we will consider cluster state schemes with inputs of
the form (3.1), and measurements in the XY -plane and Z-basis that are destructive1.

This chapter is organised as follows. In Sec.3.2.2 we present our main result, that the
output of a CZ gate acting on two cylinder states can be given a separable decomposition
provided that the cylinder radii in the decomposition grow sufficiently. Sec.3.3.2 combines
this result with the Harrow and Nielsen algorithm (Sec.3.3.1) to obtain an efficient classical
simulation algorithm based on cylinder radii growth. Note that in the next chapter, we
consider ways to improve and extend our classical simulation algorithm.

Contributions

The results presented in chapter 3 and chapter 4 are based on [30] and [31]. My contributions
to this work are as follows. In Sec.4.2.1 the numerical computations of l1 and l̃1 were
independently performed by Y.Tao, M.Garn and S.Virmani in order to verify the results.
The initial exploratory investigations of lemma 3.2.1 in Sec.3.2.2 were developed by my
supervisor in the symmetric case, and the extension to the asymmetric case was first done
by Y.Tao. The lemma 4.3.1 in Sec.4.3 was initially explored by S.Atallah. The curve in
figure 4.5 was obtained partially numerically by S.Atallah based on theoretical investigations
initiated by S.Virmani. These results were verified by M.Garn, and M.Garn and S.Virmani
together derived equation (4.21) in lemma 4.3.1. In table 4.2, some of the numerical values
were first computed by S.Atallah and then independently verified by M.Garn. Observation

1That is, we do not permit remeasuring qubits.
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4.4.2 and figure 4.9 were done by M.Garn. The theoretical results, other than those above,
were developed by my supervisor. The writing and all other discussion was done by myself
under the guidance of my supervisor.

3.2 Obtaining a Generalised Separable Decomposition

3.2.1 Cylindrical State Spaces

In section 2.2, we described the typical cluster state scheme, where input qubits are initialised
in the |+⟩ state and CZ gates are applied to nearest neighbour qubits. The resultant state is a
highly entangled multiparty pure state that cannot be given a separable decomposition:

∑
i

piρ
A
i ⊗ρ

B
i ⊗ρ

C
i ⊗ . . . (3.2)

where ρK
i are normalised non-negative local operators. Furthermore, if the qubits are mea-

sured adaptively in either the Z-basis or the XY -plane, then this scheme can implement
universal quantum computation.

However, in section 2.4 we saw that it is possible to generalise this notion of entanglement
by relaxing the requirement that the ρK

j must be non-negative operators. Indeed, we will
consider this and instead permit operators that yield non-negative probabilities. That is,
allowing the local operators to be drawn from the normalised dual set:

M ∗ := {ρ | tr[ρ] = 1, tr[ρM]≥ 0,∀M ∈ M }, (3.3)

where M denotes the set of permitted single particle measurement operators. Now consider
the cluster state scheme with permitted single particle measurements in the Z-basis and
XY -plane. The projectors for these measurements are of the form:

I ±Z and I ± (cosθX + sinθY ) . (3.4)

We will now see how the condition tr[ρM]≥ 0 places constraints on ρ . Consider an arbitrary
ρ expanded in the Pauli basis,

ρ =
1
2
(I + xX + yY + zZ) , (3.5)
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with x,y,z ∈R. Taking the projectors PX± = (I±X)/2 and calculating tr[ρPX±]≥ 0, imposes
the condition that |x| ≤ 1. Similarly, if we consider the projectors PY± = (I ±Y )/2, this
imposes the condition |y| ≤ 1. By calculating tr[ρM] for the remaining measurements in
(3.4), we find that z ∈ [−1,1] and x2 + y2 ≤ r2. Therefore, the dual set for the permitted
measurements (3.4), becomes a cylindrically shaped state space as illustrated figure3.1.

Definition 3.2.1. A cylinder of radius r is defined as the following set of normalised operators:

Cyl(r) := {ρ|ρ = ρ
†,Trρ = 1,x2 + y2 ≤ r2,z ∈ [−1,1]} (3.6)

where x,y,z are the Bloch expansion coefficients of ρ .

We will commonly refer to operators that are drawn from (3.6) as cylinder states. It is
important to point out that the operators drawn from the cylinder state space contain states
that are outside the Bloch sphere and, consequently, contain non-physical operators. However,
by ensuring that r ≤ 1, the operators in (3.6) will nevertheless return valid probabilities for
measurements in the Z-basis and XY -plane. As we will see later in Sec.3.3.1, we will use this
fact to develop an efficient classical simulation algorithm. It is also important to point out that
the physical states |θ⟩ are examples of cylinder states. That is, the states in equation (3.1) can
be expressed as a convex combination of cylinder states in (3.6), where the correspondence
between θ and r is given by r = sinθ . Lastly, we provide an alternative definition for cylinder
sets in terms of dephasing noise.

Definition 3.2.2. A cylinder of radius r is defined as the following set of normalised operators:

Cyl(r) := {ρ|ρ = ρ
†,Trρ = 1,∥ρ −DZ(ρ)∥ ≤ r}, (3.7)

where DZ(ρ) = (1− p)ρ + pZρZ, with p = 1/2.

3.2.2 Cylindrical Separability based on Radii Growth

We have just introduced cylindrical state spaces, which arise in the context of cluster state
quantum circuits when measurements are restricted to the XY -plane and Z-basis. The key
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Fig. 3.1 This diagram illustrates a cylinder with r = 1 in the Bloch space, where the sphere
represents the Bloch Sphere. The cylinders always extend the full height from z = −1
to z = +1, irrespective of radius. The unit cylinder with r = 1 is the normalised dual of
the permitted measurements. That is the set of normalised operators that yield positive
probabilities for the allowed measurements.

technical result that we will now show is that if a CZ gate acts on two cylindrical state spaces,
the output can be given a separable decomposition with respect to two new cylindrical state
spaces with larger radii.

Lemma 3.2.1. Consider the set CZ(Cyl(rA)⊗Cyl(rB)) of two qubit operators made by
acting with a CZ gate on Cyl(rA)⊗Cyl(rB). Any operator in CZ(Cyl(rA)⊗Cyl(rB)) can be
written in the generalised separable form:

∑
i

piρ
A
i ⊗ρ

B
i (3.8)

where ρA
i ∈ Cyl(RA) and ρB

i ∈ Cyl(RB) if and only if:

1 ≥
(

rA

RA
+

rB

RB

)2

+

(
rA

RA

)2( rB

RB

)2

. (3.9)

We refer to an operator of the form of equation (3.8) as being Cyl(RA),Cyl(RB)-separable.

Before starting the proof, we will first need to introduce some notation. Consider an
operator ρ expanded in the Pauli basis. We will use the brackets "[. . . ]", containing the
Pauli expansion coefficients, to denote the operator ρ . For example, the bracket [1,x,y,z]
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denotes the single particle operator ρ = 1
2 (I + xX + yY + zZ). If ρAB is a two particle operator

expanded in the Pauli basis as

ρAB =
1
4 ∑

i, j
ρi, jσi ⊗σ j, (3.10)

where σ0 = I,σ1 = σ=X ,σ2 = Y,σ3 = Z are the Pauli matrices, then we denote this operator
as 

ρ00 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33

 . (3.11)

Proof. Consider the two particle product state ρA ⊗ρB where ρA,ρB are drawn from two
cylinders with radii rA and rB respectively. The task is to determine whether the output of a
CZ gate, acting on all such possible inputs, leads to a Cyl(RA),Cyl(RB)-separable state.

Suppose we have a CZ acting on any such input state ρ . As ρ can be expressed as a
linear combination of extremal states and as the CZ is a linear operator, we see that if the
output is separable for extremal inputs, then the output is separable for all inputs. Therefore,
we only need to consider whether the output of a CZ acting on extremal state inputs is
Cyl(RA),Cyl(RB)-separable.

Next, we will show that we can further reduce the number of input states we need to
consider by exploiting properties of the CZ gate and symmetries of cylindrical state spaces.
Suppose that we have an explicit Cyl(RA),Cyl(RB)-separable decomposition:

CZ(ρA ⊗ρB) = ∑
i

piω
i
A ⊗ω

i
B (3.12)

where ω i
k ∈ Cyl(Rk). Then we have the following observations.

1. Observe that any extremal input state ρk ∈Cyl(rk) can be expressed as Uk
z ([1,rk,0,±1]),

where Uk
z is the rotation operator about the Z axis. Now using the fact that Uk

z com-
mutes with the CZ and that cylinders are invariant under Z rotations, we have the
Cyl(rA) ,Cyl(rB)-separable decomposition:

CZ
(

UA
z (ρA)⊗UB

z (ρB)
)
= ∑

i
piUA

z
(
ω

i
A
)
⊗UB

z
(
ω

i
B
)
.
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This shows that the separable decomposition in equation (3.12) is invariant up to local
Z rotations and we may restrict inputs to the form

[1,rA,0,±1]⊗ [1,rB,0,±1] .

2. Notice that if the first input particle has zA = 1 with the second input particle having
zB =±1, and the output is separable:

CZ([1,rA,0,1]⊗ [1,rB,0,±1]) = ∑
i

piω
i
A ⊗ω

i
B,

then modifying the first input to have zA =−1 gives another operator with a separable
decomposition:

CZ([1,rA,0,−1]⊗ [1,rB,0,±1]) = ∑
i

piXω
i
AX† ⊗Zω

i
BZ†.

In this argument we could equally well have considered the second input instead, as the
CZ is symmetric. This shows that input product states with asymmetric z-components2

preserve (3.12) up to an X ⊗Z or Z⊗X operation. Therefore, we only need to consider
input states of the form [1,rk,0,1].

Following these observations, we have reduced the task to determining whether the output
of a CZ gate, acting on one input extremum:

[1,rA,0,1]⊗ [1,rB,0,1] (3.13)

is Cyl(RA),Cyl(RB)-separable. Under the action of the CZ gate acting on inputs (3.13), we
have 

1 rB 0 1
rA 0 0 rA

0 0 rArB 0
1 rB 0 1

 . (3.14)

If this corresponds to a Cyl(RA),Cyl(RB)-separable operator, then it can be given the decom-
position, written as the outer product, as:

2That is, the first input particle has zA = 1 and the second input particle has zB =−1, or zA =−1 and zB = 1.
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∑
i

pi


1

RA cos(θi)

RA sin(θi)

1

[ 1 RB cos(φi) RB sin(φi) 1
]
, (3.15)

where the angles θi and φi indicate where on the top perimeter of the cylinder the local states
lie. Setting equation (3.14) equal to (3.15), and left multiplying by

1 0 0 0
0 1/RA 0 0
0 0 1/RA 0
0 0 0 1

 (3.16)

and right multiplying by 
1 0 0 0
0 1/RB 0 0
0 0 1/RB 0
0 0 0 1

 , (3.17)

we see that equation (3.14) is Cyl(RA),Cyl(RB)-separable if and only if


1 rB

RB
0 1

rA
RA

0 0 rA
RA

0 0 rArB
RARB

0
1 rB

RB
0 1

 (3.18)

is Cyl(1),Cyl(1)-separable.

We will now demonstrate that verifying whether (3.18) is Cyl(1),Cyl(1)-separable is
equivalent to checking the usual quantum separability of a two-qubit quantum operator. First,
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assume that the operator 
1 ± rB

RB
0 0

± rA
RA

0 0 0
0 0 rArB

RARB
0

0 0 0 0

 (3.19)

has a quantum separable decomposition:

∑
i

pi[1,xi
A,y

i
A,z

i
A]⊗ [1,xi

B,y
i
B,z

i
B]. (3.20)

Given such a decomposition, and setting zi
A = 1 and zi

B = 1 for all i, we have that (3.18) is
Cyl(1),Cyl(1)-separable because it has decomposition

∑
i

pi[1,xi
A,y

i
A,1]⊗ [1,xi

B,y
i
B,1]. (3.21)

Conversely, by taking any Cyl(1),Cyl(1)-separable decomposition for equation (3.18) and
setting zi

A = 0 and zi
B = 0 for all i, we recover a quantum-separable decomposition for (3.19).

Therefore, we have that (3.14) is Cyl(rA),Cyl(rB)-separable if and only if (3.19) corresponds
to a positive and PPT operator, so we may apply the PPT criterion [39, 40].

Explicitly verifying (3.19) is quantum separable, corresponds to checking that the minimal
eigenvalues of the operator (3.19):

I +(
rA

RA
X ⊗ I + I ⊗ rB

RB
X)+

rArB

RARB
Y ⊗Y (3.22)

and its partial transpose

I +(
rA

RA
X ⊗ I + I ⊗ rB

RB
X)− rArB

RARB
Y ⊗Y (3.23)

are non-negative. Notice however, that (3.22) and (3.23) are related by the unitary X ⊗ I.
Specifically, applying a X transformation on the first qubit of (3.22) gives (3.23), hence the
eigenvalues of the two operators are equivalent.

To proceed, we will simplify the problem by applying a Hadamard unitary to both qubits
of (3.23) to give
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I +(
rA

RA
Z ⊗ I + I ⊗ rB

RB
Z)− rArB

RARB
Y ⊗Y. (3.24)

Expressing the above equation in the computation basis:


1+ fA + fB 0 0 fA fB

0 1+ fA − fB − fA fB 0
0 − fA fB 1− fA + fB 0

fA fB 0 0 1− fA − fB

 , (3.25)

where we have defined fA := rA/RA and fB := rB/RB. The eigenvalues can be worked out on
the inner and outer block separately. Both blocks have positive trace, and the determinants of
the inner and outer block are:

1− ( fA − fB)
2 − f 2

A f 2
B, (3.26)

1− ( fA + fB)
2 − f 2

A f 2
B (3.27)

respectively. As fA, fB ≥ 0, the lowest of these is the outer determinant (3.27). Therefore, if
the outer determinant is non-negative the output will be Cyl(RA),Cyl(RB)-separable.

We will now discuss some implications of lemma 3.2.1. First, let us define the ‘growth’
factor ratios as

gk :=
Rk

rk
. (3.28)

Therefore, we can interpret the result of lemma 3.2.1 as stating that a CZ can be interpreted
as a gate giving separable output, provided that the radii of the output spaces are sufficiently
large relative to those of the input spaces. That is, provided that the growth factors satisfy

1 ≥
(

1
gA

+
1

gB

)2

+

(
1
gA

)2( 1
gB

)2

. (3.29)

If we consider the case in which the growth factors are symmetric, gA = gB = g, then
condition (3.9) in lemma 3.2.1 reduces to

1− 4
g2 −

1
g4 ≥ 0 (3.30)

which can be solved to give:
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CZ:

r r λ r λ r

Fig. 3.2 This figure summarises the result of lemma 3.2.1 with symmetric growth factors
λ . Applying a CZ operation to two input cylinders, the output can be given a separable
decomposition with respect to cylindrical state spaces provided that the cylinder radius grows
by λ ≈ 2.058.

g ≥ λ :=

√
1√

5−2
≈ 2.05817. (3.31)

Therefore, in the case that the growth factors are symmetric, we see that as long as the radii of
the output spaces are roughly twice the input radii, then the CZ can be considered a separable
operation (see figure 3.2).

3.3 An Efficient Classical Simulation Algorithm

In this section, we describe the classical algorithm proposed by Harrow and Nielsen (HN)
[8] for efficient simulation of noisy quantum systems that cannot generate entanglement.
We then show that by combining this algorithm with the concept of cylinder separability,
we obtain an efficient classical simulation algorithm based on the growth of cylinder radii.
Moreover, the algorithm only requires modest changes to the HN algorithm to implement
cylindrical state spaces.

3.3.1 The Harrow and Nielsen algorithm

The Harrow and Nielsen algorithm is an efficient classical simulation algorithm that can
simulate a quantum computation where: the input is a product state, the circuit only contains
non-entangling gates, and the output is obtained by performing local measurements.

The idea of the algorithm is to represent the global state of the system with variables
that approximate the Bloch vector of each particle, up to l-bits of precision. And for every
(separable) gate in the quantum circuit being simulated, the classical algorithm represents
this through a gate simulation step.
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In the gate simulation step, the algorithm takes as input, w.l.o.g states ρA and ρB, and
through a brute force search constructs an approximation to the separable decomposition

∑i piρ
A
i ⊗ρB

i . The algorithm then samples i according to pi, and for that i updates the Bloch
vectors (up to l-bit precision) with corresponding ρA

i ,ρ
B
i . Once all the gate simulation steps

in the circuit have been carried out, the measurement outcomes are then sampled from the
final product state. In [8], it was then shown that if l is of order O(log(poly(n)/ε)), with n
number of gates in the circuit, then the algorithm samples the quantum distribution to within
ε in polynomial time.

We now describe in detail how the efficient classical simulation algorithm from [8] is
performed.

