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1 Introduction

Due to noise and lack of information in real world optimization problems, it is important to identify and

find optimal solutions that are immunized against data uncertainty. Robust optimization has emerged as a

useful and efficient deterministic approach to treat optimization problems under data uncertainty [3,4,7,8].

The cornerstone of robust optimization is that the so-called robust counterpart should be computationally

tractable. In that sense, the exact semidefinite programming (SDP) relaxation of a given robust optimization

problem is a highly desirable feature because SDP problems can be efficiently solved (e.g., using interior point

methods) [2, 9, 34,38].

If we restrict ourselves to convex polynomial programs, then the notion of SOS-convexity (sum-of-squares-

convexity) [1,20] becomes essential since it has been proposed as a tractable sufficient condition for convexity

based on semidefinite programming. The SOS-convex polynomials cover many commonly used convex poly-

nomials such as convex quadratic functions and convex separable polynomials. The benefit of an SOS-convex

polynomial is that deciding whether a given polynomial is SOS-convex or not can be equivalently rewritten

as an SDP problem (and thus, can be efficiently checked). Furthermore, for an SOS-convex optimization

problem, its optimal value and optimal solution can be found by solving an SDP problem [27], that is, an

exact SDP relaxation holds for the special class of SOS-convex problems.

Regarding robust optimization problems with SOS-convex polynomials, exact SDP relaxations have been

shown to hold for robust convex quadratic optimization problems under ellipsoidal data uncertainty [3],

and more generally, for some classes of robust SOS-convex programs [25], including robust quadratically

constrained convex optimization problems and robust separable convex polynomial optimization problems.

With the help of the Slater condition, the authors of [25] characterized robust solutions and exact SDP relax-

ations of robust SOS-convex polynomial optimization problems under polytopic and ellipsoidal uncertainty.

In addition to that, tight SDP relaxations for a class of robust SOS-convex polynomial problems without

the Slater condition were obtained in [15]. This approach has been widely employed in the literature (see,

e.g., [10, 13,14,23,30]).

Besides the exact SDP relaxation approach, another trend in robust optimization is to identify classes

of robust problems having relaxations which can be efficiently solved by means of a second-order cone

programming (SOCP) problem [31, 34]. As a matter of example, it has been shown in [18] that a robust

convex quadratic optimization problem under restricted ellipsoidal data uncertainty can be equivalently
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reformulated as an SOCP problem. Concerning nonconvex polynomial optimization problems, a convergent

bounded degree hierarchy of SOCP relaxations was recently proposed in [16], whereas an exact SOCP

relaxation for minimax nonconvex separable quadratic problems was established in [24].

In this work, we consider a parametric robust convex polynomial optimization problem under general

convex compact uncertainty sets, and then we focus on a parametric robust SOS-convex polynomial opti-

mization problem where the constraint data are affinely parameterized and the uncertainty sets are assumed

to be bounded spectrahedra. The main purpose of this paper is to provide conditions that guarantee exact

conic relaxations for classes of robust convex/SOS-convex polynomial optimization problems. More precisely,

we make the following main contributions:

(i) We show that a parametric robust convex polynomial problem with convex compact uncertainty sets

enjoys stable exact conic relaxations under the validation of a characteristic cone constraint qualification.

(ii) We also show that the stable exact conic relaxations obtained in (i) become stable exact semidefinite

programming (SDP) relaxations for a parametric robust SOS-convex polynomial problem with spectra-

hedral uncertainty sets. In this sense, the characteristic cone constraint qualification can be considered

as the weakest regularity condition that guarantees the validation of exact SDP relaxations for robust

SOS-convex polynomial problems.

(iii) Under the corresponding constraint qualification, we derive stable exact second-order cone programming

(SOCP) relaxations for some classes of parametric robust convex quadratic programs involving ellipsoidal

uncertainty sets.

Numerical examples are also given to illustrate the necessity of the assumptions and the significance of the

obtained results.

The outline of the paper is as follows. In Section 2, we first present a characterization of stable exact conic

relaxations for the class of robust convex polynomial problems, and then derive corresponding results for

the classes of robust SOS-convex polynomial/convex quadratic problems. Section 3 is devoted to presenting

characterizations of stable exact second-order cone programming relaxations for some classes of robust convex

quadratic problems.
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2 Stable Exact Relaxations for Classes of Parametric Robust Convex Polynomial Programs

We start this section by presenting some definitions and preliminaries that will be used in the paper. The

notation Rn stands for the n-dimensional Euclidean space whose norm is denoted by ∥ · ∥2 for each n ∈ N :=

{1, 2, . . .}. The inner product in Rn is defined by ⟨x, y⟩ := x⊤y for all x, y ∈ Rn. The origin of any space is

denoted by 0 but we may use 0n for the origin of Rn in situations where some confusion might be possible.

For a nonempty set Γ ⊂ Rn, convΓ denotes the convex hull of Γ , while coneΓ := R+ convΓ stands for the

convex conical hull of Γ , where R+ := [0,+∞) ⊂ R. As usual, the symbol In stands for the identity (n× n)

matrix. A symmetric (n × n) matrix M is said to be positive semi-definite, denoted by M ⪰ 0, whenever

x⊤Mx ≥ 0 for all x ∈ Rn. If x⊤Mx > 0 for all x ∈ Rn \ {0n}, then M is called positive definite, denoted by

M ≻ 0.

The space of all real polynomials on Rn is denoted by R[x] and the set of all n × r matrix polynomials

is denoted by R[x]n×r. We say that f ∈ R[x] is sum-of-squares (see, e.g., [2, 28, 29]) if there exist fj ∈ R[x],

j = 1, . . . , r, such that f =
∑r

j=1 f
2
j . The set consisting of all sum-of-squares polynomials is denoted by Σ2,

which is a subset of the set of all nonnegative polynomials, denoted by P. Moreover, the set consisting of all

sum-of-squares (respectively, nonnegative) polynomials with degree at most d is denoted by Σ2
d (respectively,

Pd). We say that F ∈ R[x]n×n is an SOS matrix polynomial if F (x) = H(x)H(x)⊤, where H(x) ∈ R[x]n×r is

a matrix polynomial for some r ∈ N. A real polynomial f on Rn is called SOS-convex if the Hessian matrix

function F : x 7→ ∇2f(x) is an SOS matrix polynomial [20]. Clearly, an SOS-convex polynomial is convex.

However, the converse is not true; that is, there exists a convex polynomial that is not SOS-convex [1]. It is

known that any convex quadratic function and any convex separable polynomial is SOS-convex. Moreover,

an SOS-convex polynomial can be non-quadratic and non-separable. For instance, f(x) := x8
1+x2

1+x1x2+x2
2

is an SOS-convex polynomial (see [20]) that is non-quadratic and non-separable.

As in [9, 37], for an extended real-valued function φ : Rn → R := R ∪ {±∞}, we set

domφ := {x ∈ Rn | φ(x) < +∞}, epiφ := {(x, µ) ∈ Rn × R | φ(x) ≤ µ}.