Description of Variables

The method involves the use of valid three-dimensional real vectors s⃗ j for j = 1, . . . ,q(n),
where q(n) is a polynomial in n. Each s⃗ j is said to be valid if: it is in the range [−1,1],
specified to l bits of precision3, and

∣∣⃗s j
∣∣ ≤ 1. The notation s⃗ ≡

(⃗
s1, . . . , s⃗q(n)

)
is used to

denote the 3q(n)-dimensional real vector containing all the s⃗ j s as sub-vectors. The idea of
the classical simulation is that the variables s⃗ will be used to represent the states ρ (⃗s):

ρ (⃗s)≡ I + s⃗1 · σ⃗
2

⊗ . . .⊗
I + s⃗q(n) ·σ

2
. (3.32)

The initial state of the quantum computer is assumed to be |x⟩, where x has binary expansion
x1 . . .xq(n). If x j = 0, then set s⃗ j = (0,0,1), while if x j = 1, then set s⃗ j = (0,0,−1). To
simulate a two-qubit4 separable gate E acting on qubits A and B, we use the following gate
simulation procedure. The procedure takes s⃗ as input and produces a 3q(n)-dimensional vec-
tor s⃗′ as output. We then set s⃗ = s⃗′ and repeat the procedure for each gate in the computation
until we reach the final output value of s⃗.

The Gate Simulation Procedure

To simulate a two-qubit gate, we start with s⃗. Our goal is to find s⃗ j
A and s⃗ j

B, and a probability
distribution p j, specified to l bits of precision. We want to satisfy the following inequality:

3To be fixed later in order to ensure the overall accuracy is at least ε .
4Note that we only need to consider simulating two-qubit gates as a single-qubit gate can be simulated as a

two-qubit gate, where one qubit is acted on trivially.
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D

(
E

(
I + s⃗A · σ⃗

2
⊗ I + s⃗B · σ⃗

2

)
,∑

j
p j

I + s⃗ j
A · σ⃗

2
⊗

I + s⃗ j
B · σ⃗

2

)
≤ c2−l

where c is a constant that does not depend on E ,A or B. To do this, we use Carathéodory’s
theorem, which tells us that the separable, two-qubit state E

(
I+⃗sA ·⃗σ

2 ⊗ I+⃗sB ·⃗σ
2

)
can be written

as:

∑
j

q j
I + t⃗ j

A · σ⃗
2

⊗
I + t⃗ j

B · σ⃗
2

where q j are probabilities, t⃗ j
A ,⃗ t

j
B are real-three vectors satisfying |⃗t j

A|, |⃗t
j
B| ≤ 1, and there are at

most 16 terms in the sum. We choose the p j to be probabilities that are l-bit approximations
to the q j, and the s⃗ j

A, s⃗
j
B to be valid vectors that approximate t⃗ j

A,⃗ t
3
B to l bits. This allows us

to satisfy the inequality above. It is important to note that finding valid probabilities and
vectors may require significant computational effort. While Carathéodory’s theorem ensures
the existence of such probabilities and vectors, finding them may not be a trivial task. The
output of the procedure is a valid vector s⃗′, which is chosen with probability p j. We construct
the vectors s⃗ j

A and s⃗ j
B to approximate t⃗ j

A and t⃗ j
B, which are real-three vectors satisfying certain

conditions.

Simulating the Final Measurement

To simulate the final measurement, we start with a subset of qubits that are measured at the
output of the quantum computation, denoted as S. For each qubit k in S, we let s3

k be the
third component of the vector s⃗k. To determine the measurement outcome for qubit k, we
use the following probabilities: the measurement result is 0 with probability

(
1+ s3

k

)
/2, and

it is 1 with probability
(
1− s3

k

)
/2. By following this procedure, we obtain a distribution

over possible outcomes, denoted as p̃x(y), where y is the outcome and x is the input to the
quantum computation.

3.3.2 Efficient Classical Simulation based on Radii Growth

We will now show that the Harrow and Nielsen algorithm can be applied to our setting by
considering the following minor modifications.

First, we modify the initialisation step by placing particles on the nodes of a regular
graph, where the operators are drawn from the set Cyl(ri) with radii ri. It was established
in the previous section that the output of a CZ gate, acting on two cylinder states, can be
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given a separable decomposition provided the output radii grow sufficiently. Therefore, in the
gate simulation step, we replace ri with λiri, where λi is the growth factor required to ensure
separability. Moreover, for each CZ gate we perform a gate simulation step, resulting in the
output remaining cylinder separable provided that the cylinder spaces Cyl(ri) are replaced
with

Cyl(λ D
i ri) (3.33)

where D is the degree of the graph. Therefore, if we restrict the measurements to Z-
basis measurements and XY -plane measurements, then we can use the cylinder separable
description to sample the measurements efficiently. That is, if the initial qubits satisfy the
condition:

||ρi − (ρi)diag || ≤
1

λ D , (3.34)

then the system can be efficiently simulated classically. This can be summarised in the
following theorem.

Theorem 3.3.1. If a quantum computation involves initialising n qubits in state ρ on the
sites of a lattice, and interacting qubits joined by an edge with CZ gates, then if the states ρ

satisfy:

∥ρ −ρdiag∥ ≤
1

λ D , λ :=

√
1√

5−2
≈ 2.05817 (3.35)

where D is the maximum degree of any node, then measurements in the Z basis and the XY
plane can be sampled classically to within additive error ε in O(poly(n, 1

ε
)) time.

3.4 Summary and Remarks

In this chapter, we have shown that computations made from cluster state circuits acting upon
inputs close enough to computational basis states can be efficiently simulated classically.
The main technical tool we considered was a generalised notion of separability. Specifically,
we considered relaxing the requirement that the local operators ρK

j must be non-negative
operators, and instead allowed the operators to be drawn from a set of operators that, through
the Born rule, yield positive probabilities for a given set of measurement operators. Applying
this to the permitted cluster measurements, we arrived at the notion of cylindrical state spaces.
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Using this notion, we first proved that if a CZ gate acts on input operators that are drawn from
cylinders of radius r, the output can be given a separable decomposition provided that the
radius of the output cylinders in the decomposition grows by a constant λ > 0. By combining
this with a modified version of Harrow and Nielsen’s algorithm, we see that this enables
an efficient classical simulation algorithm that can sample from the output distribution to
within additive error. As a result, this provides examples of pure entangled quantum systems
that can be efficiently classically simulated. We remark that the techniques on generalised
separability presented in this chapter and in earlier work [15], could be potentially applied to
other quantum systems (e.g. non-diagonal gates, and other restrictions on measurements)
and therefore may enable efficient classical simulation algorithms.





Chapter 4

Classical Simulation: Improvements and
Generalisations

4.1 Introduction

In Chapter 3, we showed that computations arising from cluster state quantum circuits acting
upon inputs close enough to computational basis states can be efficiently classically simulated.
Key to the classical simulation algorithm that was developed in chapter 3, is that for each CZ
interaction, the radius r of the output operators in the separable decomposition must grow
by λ . This requirement, coupled with the dual constraint, determines the values of r that
can be efficiently simulated. In this chapter, we look at ways to improve and extend our
classical simulation algorithm. Namely, we improve the regions of r that can be efficiently
classically simulated by considering a coarse-graining approach and other alternative notions
of separability. We also generalise and extend the result of Sec.3.2.2 beyond CZ gates, by
computing the equivalent λ for any two-qubit diagonal gate.

4.1.1 Overview

In this chapter, we will focus on ways to improve and generalise our classical simulation
algorithm. First, in Sec.4.2, we show that by considering a coarse graining approach, we
can improve the bound on the parameter r that can be efficiently classically simulated. The
idea of the approach is to partition the underlying lattice into blocks and treating each block
as a single particle on a new lattice. Then by constructing separable decompositions over
these blocks, we can analytically show that we can increase r for which we can efficiently
classically simulate.
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In Sec.4.3, we explicitly compute λ for any two-qubit diagonal gate, thus generalising
and extending the result of Sec.3.2.2 beyond CZ gates. This result demonstrates that, for
any finite-degree graph, a two-parameter family of pure entangled quantum states can be
efficiently classically simulated within a non-trivial region for permitted measurements.
Consequently, for these systems, we are able to plot figures (see fig 4.6) that include regions
that can be efficiently classically simulated. Note that the proof of this result uses similar
techniques based on cylinder separability as in Sec.3.2.2.

Next, we consider whether there are state spaces that maintain a separable decomposition
with a lower growth rate than the cylinder state space. In sec.4.4, we investigate this for two
state spaces, that we call the Protruding state space and the Cylinder-Cone state space. The
main approach used in this section is to map a separability problem into a linear programming
problem. In Sec.4.4.1, we find that the Protruding state space requires greater growth to
maintain separability than the cylinder state space. However, in Sec.4.4.4, we find that for
the Cylinder-Cone state space there is a very slight improvement in the growth required for
maintaining a separable decomposition.

4.2 Coarse Graining

The classical simulation algorithm developed in section 3.3.2 has two conflicting require-
ments:

1. To maintain a cylinder separable decomposition, the input radii ri must grow with each
application of a CZ gate.

2. The input radii ri must also satisfy the dual constraint, thus requiring that

λ
D
i ri ≤ 1,

where D is the maximum degree of the lattice and λi is the growth rate required to
main a cylinder separable decomposition.

In this section, we will show that this trade-off can be better managed through a coarse-
graining approach. We will explain this approach through an example.

Consider a lattice of size 8×8, where each node of the lattice represents a particle that
is drawn from Cyl(r), illustrated in figure 4.1a. We partition the lattice into 4×4 blocks of
fixed size, see figure 4.1b. Next, apply the external CZ gates that connect particles between
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(a) Initialise the 8×8 lattice.
(b) Partition the lattice into 4×
4 blocks of fixed size.

(c) Apply the external CZ
gates that connect particles be-
tween blocks.

Fig. 4.1 Example of Coarse Graining approach for a 8× 8 lattice with 4× 4 blocks. In
this figure, each node represents a particle that is drawn from Cyl(r). The smaller circles
represent particles drawn from Cyl(λ r) and the biggest from Cyl(λ 2r).

blocks, see figure 4.1c. To maintain a separable decomposition, we require that the radius of
each particle grows according to the number of external CZ gates applied to the qubit. The
updated new state space of each block B, after undergoing the external CZ gates, is:

S′B(r) :=
n⊗

i=1

Cyl(ri). (4.1)

Here, for each qubit i in the block, the radius ri is determined by ri = rλ ei , where ei denotes
the number of external CZ gates applied to that qubit. It should be noted that, prior to
applying the internal CZ gates, each block B is separable with respect to these state spaces.

Lastly, for each block we apply the internal CZ gates, the resulting state space for each
block is S′′B(r). We define the maximum value of r for which S′′B is in dual as rB,max. We also
denote the state space for a block B as SB := S′′B (rB,max).

Comparing the Coarse-Grained and Fine-Grained approaches.

To understand the differences between the coarse-grained and the previous fine-grained
approach, consider the last step of the procedure outlined above. In the fine-grained approach,
the radii r were chosen such that the internal CZ gates satisfy two constraints: i) the block
state space is in the dual of the measurements, ii) the output state has to be separable with
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Fig. 4.2 Example of the coarse-graining approach, where a 8×8 lattice has been partitioned
into blocks of two particles.

respect to an internal partition into Cyl(1) spaces. Note that the constraint i) is satisfied if ii)
holds.

In contrast, the coarse-grained approach only imposes a single constraint, that the internal
CZ gates keep the block state space in the dual of the measurements. We will see that this
weaker requirement allows us to increase the r that we can classically simulate compared to
the fine-grained approach.

Example. Blocks of 2 Cylinders

To demonstrate the difference in the approaches outlined above, we will consider a 2D
square lattice partitioned into blocks of two particles, as shown in figure 4.2. Following the
procedure, we apply the external CZ gates that connect particles between blocks. To maintain
a separable decomposition, we require that the output radii must satisfy

r′ = rλ
3, (4.2)

for all particles not on the perimeter1.

In the fine-grained approach, the remaining internal CZ gates would be applied within
each block, resulting in the constraint

r ≤ 1
λ 4 (4.3)

1We exclude particles on the perimeter from the calculation, as their radii grow by λ or λ 2, leading to a
weaker constraint on r.
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However, in the coarse-approach, we only need to ensure that we do not get taken out of
the dual. This means that, the output of a CZ gate acting on all extremal input cylinder
states must only be in the dual of the measurements. Therefore, we have to calculate the
maximum r′, such that the output of a CZ gate acting on all possible extremal cylinder states,
returns non-negative probabilities for the permitted measurements (Z basis and XY -plane
measurements). Explicitly in appendix A.1, we show that r′ ≤ 1/2 and therefore equation
(4.2) implies that

r ≤ 1
2λ 3 . (4.4)

Comparing this with the restriction on r of the fine-grained approach of (4.3), we see that
coarse-graining improves the range of r for the case of 2-blocks.

Sequences obtained by increasing block size

We will now see that by increasing the block sizes further, we will only ever increase the
region of r that can be classically simulated. Let B be a rectangular block with H ×W
qubits, where H,W ≥ 2, which is embedded in a larger lattice. We will consider two ways of
initialising the qubits in the block, illustrated in figure 4.3.

The first way is to initialise all states in an extremal cylinder state with radius r and z = 1
and apply the internal CZ gates. We denote the resultant operator describing this block as
ρ(B,r). The second way is to initialise the interior qubits in extremal cylinder states with
radius r and z = 1. The states on the boundary of the block, are initialised in extremal cylinder
states with a radius that grows according to the number of external CZ gates. We now apply
the internal CZ gates within this block and denote the resultant operator as ρλ (B,r).

We will be interested in when these operators are in the dual of the permitted measure-
ments, and therefore it will be helpful to define the following quantities:

s(B) := max{r | Tr [Mρ(B,r)]≥ 0,∀M ∈ M } (4.5)

and
sλ (B) := max{r | Tr [Mρλ (B,r)]≥ 0,∀M ∈ M } (4.6)

where M is the set of permitted measurements.
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Fig. 4.3 Example of block operators ρ(B,r) and ρλ (B,r), where the block B is of size H ×W .
The operator ρ(B,r) describes the block on the left, where all states have been prepared in an
extremal cylinder state with radius r and z = 1, and all internal CZ gates have been applied.
The operator ρλ (B,r) describes the block on the right, which is constructed as follows. The
interior qubits are extremal cylinder states with radius r and z = 1. The states on the boundary
of the block, are initialised in extremal cylinder states with a radius that grows according to
the number of external CZ gates (denoted by dashed lines). Applying the internal CZ gates
within this block results in the operator ρλ (B,r).

At this point it is helpful to summarise how these quantities connect to the classical
simulation algorithm presented in Sec.3.3.2. If there exists a block B for which r ≤ sλ (B),
then it is possible to efficiently classically simulate inputs from cylinders with radii r.
However, if r > s(B), then inputs from cylinders with a radius of r would result in negative
probabilities, hence we cannot apply the classical simulation algorithm. Therefore, our goal
is to identify blocks with large sλ (B) thereby allowing for greater range of r to be simulated.
To aid in this task, we present the following lemma from [30].

Lemma 4.2.1. Consider a region KL of qubits embedded in a larger lattice. Consider cutting
the region into two disjoint subregions K and L (i.e. we remove the CZ gates joining these
two regions). Then we have the following relationships. For any region F whatsoever:

s(F)≥ sλ (F) (4.7)

For the region KL and its subregions K and L:

s(KL) ≤ min{s(K),s(L)} (4.8)

sλ (KL) ≥ min{sλ (K),sλ (L)} (4.9)
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In particular suppose that the two subregions K and L are identical (i.e. correspond to
isomorphic graphs), then in that case we would have (writing K = L to denote that the
subregions are isomorphic):

s(LL) ≤ s(L) (4.10)

sλ (LL) ≥ sλ (L) (4.11)

Proof. For details of the proof see [30].

The usefulness of this result lies in its ability to help define sequences that emerge when
blocks are combined in the coarse graining approach, hence capturing the efficient classical
simulatability of r.

To see this, suppose we divide the 2D lattice into square blocks of size 2×2. To construct
a sequence of larger blocks, we can start with a single 2×2 block B1 and then recursively
combine two copies of the previous block Bn−1 to create the next block Bn. We can then
define two sequences:

un = s(Bn) , (4.12)

which denotes the maximum r such that the operator ρ(Bn,r) is positive w.r.t the permitted
measurements. Similarly define

ln = sλ (Bn) . (4.13)

which denotes the maximum r such that the operator ρλ (Bn,r) is positive w.r.t the permitted
measurements. From lemma 4.2.1, we have that un ≥ ln, ln is a non-decreasing sequence and
un is a non-increasing sequence. To denote their limits, we use:

u := limun (4.14)

l := lim ln. (4.15)

Therefore, if input cylinders are drawn with r that satisfies r < l, then the system can
be efficiently classically simulated. If the radii r exceed the upper limit u (i.e., r > u), then
negative probabilities arise, and we cannot apply our classical simulation algorithm.
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4.2.1 Numerical Results

Recall that the block operator ρ(B,r) denotes the operator resulting from applying the
internal CZ gates to all the cylinders in an arbitrary extremal cylinder state with radius
r and z = 1. And that ρλ (B,r) denotes the operator resulting from applying the internal
CZ gates within the block of cylinders in extremal cylinder states with radius r and z = 1
on the interior qubits, while the qubits on the boundary of the rectangle are prepared in
extremal cylinder states with a radius that grows according to the number of external CZ gates.

We make the observation that we can replace the cylinder states that do not have any
external CZs acting on them with qubits from the Bloch sphere. This replacement allows us
to define another sequence:

l̃n = s̃λ (Bn) , (4.16)

which denotes the maximum r such that the operator ρ̃λ (Bn,r) is positive w.r.t the permitted
measurements. And the operator ρ̃λ (Bn,r) denotes the operator resulting from the right-hand
side of figure 4.3, but where crucially the interior states are qubits (with radius r). We have
numerically (see appendix A.2 for corresponding Matlab code) calculated l̃1 for several
block sizes, with the results presented in table 4.1. By considering cylinder input extrema
of the form (I +αX +Z)/2 and measurement projectors (I −X)/2, we find that (see figure
4.4) the sequence l̃1 provides an improvement over l1. This means that for r ≤ l̃1, there is
slight improvement compared to l1, in the range of inputs that can be efficiently classically
simulated.

Block sizes l1 l̃1
3×3 0.0795 0.0799
3×4 0.0822 0.0828
4×4 0.0851 0.0859
4×5 0.0868 0.0877
5×5 0.0885 0.0895
5×6 0.0895 0.0909
6×6 0.0906 0.0917
6×7 0.0913 0.0924

Table 4.1 This table compares the values of l1 and l̃1 for different block sizes. l1 and l̃1 denote
the maximum r such that the operators ρλ (Bn,r), ρ̃λ (Bn,r), respectively, are positive w.r.t
the permitted measurements.
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Fig. 4.4 This figure shows the sequences l1 and l̃1 for different block sizes. On the x-axis,
the value N denotes the product of the width and height of each block, as given in table 4.1.
The sequences were calculated using cylinder input extrema of the form (I +αX +Z)/2 and
measurement projectors (I −X)/2.

4.3 Maintaining Cylinder Separability under a Controlled-
Phase Gate

In Sec. 3.2.2, the key result was that a CZ can be interpreted as a gate giving separable output,
provided that (3.9) is satisfied. In this section, we consider generalising the result of lemma
emma 3.2.1 in Sec.3.2.2, to arbitrary 2-qubit gates that are diagonal in the computational
basis:

eiϕ1 |00⟩⟨00|+ eiϕ2 |01⟩⟨01|+ eiϕ3 |10⟩⟨10|+ eiϕ4 |11⟩⟨11| , (4.17)

where 0 ≤ ϕi ≤ 2π . In fact, it can be easily verified that this gate is equivalent to a controlled
phase gate up to local Z-rotations. To see this, as a first step, we can remove the parameter
ϕ1 in equation (4.17) by introducing a global phase. Next, we act with local Z-rotations, with
angles γ1 and γ2 resulting in:
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1 0 0 0
0 ei(ϕ2−ϕ1−γ2) 0 0
0 0 ei(ϕ3−ϕ1−γ1) 0
0 0 0 ei(ϕ4−ϕ1−γ1−γ2)

 , (4.18)

By setting γ1 = ϕ3 −ϕ1 and γ2 = ϕ2 −ϕ1, the resultant gate is of the form of a controlled-
phase gate:

Vϕ = |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|+ eiϕ |11⟩⟨11| , (4.19)

where ϕ = ϕ4 +ϕ1 −ϕ2 −ϕ3.

The generalisation of the result in Section 3.2.2 is of interest due to its connections to
existing literature on measurement-based quantum computing, where previous works have
considered the computational power of using cylinder measurements and two-qubit gates that
are diagonal in the computational basis [9, 50, 72]. Examples include weighted graph states
(using a combination of CZ and controlled-phase gates Vϕ with ϕ = π/2) [9], and parity-
phase graph states [72], which have been shown to be capable of preparing universal resource
states. On the other hand, in [21], it was shown that IQP circuits that have restrictions on the
diagonal gates are still classically hard to simulate.

Lemma 4.3.1. Consider the set Vϕ(Cyl(rA)⊗Cyl(rB)) of two qubit operators made by a
controlled-phase gate Vϕ , with 0 ≤ ϕ ≤ π , acting on Cyl(rA)⊗Cyl(rB). Any operator in
Vϕ(Cyl(rA)⊗Cyl(rB)) can be written in the generalised separable form:

∑
i

piρ
A
i ⊗ρ

B
i (4.20)

where ρA
i ∈ Cyl(RA) and ρB

i ∈ Cyl(RB) if and only if:

(
1+ f 4

A
)(

1+ f 4
B
)
−2
(

f 2
A + f 2

B
)
+2cosϕ

(
2− f 2

A − f 2
B
)

f 2
A f 2

B ≥ 0, (4.21)

where fA := rA/RA and fB := rB/RB.

Proof. The task we consider is the following. Suppose a controlled-phase gate Vϕ acts on
a two particle product state ρA ⊗ ρB, where ρA,ρB are cylinders states with radii rA and
rB respectively. Our goal is to establish whether the output is Cyl(RA),Cyl(RB)-separable.
Before proceeding with the proof, we remark that at ϕ = 0, the entangling gate becomes
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the identity and the output is trivially separable. Therefore, we will only need to consider
0 < ϕ ≤ π . It should be noted that this proof uses similar ideas to the proof of lemma 3.2.1
in Sec. 3.2.2.

As Vϕ is a linear operator, we can use the same reasoning as used in the proof of lemma
3.2.1 to restrict our analysis to only consider whether the output from all extremal input
states is Cyl(RA),Cyl(RB)-separable. Furthermore, we will now show that we can reduce the
number of input states we need to consider by exploiting properties of the controlled-phase
gate and the symmetry of cylindrical state spaces.

Indeed, suppose that we have an explicit Cyl(rA) ,Cyl(rB)-separable decomposition:

Vϕ (ρA ⊗ρB) = ∑
i

piω
i
A ⊗ω

i
B, (4.22)

where ω i
k ∈ Cyl(Rk). Then we find we have the following observations.

1. Observe that any extremal input state ρk ∈Cyl(rk) can be expressed as Uk
z ([1,rk,0,±1]),

where Uk
z is the rotation operator about the Z axis. Since Uk

z commutes with Vϕ and
cylinders are invariant under Z rotations, we have the Cyl(rA),Cyl(rB)-separable de-
composition:

Vϕ(UA
z (ρA)⊗UB

z (ρB)) = ∑
i

piUA
z (ω

i
A)⊗UB

z (ω
i
B),

where ω i
k ∈ Cyl(Rk). This shows that the decomposition (4.22) is invariant up to local

Z-rotations, and we may restrict inputs to the form

[1,rA,0,±1]⊗ [1,rB,0,±1] .

2. If both inputs have z =−1, then the input extrema:

([1,rA,0,−1]⊗ [1,rB,0,−1]) ,

can be expressed as
XA ⊗XB ([1,rA,0,1]⊗ [1,rB,0,1]) .

Next, applying the identity Vϕ (X ⊗X) = (X ⊗UZX)Vϕ to the input and using (4.22),
we obtain another separable decomposition:
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Vϕ

(
XA (ρA)⊗XB (ρB)

)
= ∑

i
piXω

i
AX† ⊗UB

z

(
Xω

i
BX†

)
,

where UB
z is a Z-rotation with angle ϕ . This shows that if zA = zB = −1, this is

equivalent to determining when the output from input extremum zA = zB = 1 are
separable. Therefore, we do not need to check the input [1,rA,0,−1]⊗ [1,rB,0,−1].

3. Next, consider input states of the form

[1,rA,0,1]⊗ [1,rB,0,−1]

and
[1,rA,0,−1]⊗ [1,rB,0,1] .

As Vϕ is symmetric between the two input states, we can switch the control and target
state, therefore we need only consider one input extremum where the z-components
are not the same.

4. At this stage, we have managed to reduce the inputs we need to consider to

[1,rA,0,1]⊗ [1,rB,0,±1] .

However, we will find it convenient to consider one input extremum
[
1,rA/B,0,1

]
but

with two possible transformations. Suppose Vϕ acts on inputs

([1,rA,0,1]⊗ [1,rB,0,−1]) ,

then it is easy to verify that this equivalent to

V−ϕ ([1,rA,0,1]⊗ [1,rB,0,1]) ,

where we have used the identity Vϕ(I⊗X) = (I⊗X)V−ϕ . We will later find that having
this alternative expression will make it easy to see the equivalence to V−ϕ acting on
[1,rA,0,1]⊗ [1,rB,0,1].

In summary, the observations have reduced the task to determining whether the output of
Vϕ and V−ϕ acting on one input extremum:

([1,rA,0,1]⊗ [1,rB,0,1]) (4.23)



4.3 Maintaining Cylinder Separability under a Controlled-Phase Gate 49

is Cyl(RA) ,Cyl(RB)-separable.

To begin with, we consider Vϕ acting on (4.23). This operator can be expressed in the
Pauli basis as 

1 rB 0 1
rA rArB(cos(ϕ)+1)/2 rArB sin(ϕ)/2 rA

0 rArB sin(ϕ)/2 rArB(1− cos(ϕ))/2 0
1 rB 0 1

 . (4.24)

If the above equation is Cyl(RA) ,Cyl(RB)-separable then it can be given the decomposition

∑
i

pi


1

RA cos(θi)

RA sin(θi)

1

[ 1 RB cos(φi) RB sin(φi) 1
]
. (4.25)

Setting equation (4.24) equal to (4.25), and left multiplying by
1 0 0 0
0 1/RA 0 0
0 0 1/RA 0
0 0 0 1

 (4.26)

and right multiplying by 
1 0 0 0
0 1/RB 0 0
0 0 1/RB 0
0 0 0 1

 , (4.27)

we arrive at the following expression:


1 fB 0 1
fA fA fB (cos(ϕ)+1)/2 fA fB sin(ϕ)/2 fA

0 fA fB sin(ϕ)/2 fA fB (1− cos(ϕ))/2 0
1 fB 0 1

=∑
i

pi


1

cos(θi)

sin(θi)

1

 [1,cos(φi),sin(φi),1] ,

(4.28)
where we have simplified notation by defining fA := rA/RA and fB := rB/RB. The above
equation states that the operator (4.24) is Cyl(RA) ,Cyl(RB)-separable if and only if (4.28) is
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Cyl(1) ,Cyl(1)-separable.

We will now see that determining whether the LHS of (4.28) is Cyl(1),Cyl(1)-separable
is equivalent to checking quantum separability of a two qubit quantum operator. First,
suppose that we have the quantum separable decomposition


1 fB 0 0
fA fA fB (cos(ϕ)+1)/2 fA fB sin(ϕ)/2 0
0 fA fB sin(ϕ)/2 fA fB (1− cos(ϕ))/2 0
0 0 0 0

=∑
i

pi[1,xi
A,y

i
A,z

i
A]⊗[1,xi

B,y
i
B,z

i
B].

(4.29)
As (4.29) is quantum separable, it is quantum separable where the local terms of the RHS of
(4.29) have zi

A = zi
B = 0, for all i. Now given such a decomposition, by setting zi

A = zi
B = 1

for all i, it then follows that

∑
i

pi[1,xi
A,y

i
A,1]⊗ [1,xi

B,y
i
B,1] (4.30)

is a Cyl(1),Cyl(1)-separable decomposition for
1 fB 0 1
fA fA fB (cos(ϕ)+1)/2 fA fB sin(ϕ)/2 fA

0 fA fB sin(ϕ)/2 fA fB (1− cos(ϕ))/2 0
1 fB 0 1

 . (4.31)

Conversely, suppose now that (4.31) has a Cyl(1),Cyl(1)-separable decomposition, given
by 4.30). By setting zi

A = zi
B = 0, for all i in (4.30) we find that we can recover the LHS of

(4.28) thereby giving a quantum separable decomposition. Therefore, we have established
that the LHS of (4.28) is Cyl(1),Cyl(1)-separable if and only if the operator

1 fB 0 0
fA fA fB(cos(ϕ)+1)/2 fA fB sin(ϕ)/2 0
0 fA fB sin(ϕ)/2 fA fB(1− cos(ϕ))/2 0
0 0 0 0

 (4.32)

is quantum separable. In order for the operator (4.32) to be quantum separable, it must be
both positive and a PPT operator. The partial transpose of (4.32) with respect to particle A is
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1 fB 0 0
fA fA fB(cos(ϕ)+1)/2 fA fB sin(ϕ)/2 0
0 − fA fB sin(ϕ)/2 − fA fB(1− cos(ϕ))/2 0
0 0 0 0

 . (4.33)

At this point, it is easy to see the equivalence of determining the eigenvalues of (4.32)
if instead we had used V−ϕ . To see this, notice that cosine is an even function and the sine
terms would acquire a change of sign, therefore this operator would be related to (4.33) by a
I ⊗X transformation and would have the same eigenvalues. Furthermore, equations (4.32)
and (4.33) can be interconverted by the unitary X ⊗ I. Hence, the eigenvalues of the two
operators are equivalent, and we only need to check the minimum eigenvalues of one of these
operators, say (4.32). This operator can be expressed in the computational basis as

1 fB fA fA fBe−iϕ

fB 1 fA fB fA

fA fA fB 1 fB

fA fBeiϕ fA fB 1

 (4.34)

We now need to determine when (4.34) is a non-negative operator. To start with, note
that (4.34) can be expressed as

(I + fAX)⊗ (I + fBX)+ fA fB(e−iϕ −1) |00⟩⟨11|+ fA fB(eiϕ −1) |11⟩⟨00| . (4.35)

Furthermore, to simplify notation we set fA fB(eiϕ − 1) = ceiγ , where c is real and non-
negative. Thus, the above equation can be rewritten as

(I + fAX)⊗ (I + fBX)+ c
(
e−iγ |00⟩⟨11|+ eiγ |11⟩⟨00|

)
. (4.36)

To show that (4.36) is non-negative, we will have to consider three cases.

i) The first case is if fA > 1 and/or fB > 1. Suppose that (4.32) is separable, then it
is straightforward to show that the expected value X ⊗ I is greater than 1, which is
impossible for a separable quantum state.

ii) The second is if fA = 1 and/or (by symmetry) fB = 1. Suppose fA = 1 then the term
(I + fAX)⊗ (I + fBX) in (4.36) has at least two zero eigenvalues, with eigenstates
|−−⟩ and |−+⟩. We may compute

⟨−+|c
(
eiγ |00⟩⟨11|+ ce−iγ |11⟩⟨00|

)
|−+⟩=−c

2
cos(γ) (4.37)
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and
⟨−−|c

(
eiγ |00⟩⟨11|+ ce−iγ |11⟩⟨00|

)
|−−⟩= c

2
cos(γ). (4.38)

Therefore, as long as ccos(γ) ̸= 0 either (4.37) or (4.38) will be negative. The only
way ccos(γ) = 0 is if Vϕ is the identity, which we do not need to consider as the output
would be trivially separable. Additionally, we also do not need to consider fA = 0
and/or fB = 0 as this would also lead to the output being trivially separable. This
means that if fA = 1 and/or (by symmetry) fB = 1, then we have at least one negative
eigenvalue and the output is not separable.

iii) The third case is if fA, fB < 1. Suppose that we add and subtract c(|00⟩⟨00|+ |11⟩⟨11|)
to (4.36), we then have

(I + fAX)⊗ (I + fBX)+ c(|00⟩⟨00|+ |11⟩⟨11|) (4.39)

−c
(
|00⟩⟨00|+ |11⟩⟨11|− e−iγ |00⟩⟨11|− eiγ |11⟩⟨00|

)
.

Observe that (4.39) can be considered to be a sum of two operators. The top line
in (4.39) is a positive-definite operator, while the bottom line is an operator with
eigenvalues of (0,0,0,−2c). We denote these operators as P and R, respectively.

To proceed, we shall make use of the Weyl inequalities [81], which assert that if R,P
are n×n Hermitian matrices, and {λi(R)}n

i=1, {λi(P)}n
i=1 and {λi(R+P)}n

i=1 denote
the sets of eigenvalues of R, P, and R+P, in decreasing order, then

λi(R)+λn(P)≤ λi(R+P)≤ λi(R)+λ1(P), (4.40)

for 1 ≤ i ≤ n. Additionally, it follows that if P is positive-definite, then λi(R) <
λi(R+P), for all i.

Therefore, by noting that P and R are Hermitian and P is a positive-definite operator,
the application of the Weyl inequalities yield the following inequalities
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0 < λ1(R+P) (4.41)

0 < λ2(R+P) (4.42)

0 < λ3(R+P) (4.43)

−2c < λ4(R+P). (4.44)

Consequently, for the case of fA, fB < 1, these inequalities show that (4.34) has three
strictly positive eigenvalues and at most 1 negative eigenvalue λ4(R+P). Under
the assumption that fA, fB < 1, we have that (4.34) is non-negative if and only if its
determinant:

(
1+ f 4

A
)(

1+ f 4
B
)
−2
(

f 2
A + f 2

B
)
+2cosϕ

(
2− f 2

A − f 2
B
)

f 2
A f 2

B (4.45)

is non-negative. Moreover, for fA, fB < 1, the non-negativity of the determinant
becomes necessary and sufficient as a test for cylinder separability.