The conjugate function of φ, φ∗ : Rn → R, is defined by

φ∗(w) = sup {⟨w, x⟩ − φ(x) | x ∈ domφ}, w ∈ Rn.
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For a closed convex subset Γ ⊂ Rn, its indicator function δΓ : Rn → R is defined as δΓ (x) := 0 if x ∈ Γ and

δΓ (x) := +∞ if x /∈ Γ . If one of the functions f1, f2 is continuous, then we have

epi (f1 + f2)
∗ = epi f∗

1 + epi f∗
2 . (1)

Parametric robust convex polynomial problems. Let us first consider a parametric robust convex

polynomial problem that is defined as follows: For a convex polynomial f : Rn → R (regarded as a parameter),

one has the following robust convex polynomial program

inf
x∈Rn

{f(x) | g0j (x) +
qj∑
i=1

vijg
i
j(x) ≤ 0, ∀ vj := (v1j , . . . , v

qj
j ) ∈ Vj , j = 1, . . . ,m}, (Pf )

where vj , j = 1, . . . ,m are uncertain parameters, Vj , j = 1, . . . ,m are the uncertainty sets that are assumed

to be nonempty, convex and compact, and gij : Rn → R, i = 0, 1, . . . , qj , j = 1, . . . ,m are given polynomials

such that, for each fixed vj ∈ Vj , the function gj(·, vj) given by

gj(x, vj) := g0j (x) +

qj∑
i=1

vijg
i
j(x), x ∈ Rn, (2)

is a convex polynomial on Rn for j = 1, . . . ,m. In what follows, we use the characteristic cone of the

constraints given by

C̃ := cone {(0n, 1) ∪ epi g∗j (·, vj) | vj ∈ Vj , j = 1, . . . ,m}. (3)

The first theorem in this section characterizes stable exact conic relaxations in terms of the characteristic

cone for the family of robust convex polynomial problems defined by (Pf ) when f varies in the class of

convex polynomials.

Theorem 2.1 (Characterization of stable exact conic relaxations) Let F := {x ∈ Rn | gj(x, vj) ≤

0, ∀vj ∈ Vj , j = 1, . . . ,m} ̸= ∅, where gj , j = 1, . . . ,m, are given as in (2). Then, the following statements

are equivalent:

(i) The characteristic cone C̃ in (3) is closed.

(ii) For any convex polynomial f on Rn with inf{f(x) | x ∈ F} > −∞, one has

inf{f(x) | x ∈ F} = max
(t,w0

j ,w
i
j)

{
t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd, t ∈ R, (4)

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m

}
,

where d is the smallest even number satisfying d ≥ max{deg f, deg gij , i = 0, 1, . . . , qj , j = 1, . . . ,m}.
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Proof [(i) ⇒ (ii)] Suppose that (i) holds. Let f be a convex polynomial on Rn such that inf {f(x) | x ∈ F} >

−∞. Setting

α∗ := sup
(t,w0

j ,w
i
j)

{
t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd, t ∈ R, (5)

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m

}
,

we first prove that

inf {f(x) | x ∈ F} ≥ α∗. (6)

If the feasible set of the problem in the right-hand side of (5) is empty, then α∗ = −∞, and in this case,

(6) holds trivially. Now, let (t, w0
j , w

i
j) be a feasible point of this problem. This means that t ∈ R, and there

exist αjk ≥ 0, vjk := (v1jk, . . . , v
qj
jk) ∈ Vj , k = 1, . . . , sj , j = 1, . . . ,m such that

w0
j =

sj∑
k=1

αjk, (w1
j , . . . , w

qj
j ) =

sj∑
k=1

αjkvjk, j = 1, . . . ,m, (7)

f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd. (8)

Let j ∈ {1, . . . ,m} be arbitrary. We get by (7) that if w0
j = 0, then wi

j = 0 for all i = 1, . . . , qj . Now, choose

any v̂j := (v̂1j , . . . , v̂
qj
j ) ∈ Vj and set ṽj := (ṽ1j , . . . , ṽ

qj
j ) with

ṽij :=


v̂ij if w0

j = 0,

wi
j

w0
j

if w0
j ̸= 0,

i = 1, . . . , qj .

Clearly, if w0
j = 0, then ṽj = v̂j ∈ Vj . Otherwise, w0

j ̸= 0, then, by the convexity of Vj , it holds that

ṽj =

(
sj∑

k=1

αjk

w0
j

v1jk, . . . ,

sj∑
k=1

αjk

w0
j

v
qj
jk

)
=

sj∑
k=1

αjk

w0
j

vjk ∈ Vj .

Consequently, ṽj ∈ Vj . Therefore, for any x ∈ Rn,

qj∑
i=0

wi
jg

i
j(x) = w0

j g
0
j (x) +

qj∑
i=1

wi
jg

i
j(x) = w0

j g
0
j (x) +

qj∑
i=1

(w0
j ṽ

i
j)g

i
j(x)

= w0
j

[
g0j (x) +

qj∑
i=1

ṽijg
i
j(x)

]
= w0

j gj(x, ṽj),

where we note that if w0
j = 0, then wi

j = 0 for all i = 1, . . . , qj as said above. So, due to (8), we find σ0 ∈ Pd

such that

f(x) = σ0(x)−
m∑
j=1

w0
j gj(x, ṽj) + t, ∀x ∈ Rn. (9)
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Then, for any x̂ ∈ F , it follows that
m∑
j=1

w0
j gj(x̂, ṽj) ≤ 0 due to w0

j ≥ 0 and gj(x̂, ṽj) ≤ 0 for all j = 1, . . . ,m.

Keeping in mind the non-negativity of σ0, evaluating (9) at x̂, we arrive at f(x̂) ≥ t. This justifies that (6)

holds.

Now, letting α := inf{f(x) | x ∈ F}, it holds that α ∈ R and so

f(x) + δF (x) ≥ α for all x ∈ Rn.

This together with (1) implies that

(0n,−α) ∈ epi (f + δF )
∗ = epi f∗ + epi δ∗F

due to the continuity of f on Rn. Moreover, we have (cf. [21, Page 951]) that epi δ∗F = cl C̃ = C̃, where the

last equality holds as the cone C̃ is assumed to be closed. Consequently,

(0n,−α) ∈ epi f∗ + C̃,

which means that there exist (u, β) ∈ epi f∗ and vjk := (v1jk, . . . , v
qj
jk) ∈ Vj , (ujk, βjk) ∈ epi g∗j (·, vjk),

αjk ≥ 0, k = 1, . . . , sj , j = 1, . . . ,m and α ≥ 0 such that

0n = u+

m∑
j=1

sj∑
k=1

αjkujk, −α = α+ β +

m∑
j=1

sj∑
k=1

αjkβjk. (10)

Observe by (ujk, βjk) ∈ epi g∗j (·, vjk), k = 1, . . . , sj , j = 1, . . . ,m that, for each x ∈ Rn, one has βjk ≥

u⊤
jkx− gj(x, vjk). This together with (10) and the relation (u, β) ∈ epi f∗ implies that, for each x ∈ Rn,

f(x) ≥ u⊤x− β ≥ −
m∑
j=1

sj∑
k=1

αjkgj(x, vjk) + α. (11)

It shows that

f(x) +

m∑
j=1

sj∑
k=1

αjkgj(x, vjk)− α ≥ 0, ∀x ∈ Rn.