In appendix A.3 we explicitly show how to calculate the determinant of (4.34). We will
now focus on the implications of lemma 4.3.1 and discuss what the result means for the
growth rate. Recall that the growth factors, denoted as gi := Ri/ri, represent the factor by
which the radii of the output state space need to increase for the controlled-phase operation
to be cylinder separable. If we impose a symmetric growth rate restriction f = fA = fB, the
determinant given by (4.45) simplifies to:(

1− f 2)[(1− f 2)3
+4(cosϕ −1) f 4

]
. (4.46)

Therefore, in the symmetric case (RA = RB), the condition in lemma 4.21 simplifies and any
operator in Vϕ(Cyl(r)⊗Cyl(r)) can be given the separable decomposition:

∑
i

piρ
A
i ⊗ρ

B
i ,

where ρA
i ,ρ

B
i ∈ Cyl(R) if and only if:

(
1− r2

R2

)3

+4(cosϕ −1)
( r

R

)4
≥ 0. (4.47)

By numerically varying ϕ we can determine the required growth rate g for the controlled-
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Fig. 4.5 This figure displays the growth factor g, as ϕ varies from 0 to π . The growth factor is
the factor by which the output state space radii is required to increase for the controlled-phase
operation to be considered a separable operation.

phase operation to be separable. This is shown in figure 4.5. At ϕ = 0 the controlled-phase
gate performs the identity gate and the output state space is trivially separable, hence in
figure 4.5 the growth factor is 1 (i.e., requiring no growth in the output radii to maintain
separability). When ϕ = π , the controlled-phase gate becomes a CZ operation and the
maximum growth rate 2.058 is attained. We can also consider a region of pure input states,
of the form (I + sin(θ)X + cos(θ)Z)/2, that can be efficiently classically simulated. Instead
of r, we use the polar angle θ = sin−1(r) that a pure state of radius r would make with the
z-axis. In figure 4.6 we have plotted the polar angle θ against ϕ , showing for a given value
of ϕ , when the system is classically efficiently simulatable.
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Fig. 4.6 This is a plot of the polar angle θ against ϕ . The point (ϕ,θ) represents the
pure states one gets by placing states (I + sin(θ)X + cos(θ)Z)/2 on the nodes of a graph
and interacting them with arbitrary two-qubit diagonal gates eiϕ1 |00⟩⟨00|+ eiϕ2 |01⟩⟨01|+
eiϕ3 |10⟩⟨10|+ eiϕ4 |11⟩⟨11| such that ϕ = ϕ4 +ϕ1 −ϕ2 −ϕ3. The upper curve corresponds
to lattices of degree D = 3 and the lower curve corresponds to lattices of degree D = 4. In
each case for a given value of ϕ the system is classically efficiently simulatable. Note that
the red dot in the top right-hand corner indicates the ideal cluster state.

4.4 Obtaining a Separable Decomposition via Linear Pro-
gramming

In this chapter so far, we have constructed an efficient classical simulation algorithm based
on cylinder separability. The key result that allows this is that for ρA,ρB ∈ Cyl(r) we have
the following decomposition:

CZ (ρA ⊗ρB) = ∑
i

piω
i
A ⊗ω

i
B, (4.48)

where ωA
i ,ω

B
i ∈ Cyl(R) such that g · r = R, where g = 2.058. Furthermore, from the dual

constraint, the output radii R must also satisfy the condition gDr ≤ 1, where D is the degree
of the lattice. However, one can consider whether there are state spaces that are “better” (i.e.
can be shown to be separable w.r.t a lower growth rate than the cylinder), and allow for a
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greater range of r to be classically simulated.

In this section, we investigate this possibility by introducing two state spaces, where key
will be to convert a separability problem into a linear programming problem. In Sec.4.4.1
we will first introduce a state space that we call the Protruding state space, illustrated in
figure 4.7. By converting to a linear program, we find in Sec.4.4.3 that the Protruding state
space requires greater growth to maintain separability than the cylinder state space. Secondly,
in Sec.4.4.4 we introduce a cylinder-cone state space, depicted in figure 4.8. For this state
space, we find that there is a very slight improvement in the growth required for maintaining
a separable decomposition.

4.4.1 The Protruding State Space

To begin to answer whether there are state spaces which maintain a separable decomposition
with lower radius growth than that of cylinders, we have the following result from [31], to
help us.

Consider two sets SA and SB that represent the local state spaces for particles A and B,
respectively. Each state space is represented by a compact set of Bloch vectors [x,y,z], where
z =±1 and x,y ̸= 0. Suppose that we act with a CZ gate on SA⊗SB, then we need to find the
minimum required radius growth R for CZ(SA ⊗SB) to be SA,SB-separable. If such a value
of R exists, we denote the optimum value of R as R∗. We can now state the (adapted) lemma
from [31].

Lemma 4.4.1. Consider compact sets (SA,SB) such that R∗(SA,SB) exist. Assume that the
sets contain a Bloch vector of the form [x,y,±1] for some x,y ̸= 0,0.Then the cylinders can
only have a lower value of R∗, the radial growth needed to maintain separability when acted
on by a CZ.

Taking into account this observation, we can limit our attention to state spaces that have
a single point at both the top and bottom, as well as shapes that exhibit rotational symmetry
about the z-axis. One state space that satisfies these observations is what we refer to as the
Protruding state space.
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Fig. 4.7 This figure illustrates the Protruding state space in the Y Z plane with r = 1, ζ = 0.1
and h = 0.5. The parameter θ has been discretised with 20 points around the XY plane.

Definition 4.4.1. The Protruding State Space, denoted P(r,h,ζ ), is defined to be the convex
hull of operators with Bloch vectors

{(0,0,±1),(r cosθ ,r sinθ ,0),(rω cosθ ,rω sinθ ,±h)}, (4.49)

where θ ∈ [0,2π] and ω =
√

1−h2(1+ζ ). We will consider varying parameters ζ ∈R and
h ∈ [0,1].

In equation (4.49), the Bloch vector (0,0,±1) describes the states from the top and
bottom of the state space, while the states that lie on the XY -plane with radius r are given by
(r cosθ ,r sinθ ,0). Additionally, the states that lie in between are given by (rω cosθ ,rω sinθ ,±h),
with angle θ , ω is the protrusion parameter, and h denotes the height. When ζ = 0 and
r = 1, the vector (rω cosθ ,rω sinθ ,±h) corresponds to a point on the Bloch sphere. In the
following, we will vary ζ leading to state spaces that extend beyond the surface of the Bloch
sphere, figure 4.7. Notice that if ω > 1 then the state space is a non-convex set. Conversely,
if ζ ≤ (1−h2)−1/2 −1, then the state space remains a convex set.
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4.4.2 A Linear Programming Approach to the Separability Problem

Consider a two particle product state ρA ⊗ρB, where ρA,ρB ∈ P(r,h,ζ ). We would like to
determine whether the output of a CZ, acting on all such possible inputs, can be given the
separable decomposition:

∑
i

piω
i
A ⊗ω

i
B, (4.50)

where ω i
k ∈ P(r,h,ζ ). We will show, through state vectorisation2, that determining whether

the output can be given a separable decomposition can be transformed into a linear program-
ming problem. Before we proceed, we will briefly define a linear programming problem and
introduce some terminology. A comprehensive introduction to linear programming can be
found in [82].

Definition 4.4.2. [82] A problem is a said to be a general linear program if it has the form

minimise cT x
subject to Ax ⪯ b

Aeqx = beq,

(4.51)

where A∈Rm×n , Aeq ∈Rp×n, and the objective linear function C and the constraint functions
are affine.

The minimisation of cT x is subject to a linear inequality and a linear equality, where ⪯
denotes componentwise inequality. A feasible solution to a linear program is a solution that
satisfies all the above constraints. An optimal solution to a linear program is the feasible
solution with the smallest objective function value.

Returning to the task at hand, we are given a two particle state ρAB and would like to
determine if the following decomposition holds:

ρAB = ∑
i

xiρ
A
i ⊗ρ

B
i , (4.52)

where ρA
i , ρB

i are local operators and xi is a probability distribution. The key idea is to
represent equation (4.52) in terms of a linear inequality and equality satisfying (4.51). To do

2Representing each state in terms of a column vector containing its Pauli expansion coefficients.
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this, express the LHS side of (4.52) in the Pauli basis:

ρAB =
1
4 ∑

i, j
ρi, jσi ⊗σ j, (4.53)

where σi, σ j are the Pauli matrices and ρi, j are expansion coefficients. Then we can represent
ρAB as a 16 element column vector:

beq = (ρ1,1,ρ1,2, . . . ,ρ4,3,ρ4,4)
T . (4.54)

Similarly, we can vectorise the output state space, the RHS of (4.52), by creating a matrix
Aeq that represents the convex hull of product states ρA

i ⊗ρB
i in vectorised form:

Aeq =

g1 g2 · · · gD

 . (4.55)

Here, each gi is a 16×1 column vector that contains the Pauli expansion coefficients of an
extremal product state. Therefore, Aeq will a matrix of dimension 16×D, where D is the
cardinality of the convex hull, i.e. the number of extremal product states of the output state
space. Next, we need to ensure that xi ≥ 0 since it represents a probability distribution. To
impose this condition, we make use of the inequality in (4.51) and set

A =


−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
... . . .

0 0 0 · · · −1

 , and b = (0,0, · · · ,0)T , (4.56)

where A is a D×D dimensional matrix and b is a D×1 column vector. Therefore, we have
expressed (4.52) as a linear equality in equation (4.51). Furthermore, we have used the
linear inequality in (4.51) to impose the condition that the probability distribution must be
non-negative.

Finally, we can set the objective function to be arbitrary, such as a zero vector, as we are
not concerned about minimising the objective function. Instead, we would like to determine
whether the linear programming problem has a feasible solution. If there exists a feasible
solution, then we have determined that (4.51) holds.
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4.4.3 LP-Based Separable Decompositions for Protruding States

Previously, we showed that testing for a separability decomposition can be transformed into
a linear programming problem. We will now apply this approach to Protruding state spaces,
determining the required radius growth to achieve separable output with respect to these state
spaces. We will first show that with similar reasoning as used in Sec.3.9 (and Sec.4.3), we
can reduce the number of input states we need to consider by using properties of the CZ gate
and the symmetries of the state spaces.

Recall the set of extremal states of P(r,h,ζ ) are described by the Bloch vectors

{(0,0,±1),(r cosθ ,r sinθ ,0),(rω cosθ ,rω sinθ ,±h)}. (4.57)

The task is to determine whether the output of a CZ, acting on all such possible inputs, can be
given a separable decomposition if the operators in the separable decomposition are drawn
from P(R,h,ζ ).

Following the same line of reasoning as used in Sec.3.2.2 we can decrease the number
of input extrema that must be considered. Clearly, input states of the form [1,0,0,±1] do
not need to be considered as the CZ acts trivially on them. Secondly, as local Z-rotations
commute with the CZ gate and the fact that P(r,h,ζ ) is invariant under Z-rotations, we
only need to consider inputs states with a fixed angle, for convenience we consider θ = 0.
Furthermore, by the same argument as used in the proof lemma emma 3.2.1, we do not need
to consider the states with z-component −h. Lastly, for convenience we will take the input
radius r = 1, therefore the output radius R will be the growth rate as g = R/r. In summary,
we can reduce the number of input states we need to consider to states of the form:

[1,1,0,0]⊗ [1,1,0,0] ,

[1,1,0,0]⊗ [1,ω,0,0.5] ,

[1,ω,0,0.5]⊗ [1,ω,0,0.5] .

(4.58)

We now need to determine when the output of a CZ gate acting on every input extrema (4.58)
is P(r,h,ζ )-separable. For each input extrema in (4.58) we proceed with the subsequent
procedure, previously described in Sec.4.4.

Step 1: Without loss of generality, consider [1,1,0,0]⊗ [1,1,0,0]. Expressing the output of
the CZ gate acting on this input in the Pauli basis:



4.4 Obtaining a Separable Decomposition via Linear Programming 61


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (4.59)

This allows us to easily note the non-zero Pauli coefficients and form the vector
representing our input state:

beq = (1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,0,0)T , (4.60)

with ρ11 = ρ2,4 = ρ3,3 = ρ4,2 = 1.

Step 2: To form the matrix Aeq, we discretise the single particle output state space P(r,h,ζ ) by
selecting a finite number of θ values, θ ∈ 0,N,2N, . . . ,2π −N, where N is a non-zero
interval in terms of π . Then, we use the Pauli expansion coefficients of the extremal
product states to create each column vector of Aeq. We can then represent the single
particle state space of each particle A,B as a matrix, where each column contains the
Pauli coefficients of an extremal product state:

SA/B =


1 1 1 · · · 1 · · · 1 · · ·
0 0 R · · · Rω · · · Rω · · ·
0 0 0 · · · 0 · · · 0 · · ·
1 −1 0 · · · h · · · −h · · ·

 , (4.61)

where ω =
√

1−h2(1+ ζ ). The first two columns contain the Pauli coefficients
of |0⟩⟨0| and |1⟩⟨1|, respectively. Starting from the third column, these are the
states, of the form [1,Rcosθ ,Rsinθ ,0], that lie on the XY plane. The remaining
matrix entries denote states that have height ±h, these are the states of the form
[1,Rω cosθ ,Rω sinθ ,h]. In total, the matrix SA/B will be of dimension 4×(2+6π/N).
Note that the parameter we will be varying to determine if the output from the CZ is
separable is R. The matrix Aeq can now be constructed to represent the output state
space:

Aeq = SA ⊗SB,
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where Aeq is a 16×D dimensional matrix, where D = (2+6π/N)2. Lastly, we impose
the condition that the probability distribution must be non-negative by setting A and b
as in (4.56), where A is of size D×D and b is a D-dimensional column vector.

Step 3: The problem of finding a separable decomposition has now been transformed into a
linear programming problem. By increasing the radii R of the output state space and
running the linear program, we can check for a feasible solution. If the linear program
does not return a feasible solution, we increase the value of R, and repeat the linear
program with the new value of R. If the linear program does return a feasible solution,
then we record the value of R.

Step 4: Repeat Steps 1-3 for the remaining input extrema. The minimum growth rate g required
for P(R,h,ζ )-separability is the largest value of R that yields a feasible solution for
each input extrema.

The results from running this procedure are summarised by the following observation and
presented in table 4.2. In appendix A.5, we provide an example that clarifies this process.

Observation 4.4.1. Any operator CZ (ρA ⊗ρB), where ρA,ρB are drawn from P(r,h,ζ )
with h ∈ [0,0.8] and ζ = {0,0.1,1.1}, can be given a generalised separable decomposition

∑
i

piρ
A
i ⊗ρ

B
i , (4.62)

where ρA
i ,ρ

B
i ∈ P(R,h,ζ ), if R ≥ (2.415)r.

4.4.4 The Cylinder-Cone State Space

Previously, we showed that cylindrical state spaces require a radius growth of 2.058 to
maintain a separable decomposition. Using numerical methods, we then investigated whether
Protruding state spaces required a lower growth rate to maintain a separable decomposition.
However, we found that this was not true, as Protruding state spaces require at least a radius
growth of 2.415.

In this section, we now look at a variation of the previous problem, where instead of
Protruding state spaces, we consider state spaces that we call the Cylinder-Cone (CC) state
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Height ζ XY -points R
0.1 0 6 2.488

10 2.432
15 2.436
20 2.415

0.1 0.1 6 2.484
10 2.429
15 2.439
20 2.415

0.1 1.1 6 2.484
10 2.429
15 2.439
20 2.415

0.2 0 6 2.458
0 10 2.429
0 15 2.438
0 20 2.415

0.2 0.1 6 2.464
0.1 10 2.438
0.1 15 2.442
0.1 20 2.415

0.2 1.1 6 2.464
1.1 10 2.438
1.1 15 2.442
1.1 20 2.415

0.3 0 6 2.459
0 10 2.433
0 15 2.437
0 20 2.415

0.3 0.1 6 2.476
0.1 10 2.45
0.1 15 2.437
0.1 20 2.415

0.3 1.1 6 2.476
1.1 10 2.45
1.1 15 2.437
1.1 20 2.415

0.4 0 6 2.465
0 10 2.436
0 15 2.441
0 20 2.415

0.4 0.1 6 2.500
0.1 10 2.448
0.1 15 2.441
0.1 20 2.415

0.4 1.1 6 2.5
1.1 10 2.448
1.1 15 2.441
1.1 20 2.415

Height ζ XY -points R
0.5 0 6 2.468

0 10 2.442
0 15 2.433
0 20 2.415

0.5 0.1 6 2.507
0.1 10 2.434
0.1 15 2.424
0.1 20 2.415

0.5 1.1 6 2.528
1.1 10 2.434
1.1 15 2.424
1.1 20 2.415

0.6 0 6 2.484
0 10 2.447
0 15 2.435
0 20 2.415

0.6 0.1 6 2.515
0.1 10 2.447
0.1 15 2.435
0.1 20 2.415

0.6 1.1 6 2.528
1.1 10 2.447
1.1 15 2.435
1.1 20 2.415

0.7 0 6 2.503
0 10 2.447
0 15 2.435
0 20 2.415

0.7 0.1 6 2.528
0.1 10 2.452
0.1 15 2.437
0.1 20 2.415

0.7 1.1 6 2.528
1.1 10 2.452
1.1 15 2.437
1.1 20 2.415

0.8 0 6.0 2.528
0 10.0 2.434
0 15.0 2.424
0 20.0 2.415

0.8 0.1 6.0 2.528
0.1 10.0 2.452
0.1 15.0 2.425
0.1 20.0 2.415

0.8 1.1 6.0 2.528
1.1 10.0 2.452
1.1 15.0 2.425
1.1 20.0 2.415

Table 4.2 This table shows that the output of a CZ acting on operators drawn from P(r,h,ζ ) with
r = 1, remains separable w.r.t operators drawn from P(R,h,ζ ). Here ζ is a function of the protrusion
parameter ω =

√
1−h2(1+ζ ), XY -points denote the number of points θ has been discretised into,

and R is the output radius. This shows that Protruding state spaces require radius growth 2.415 to
maintain separability, which is greater than the cylinder state space growth 2.058.
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space, illustrated in figure 4.8. The motivation for CC state spaces is that they contain
cylinder states but crucially allowing for variations in the height of the extremal points of
the set, see figure 4.8. By considering CC state spaces and using the numerical methods
described in Sec.4.4, we will show that we can very slightly improve the range of r that we
can efficiently classically simulate.