Hence, by setting w0
j :=

∑sj
k=1 αjk ∈ R+ and wi

j :=
∑sj

k=1 αjkv
i
jk for all i = 1, . . . , qj , j = 1, . . . ,m and

taking into account (2), we have

f +

m∑
j=1

sj∑
k=1

αjk

(
g0j +

qj∑
i=1

vijkg
i
j

)
− α = f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − α ∈ Pd.

In addition, we observe that

(w0
j , w

1
j , . . . , w

qj
j ) =

sj∑
k=1

αjk

(
1, v1jk, . . . , v

qj
jk

)
∈ cone ({1} × Vj), j = 1, . . . ,m,
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as αjk ≥ 0 and vjk ∈ Vj for all k = 1, . . . , sj , j = 1, . . . ,m. Therefore, (α,w0
j , w

i
j) is a feasible point of the

problem in the right-hand side of (5). So, α ≤ α∗, which together with (6) proves that (4) is valid, i.e., we

obtain (ii).

[(ii) ⇒ (i)] Suppose that (ii) holds. Observe (cf. [21, Page 951]) that

epi δ∗F = cl C̃ = cl cone {(0n, 1) ∪ epi g∗j (·, vj) | vj ∈ Vj , j = 1, . . . ,m}. (12)

To prove that C̃ is closed, let (b, β) ∈ cl C̃. Then, by (12), one has b⊤x ≤ β for all x ∈ F , and so,

inf{(−b)⊤x | x ∈ F} ≥ −β. By (ii), we find αjk ≥ 0, vjk := (v1jk, . . . , v
qj
jk) ∈ Vj , k = 1, . . . , sj , j = 1, . . . ,m,

t ∈ R and σ ∈ Pd such that

w0
j =

sj∑
k=1

αjk, (w1
j , . . . , w

qj
j ) =

sj∑
k=1

αjkvjk, j = 1, . . . ,m,

− b⊤x+

m∑
j=1

qj∑
i=0

wi
jg

i
j(x)− t = σ(x), ∀x ∈ Rn,

and t = inf{(−b)⊤x | x ∈ F}. Hence, we have

−b⊤x+
m∑
j=1

qj∑
i=0

wi
jg

i
j(x) ≥ −β, ∀x ∈ Rn. (13)

Arguing similarly as in the proof of [(i) ⇒ (ii)], we can find ṽj ∈ Vj , j = 1, . . . ,m, such that

qj∑
i=0

wi
jg

i
j(x) = w0

jgj(x, ṽj), ∀x ∈ Rn.

Then, we get from (13) that β ≥ b⊤x−
m∑
j=1

w0
jgj(x, ṽj) for all x ∈ Rn. Hence,

(b, β) ∈ epi

(
m∑
j=1

w0
jgj(·, ṽj)

)∗

⊂ cone {(0n, 1) ∪ epi g∗j (·, vj) | vj ∈ Vj , j = 1, . . . ,m},

which shows that C̃ is closed, and consequently, (i) holds. The proof of the theorem is complete. 2

Remark 2.1 Let us make some remarks regarding the above theorem.

(a) A closer inspection of the proof of [(ii) ⇒ (i)] reveals that the convex polynomials f in the statement of

(ii) to be replaced by affine functions is sufficient for this implication. That is why the exact relaxation in

Theorem 2.1 is called stable, since it continues to hold when the objective function of the primal problem

is perturbed with any affine function. We refer the interested reader to [17] for characterizations of stable

robust duality for a class of general optimization problems under convexity and closedness assumptions.

(b) If the Slater constraint qualification holds, i.e., if there exists x̂ ∈ Rn such that gj(x̂, vj) < 0 for all vj ∈

Vj , j = 1, . . . ,m, then the characteristic cone C̃ in (3) is closed (see, e.g., [22, Proposition 3.2]).
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Parametric robust SOS-convex polynomial problems. Let us now focus on a parametric robust SOS-

convex polynomial problem that is defined as follows: For an SOS-convex polynomial f : Rn → R, one

has the robust SOS-convex polynomial program defined as in (Pf ), where the polynomials gij : Rn → R,

i = 0, 1, . . . , qj , j = 1, . . . ,m are given such that, for each fixed vj ∈ Vj , the function gj(·, vj) given by

gj(x, vj) := g0j (x) +

qj∑
i=1

vijg
i
j(x), x ∈ Rn, (14)

is an SOS-convex polynomial on Rn for j = 1, . . . ,m, and the uncertainty sets Vj , j = 1, . . . ,m are nonempty

and bounded sets, which are of the spectrahedral forms (see e.g., [36, 39]) described by

Vj := {vj := (v1j , . . . , v
qj
j ) ∈ Rqj | A0

j +

qj∑
i=1

vijA
i
j ⪰ 0} (15)

with Ai
j , i = 0, 1, . . . , qj , j = 1, . . . ,m, symmetric matrices of order nj ∈ N.

It is worth mentioning here that checking whether gj(·, vj), j ∈ {1, . . . ,m}, in (14) is SOS-convex for

each vj ∈ Vj is, in general, NP-hard. For example, consider a quadratic polynomial defined by g(x, v) :=

x⊤B0x +
q∑

i=1

vi(x⊤Bix), x ∈ Rn, v := (v1, . . . , vq) ∈ V := [−1, 1]q, for given symmetric (n × n) matrices

Bi, i = 0, 1, . . . , q and assume that we need to check if g(·, v) is SOS-convex (equivalently in this case,

convex) for all v ∈ V. This is the so-called matrix cube problem of Ben-Tal and Nemirovski [6], which is NP-

hard [33]. However, in some special circumstances, the afforesaid assumption is automatically satisfied. For

instance, if gij , i = 0, 1, . . . , qj , j = 1, . . . ,m are convex quadratic functions or convex separable polynomials

and Vj , j = 1, . . . ,m are contained in the nonnegative orthant of Rqj , then gj(·, vj), j = 1, . . . ,m are SOS-

convex polynomials for all vj ∈ Vj .

In this setting, we obtain a characterization of stable exact semidefinite programming (SDP) relaxations

in terms of the characteristic cone for the family of robust SOS-convex polynomial problems defined by (Pf )

when f varies in the class of SOS-convex polynomials.

Theorem 2.2 (Characterization of stable exact SDP relaxations) Let F := {x ∈ Rn | gj(x, vj) ≤

0, ∀vj ∈ Vj , j = 1, . . . ,m} ≠ ∅, where gj , j = 1, . . . ,m, are given as in (14), and Vj , j = 1, . . . ,m, are given

as in (15). Then, the closedness of the characteristic cone C̃ in (3) is equivalent to the following statement:

For any SOS-convex polynomial f on Rn with inf{f(x) | x ∈ F} > −∞, one has

inf{f(x) | x ∈ F} = max
(t,w0

j ,w
i
j)
{t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Σ2

d , w0
jA

0
j +

qj∑
i=1

wi
jA

i
j ⪰ 0, (16)

t ∈ R, w0
j ∈ R+, w

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m},
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where d is the smallest even number satisfying d ≥ max{deg f, deg gij , i = 0, 1, . . . , qj , j = 1, . . . ,m}.