Definition 4.4.3. The Cylinder-Cone State Space, denoted SCC(r,h), is defined to be the
convex hull of operators with Bloch vectors

{(0,0,±1),(r cosθ ,r sinθ ,±h)}, (4.63)

where θ ∈ [0,2π] and r,h ∈ [0,1].

The CC state space with h = 0.6 and r =
√

1−h2 is illustrated in figure 4.8. We will
investigate the effects of changing the parameters r and h such that we obtain states that are
not confined to the surface of the Bloch sphere. If, however, we impose the condition that
r =

√
1−h2 then the states with Bloch vector (r cosθ ,r sinθ ,±h) describe a pure state from

the Bloch sphere. Additionally, notice that if we set h = 1 and allow r to vary, then the CC
state space is equivalent to the cylinder state space.

Let us now recall some information from Sec.3.2.2 on cylinder state spaces. As a first
step, it was shown that a CZ operation on two input cylinders can be given a separable
decomposition with respect to cylindrical state spaces, provided that the output cylinder radii
grow by gC ≈ 2.05817. Repeating this, and imposing the dual constraint, the output radii
Rout must satisfy the condition gD

C rin ≤ 1, where D is the degree of the lattice and rin denotes
the radius with which the particle was initialised in. For example, if D = 1, this imposes a
condition on the input radius: rin ≤ 0.486. Similarly, if D = 2 then rin ≤ 0.236, and D = 3
leads to rin ≤ 0.115.

Let us now consider a similar problem, where we will vary the first step and instead ask
for CC-separability. Thereafter, we will use the usual notion of cylinder-separability, leading
to conditions on rin. More precisely, we wish to determine the radius growth gcc = R/r such
that the decomposition

CZ (ρA ⊗ρB) = ∑
i

piω
i
A ⊗ω

i
B, (4.64)
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Fig. 4.8 This figure illustrates the Cylinder-Cone State space with h = 0.6 and r =
√

1−h2.
The parameter θ has been discretised with 20 points around the XY -plane. Notice that if
h = 1 and r is non-zero then the CC state space is equivalent to the cylinder state space.

holds, where ρ i
k ∈ SCC(r,h) with r =

√
1−h2, and ω i

k ∈ SCC(R,1). Notice that the input
operators from SCC lie on the surface of the Bloch sphere, but the output operators in the
decomposition have H = 1 and therefore are cylinders with radii R, this is illustrated in
figure 4.10. To determine the radius growth gCC, we will use the approach previously used in
Sec.4.4.2, transforming the separability problem into a linear programming problem. We
find that (4.64) holds for input radius r = rin and output radius R = Rout with growth factor
gCC as shown in figure 4.9. From this figure we can make the following observation.

Observation 4.4.2. Let SCC(r,h) and Cyl(r) denote the Cylinder-Cone (CC) state space and
the Cylinder state space, respectively. Consider a CZ gate that acts on input operators that
are drawn from SCC(r,h):

CZ (ρA ⊗ρB) , (4.65)

where ρA,ρB ∈ SCC(r,h) with r =
√

1−h2. Then the output can be given a separable
decomposition if the operators in the decomposition are drawn from SCC(R,1), where R =

gCC · r, and with
gCC(r)< gC. (4.66)
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Here, gCC(r) denotes the radius growth required to be separable w.r.t the output state space
SCC(R,1), and gC ≈ 2.058 is the growth rate required to maintain cylinder separability.

Fig. 4.9 This figure shows the growth rate gCC = R/r, required for the output given by (4.64)
to be separable with respect to operators drawn from SCC(R,1). We find that the gCC growth
rate is lower than the growth rate gc required for cylinder separability.

This observation is based on figure 4.9. Furthermore, if we additionally impose the
dual constraint that R ≤ 1, we find approximately that rin ≤ 0.57 and the output will still be
SCC(R,1)-separable. In comparison, to maintain a separable decomposition with cylindrical
state spaces, we would require that rin ≤ 0.485. This suggests that CC state spaces allow for
an increase in the range of r that can efficiently classically simulated.

Let us now combine observation 4.4.2 with lattices of degree D. Consider placing qubits
at the nodes of a degree D lattice such that each particle i is initialised from within SCC(r,h)
where r =

√
1−h2. Next, w.l.o.g consider applying a CZ gate to two of the qubits. Using

observation 4.4.2, the output remains SCC(R,1)-separable, provided that we grow the radius
by a factor gCC. Note that the particles on the lattice are now cylinders with radius gCCrin.
After applying the remaining D−1 CZ gates, in order for the output to remain separable, the
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CZ:
r r R R

Fig. 4.10 When applying a CZ gate to two cylinder-cone states with r =
√

1−h2, the output
can be given a separable decomposition with respect to operators drawn from SCC(R,1),
these output operators are cylinder states with radii R. Note that the cylinder-cone growth
rate is gCC = R/r.

output radius must grow to Rout = (gCC)(gD−1
C )rin. Altogether, this can be represented by

the map:

SCC (r,h)→ Cyl(gCC · r)→ Cyl(gCC ·gC · r)→ . . .→ Cyl
(
gCC ·gD−1

C · r
)

(4.67)

where the arrow denotes that the output is separable w.r.t to that set. For example, the output
of a CZ gate acting on two operators drawn from SCC (r,h) is separable w.r.t to operators
drawn from SCC (gCC · r,1). Furthermore, in the first arrow, we have used the fact that being
SCC(R,1)-separable is equivalent to being Cyl(R)-separable. Lastly, from the cylinder dual
constraint, we require that the final output radius satisfies

Rout = (gCC)(gD−1)rin ≤ 1. (4.68)

Using (4.68), one can then calculate explicit bounds on rin for different D. For example, if
D = 3 then equation (4.68) leads to rin ≤ 0.1153. In comparison, if the initialised qubits were
drawn only from cylindrical state spaces, we would end up with the constraint g3

Crin ≤ 1,
implying that each rin ≤ 0.1147. These results suggest there is a very slight improvement in
the range of r that we can classically efficiently simulate if CC state spaces are considered.
Notably, we remark that these results suggest that the bounds on r derived for cylinder
separability appear not to be tight. Therefore, there may be potential other methods that can
increase the region of r that can be classically simulated.
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4.5 Summary and Remarks

In summary, we showed that the output of an arbitrary 2-qubit diagonal gate acting on
operators drawn from cylinders of radius r, can be given a separable decomposition if (4.21)
holds. This result can be combined with the Harrow and Nielsen algorithm in Sec.3.3.2 to
develop a new type of classical simulation algorithm based on cylinder radii separability. We
remark that the techniques presented here have the potential to be applied to other quantum
systems (e.g. non-diagonal gates, and other restrictions on measurements). We further saw
that we can improve the range of r that can be classically simulated by considering a coarse
graining approach. Lastly, by considering a Cylinder-Cone state space, we demonstrated
that the bounds on r are not tight, suggesting that there may be potential alternative methods
that can expand the region of r that can be classically simulated. Whilst our approach uses a
linear programming approach, one could explore whether other numerical methods could be
applied, such as in [41–44].



Chapter 5

Obstacles to Classically Simulating
Restricted Cluster States

5.1 Introduction

In the preceding chapters, we developed a classical simulation method, based on cylinder
separability. However, these cylindrical state spaces contain non-physical operators, and we
are ultimately only interested in simulating systems with quantum inputs. This raises the
question whether it is possible to find state spaces that allow for a greater range of quantum
inputs to be efficiently simulated classically. This was to some extent explored in Sec. 4.4.
However, one might wonder whether other types of classical simulation algorithms, apart
from ours, that can efficiently simulate a greater range of quantum input states. For example,
input states that are contained in the Bloch sphere but with a higher radius. In this chapter, we
discuss potential obstacles that such endeavours may encounter. Specifically, we examine two
approaches, based on percolation and quantum supremacy type arguments, that potentially
rule out efficient classical simulation.

5.1.1 Overview and Related Work

One approach to demonstrate the classical intractability of a restricted model is to show
that it can nevertheless support universal quantum computation. In Sec.5.2.2, we employ
percolation-type arguments to show that a restricted cluster state on a degree 5 lattice, with
inputs of sufficient radius, can efficiently prepare a 2D cluster state. Note that in this setting,
we continue to restrict to destructive Z basis and XY -plane measurements. Consequently, it is
highly unlikely that this scheme can be efficiently classically simulated. The underlying idea
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is that if the probability of successfully creating a |+⟩ state on unmeasured qubits exceeds
a threshold determined by the lattice percolation thresholds, then it becomes possible to
implement a 2D cluster state and hence can support universal quantum computation. This
idea of using percolation type arguments in MBQC stems from [83–85] and has also been
applied in several restricted settings [9, 53, 54], wherein imperfect graph states are usually
measured locally (e.g. undergo a filtering operation) such that universal quantum computation
is recovered.

The second approach is based on the quantum supremacy arguments [16]. Generally
speaking, these arguments prove that if widely-believed complexity theoretic conjectures
hold then there cannot exist an efficient classical simulation algorithm. These arguments
were developed in [19], in which they show that if IQP circuits could be weakly classically
simulated up to multiplicative error, then this would cause the so-called polynomial hierarchy
to collapse, considered to be unlikely. That is, a classical algorithm cannot efficiently sample
from a distribution p(x) that approximates the quantum output distribution q(x) such that

|p(x)−q(x)| ≤ εq(x), (5.1)

is satisfied for every x and any fixed ε > 0. Key in the arguments of [19], is to show that IQP
circuits with postselection1 can simulate universal quantum circuits with postselection. In
Sec.5.3.2, we apply this approach to restricted cluster state circuits on a degree 5 lattice. In
contrast to the percolation approach, in which we have to carefully consider the outcome
probabilities, we will instead be given the ability to postselect on measurement outcomes.
We then show that if the input states are initialised with radii above a critical threshold of
approximately rc = 0.3398, then through postselection and a recursion type argument, we
can implement a perfect 2D cluster state on the remaining sublattice. Then, by the arguments
in [19], this is sufficient to show that a restricted cluster state cannot be simulated up to
multiplicative error. This straightforward approach has been widely used in several results to
rule out classical simulation for various restricted models of quantum computing [23–25].

However, a multiplicative error simulation is considered to be a highly accurate and
unrealistic notion of simulation. Ideally, we would want to show that restricted cluster states

1Postselection is a theoretical tool, where one can post-select (ability to selectively measure and condition
on specific outcomes) on exponentially unlikely measurement outcomes [86].
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cannot be simulated under the more realistic notion of additive error:

∑
x
|p(x)−q(x)| ≤ ε, (5.2)

where ε is the error parameter. To rule out such a simulation, an approach was developed that
uses results from computational complexity theory to connect the hardness of sampling and
the hardness of computing output probabilities [20, 21]. This approach has been used to rule
out efficient classical simulation up to additive error of various types of quantum computing
[50, 25, 87, 76, 74–80, 32–34]. As we will discuss later on, the key difficulty is showing
that the quantum architecture demonstrates certain properties, namely anticoncentration and
average-case hardness. However, we have not been able to do this for the systems considered
in this work. Nevertheless, in Sec.5.3.3 we will review how this has been achieved in an
MBQC setting [32–34] (see also [78–80]) and towards the end of this section, we will explain
the difficulties encountered in trying to adapt these ideas to our scenario.

Contributions

The results presented in this section are based on [30]. My contributions to this work are as
follows. Sec.5.2.2 was done by M.Garn. The computations in Sec.5.3.2 were done separately
by Y.Tao and M.Garn. The connections between these computations and polynomial hier-
archy quantum supremacy arguments were explored by M.Garn. The writing and all other
discussion was done by myself under the guidance of my supervisor

5.2 Universality of Cluster States with Alternative Inputs

5.2.1 Percolation Methods

Percolation theory provides a framework for understanding the behaviour of connected
structures, in which the connections between nodes can be probabilistically present or absent.
In the context of quantum computing, we can consider an “imperfect” cluster state, where
each node is missing with probability 1− p and present with a probability p. It has been
shown in certain cases that if the value of p exceeds a lattice percolation threshold pc, the
imperfect cluster state can still support universal quantum computation.

These ideas were developed in [83–85], and in particular the latter work presented
an explicit polynomial-time algorithm that, for p > pc, an imperfect cluster state can be
efficiently reduced to the 2D cluster state using local Y and Z-basis measurements. These
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percolation arguments have subsequently been applied in several similar settings [9, 53, 54].
To demonstrate how to apply these ideas, we will consider an explicit example provided in
[54], in which they considered a deformed cluster state,

|dCN×N⟩=
(

2
1+λ 2

)N2/2

Λ
⊗N2 |CN×N⟩ , (5.3)

where Λ = diag(1,λ ) is the local deformation parameter, with λ ∈ [0,1]. These are exactly
the type of states that we consider in this chapter, but with the slight variation that our states
are parametrised by θ rather than λ . They proceed by applying a local filtering operation.
That is, performing local two-outcome measurements (that are diagonal in the computational
basis) on each qubit, described by the measurement operators:{

Λ
−1 = λ |0⟩⟨0|+ |1⟩⟨1| , Λ−1 =

√
1−λ 2 |0⟩⟨0|

}
. (5.4)

If the outcome of the measurement is Λ−1, then the deformation effect is successfully undone,
and we recover a |+⟩ on the node with probability

p =
2λ 2

1+λ 2 . (5.5)

Whereas, if the outcome is Λ−1, the qubit is projected onto |0⟩. This corresponds to a deletion
of the lattice node with the attached edges (i.e. a hole on the lattice). Therefore, if p > pc,
then by [85], the deformed cluster state (with holes) is a universal resource for quantum
computation.

In the subsequent subsection, we will apply these methods to our setting of restricted
cluster with alternative inputs. The key difference in our model is that we do not permit
remeasuring of qubits and additionally only allow Z basis and XY -plane measurements.
Despite these limitations, we will show that a restricted cluster state with inputs with high
enough radius can support universal quantum computation.

5.2.2 Preparing Universal Resources via Cluster Measurements

In this section, we demonstrate that a restricted cluster state on a degree 5 lattice, with inputs
of sufficient radius, can efficiently prepare a 2D cluster state. The method is straightforward
and illustrated in figure 5.1. A linear chain is attached vertically to the 2D lattice with the
goal of preparing a single |+⟩ state on each node of the lattice. The linear chain is constructed
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from ancilla qubits initialised with certain specified angles, which are then measured in the
X-basis. If the probability of successfully creating a |+⟩ state on unmeasured qubits exceeds
a threshold determined by the lattice percolation thresholds on the unmeasured lattice, cluster
state quantum computation can be implemented.

Observation 5.2.1. Consider a lattice of degree 5, as shown in figure 5.1, if the input quantum
pure states are drawn from within Cyl(rmax) with rmax = 0.84 one can create a perfect 2D
Cluster State efficiently on one subset of the qubits by measuring the other qubits.

Instead of describing the inputs in terms of r will now use a quantum pure state description,
as the inputs are taken from the surface of the Bloch sphere. The initial product state on the
n×m lattice is

|ψn×m⟩=
N⊗

i=1

(cos(φi/2) |0⟩+ sin(φi/2) |1⟩) , (5.6)

where the index i denotes the qubit site, N = nm is the total number of qubits on the lattice and
0 ≤ φi ≤ φmax. A CZ gate is then applied to each edge on the lattice. Note the correspondence
between the radius and angle is given by r = |sinφ |. The fidelity with the usual perfect
cluster state is then ∏

N
i (

1+sinφi
2 ), and the perfect cluster state is recovered when φi = π/2. If

the input qubits were not |+⟩ states, this is not an ideal cluster state. However, one can show
that by attaching and measuring at most three ancilla qubits to each qubit (see figure 5.1), we
can probabilistically prepare |+⟩ 2D cluster states suitable for quantum computation. The
starting lattice (including the ancilla qubits) is hence the degree 5 graph illustrated in figure
5.1. To see how to perform universal quantum computation, consider the following sequence
of operations.

1. Prepare two ancilla qubits |φ1⟩ and |φ2⟩, where |φ j⟩ = cos(φ j/2) |0⟩+ sin(φ j/2) |1⟩,
φ j ∈ (0,2π) and the index j denotes the qubit. Additionally, for technical reasons we
impose the condition that φ1 +φ2 =

π

2 .