Proof [=⇒] Let the characteristic cone C̃ in (3) be closed, and let f on Rn be an SOS-convex polynomial

with inf{f(x) | x ∈ F} > −∞. Then, by Theorem 2.1, we have

inf{f(x) | x ∈ F} = max
(t,w0

j ,w
i
j)

{
t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd, t ∈ R,

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m

}
,

where d is the smallest even number satisfying d ≥ max{deg f, deg gij , i = 0, 1, . . . , qj , j = 1, . . . ,m}. To

justify (16), it suffices to show that

max
(t,w0

j ,w
i
j)
{t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Σ2

d , w0
jA

0
j +

qj∑
i=1

wi
jA

i
j ⪰ 0,

t ∈ R, w0
j ∈ R+, w

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m}

= max
(t,w0

j ,w
i
j)

{
t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd, t ∈ R,

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m

}
. (17)

To see this, let t ∈ R, w0
j ≥ 0, wi

j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m. In this setting, we can verify that

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m amount to w0

jA
0
j +

∑qj
i=1 w

i
jA

i
j ⪰ 0, j = 1, . . . ,m, and that

f +
m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd is equivalent to f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Σ2

d (see e.g., [26, Cor. 2.1]). So, the equality

in (17) is valid.

[⇐=] Assume the statement in (16) holds. In this setting, it holds that

inf{f(x) | x ∈ F} = max
(t,w0

j ,w
i
j)

{
t | f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Pd, t ∈ R,

(w0
j , w

1
j , . . . , w

qj
j ) ∈ cone ({1} × Vj), j = 1, . . . ,m

}
for any SOS-convex polynomial f on Rn with inf{f(x) | x ∈ F} > −∞. To prove that C̃ is closed, we just

follow similar arguments as in the proof of Theorem 2.1. 2

Remark 2.2 Let us make some remarks regarding the above theorem.

(a) As the sum-of-squares constraint of each relaxation problem in Theorem 2.2 can be equivalently written

as a linear matrix inequality (see, e.g., [28, Proposition 2.1]), the corresponding relaxation is an SDP

problem.
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(b) Theorem 2.2 continues to hold if the sets Vj in (15) are assumed to be compact projections of spectrahedra

(compact SDP-representable sets [20]), which cover bounded spectrahedra (bounded LMI-representable

sets). So, this fact constitutes an extension of the obtained result since projections do not necessarily

preserve spectrahedrality. However, for the sake of simplicity in the notation, we just show the result for

the case of bounded spectrahedra as above.

It is well known that the family of spectrahedra covers a range of commonly used uncertainty sets in the

literature such as polytopes, balls, ellipsoids and intersection of ellipsoids. Next, we point out how Theorem

2.2 can be used to derive a characterization of stable exact SDP relaxations for the family of robust SOS-

convex polynomial problems defined by (Pf ), where the uncertainty sets Vj ⊂ Rqj , j = 1, . . . ,m, are replaced

by the following intersection of ellipsoids (see e.g., [15])

Vj :=
{
vj ∈ Rqj | v⊤j El

jvj + bl⊤j vj + βl
j ≤ 0, l = 1, . . . , sj

}
(18)

with positive semidefinite symmetric (qj × qj) matrices El
j , l = 1, . . . , sj and blj := (bl,1j , . . . , b

l,qj
j ) ∈ Rqj , βl

j ∈

R, l = 1, . . . , sj . In what follows, for each j ∈ {1, . . . ,m} and l ∈ {1, . . . , sj}, we use the notation Ll
j :=

(Ll,1
j , . . . , L

l,qj
j ) to denote a decomposition factor of El

j , i.e., El
j = (Ll

j)
⊤Ll

j . Note further that the sets

Vj , j = 1, . . . ,m, in (18) are assumed to be nonempty and bounded.

Corollary 2.1 (Stable exact SDP relaxations with intersection of ellipsoids uncertainty) Let

F := {x ∈ Rn | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m} ≠ ∅, where gj , j = 1, . . . ,m, are given as in (14), and

Vj , j = 1, . . . ,m, are given as in (18). Then, the conclusion of Theorem 2.2 holds with w0
jA

0
j +

qj∑
i=1

wi
jA

i
j ⪰

0, j = 1, . . . ,m being replaced by w0
j

 Iqj 0

0 −βl
j

 +
qj∑
i=1

wi
j

 0 Ll,i
j

(Ll,i
j )⊤ −bl,ij

 ⪰ 0, l = 1, . . . , sj , j = 1, . . . ,m,

where w0
j ∈ R+, w

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m.

Proof Let j ∈ {1, . . . ,m} and w0
j ∈ R+, w

i
j ∈ R, i = 1, . . . , qj . In this setting, we can verify that w0

jA
0
j +

qj∑
i=1

wi
jA

i
j ⪰ 0 is nothing else but w0

j

 Iqj 0

0 −βl
j

+
qj∑
i=1

wi
j

 0 Ll,i
j

(Ll,i
j )⊤ −bl,ij

 ⪰ 0, l = 1, . . . , sj . So, the proof is

complete. 2

Remark 2.3 It is worth mentioning here that the exact SDP relaxation result in Corollary 2.1 is verified by

the closedness of the characteristic cone, and so it is more favourable than that of [15, Theorem 3.2], which

was obtained under the so-called KKT Qualification Condition.
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Parametric robust convex quadratic problems. Let us now consider a parametric robust convex

quadratic problem that is defined as follows: For a convex quadratic function Q : Rn → R (i.e., Q(x) :=

x⊤Cx + c⊤x + ς, where C ⪰ 0, c ∈ Rn and ς ∈ R for x ∈ Rn), one has a robust convex quadratic problem

of the form:

inf
x∈Rn

{Q(x) | Q0
j (x) +

qj∑
i=1

vijQ
i
j(x) ≤ 0, ∀vj := (v1j , . . . , v

qj
j ) ∈ Vj , j = 1, . . . ,m}. (PQ)

Here, Qi
j : Rn → R, i = 0, 1, . . . , qj , j = 1, . . . ,m are quadratic functions that are defined by Qi

j(x) :=

x⊤Bi
jx + (bij)

⊤x + βi
j , where bij ∈ Rn, βi

j ∈ R and Bi
j , i = 0, 1, . . . , qj , j = 1, . . . ,m are symmetric matrices

satisfying B0
j +

∑qj
i=1 v

i
jB

i
j ⪰ 0 for all vj := (v1j , . . . , v

qj
j ) ∈ Vj , and Vj , j = 1, . . . ,m are spectrahedra given

as in (15).

The following result provides a characterization of exact stable SDP relaxations for the parametric robust

convex quadratic problem defined by (PQ). As above, we denote gj(x, vj) := Q0
j (x) +

qj∑
i=1

vijQ
i
j(x), x ∈ Rn,

for j = 1, . . . ,m.