2. Apply a CZ gate between ancilla qubits 1 and 2 and measure the 1st qubit in the
X-basis. If the outcome x1 = 1 is obtained, which occurs with probability px1(1) =
1
2(1− sinφ1 cosφ2), the post-measurement state of qubit 2 is

|φ ′
2⟩=

[cos(φ1/2)− sin(φ1/2)]cos(φ2/2)√
1− sinφ1 cosφ2

|0⟩ (5.7)

+
[cos(φ1/2)+ sin(φ1/2)]sin(φ2/2)√

1− sinφ1 cosφ2
|1⟩ .
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Fig. 5.1 This diagram illustrates how to prepare a single |+⟩ state on a 2D lattice via a linear
chain. The linear chain, attached vertically to the 2D lattice, is built from ancilla qubits that
are initialised with certain specified angles, which are then measured in the X-basis.

Therefore, if we pick φ1 + φ2 =
π

2 , the post-measurement state |φ ′
2⟩ becomes a |+⟩

state.

3. If the outcome x1 = 0 is obtained, which occurs with probability px1(0) =
1
2(1+

sinφ1 cosφ2), the post-measurement state of qubit 2 is

|φ ′
2⟩=

[cos(φ1/2)+ sin(φ1/2)]cos(φ2/2)√
1+ sinφ1 cosφ2

|0⟩ (5.8)

+
[cos(φ1/2)− sin(φ1/2)]sin(φ2/2)√

1+ sinφ1 cosφ2
|1⟩ .

That is, |φ2⟩ has undergone a rotation about the Y axis toward the |0⟩ state.

If the outcome x1 = 1 is obtained, then we have successfully produced a |+⟩ state which
is placed on the lattice. If the wrong outcome x1 = 0 is obtained, then we initialise another
ancilla qubit |φ3⟩, such that φ ′

2 + φ3 = π

2 , where φ ′
2 is the angle of the post-measurement

state of qubit 2. We then proceed to repeat the above procedure. That is, we apply a
CZ gate between qubits 2 and 3, and measure qubit 2 in the X basis. Similarly, if the
outcome x2 = 1 is obtained, with probability px2(1) =

1
2(1− sinφ ′

2 cosφ3), then the post-
measurement state of qubit 3 is |+⟩. If outcome x2 = 0 is obtained, which occurs with
probability px2(0) =

1
2(1+ sinφ ′

2 cosφ3), then the post-measurement state of qubit 3 is |φ ′
3⟩ .

By repeating this method, we can calculate the probability that the lattice site will be occupied
by a |+⟩ state. For example, repeating the method for three ancilla qubits, the probability is
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psite = px1(1)+ px1(0) [px2(1)+ px2(0)px3(1)] . (5.9)

In the case that a |+⟩ has not been successfully prepared on the lattice by the ancilla chain,
we measure the final qubit in the Z basis. This projects the qubit into the |0⟩ (or |1⟩) state
which corresponds to creating a hole on the lattice, i.e. we have removed a vertex and edges
from the cluster state. According to the percolation threshold pc = 0.5927 . . ., if psite > pc

then by [85] we can construct an efficient LOCC algorithm that creates a perfect cluster state
from a 2D cluster state with holes. We find that by attaching and measuring three ancilla
qubits, with angles φ1 = 0.18π , φ2 = 0.32π and φ3 = 0.31π , we can prepare a |+⟩ state on
the lattice with probability 0.73 which is above the percolation threshold pc. The maximum
angle required φ2 = 0.32π corresponds to rmax = 0.84. Therefore, we can prepare a |+⟩ state
with probability above the percolation threshold pc, with three ancilla that are drawn from
within Cyl(rmax) with rmax = 0.84.

5.3 Quantum Supremacy Arguments

5.3.1 Multiplicative Error Simulation

In this section, we present the arguments by Bremner, Jozsa, and Shepherd [19] on the
hardness of simulating IQP circuits up to multiplicative error. They showed that, if IQP
circuits could be efficiently classically simulated up to multiplicative error, then this would
contradict widely believed complexity-theoretic conjectures, i.e. the so-called non-collapse
of the polynomial hierarchy (PH), the details of which are outside the scope of this thesis.
Briefly, however, the polynomial hierarchy is a hierarchy of complexity classes that builds
upon the classes P and NP. At the bottom is P and NP in levels zero and one, respectively.
The second level includes the class NPNP, representing problems solvable in NP with access
to an NP oracle. Higher levels are then defined by nesting these classes. For a more thorough
description, see [88, 89].

The motivation behind these results stems from the challenge of demonstrating differ-
ences between quantum and classical computing. The starting points is to consider boosting
the power of both quantum and classical computing with postselection. In this context,
postselection refers to a circuit that includes not only an output register but also an additional
disjoint register known as the postselection register. The output distribution of the output
register is then conditioned on the outcome of the postselection register. We refer to these
circuits as post-selected circuits. The proof in [19] is a proof by contradiction, where it
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is first assumed that the output probability distributions generated by IQP circuits can be
weakly classically simulated up to a multiplicative error. Next, it is shown that post-selected
IQP circuits (PostIQP) can simulate any post-selected universal quantum circuit (PostBQP).
Finally, in combination with the results of Aaronson [86], this leads to the collapse of the
PH, considered to be unlikely.

This approach has been applied to various models of restricted quantum computing to
rule out classical simulation up to multiplicative error [23–25]. The key step in applying
this approach is to show that the restricted model of computation can implement universal
quantum computation with postselection. This is demonstrated by the following lemma 5.3.1
in the context of IQP circuits. It then follows that, if the output distribution of IQP circuits
could be classically weakly simulated, then it can be shown that PostIQP in contained in
PostBPP (where BPP is the class of decision problems that can be efficiently solved by
polynomial-size circuits with bounded error probability). In combination with lemma 5.3.1,
this shows that PostBPP = PostBQP. However, using a result by Aaronson [86], it can then
be shown that the polynomial hierarchy is contained in PPostBQP (i.e. class of problems that
can be solved in polynomial time using a classical computer augmented with the ability to
make queries to a postBQP oracle). However, as PPostBPP is contained in the third level of
polynomial hierarchy, it follows that the polynomial hierarchy is contained in the third level,
this considered to be unlikely and is referred to as the polynomial hierarchy collapsing.

In the next section, we will apply this approach to restricted cluster states to rule out a
multiplicative error simulation.

Lemma 5.3.1. [19] PostIQP = PostBQP

Proof. This proof is taken from [19]. Since IQP circuits are a subclass of universal quantum
circuits, it follows that post-selected universal quantum circuits can implement post-selected
IQP circuits. To prove the reverse inclusion, it is necessary to show that post-selected IQP
circuits can implement post-selected universal quantum circuits.

Let us consider an arbitrary quantum circuit with inputs |0⟩ . . . |0⟩ and gates drawn from
the universal gate set H,Z,CZ,P, where P = ei(π/8)Z . Next, we add HH = I to the beginning
and end of the circuit on each line. Therefore, each line now begins and ends with a H gate,
and is acted on by gates from the set H,Z,CZ,P. This is almost of the form of an IQP circuit,
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|α⟩ H ⟨0|

|0⟩ H H |α⟩

Fig. 5.2 This circuit gadget is designed to simulate the effect of an internal H gate within
post-selected IQP circuits. To achieve this, an ancilla qubit is introduced, a CZ gate is then
applied between the two qubits, after which the first qubit is measured and post-selected on
the |0⟩ outcome.

as in figure 2.4. The only gate not permitted in IQP circuits is the internal H gate. However,
every internal H gate can be implemented with the use of the Hadamard gadget, as shown
in figure 5.2. Note that in this construction, the ancillary qubit line begins and ends with a
Hadamard gate and the resulting circuit will be of the form of an IQP circuit. Therefore, this
shows that any post-selected quantum circuit can be implemented by a post-selected IQP
circuit.

5.3.2 Hardness of Classically Simulating Restricted Cluster States with
Multiplicative Error

Having established that IQP circuits cannot be simulated up to multiplicative error, based on
complexity-theoretic conjectures, we will similarly show that a restricted cluster state on a de-
gree 5 lattice cannot be classically simulated up to multiplicative error. More specifically, we
will consider a cluster state on a 2D lattice, where each node has a 1D-chain of qubits attached
to it. The main tool then is to use post-selection to implement a perfect 2D cluster state on the
sublattice and by the arguments of [19] this is sufficient to rule out a multiplicative simulation.

The technical result that we will now show is that through post-selection, the 1D-chain
(illustrated in figure 5.3) with input states |θ⟩, where θ is above a threshold θc, can indeed
prepare a |+⟩ state.

Consider a 1D-chain of n qubits, where each qubit i is prepared in the same state

|θi⟩= cos(θ/2) |0⟩+ sin(θ/2) |1⟩ , (5.10)

with 0 < θ < π/2. We then consider applying the CZ gate between nearest neighbour qubits
and performing local X-basis measurements on qubits 1 to n− 1, post-selecting on the
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. . .

|θ⟩

Fig. 5.3 1D-chain of n qubits. If the input states are initialised in the state |θ⟩, with angle θ

above a threshold θc, then by applying nearest-neighbour CZ gates, measuring n−1 qubits
in the X-basis from left to right, and post-selecting on the outcome corresponding to the
projector (I −X)/2, the remaining n-th qubit can be prepared in the |+⟩ state.

outcome corresponding to the (I −X)/2 measurement operator. This sequence of steps is
illustrated in figure 5.3. A straightforward calculation shows that the nth qubit is projected
onto the (unnormalised) state

|θ ′
n⟩= αn |0⟩+βn |1⟩ , (5.11)

where αn = cos(θ/2)(αn−1 −βn−1) and βn = sin(θ/2)(αn−1 +βn−1). This is in the form
of a linear recursion relation and can be rewritten as

|θ ′
n⟩= T n−1 |θn⟩ (5.12)

= T n−1 [cos(θ/2) |0⟩+ sin(θ/2) |1⟩] , (5.13)

where

T =

(
cos(θ/2) −cos(θ/2)
sin(θ/2) sin(θ/2)

)
. (5.14)

We now wish to express the state |θ ′
n⟩ in terms of the eigenvalues and eigenvectors of T . The

eigenvalues of T are

λ1,2 =
1
2

(
cos(θ/2)+ sin(θ/2)±

√
1−3sin(θ)

)
, (5.15)

and the corresponding eigenvectors are

|v1⟩=

(
cos(θ/2)

cos(θ/2)−λ1

1

)
(5.16)
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and

|v2⟩=

(
cos(θ/2)

cos(θ/2)−λ2

1

)
, (5.17)

respectively. Therefore, we can now express the solution of the recursion (5.13) as

|θ ′
n⟩= T n−1(c1 |v1⟩+ c2 |v2⟩) (5.18)

= c1λ
n−1
1 |v1⟩+ c2λ

n−1
2 |v2⟩ . (5.19)

The constants c1 and c2 can be explicitly calculated by setting |θ⟩= c1 |v1⟩+ c2 |v2⟩, and the
second equality follows as |v1⟩, |v2⟩ are eigenvectors of T (see appendix A.6 for details).

Now that we have solved the recursion relation, we can now analyse the behaviour of
(5.19) as a function of θ . Note that the eigenvalues λ1,2 provide important information about
the behaviour of this recursion, determining the form of expression of (5.19), as well as its
long-term behaviour with n. Therefore, we first observe that when sinθc = 1/3, equation
(5.19) is undefined and the solution to the recursion does not exist. As a result, we will
consider two separate cases: when the initial angle θ < θc, and when θ > θc.

If the initial angle θ is less than θc, then |λ1|> |λ2|. This means as n increases, |θ ′
n⟩ will

converge to |v1⟩. Let us now consider the behaviour of |v1⟩, in particular the amplitude of |0⟩
in (5.16), which can be expressed as

2cos(θ/2)
cos(θ/2)− sin(θ/2)−

√
1−3 sin(θ)

. (5.20)

This is a decreasing function of θ , with its minimum attained as θ approaches θc, with a
value of approximately 2.14. This means that a n increases, (5.19) will converge to the state
|v1⟩ and attain its maximum angle as θ approaches θc.

If the initial angle θ is greater than θc, then |λ1|, |λ2| are complex with |λ1|= |λ2|. Now
consider expressing λ1,λ2 as rωeiω ,rωe−iω , respectively. Using these expressions for λ1,2,
and rewriting (5.19) in the computational basis, we have

rωeiωm
[(

c1 cos(θ/2)
cos(θ/2)−λ1

+
c2 cos(θ/2)e−2iωm

cos(θ/2)−λ2

)
|0⟩+

(
c1 + c2e−2iωm) |1⟩] (5.21)

where m = n−1 denotes the number of qubits that are measured in the 1D-chain. In appendix
A.7, we then show that if θ > θc then the magnitudes of the amplitudes of |0⟩ and |1⟩ can be
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equal which shows that the output of the recursion can indeed yield a |+⟩ state.

We will now explain how this recursion argument can be used to show that a restricted
cluster state can with postselection implement a perfect cluster state on a 2D lattice. Consider
an initial 1D-chain of length n, attached to an underlying 2D lattice. Now if the initialised
states are prepared with an angle θ above the critical threshold θc, then, for sufficiently large
n, by post-selecting on the outcome corresponding to the projector (I −X)/2 and utilising
the just-presented recursion argument, we can purify to a |+⟩ state on the underlying 2D
lattice. A consequence of the above result is that when θ > θc, the restricted cluster state
of degree 5 can, through postselection, implement a perfect 2D cluster state, and hence
postselected universal quantum computation. Consequently, according to the arguments in
[19], if the output probability distributions generated by the restricted cluster states could be
weakly classically simulated with multiplicative error, then would lead to the collapse of the
Polynomial Hierarchy.

5.3.3 Additive Error Simulation and Cluster States

In Sec.5.3.2, we showed that a restricted cluster state (with inputs states prepared above
rc = 0.3398) cannot be efficiently classically simulated with multiplicative error. However, as
a multiplicative error simulation is an unrealistic notion of simulation, we would ideally like
to show that we can rule out an additive error simulation. Techniques have been developed in
the literature for converting multiplicative error obstacles to classical simulation into additive
error obstacles to classical simulation [20, 21]. However, we have not been able to do this for
the systems considered in this work. Nevertheless, in this section, we will review how this
conversion is achieved in other MBQC scenarios. Towards the end of this section, we will
explain the difficulties encountered in trying to adapt these ideas to our scenario. Our starting
point is to briefly review parts of the works of [32–34]), which considered cluster states with
perfect inputs but with restrictions to non-adaptive XY -plane measurements, as opposed to
the adaptive measurements required for quantum computation. We will then discuss how this
links with the approaches of [20, 21] to make quantum supremacy claims in certain MBQC
scenarios.

Let us begin by considering a typical cluster state scheme on a 2D lattice with n rows
and m columns. The resource state is prepared by initialising |+⟩ states on the vertices of
the lattice, followed by applying CZ gates on the edges. Typically, the next step in MBQC
schemes is to adaptively measure the resource state to implement deterministic computation,
as seen in section 2.2. However, by performing random non-adaptive measurements, we
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can effectively translate the standard MBQC scheme into one in which the last column of n
qubits has effectively undergone a random quantum circuit [32, 34]. To see this, consider
performing XY -plane measurements on m−1 columns of the lattice, with the measurement
angle being uniformly chosen at random, then this is equivalent to a random circuit of the
form Cm,θ = Lm−1 · · ·L2 ·L1, where each circuit ‘layer’ Lk is of the form

Lk =

(
n

∏
i=n

Hi

)(
n−1

∏
i=1

CZi,i+1

)(
n

∏
i=1

eiθ̃ k
i Zi

)
. (5.22)

It is convenient to note that the output distribution observed on the last column of qubits,
conditioned on the measurement outcomes on the m− 1 columns of qubits, of the n×m
lattice can be expressed as

q(x) = q(xR|xL)q(xL) = | ⟨xR|Cm,θ |ψ⟩ |2q(xL), (5.23)

where |ψ⟩= |+⟩⊗n, and xL ∈ {0,1}(m−1)n, xR ∈ {0,1}n, denote the outcomes obtained from
measuring the first m−1 columns and the last column, respectively. Therefore, we can see
that by performing random non-adaptive measurements, the 2D cluster state generates a
family of quantum circuits {Cm,θ}. This allows us to exploit the following result of [21]:

Theorem 5.3.1. (Adapted from [21]) Let {Cm,θ} be a family of quantum circuits such that
C1 and C2 below are true. If it is possible to efficiently classically sample from a distribution
p(x) that approximates the quantum output distribution q(x) of every circuit C ∈ {Cm,θ} to
additive error, i.e. such that

∑
x
|p(x)−q(x)| ≤ ε, (5.24)

then the Polynomial Hierarchy would collapse to its third level.

This means, that if the measurements in the cluster state scheme are chosen in the right
way, such that C1. and C2. are true, then by the approach of [21] we can end up with a
distribution on the last column that cannot be efficiently classically simulated up to additive
error. We will now briefly discuss the proof of [21] that establishes theorem 5.3.3.