Corollary 2.2 (Characterization of stable exact SDP relaxations of (PQ)) Assume that F :=

{x ∈ Rn | Q0
j (x) +

∑qj
i=1 v

i
jQ

i
j(x) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m} ≠ ∅, where B0

j +
∑qj

i=1 v
i
jB

i
j ⪰ 0 for

all vj ∈ Vj and Vj , j = 1, . . . ,m, are given as in (15). Then, the conclusion of Theorem 2.2 holds with

f := Q, gij := Qi
j, i = 0, . . . , qj, j = 1, . . . ,m, d := 2 and f +

m∑
j=1

qj∑
i=0

wi
jg

i
j − t ∈ Σ2

d being replaced

by


2(C +

m∑
j=1

qj∑
i=0

wi
jB

i
j) c+

m∑
j=1

qj∑
i=0

wi
jb

i
j

(c+
m∑
j=1

qj∑
i=0

wi
jb

i
j)

⊤ 2(ς +
m∑
j=1

qj∑
i=0

wi
jβ

i
j − t)

 ⪰ 0, where t ∈ R, w0
j ∈ R+, w

i
j ∈ R, i = 1, . . . , qj , j =

1, . . . ,m.

Proof Let t ∈ R, w0
j ≥ 0, wi

j ∈ R, j = 1, . . . ,m, i = 1, . . . , qj . In this setting, we can verify that the relation

Q+
∑m

j=1

∑qj
i=0 w

i
jQ

i
j − t ∈ Σ2

2 is equivalent to the matrix inequality
ς +

m∑
j=1

qj∑
i=0

wi
jβ

i
j − t 1

2 (c
⊤ +

m∑
j=1

qj∑
i=0

wi
jb

i⊤

j )

1
2 (c+

m∑
j=1

qj∑
i=0

wi
jb

i
j) C +

m∑
j=1

qj∑
i=0

wi
jB

i
j

 ⪰ 0,

and so the proof is complete. 2

We now give an example, which shows how one can find the optimal value of a robust SOS-convex

polynomial problem by solving its corresponding SDP relaxation problem using the characterization of

stable exact SDP relaxations established in Theorem 2.2.
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Example 2.1 Consider a parametric robust SOS-convex polynomial problem of the form:

inf
x∈R

{
f(x) | x4 + 2v1x+ v2 − 4 ≤ 0, ∀(v1, v2) ∈ V,

x4 + 2x2 + v2x+ 2v1 − 8 ≤ 0, ∀(v1, v2) ∈ V
}
, (EP1)

where f is an SOS-convex polynomial and V is an uncertainty set given by

V := {v := (v1, v2) ∈ R2 | v
2
1

4
+

v22
8

≤ 1, v1 ≤ 0, v2 ≤ 0}.

The problem (EP1) can be expressed in terms of problem (Pf ), where the spectrahedra are given as V1 :=

V2 := V with

A0
j :=



4 0 0 0 0

0 8 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


, A1

j :=



0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 0 0 0


, A2

j :=



0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 −1


, j = 1, 2,

and the polynomials are given by g01(x) := x4 − 4, g11(x) := 2x, g21(x) := 1, g02(x) := x4 + 2x2 − 8, g12(x) :=

2, g22(x) := x, x ∈ R.

In this setting, the Slater constraint qualification holds, and thus, the characteristic cone C̃ := cone {(0, 1)∪

epi g∗j (·, v) | v ∈ V, j = 1, 2} is closed, where gj(x, v) := g0j (x) +
2∑

i=1

vig
i
j(x), j = 1, 2 for x ∈ R, v := (v1, v2) ∈

V. So, we assert by Theorem 2.2 that the exact SDP relaxation holds for the robust SOS-convex polynomial

program (EP1) for any SOS-convex polynomial f on R whenever inf (EP1) > −∞.

Let us now consider the problem (EP1) with the objective function f(x) := x4 + 2x2 + 2, i.e,

inf
x∈R

{
x4 + 2x2 + 2 | x4 + 2v1x+ v2 − 4 ≤ 0, ∀(v1, v2) ∈ V,

x4 + 2x2 + v2x+ 2v1 − 8 ≤ 0, ∀(v1, v2) ∈ V
}
, (EP1-1)

where V is defined as above. In this case, it can be checked that inf (EP1-1) ∈ R, and so, the exact SDP

relaxation holds for the problem (EP1-1), i.e.,

inf (EP1-1) = max (SDP1), (19)
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where (SDP1) is the relaxation problem for (EP1-1) given by

max
(t,w0

j ,w
i
j)
{t | f +

2∑
j=1

(
w0

j g
0
j +

2∑
i=1

wi
jg

i
j

)
− t ∈ Σ2

4 , (20)

w0
jA

0
j +

2∑
i=1

wi
jA

i
j ⪰ 0, t ∈ R, w0

j ∈ R+, w
i
j ∈ R, i = 1, 2, j = 1, 2}. (SDP1)

From (20), there exists σ0 ∈ Σ2
4 such that

f +

2∑
j=1

(
w0

j g
0
j +

2∑
i=1

wi
jg

i
j

)
− t = σ0. (21)

We conclude by σ0 ∈ Σ2
4 that there exists a symmetric (3× 3) matrix B such that σ0 = X⊤BX and B ⪰ 0,

where X := (1, x, x2) (see e.g., [35, Lemma 3.33]). Letting B :=


B1 B2 B3

B2 B4 B5

B3 B5 B6

 , we derive from (21) that

B1 = 2− 4w0
1 +w2

1 − 8w0
2 +2w1

2 − t, B2 = w1
1 +

1
2w

2
2, 2B3 +B4 = 2+2w0

2, B5 = 0, B6 = 1+w0
1 +w0

2. Putting

B3 := w ∈ R, we see that B4 = 2+2w0
2 − 2w. Then, the problem (SDP1) becomes the following semidefinite

programming problem

max {t |


2− 4w0

1 + w2
1 − 8w0

2 + 2w1
2 − t w1

1 +
1
2w

2
2 w

w1
1 +

1
2w

2
2 2 + 2w0

2 − 2w 0

w 0 1 + w0
1 + w0

2

 ⪰ 0,



4w0
1 0 w1

1 0 0

0 8w0
1 w2

1 0 0

w1
1 w2

1 w0
1 0 0

0 0 0 −w1
1 0

0 0 0 0 −w2
1


⪰ 0,



4w0
2 0 w1

2 0 0

0 8w0
2 w2

2 0 0

w1
2 w2

2 w0
2 0 0

0 0 0 −w1
2 0

0 0 0 0 −w2
2


⪰ 0, (SDP2)

w0
1 0

0 w0
2

 ⪰ 0, t ∈ R, w ∈ R, w0
j ∈ R, wi

j ∈ R, i = 1, 2, j = 1, 2
}
.

Using the Matlab toolbox CVX [19], we solve the SDP problem (SDP2), and the solver returns its optimal

value as 2.000.

Now, taking into account the validation of the exact SDP relaxation for the robust SOS-convex polynomial

program (EP1-1) given by (19), we conclude that the optimal value of problem (EP1-1) is inf (EP1-1) =

max (SDP1) = 2.
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3 Stable Exact SOCP Relaxations for Classes of Parametric Robust Convex Quadratic

Problems

In this section, we employ stable exact SDP relaxations obtained earlier to derive characterizations of stable

exact second-order cone programming (SOCP) relaxations for some classes of parametric robust convex

quadratic problems under ellipsoidal uncertainty.