The proof in [21], is a proof by contradiction, where it is assumed that there exists an
efficient classical algorithm, which for any C ∈ {Cm,θ}, can sample from a probability distri-
bution which approximates the output probability distribution q(x) up to additive error. Then,
by using Stockmeyer’s theorem [90], it can be shown that there is an algorithm (contained
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in the third level of the PH) that can compute the value of q(x), for any outcome x, approxi-
mately up to multiplicative error on a sizeable fraction of the circuits C. A key ingredient in
this argument is a property known as anticoncentration. Informally, this property ensures
that the output distribution of a random quantum circuit is reasonably spread out. One of the
key technical insights in [21] was showing that this property of anticoncentration holds for
the families of IQP circuits considered.

The next step in this argument is to invoke a computational complexity assumption on
approximately computing the value of q(x) up to multiplicative error. It is known that the
problem above is #P-hard in the worst-case (i.e. for specific circuits and measurements
outcomes)[51], the authors of [21] now conjecture that this problem is #P-hard on average.
If this conjecture is true, then the existence of an efficient additive error sampling algorithm
would imply a collapse of the PH.

Therefore, to establish theorem 5.3.3 using the approach of [21], one typically needs to
demonstrate the following properties:

C1. The output distribution of {Cm,θ} anticoncentrates. This has been demonstrated for
the family of IQP circuits in [21].

C2. It is #P-hard to approximate the output probability q(x) up to multiplicative error for a
suitable fraction of the circuit instances. This has not been shown, but it is known to
hold in the worse-case [51], which supports the conjecture.

This approach has been used to rule out efficient classical simulation up to additive error
of various types of quantum computing, [91, 21, 50, 74, 75, 25, 87] and additionally has
been adapted to MBQC settings [76–78, 32–34]. In particular, it was shown in [32–34] that a
cluster state with perfect inputs but with restrictions to non-adaptive XY -plane measurements
can be mapped to an ensemble of random circuits, where i) each circuit is sampled with
uniform probability, and ii) each circuit has a straightforward structure, containing layers
of CZ, H, and UZ gates. Furthermore, it was demonstrated in [34] that such as system
satisfies the anticoncentration property. However, in order to rule out efficient classical sim-
ulation up to additive error, the average-case complexity property still needs to be established.

In comparison, we have not been able to apply the approach of [21] to rule out classical
simulation up to additive error of cluster states with alternative inputs. This is because we
encounter challenges in understanding how the random circuit ensemble, generated from
measuring the cluster state with alternative inputs, changes with the input radii. Furthermore,
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the circuits generated in the ensemble are non-unitary circuits, and therefore it is unclear how
existing arguments (e.g. demonstrating anticoncentration) can be applied.

5.4 Summary and Remarks

In this chapter, we examined potential obstacles that may arise when attempting to efficiently
classically simulate an increased range of quantum input states.

In particular, we considered two approaches, based on percolation and quantum supremacy
arguments, that potentially rule out efficient classical simulation for cluster state quantum
circuits with input states of sufficient radius. The first approach uses percolation-type argu-
ments to demonstrate that a restricted cluster state on a degree 5 lattice, with input states of
sufficient radius, can efficiently prepare a 2D cluster state. The underlying idea is that if the
probability of successfully creating a |+⟩ state on unmeasured qubits exceeds a threshold
determined by the lattice’s percolation thresholds, it becomes possible to implement a cluster
state quantum computation. For a degree 5 lattice, we find that allowing for input states
with approximately r ≤ 0.84, we can still prepare a universal 2D cluster state. We remark
that this approach can potentially be improved and extended. For example, by utilising all
permitted cluster measurements rather than only using X-basis measurements or by altering
the lattice configuration, it may be possible to prepare a |+⟩ state from the 1D-chain using
input states with lower values of r. Additionally, there are alternative strategies to consider
beyond simply preparing a |+⟩ state, for example, one could consider directly implementing
a universal gate set by measuring the resource state.

In the second approach, we attempt to apply quantum supremacy-type arguments to rule
out classical simulation of restricted cluster states. We showed that if the input states are
initialised with radii above a critical threshold of approximately rc = 0.3398, then through
postselection and a recursion type argument, we can implement a perfect 2D cluster state
on the remaining sublattice. Then by the standard arguments in [19], this is sufficient to
show that a restricted cluster state cannot be simulated up to multiplicative error. However,
the aim was to rule out classical simulation of restricted cluster states with additive error.
Unfortunately, we have not been able to do this for the cluster state with alternative inputs.
Nevertheless, we reviewed how the approach in [21] can be adapted to MBQC scenarios
[32–34] and briefly discussed the difficulties in adapting the approach to our scenario.





Chapter 6

Summary and Conclusion

A fundamental aim in quantum computing to understand when quantum systems can or
cannot be efficiently classically simulated. In this thesis, we studied when cluster state
quantum circuits with alternative inputs and measurements in the Z basis and XY -plane, can
or cannot be efficiently classically simulated.

In the first part of this thesis (chapter 3 and chapter 4), we studied when such a system can
be efficiently classically simulated. The main technical tool we considered was a generalised
notion of separability. Specifically, we considered relaxing the requirement that the local
operators ρK

j must be non-negative operators, and instead allowed the operators to be drawn
from a set of operators that, through the Born rule, yield positive probabilities for a given
set of measurement operators. Applying this to the permitted cluster measurements, we
arrived at the notion of cylindrical state spaces. Using this notion, we first proved that if
a CZ gate acts on input operators that are drawn from cylinders of radius r, the output can
be given a separable decomposition provided that the radius of the output cylinders in the
decomposition grows by a constant λ > 0. By combining this with a modified version of
Harrow and Nielsen’s algorithm, we see that this enables an efficient classical simulation
algorithm that can sample from the output distribution to within additive error. As a result,
this provides examples of pure entangled quantum systems that can be efficiently classically
simulated. In the future, we hope that the techniques of generalised separability can further
be applied to enable efficient classical simulation algorithms [15] of other quantum systems
(e.g. non-diagonal gates, and other restrictions on measurements).

In chapter 4, we then moved onto ways to improve and extend our classical simulation
algorithm. First, we improved the bound on the parameter r in our classical simulation
algorithm by considering a coarse-graining approach. Next, we demonstrated that the result
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of lemma 3.2.1 can be generalised to hold for any two-qubit gate that is diagonal in the
computational basis. Lastly, we showed that there are choices of state space that can increase
the size of the classically efficient regime. In particular, we considered a state space that we
call the cylinder-cone state space. Via linear programming, we showed that the output of a CZ
gate acting on cylinder-cone states can be given a generalised separable decomposition and
hence very slightly improves the range of r that can be efficiently classically simulated. This
suggests that the bounds on r are not tight, and there may be potential alternative methods
that can increase the region of r that can be classically simulated.

In the second part of this thesis (chapter 5), we examined potential obstacles that may
arise when attempting to efficiently classically simulate an increased range of quantum input
states. Using a percolation based approach, we showed that a restricted cluster state on a
degree 5 lattice, with input states of sufficient radius, we can efficiently prepare a universal
2D cluster state, and therefore efficient classical simulation is unlikely. We remark that this
approach can potentially be improved, for example, by utilising all permitted cluster mea-
surements rather than only using X-basis measurements. Next, by using conjectures about
the polynomial hierarchy, we showed that there is a threshold for which cluster states with
alternative inputs cannot be efficiently classically simulated with multiplicative error. This
approach uses postselection and a recursion type argument to show that the restricted cluster
state can nevertheless implement any post-selected universal quantum circuit. However, the
notion of a multiplicative simulation is unrealistic, and we would ideally like to show that a
cluster state with alternative inputs cannot be simulated with additive error. Unfortunately, we
have not been able to do this. Nevertheless, we reviewed how the approach in [21] has been
adapted to MBQC scenarios [32–34] and we briefly discussed the difficulties in adapting
the approach to our scenario. As such, ruling out classical simulation of cluster states with
alternative inputs of sufficient r, is still an open problem that would be worthy to explore in
future work.

We will now briefly summarise the results from this thesis for the regions of states that
can and cannot be efficiently classically simulated. Recall the key result in Sec.3.3.2, where
it was shown that a quantum computation that involves: i) initialising n qubits in the state
ρ , satisfying ∥ρ −ρdiag∥ ≤ 1/λ D, where λ = 2.05817 and D is the maximum degree of the
lattice, ii) performing CZ gates between adjacent qubits, iii) and only allowing measurements
in the Z-basis and XY -plane, can be efficiently classically simulated. In table 6.1, we have
computed the value 1/λ D for different degree lattices. From Sec.4.2, using a coarse graining
approach (on a degree 4 lattice), numerical results suggest that inputs with r ≤ 0.0913 can be
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D 3 4 5 6

1/λ D 0.1147 0.0557 0.0271 0.0132

Table 6.1 This table shows the values of 1/λ D for different degree D lattices.

efficiently classically simulated. With the modifications discussed in Sec.4.2.1, this can be
further improved to r ≤ 0.0924. Lastly, we saw that using an alternative notion of separability
(i.e. w.r.t to cylinder-cone state spaces), we can also improve the range of r that we can
be efficiently classically simulated, where specifically for degree 3 lattices we have that
r ≤ 0.1153. On the other hand, in Sec.5.2.2, it was shown that allowing for states with
r ≥ 0.84 on degree 5 lattices enables universal quantum computation and, consequently, rules
out efficient classical simulation. Additionally, in Sec.5.3.2, on a degree 5 lattice we ruled
out efficient classical simulation up to multiplicative error for r > 0.3398.

Lastly, we remark that the numerics on coarse-graining in Sec.4.2.1 could be taken
further, e.g. by considering larger blocks. Furthermore, in these numerics, we conjectured
that projectors of the form (I −X)/2 and input extrema(I +αX +Z)/2 return the maximum
r for which these systems return positive probabilities. In the future, one could aim to
prove this conjecture. Additionally, in Sec.4.4, for some of the state spaces considered, one
could try to understand if analogues of the PPT criterion or entanglement witnesses could
be applied. In Sec.4.4.4, one could also explore improvements to the cylinder-cone result.
For example, rather than requiring the output state space to be cylinders, one could consider
cylinder-cone states (with height < 1) or some other alternative state space.
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Appendix

A.1 Coarse Graining 2-Block Calculation

Observation A.1.1. The maximum value of r′ such that the output of

CZ
([

1,r′ cos(θA) ,r′ sin(θA) ,±1
]
⊗
[
1,r′ cos(θB) ,r′ sin(θB) ,±1

])
(A.1)

is non-negative for all allowed measurements (Z basis and XY -plane measurements), is
r′ = 1/2. Moreover, for all allowed measurements, non-negative probabilities are obtained if
and only if r′ ≤ 1/2.

Proof. We will first make some observations that simplify this problem.

1. Consider the probability
Tr(MA ⊗MBρ) , (A.2)

where MA and MB are measurement operators and ρ is the output state of (A.1). By the
cyclicity of the trace, we may consider the CZ acting on the measurement operators
(MA⊗MB. If either MA or MB is a Z-basis measurement, the CZ gate would act trivially.
Hence, we would have a product of measurements and no negative probabilities can
occur. Therefore, we can restrict our analysis to measurements in the XY plane and
exclude measurements in the Z-basis.

2. Suppose, w.lo.g that the second input has z = −1 on the given cylinder. This can
be described as a z = 1 input with an X operator applied to it. Using the identity
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CZ(I⊗X) = (Z⊗X)CZ, we can pull the X through the CZ. Therefore, we would have
(Z ⊗X) acting on the measurement operators, however these are just new XY plane
or Z-basis measurements. Thereby, showing that we need only consider inputs with
z = 1.

3. Lastly, consider XY-plane measurements of the form cos(θ)X + sin(θ)Y , which is
equivalent to a local Z-rotation acting on a projector of the form I −X . Now, again by
using the cyclicity of the trace and the fact that CZ commutes with local Z rotations,
we would end up with another cylinder extremal state but with a different XY plane
angle. Therefore, we may restrict to measurements I −X .

We have now simplified the problem to computing the maximum r′ such that the output
of a CZ gate acting on

([
1,r′ cos(θA) ,r′ sin(θA) ,1

]
⊗
[
1,r′ cos(θB) ,r′ sin(θB) ,1

])
(A.3)

is non-negative for measurement projectors

I −X
2

⊗ I −X
2

. (A.4)

Therefore, the probability of getting this outcome is:

1− r′ cos(θA)− r′ cos(θB)+ r′2 sin(θA)sin(θB) (A.5)

=
(
1− r′ cos(θA)

)(
1− r′ cos(θB)

)
− r′2 cos(θA −θB) . (A.6)

When θA = θB = 0, the condition simplifies to 1− 2r′ ≥ 0, which implies that r′ ≤ 1/2.
However, for 0 ≤ r′ ≤ 1/2, this is the minimal possible value. This can be seen from (A.6),
which is always greater than or equal to (1− r′)(1− r′)− r′

2
= 1−2r′. Therefore, (A.6) is

non-negative for all measurements and inputs if and only if r′ ≤ 1/2 = r2block,max.

A.2 Matlab Code for Coarse-Graining

% N u m e r i c a l _ m e a s u r i n g _ M x N _ l a t t i c e _ c y l i n d e r s on
% a N column and M row l a t t i c e
% Outpu t : r e t u r n s r s . t o u t p u t p r o b a b i l i t i e s are n e g a t i v e
% f o r measurement ( I −X ) / 2

% P a u l i O p e r a t o r s
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I = eye ( 2 ) ; X = [0 1 ; 1 0 ] ; Z=[1 0 ; 0 −1] ;

%% 1 . i n i t i a l i s a t i o n S t a g e

% I n p u t Columns N , Row M (N ,M>1)
N = 3 ;
M = 3 ;

% I n p u t h e i g h t h as a ma t r i x , r a d i u s r as a m a t r i x ( e . g . , p l u s s t a t e s r=1s , h=0s )
h = ones (M,N ) ;
r = ones (M,N ) ;

% Loop f o r v a l u e s o f x c o r r e s p o n d i n g t o r a d i u s r
f o r x = 0 . 0 6 : 0 . 0 0 0 0 1 : 0 . 5

t i c
% S e t r a d i u s R = t o x v a l u e ( i . e . , i n c r e a s i n g r a d i u s v a l u e f o r each loop )
R=x ;

% S e t lambda v a l u e s f o r c o r n e r and edge
lambda = 1 / ( s q r t ( s q r t ( 5 ) − 2 ) ) ;
r _ c o r n e r = R * lambda * lambda ; % c o r n e r r a d i u s
r _e dg e = R * lambda ; % edge r a d i u s

% For loop f o r edge and c o r n e r r a d i i
f o r i =1 :N

f o r j =1 :M
r ( j , i ) = r _e dg e ;

% Handle c o r n e r s
i f i ==1 && j ==1 | | i ==N && j ==1 | | i ==1 && j ==M | | i ==N && j ==M

r ( j , i ) = r _ c o r n e r ;

end
end

end

% For loop f o r mi dd l e r a d i i
f o r i =2 :N−1

f o r j =2 :M−1
r ( j , i ) = R ; %mi dd le q b i t has r a d i u s r

end
end

% Loop t o change t h e h e i g h t o f m idd l e q u b i t s t o s q r t (1−R ^ 2 )
f o r i =2 :N−1
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f o r j =2 :M−1
h ( j , i ) = s q r t (1 −R ^ 2 ) ; % mi dd le q u b i t has r a d i u s r

end
end

% I n i t i a l i s e f i r s t l a y e r o f q u b i t s , f i r s t column A
A = 1 ;
f o r i = 1 : 1 :M

A1 = 0 . 5 * ( I + r ( i , 1 ) *X+h ( i , 1 ) * Z ) ;
A = kron (A, A1 ) ;

end

%Cr ea te measurement o p e r a t o r s , I −X on l a y e r A , I d e n t i t y on B
P0 = 0 . 5 * ( I −X ) ;
P =1;
f o r i = 1 : 1 :M

P = kron ( P , P0 ) ; % measurement o p e r a t o r s 1−X on Layer A
end
f o r i = 1 : 1 :M

P = kron ( P , I ) ; % measurement o p e r a t o r s I on Layer B
end

%% 2 . Main body : loop t h a t CZs & measures l a y e r s
f o r j = 2 : 1 :N

j ;
% S t e p 1: CZs on l a y e r A
CZ_A = 1 ;
f o r i = 1 : 1 :M−1

CZ_A =CZ_A* CZ_func t i on (M, i , i + 1 ) ;% e . g . i f M = 3 −> r e q u i r e 2 CZs
end
A = CZ_A*A*CZ_A ;

%S t e p 2 . Cr ea t e g l o b a l s t a t e p s i o f l a y e r A and B & do CZs
B = 1 ;
f o r i = 1 : 1 :M

B1 = 0 . 5 * ( I + r ( i , j ) *X+h ( i , j ) *Z ) ;
B = kron (B , B1 ) ;

end

p s i = kron (A, B ) ; % s t a t e o f l a y e r A and B

% S t e p 3: Measure l a y e r A and s t o r e prob
CZ_a l l = 1 ;
f o r i = 1 : 1 :M
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i ;
CZ_a l l = CZ_a l l * CZ_func t i on (2*M, i , i +M) ;

end
p s i = CZ_a l l * p s i * CZ_a l l ;