Parametric robust convex separable quadratic problems. Let us first focus on a parametric robust

convex separable quadratic problem that is defined as follows: For D := diag(ω1, . . . , ωn), ωk ≥ 0, c :=

(c1, . . . , cn) ∈ Rn and d ∈ R, one has a robust convex separable quadratic problem of the form

inf
x∈Rn

{x⊤Dx+ c⊤x+ d | x⊤Mj(vj)x+ aj(vj)
⊤x+ bj(vj) ≤ 0,∀vj ∈ Vj , j = 1, . . . ,m}, (SQP)

where Vj ⊂ Rqj , j = 1, . . . ,m, are ellipsoidal uncertainty sets given by

Vj :=
{
vj ∈ Rqj | v⊤j Ejvj ≤ 1

}
, j = 1, . . . ,m, (22)

with symmetric (qj × qj) matrices Ej ≻ 0, j = 1, . . . ,m, and Mj : Rqj → Rn×n, aj : Rqj → Rn and

bj : Rqj → R, j = 1, . . . ,m are affine functions defined respectively by

Mj(vj) := M0
j +

qj∑
i=1

vijM
i
j , aj(vj) := a0j +

qj∑
i=1

vija
i
j , bj(vj) := b0j +

qj∑
i=1

vijb
i
j (23)

for vj := (v1j , . . . , v
qj
j ) ∈ Rqj with M i

j := diag(ui
j1, . . . , u

i
jn), u

i
jk ∈ R, k = 1, . . . , n, aij := (aij1, . . . , a

i
jn) ∈

Rn, bij ∈ R, i = 0, 1, . . . , s, j = 1, . . . ,m fixed.

We assume that Mj(vj) ⪰ 0 for all vj ∈ Vj , j = 1, . . . ,m. In what follows, we use the notation Lj

to denote a decomposition factor of Ej (i.e., Ej = L⊤
j Lj) for each j ∈ {1, . . . ,m}, and put gj(x, vj) :=

x⊤Mj(vj)x+ aj(vj)
⊤x+ bj(vj) for x ∈ Rn and vj ∈ Vj , j = 1, . . . ,m.

We are now ready to derive a characterization of stable exact second-order cone programming (SOCP)

relaxations for the parametric robust convex separable quadratic problem defined by (SQP).

Theorem 3.1 (Characterization of stable exact SOCP relaxations of (SQP)) Assume that F :=

{x ∈ Rn | x⊤Mj(vj)x+aj(vj)
⊤x+bj(vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m} ≠ ∅, where Vj , j = 1, . . . ,m, are given

as in (22). Then, the closedness of the characteristic cone C̃ is equivalent to the following statement: For any

D := diag(ω1, . . . , ωn) with ωk ≥ 0, k = 1, . . . , n, c := (c1, . . . , cn) ∈ Rn, and d ∈ R with inf (SQP) > −∞,
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one has

inf (SQP) = max
(t,λ0

j ,λ
i
j ,µk)

{
t |

n∑
k=1

µk −
m∑
j=1

(λ0
jb

0
j +

qj∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk − ωk −

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk), ck +

m∑
j=1

(λ0
ja

0
jk +

qj∑
i=1

λi
ja

i
jk)
)
∥2

≤ µk + ωk +

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk),

ωk +

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk) ≥ 0, µk ≥ 0, k = 1, . . . , n,

∥Lj(λ
1
j , . . . , λ

qj
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m

}
,

where Lj is the decomposition factor of Ej for each j ∈ {1, . . . ,m}.

Proof Let Lj := (L1
j , . . . , L

qj
j ) and

A0
j := Iqj+1, Ai

j :=

 0 Li
j

(Li
j)

⊤ 0

 , i = 1, . . . , qj , j = 1, . . . ,m. (24)

As we have seen in the proof of Corollary 2.1, one has vj := (v1j , . . . , v
qj
j ) ∈ Vj if and only if A0

j+
qj∑
i=1

vijA
i
j ⪰ 0.

It means that the ellipsoids in (22) are expressed as spectrahedra in (15). Moreover, by letting Q(x) :=

x⊤Dx + c⊤x + d and Qi
j(x) := x⊤M i

jx + (aij)
⊤x + bij , x ∈ Rn, i = 0, 1, . . . , qj , j = 1, . . . ,m, we see that the

problem (SQP) is a particular case of problem (PQ).

Invoking Corollary 2.2 and keeping in mind Remark 2.1, we conclude that the closedness of the cone C̃ is

equivalent to the assertion that for any D := diag(ω1, . . . , ωn) with ωk ≥ 0, k = 1, . . . , n, c := (c1, . . . , cn) ∈

Rn, and d ∈ R with inf (SQP) > −∞, one has

inf (SQP) = max
(t,λ0

j ,λ
i
j)
{t |


2(D +

m∑
j=1

qj∑
i=0

λi
jM

i
j) c+

m∑
j=1

qj∑
i=0

λi
ja

i
j

(c+
m∑
j=1

qj∑
i=0

λi
ja

i
j)

⊤ 2(d+
m∑
j=1

qj∑
i=0

λi
jb

i
j − t)

 ⪰ 0,

λ0
jA

0
j +

qj∑
i=1

λi
jA

i
j ⪰ 0, (25)

t ∈ R, λ0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m}.

Granting this, we can justify that

inf (SQP) = max (SCP), (26)
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where (SCP) is the following problem

sup
(t,λ0

j ,λ
i
j ,µk)

{
t |

n∑
k=1

µk −
m∑
j=1

(λ0
jb

0
j +

qj∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk − ωk −

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk), ck +

m∑
j=1

(λ0
ja

0
jk +

qj∑
i=1

λi
ja

i
jk)
)
∥2

≤ µk + ωk +

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk),

ωk +

m∑
j=1

(λ0
ju

0
jk +

qj∑
i=1

λi
ju

i
jk) ≥ 0, µk ≥ 0, k = 1, . . . , n,

∥Lj(λ
1
j , . . . , λ

qj
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m

}
. (SCP)

The proof is completed by combining (25) and (26). 2

Parametric robust convex quadratic problems with affine constraints. We now examine a para-

metric robust convex quadratic program with affine constraints that is defined as follows: For C ⪰ 0, c ∈ Rn

and d ∈ R, one has a robust convex quadratic program with affine constraints as

inf
x∈Rn

{x⊤Cx+ c⊤x+ d | aj(vj)⊤x ≤ bj(vj),∀vj ∈ Vj , j = 1, . . . ,m}, (QLP)

where Vj ⊂ Rqj , j = 1, . . . ,m, are ellipsoidal uncertainty sets given as in (22) and aj : Rqj → Rn, bj : Rqj →

R, j = 1, . . . ,m are affine functions given as in (23).

It is well-known that any symmetric matrix is diagonalizable and thus, we can assume that the matrix

C given in the problem (QLP) can be decomposed as

C = U⊤DU, (27)

where U := (U1, . . . , Un) is an orthogonal (n×n) matrix and D := diag(ω1, . . . , ωn) with ωk ≥ 0, k = 1, . . . , n.