%3 . Measure l a y e r A and s t o r e prob
p ( j −1) = t r a c e ( P* p s i ) ; %prob o f Layer
p _ p s i = P* p s i *P / p ( j − 1 ) ;

% %S t e p 4: p a r t i a l t r a c e over l a y e r A
%I n p u t s t a t e o f 2 l a y e r s
% No . M ( l a y e r A t o t r a c e out , M i s number o f q u b i t s )
B = MG_par t i a l_ t r ace_mx2 ( p_ps i ,M) ;
A = B ;

end

%% 3 . F i n a l round o f measurements and t o t a l prob
%F i n a l CZ l a y e r
CZ_A = 1 ;
f o r i = 1 : 1 :M−1

CZ_A =CZ_A* CZ_func t i on (M, i , i + 1 ) ;%e . g . i f M = 3 −> r e q u r i e 2 CZs
end
p s i = CZ_A*A*CZ_A ;%f i n a l s t a t e b e f o r e measured

% F i n a l measurement o p e r a t o r s
P =1;
f o r i = 1 : 1 :M

P = kron ( P , P0 ) ; % measurement o p e r a t o r s 1−X on Layer A
end
p (N) = t r a c e ( P* p s i ) ;

%t o t a l p r o b a b i l i t y
t o t a l =1 ;
f o r k =1:N

t o t a l = t o t a l *p ( k ) ;
end

%% 4 . p l o t n u m e r i c a l
i f t o t a l <0

%i f t o t a l prob < 0 t h e n d i s p l a y
format l ong
[ x , t o t a l ] %r a d i u s and p r o b a b i l i t y

answer = [ ’ At r = ’ , num2str ( x ) , ’ g e t n e g a t i v e p r o b a b i l i t y o f ’ , num2str ( t o t a l ) ] ;
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di sp ( answer )
%Re tu rn command : i . e . i f t o t a l prob < 0 t h e n STOP s c r i p t
t o c
re turn

e l s e
d i sp ( [ ’ no neg prob f o r r = ’ , num2str ( x ) , ’ c o n t i n u i n g loop . . . ’ ] )
t o c

end
end
d i sp ( [ ’ s c r i p t f i n i s h e d , no n e g a t i v e p r o b a b i l i t i e s found ’ ] )

A.3 Calculation of Determinant

In this appendix, we will show that the determinant of the matrix
1 fB fA fA fBe−iϕ

fB 1 fA fB fA

fA fA fB 1 fB

fA fBeiϕ fA fB 1

 (A.7)

can be expressed as

=
(

f 4
A +1

)(
f 4
B +1

)
−2( f 2

A + f 2
B)−2 f 2

A f 2
B cosϕ

(
f 2
A + f 2

B −2
)
. (A.8)

The determinant of (A.7) can be found by taking the cofactor expansion along the first
column:

1

∣∣∣∣∣∣∣
1 fA fB fA

fA fB 1 fB

fA fB 1

∣∣∣∣∣∣∣− fB

∣∣∣∣∣∣∣
fB fA fA fB e−iϕ

fA fB 1 fB

fA fB 1

∣∣∣∣∣∣∣
+ fA

∣∣∣∣∣∣∣
fB fA fA fB e−iϕ

1 fA fB fA

fA fB 1

∣∣∣∣∣∣∣− fA fB eiϕ

∣∣∣∣∣∣∣
fB fA fA fB e−iϕ

1 fA fB fA

fA fB 1 fB

∣∣∣∣∣∣∣ .
By calculating the 3 by 3 determinant in each term, we have

f 2
A f 2

B − ( f 2
A + f 2

B)+1+ fB e−iϕ (− f 2
A f 3

B + f 2
A fB + eiϕ f 3

B − eiϕ fB
)

+ fA e−iϕ (− f 3
A f 2

B + eiϕ f 3
A + fA f 2

B − eiϕ fA
)
− f 2

A f 2
B
(
− f 2

A f 2
B + eiϕ( f 2

A + f 2
B)−2eiϕ +1

)
.
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This can now be simplified to give equation (A.8):

f 2
A f 2

B − ( f 2
A + f 2

B)+1+ f 4
A + f 4

B − ( f 2
A + f 2

B)+ f 2
A f 2

Be−iϕ(2− f 2
A − f 2

B)

− f 2
A f 2

B
(
− f 2

A f 2
B + eiϕ( f 2

A + f 2
B)−2eiϕ +1

)
= 1+ f 4

A f 4
B + f 4

A + f 4
B −2( f 2

A + f 2
B)+ f 2

A f 2
B(2− f 2

A − f 2
B)e

−iϕ − f 2
A f 2

B( f 2
A + f 2

B −2)eiϕ

= 1+ f 4
A f 4

B + f 4
A + f 4

B −2( f 2
A + f 2

B)+2 f 2
A f 2

B cosϕ(2− f 2
A − f 2

B)

= 1+ f 4
A f 4

B + f 4
A + f 4

B −2( f 2
A + f 2

B)−2 f 2
A f 2

B cosϕ
(

f 2
A + f 2

B −2
)

=
(

f 4
A +1

)(
f 4
B +1

)
−2( f 2

A + f 2
B)−2 f 2

A f 2
B cosϕ

(
f 2
A + f 2

B −2
)
.

A.4 Matlab Code To Determine Growth Rate of Cylinder-
Cone Separability

In this appendix, we present the code used to calculate the growth rate gCC = R/r in fig.4.9.
As can be seen in the code, we used an increment of 0.0001 for g. However, for r ≤ 0.1 we
used an increment of 0.00001.

% L i n e a r P r o g r a m _ f o r _ C C _ s e p a r a b i l i t y
% The code c a l c u l a t e s t h e growth r a t e f o r a c y l i n d e r cone t o be s e p a r a b l e
% w . r . t t o c y l i n d e r s , u s i n g d i f f e r e n t v a l u e s o f r and p l o t s t h e r e s u l t s .

% I n i t i a l i s e v a r i a b l e s
p l o t _ r = [ ] ;
p l o t _ g = [ ] ;
j = 1 ;

% Loop t h r o u g h d i f f e r e n t v a l u e s o f r
f o r r = 0 . 0 1 : 0 . 0 0 1 : 0 . 6

h = s q r t (1 −( r * r ) ) ; % C a l c u l a t e h based on t h e c u r r e n t v a l u e o f r

% Loop t h r o u g h d i f f e r e n t v a l u e s o f g
f o r g = 1 . 5 : 0 . 0 0 0 0 1 : 2 . 1

R = g* r ; %C a l c u l a t e R based on t h e c u r r e n t v a l u e o f r and g

%% 1 . I n p u t s t a t e space : e l o n g t e d cone v a r y i n g r a d i u s
va = [ 1 ; r ; 0 ; h ] ; vb = [ 1 ; r ; 0 ; h ] ;
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c o e f = kron ( va , vb ) ;
l a rge_CZ = [

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ;
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 ;
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ;
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ;
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ] ;

% c r e a t e beq r e p r e s e n t i n g t h e i n p u t s t a t e a c t e d on w i t h a CZ
beq = la rge_CZ * c o e f ;

%% 2 . Cr ea t e o u t p u t s t a t e space : c y l i n d e r s t a t e s w i t h u n i t h e i g h t
i n c = 1 8 ; %d i s c r e t i s a t i o n parame te r o f p o i n t s around XY−p l a n e
i = 0 ;

f o r ha = [1 , −1 ]
f o r x = 0 : i n c : 3 5 9 . 9 9

i = i +1 ;
G1 ( : , i ) = [ 1 ; R* cosd ( x ) ; R* s i n d ( x ) ; ha ] ;

end
end

Aeq = kron ( G1 , G1 ) ;% C a l c u l a t e m a t r i x Aeq r e p r e s e n t i n g o u t p u t s t a t e space

%% 3 . Run L i n e a r program
[ numRows , numCols ] = s i z e ( Aeq ) ; % Get d i m e n s i o n s o f Aeq m a t r i x
A = −1* eye ( numCols ) ; % C o n s t r a i n t t h a t x i ’ s >= 0
b = z e r o s ( numCols , 1 ) ; % Ax <= b
f = z e r o s ( numCols , 1 ) ; % S e t o b j e c t i v e f u n c t i o n t o z e r o

% Run l i n e a r program , c h e c k i n g f e a s i b i l i t y
%s u p r e s s no c o n s t r a i n t s found
o p t i o n s = o p t i m o p t i o n s ( ’ l i n p r o g ’ , ’ D i s p l a y ’ , ’ none ’ ) ;
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x = l i n p r o g ( f , A, b , Aeq , beq , [ ] , [ ] , o p t i o n s ) ;

i f i sempty ( x ) == 0 % I f x i s non−empty , a f e a s i b l e s o l u t i o n e x i s t s
R
break

end
end
% C a l c u l a t e growth f a c t o r
p l o t _ r ( j ) = r ;
p l o t _ g ( j ) = g ;
j = j +1 ;

end

% P l o t r e s u l t s
p l o t ( p l o t _ r , p l o t _ g )
y l i n e ( 2 . 0 5 8 , ’−− ’ ) % P l o t c y l i n d e r growth r a t e
l egend ( ’ g_ { cc } ’ , ’ g_c = 2 .05817 ’ )
x l a b e l ( ’ r ’ )
y l a b e l ( ’ g ’ )
gr id on

A.5 Determining Separability for Protruding State Spaces
via Linear Programming

This is an example with ζ = 0.1 and h = 0.5 to demonstrate the process described in
Sec.4.4.1.The task is to determine if CZ (ρA ⊗ρB) , where ρA,ρB are drawn from P(r,h,ζ ),
is separable w.r.t P(r,h,ζ ). We now employ the arguments discussed in Sec.4.4.1 to reduce
the number of input states we need to consider:

[1,1,0,0]⊗ [1,1,0,0] ,

[1,1,0,0]⊗ [1,ω,0,0.5] ,

[1,ω,0,0.5]⊗ [1,ω,0,0.5] .

(A.9)

Our objective is to determine when the output of a CZ gate acting on every input extrema in
(A.9) is P(r,h,ζ )-separable. We begin by considering the single input extrema: [1,1,0,0]⊗
[1,1,0,0]. Expressing the action of the CZ gate on this input in the Pauli we have:
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1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (A.10)

Noting the non-zero Pauli coefficients, we can form the vector representing our input state:

beq = (1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,0,0)T , (A.11)

with ρ11 = ρ2,4 = ρ3,3 = ρ4,2 = 1. Our next step is to construct the matrix Aeq, where each
column vector contains the Pauli expansion coefficients of an extremal product state.To
achieve this, we discretise the single-particle state space P(r,h,ζ ) by selecting a finite set
of θ values. Here, we consider θ = 0, π

3 ,
2π

3 , . . . , 5π

3 , which leads to a 4×20 matrix for the
single-particle state space of particles A and B:

SA/B =


1 1 1 · · · 1 · · · 1 · · ·
0 0 R · · · Rω · · · Rω · · ·
0 0 0 · · · 0 · · · 0 · · ·
1 −1 0 · · · h · · · −h · · ·

 , (A.12)

where ω = 11
√

3
20 . The first two columns contain the Bloch vector coefficients of |0⟩⟨0| and

|1⟩⟨1|, respectively. Starting from the third column, these are the states that lie on the XY
plane. The remaining matrix entries denote states that have height ±1/2, where the Bloch
vector coefficients of x and y are given by Rω cosθ and, Rω sinθ respectively. Recall, the
parameter we will be varying to determine if the output is separable is R. We can now form
the matrix Aeq that represents the output state space:

Aeq = SA ⊗SB,

where Aeq is a 16×400 dimensional matrix. Furthermore, we impose the condition that the
probability distribution must be non-negative by setting A and b as in (4.56), where A is of
size D×D and b is a D-dimensional column vector, with D = 400.

We have now transformed the problem of finding a separable decomposition into a Linear
Programming problem. By increasing the parameter R, that is, the radii R of the output state
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space, we can run the linear program to check for a feasible solution. In this example, the
linear program returns a feasible solution at R = 2.331. We now repeat the above procedure
with the second pair of input extrema in (A.9). We find that this returns a feasible solution at
R = 2.398. Lastly, we repeat the procedure with the last input extrema in (A.9), finding a
feasible solution at R = 2.507. Therefore, we can conclude a CZ that acts on any operators
drawn from A (r,0.5,0.1) can be given a separable decomposition if the operators in the
separable decomposition are drawn from P(R,0.5,0.1), where R ≥ 2.507r.

A.6 Explicit Solution to the Recursion Relation

In this appendix, we solve the recursion relation leading to equation (5.19). The eigenvalues
of

T =

(
cos(θ/2) −cos(θ/2)
sin(θ/2) sin(θ/2)

)
(A.13)

can be straightforwardly found:

λ1,2 =
cos(θ/2)+ sin(θ/2)±

√
1−3sin(θ)

2
. (A.14)

The eigenvectors of T can be found using standard row reduction techniques. For λ1 we
have:

T −λ1I2 =

(
a−λ1 −cos(θ/2)

b b−λ1

)
R1: 1

a−λ1
R1

−−−−−−→

(
1 −a

a−λ1

b b−λ1

)
(A.15)

R2:R2−bR1−−−−−−→

(
1 −a

a−λ1

0 0

)
, (A.16)

where we have set a = cos(θ/2) and b = sin(θ/2). The eigenvector corresponding to λ1 is
therefore

|v1⟩=

(
a

a−λ1

1

)
=

 2cos( θ

2 )√
2cos( θ

2 +
π

4 )−
√

1−3sin(θ)

1

 . (A.17)

Similarly, the eigenvector corresponding to λ2 is
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|v2⟩=

(
a

a−λ2

1

)
=

 2cos( θ

2 )√
2cos( θ

2 +
π

4 )+
√

1−3sin(θ)

1

 . (A.18)

We now express (5.19) in terms of the eigenvalues λ1,λ2 and corresponding eigenvectors
|v1⟩ , |v2⟩ of T :

|θ ′
n⟩= T n−1(c1 |v1⟩+ c2 |v2⟩) (A.19)

= c1λ
n−1
1 |v1⟩+ c2λ

n−1
2 |v2⟩ . (A.20)

Lastly, c1,c2 can be found by setting |θ⟩= c1 |v1⟩+ c2 |v2⟩:(
cos(θ/2)
sin(θ/2)

)
= c1

(
cos(θ/2)

cos(θ/2)−λ1

1

)
+ c2

(
cos(θ/2)

cos(θ/2)−λ2

1

)
(A.21)

which can be solved to find that

c1 =
cos(θ)− sin(θ)+2 sin

(
θ

2

) √
1−3 sin(θ)−1

4
√

1−3 sin(θ)
, (A.22)

c2 =
sin(θ)− cos(θ)+2 sin

(
θ

2

) √
1−3 sin(θ)+1

4
√

1−3 sin(θ)
. (A.23)

A.7 Purifying the Output of the Recursion to a |+⟩ State

In this appendix, we show that if θ > θc, the output of the recursion can yield a |+⟩ state on
the end of the 1D-chain.

Suppose that θ > θc, then we have that |λ1| = |λ2|, and |c1| = |c2|. We can rewrite λ1

and λ2 in their polar forms as λ1 = rωeiω and λ2 = rωe−iω . Now, using these expressions
for λ1,2 we can rewrite (5.19) in the computation basis:

|θ ′
n⟩= c1λ

n−1
1 |v1⟩+ c2λ

n−1
2 |v2⟩ (A.24)

= rωeiωm (c1 |v1⟩+ c2e−2iωm |v2⟩
)

(A.25)

= rωeiωm
[(

c1 cos(θ/2)
cos(θ/2)−λ1

+
c2 cos(θ/2)e−2iωm

cos(θ/2)−λ2

)
|0⟩+

(
c1 + c2e−2iωm) |1⟩] ,

(A.26)
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where m = n−1. Our aim is now to show that, for θ > θc, the magnitudes of the amplitudes
of |0⟩ and |1⟩ can be equal:∣∣∣∣ c1 cos(θ/2)

cos(θ/2)−λ1
+

c2 cos(θ/2)e−2iωm

cos(θ/2)−λ2

∣∣∣∣= ∣∣c1 + c2e−2iωm∣∣ (A.27)

This can be rewritten as∣∣∣∣ c1 cos(θ/2)
cos(θ/2)−λ1

+
c2 cos(θ/2)e−2iωm

cos(θ/2)−λ2

∣∣∣∣− ∣∣c1 + c2e−2iωm∣∣= 0. (A.28)

To show that the above equation can be satisfied, for different values of m we have numerically
calculated the output of the recursion, presented in fig.A.1. This figure suggests that for
θ > θc the output of the recursion |θ ′

n⟩ can indeed yield a |+⟩ state as the corresponding
output angle θ ′ = π/2 can be attained. For clarity in fig.A.1, we have plotted the radius
rather than angle of the state, i.e. rin = |sinθ | and rout = |sinθ ′|.
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Fig. A.1 This figure depicts the recursion output for different values of m. The horizontal
axis is the radius corresponding to the input angle (i.e. rin = |sinθ |) and the vertical axis is
the radius corresponding to the angle of the output state (rout = |sinθ ′|). The vertical dotted
black line is the critical threshold sinθc = 1/3. The figure suggests that when θ > θc, the
recursion output |θ ′

n⟩ can yield a |+⟩ state.
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