The following corollary provides a characterization of stable exact second-order cone programming (SOCP)

relaxations for the parametric robust convex quadratic program with affine constraints defined by (QLP).

Corollary 3.1 (Characterization of stable exact SOCP relaxations of (QLP)) Assume that F :=

{x ∈ Rn | aj(vj)⊤x ≤ bj(vj), ∀vj ∈ Vj , j = 1, . . . ,m} ̸= ∅, where Vj , j = 1, . . . ,m, are given as in (22).

Then, the closedness of the characteristic cone C̃ := cone
{
(0n, 1) ∪

(
aj(vj), bj(vj)

)
| vj ∈ Vj , j = 1, . . . ,m

}
is equivalent to the following statement: For any C ⪰ 0, c ∈ Rn and any d ∈ R with inf (QLP) > −∞, one
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has

inf (QLP) = max
(t,λ0

j ,λ
i
j ,µk)

{
t |

n∑
k=1

µk +

m∑
j=1

(λ0
jb

0
j +

qj∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk − ωk, U

⊤
k

(
c+

m∑
j=1

(λ0
ja

0
j +

qj∑
i=1

λi
ja

i
j)
))

∥2 ≤ µk + ωk,

µk ∈ R+, k = 1, . . . , n,

∥Lj(λ
1
j , . . . , λ

qj
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m

}
, (28)

where U := (U1, . . . , Un) is the orthogonal matrix given as in (27) and Lj is the decomposition factor of Ej

for each j ∈ {1, . . . ,m}.

Proof Let y := Ux, ĉ := Uc, âj(vj) := Uaj(vj) for x ∈ Rn, vj ∈ Vj , j = 1, . . . ,m. We see that the prob-

lem (QLP) becomes

inf
y∈Rn

{y⊤Dy + ĉ⊤y + d | âj(vj)⊤y − bj(vj) ≤ 0,∀vj ∈ Vj , j = 1, . . . ,m}, (AQL)

which is a particular case of problem (SQP) due to D := diag(ω1, . . . , ωn) with ωk ≥ 0, k = 1, . . . , n. Let

ĝj(x, vj) := âj(vj)
⊤x−bj(vj) for x ∈ Rn and vj ∈ Vj , j = 1, . . . ,m. In view of Theorem 3.1, we assert that the

closedness of the cone Ĉ := cone {(0n, 1) ∪ epi ĝ∗j (·, vj) | vj ∈ Vj , j = 1, . . . ,m} is equivalent to the assertion

that for any D := diag(ω1, . . . , ωn), where ωk ≥ 0, k = 1, . . . , n, and any ĉ ∈ Rn with inf (AQL) > −∞, one

has

inf (AQL) = max
(t,λ0

j ,λ
i
j ,µk)

{
t |

n∑
k=1

µk +

m∑
j=1

(λ0
jb

0
j +

qj∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk − ωk, ĉk +

m∑
j=1

(λ0
j â

0
jk +

qj∑
i=1

λi
j â

i
jk)
)
∥2 ≤ µk + ωk,

µk ∈ R+, k = 1, . . . , n,

∥Lj(λ
1
j , . . . , λ

qj
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m

}
,

where ĉk := U⊤
k c, â0jk := U⊤

k a0j , â
i
jk := U⊤

k aij , i = 1, . . . , qj , k = 1, . . . , n, j = 1, . . . ,m.

In this setting, it holds that Ĉ = cone
{
(0n, 1) ∪

(
âj(vj), bj(vj)

)
| vj ∈ Vj , j = 1, . . . ,m

}
. Moreover, we

can show that the closedness of the cone Ĉ is equivalent to the closedness of the cone C̃. So, the proof is

complete due to inf (AQL) = inf (QLP). 2

It is worth mentioning here that the closedness of the characteristic cone C̃ implies the exact SOCP

relaxation in (28), which was obtained in [12, Theorem 3.1] by using a dual approach of quadratic semi-

infinite programming problems.



Journal of Optimization Theory and Applications 19

Parametric robust linear programs with convex quadratic constraints. Let us now focus on a

parametric robust linear program with convex quadratic constraints that is defined as follows: For c ∈ Rn

and d ∈ R, one has a robust linear program with convex quadratic constraints as

inf
x∈Rn

{c⊤x+ d | x⊤Bx+ aj(vj)
⊤x+ bj(vj) ≤ 0,∀vj ∈ Vj , j = 1, . . . ,m}, (LQP)

where Vj ⊂ Rqj , j = 1, . . . ,m, are ellipsoidal uncertainty sets given as in (22), B ⪰ 0 and aj : Rqj → Rn, bj :

Rqj → R, j = 1, . . . ,m are affine functions given as in (23).

As said earlier, we may assume without loss of generality that the matrix B given in the problem (LQP)

can be decomposed as

B = W⊤M0W, (29)

where W := (W1, . . . ,Wn) is an orthogonal (n × n) matrix and M0 := diag(u0
1, . . . , u

0
n) with u0

k ≥ 0, k =

1, . . . , n. Let gj(x, vj) := x⊤Bx+ aj(vj)
⊤x+ bj(vj) for x ∈ Rn and vj ∈ Vj , j = 1, . . . ,m.

In this case, we obtain a characterization of stable exact second-order cone programming (SOCP) relax-

ations for the parametric robust linear program with convex quadratic constraints defined by (LQP).

Corollary 3.2 (Characterization of stable exact SOCP relaxations of (LQP)) Assume that F :=

{x ∈ Rn | x⊤Bx+ aj(vj)
⊤x+ bj(vj) ≤ 0, ∀vj ∈ Vj , j = 1, . . . ,m} ≠ ∅, where Vj , j = 1, . . . ,m, are given as

in (22). Then, the closedness of the characteristic cone C̃ is equivalent to the following statement: For any

c ∈ Rn and any d ∈ R with inf (LQP) > −∞, one has

inf (LQP) = max
(t,λ0

j ,λ
i
j ,µk)

{
t |

n∑
k=1

µk −
m∑
j=1

(λ0
jb

0
j +

qj∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk −

m∑
j=1

λ0
ju

0
k,W

⊤
k

(
c+

m∑
j=1

(λ0
ja

0
j +

qj∑
i=1

λi
ja

i
j

))
∥2 ≤ µk +

m∑
j=1

λ0
ju

0
k,

µk ∈ R+, k = 1, . . . , n,

∥Lj(λ
1
j , . . . , λ

qj
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, . . . , qj , j = 1, . . . ,m

}
,

where W := (W1, . . . ,Wn) is the orthogonal matrix given as in (29) and Lj is the decomposition factor of

Ej for each j ∈ {1, . . . ,m}.

Proof Let y := Wx, ĉ := Wc, âj(vj) := Waj(vj) for x ∈ Rn, vj ∈ Vj , j = 1, . . . ,m. We see that the

problem (LQP) becomes

inf
y∈Rn

{ĉ⊤y + d | y⊤M0y + âj(vj)
⊤y + bj(vj) ≤ 0,∀vj ∈ Vj , j = 1, . . . ,m}, (ALQ)
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which is a particular case of problem (SQP) due to M0 := diag(u0
1, . . . , u

0
n) with u0

k ≥ 0, k = 1, . . . , n.

Invoking Theorem 3.1 and arguing as in the proof of Corollary 3.1, we arrive at the desired conclusion. 2

We close this paper with an example, which illustrates that the stable exact SOCP relaxations hold

for a parametric robust convex separable quadratic program without the validation of the Slater constraint

qualification. This example also shows how one can find the optimal value and an optimal solution of a robust

convex separable quadratic program by employing the characterization of stable exact SOCP relaxations.

Example 3.1 (Stable exact SOCP relaxations without the Slater condition) Consider the following

parametric robust convex separable quadratic program

inf
x∈R2

{
x⊤Dx+ c⊤x+ d | x2

1 + (6 + v1)x
2
2 + v1x1 + (1 + v2)x2 ≤ 6, −v2x2 ≤ 0, ∀(v1, v2) ∈ V

}
, (EP2)

where D := diag(ω1, ω2), ωk ≥ 0, k = 1, 2, c := (c1, c2) ∈ R2, d ∈ R, and V is an ellipsoid uncertainty set

given by V := {v := (v1, v2) ∈ R2 | v2
1

25 + v22 ≤ 1}.

The problem (EP2) can be viewed in the form of (SQP), where V1 := V2 := V, and Mj : R2 → R4, aj :

R2 → R2, bj : R2 → R, j = 1, 2 are defined by M0
1 := diag(1, 6),M1

1 := diag(0, 1),M2
1 := diag(0, 0),M0

2 =

M1
2 = M2

2 := diag(0, 0), a01 = a21 := (0, 1), a11 := (1, 0), a02 = a12 := (0, 0), a22 := (0,−1), b01 := −6, b02 := 0, bij :=

0, i = 1, 2, j = 1, 2.

Denote gj(x, v) := x⊤Mj(v)x+aj(v)
⊤x+bj(v), j = 1, 2 for x ∈ R2 and v ∈ V. By taking v := (−5, 0) ∈ V,

we see that g2(x, v) = 0 for all x ∈ R2, which means that the Slater constraint qualification fails. A direct

calculation shows that, for each v := (v1, v2) ∈ V,

g∗1(·, v)(w) =
(w1 − v1)

2

4
+

(w2 − 1− v2)
2

4(6 + v1)
+ 6, w := (w1, w2) ∈ R2,

g∗2(·, v)(w) =


0 if w = (0,−v2)

+∞ otherwise,

and then the characteristic cone C̃ is computed by

C̃ := cone

{
(0, 0, 1), (w1, w2, µ), (0,−v2, λ) |µ ≥ (w1 − v1)

2

4
+

(w2 − 1− v2)
2

4(6 + v1)
+ 6, λ ≥ 0,

(w1, w2) ∈ R2, (v1, v2) ∈ R2,
v21
25

+ v22 ≤ 1

}
= R2 × [0,+∞),

which is closed.
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So, we assert by Theorem 3.1 that the exact SOCP relaxation holds for the robust convex separable

quadratic program (EP2) for any D := diag(ω1, ω2), ωk ≥ 0, k = 1, 2, c := (c1, c2) ∈ R2, d ∈ R, whenever

inf (EP2) > −∞.

Let us now consider the problem (EP2) with the following data for the objective function, D := diag(1, 1),

c := (−2, 0) and d := −3, which is given by

inf
x∈R2

{
x2
1 + x2

2 − 2x1 − 3 | x2
1 + (6 + v1)x

2
2 + v1x1 + (1 + v2)x2 ≤ 6, −v2x2 ≤ 0, ∀(v1, v2) ∈ V

}
, (EP2-1)

where V is defined as above. In this case, it can be checked that inf (EP2-1) ∈ R, and so, the exact SOCP

relaxation holds for the problem (EP2-1), i.e.,

inf (EP2-1) = max (SCP1), (30)

where (SCP1) is the second-order cone programming relaxation problem for (EP2-1) given as

max
(t,λ0

j ,λ
i
j ,µk)

{
t |

2∑
k=1

µk −
2∑

j=1

(λ0
jb

0
j +

2∑
i=1

λi
jb

i
j) + t− d ≤ 0, t ∈ R,

∥
(
µk − ωk −

2∑
j=1

(λ0
ju

0
jk +

2∑
i=1

λi
ju

i
jk), ck +

2∑
j=1

(λ0
ja

0
jk +

2∑
i=1

λi
ja

i
jk)
)
∥2 (SCP1)

≤ µk + ωk +

2∑
j=1

(λ0
ju

0
jk +

2∑
i=1

λi
ju

i
jk),

ωk +

2∑
j=1

(λ0
ju

0
jk +

2∑
i=1

λi
ju

i
jk) ≥ 0, µk ≥ 0, k = 1, 2,

∥Lj(λ
1
j , λ

2
j )∥2 ≤ λ0

j , λ
0
j ∈ R+, λ

i
j ∈ R, i = 1, 2, j = 1, 2

}

with Lj :=

 1
5 0

0 1

 , j = 1, 2. Using the Matlab toolbox YALMIP [32], we solve the second-order cone

programming problem (SCP1), and the solver returns its optimal value as −4.000. This together with (30)

entails that

inf (EP2-1) = −4. (31)

Granting this, we can verify independently that x = (1, 0) is an optimal solution of problem (EP2-1). Indeed,

we can see that x is feasible for (EP2-1). Now, let Q(x) := x2
1 +x2

2 − 2x1 − 3 for x = (x1, x2) ∈ R2. It follows

from (31) that −4 = Q(x) ≥ inf (EP2-1) = −4. So, x is an optimal solution of problem (EP2-1).
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4 Conclusions

In this paper, we have examined classes of parametric robust convex polynomial problems involving uncer-

tainty in the constraint data. A parametric robust convex polynomial problem with convex compact uncer-

tainty sets has been shown to admit stable exact conic relaxations under a characteristic cone constraint

qualification. We have proved that such stable exact conic relaxations become stable exact SDP relaxations

for the class of parametric robust SOS-convex polynomial problems involving spectrahedral uncertainty sets.

Therefore, the characteristic cone constraint qualification can be regarded as the weakest regularity condi-

tion that guarantees the validation of exact SDP relaxations for robust SOS-convex polynomial problems.

Under the corresponding constraint qualification, we have also derived stable exact SOCP relaxations for

some classes of parametric robust convex quadratic programs under ellipsoidal uncertainty data.

It would be of great interest to see how the proposed approach can be developed to provide stable

exact SDP relaxations for more general classes of optimization problems such as the class of difference of

SOS-convex polynomial programs over SOS-concave matrix polynomial constraints in [30] or the class of

SOS-convex semialgebraic programs in [11].

Acknowledgements The authors would like to thank a reviewer for valuable comments and suggestions which have con-

tributed to a significant improvement of the paper. They are also grateful to Professor V. Jeyakumar for discussing the topic.

Research of T.D. Chuong was supported by the National Foundation for Science and Technology Development of Vietnam

(NAFOSTED) under grant number 101.01-2020.09. Research of J. Vicente-Pérez was partially supported by the Ministry of
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