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The two-qubit singlet/tripletmeasurement is
universal for quantum computing given only
maximally-mixed initial states

Terry Rudolph 1 & Shashank Soyuz Virmani 2

In order to delineate which minimalistic physical primitives can enable the full
power of universal quantumcomputing, it has been fruitful to consider various
measurement based architectures which reduce or eliminate the use of
coherent unitary evolution, and also involve operations that are physically
natural. In this context previous works had shown that the triplet-singlet
measurement of two qubit angular momentum (or equivalently two qubit
exchange symmetry) yields the power of quantum computation given access
to a few additional different single qubit states or gates. However, Freedman,
Hastings and Shokrian-Zini1 recently proposed a remarkable conjecture, called
the ‘STP=BQP’ conjecture, which states that the two-qubit singlet/triplet
measurement is quantum computationally universal given only an initial
ensemble of maximally mixed single qubits. In this work we prove this con-
jecture. This provides a method for quantum computing that is fully rota-
tionally symmetric (i.e. reference frame independent), using primitives that
are physically very-accessible, naturally resilient to certain forms of error, and
provably the simplest possible.

Since the origin of quantum computation, it has been of fundamental
interest to understand which types of physical operations enable
universality. Beyond the standard textbook gate model of quantum
computation, it was soon realised that measurements could be used
not only for readout of information but also as dynamical elements.
The most widely known example is perhaps the scheme of Raussen-
dorf and Briegel2, wherein given a particular fixed many-particle
entangled state (the ‘cluster state’) a quantum computation can be
executed by adaptively performing (destructive) single-qubit mea-
surements. Originally it was envisaged that the cluster state would be
pre-generated by multi-qubit entangling unitary operations. In light of
such, one may wonder whether one can push the role of measure-
ments yet further still, completely eliminating any use of coherent
unitary operations.

The first scheme that required no unitary operations at all was
proposed by Nielsen3; it required being able to perform multiple dis-
tinct (non-destructive) 4-qubit measurements. This was simplified in

various ways in subsequent works. Fenner and Zhang4 provided a
scheme using multiple different 2- and 3-qubit measurements. Leung5

proposed a scheme with multiple different 2-qubit measurements or a
single 4-qubit measurement. Perdrix6 devised a method using
three different single-qubit measurements and only additional mea-
surement of the two-qubit observable X⊗ Z (X, Z refer to the
standard Pauli operators). At about the same time, the universality of
2-qubit (destructive) 'fusion' measurements, physically natural for
photonic qubits, was proven7. Note that in some of these works addi-
tional assumptions were needed on the initial single-qubit sources
available.

Partly motivated by a desire to develop quantum computational
schemes using more physically natural measurements, in ref. 8 we
constructed a quantum computational scheme based upon the mea-
surement of two-qubit total angular momentum. More explicitly, this
measurement—whichwe refer to as the singlet/tripletmeasurement or
s/tmeasurement (following the notationof ref. 1)—consists of only two

Received: 12 September 2023

Accepted: 10 November 2023

Check for updates

1Department of Physics, Imperial College London, London SW7 2AZ, UK. 2Department of Mathematics, Brunel University London, Kingston Ln, London,
Uxbridge UB8 3PH, UK. e-mail: tez@imperial.ac.uk; shashank.virmani@brunel.ac.uk

Nature Communications |         (2023) 14:7800 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1678-3893
http://orcid.org/0000-0002-1678-3893
http://orcid.org/0000-0002-1678-3893
http://orcid.org/0000-0002-1678-3893
http://orcid.org/0000-0002-1678-3893
http://orcid.org/0000-0003-4373-0073
http://orcid.org/0000-0003-4373-0073
http://orcid.org/0000-0003-4373-0073
http://orcid.org/0000-0003-4373-0073
http://orcid.org/0000-0003-4373-0073
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43481-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43481-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43481-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43481-y&domain=pdf
mailto:tez@imperial.ac.uk
mailto:shashank.virmani@brunel.ac.uk


outcomes, one corresponding to the projector

Ps := Ψ�j i Ψ�h j ð1Þ

onto the singlet state Ψ�j i := ð 01j i � 10j iÞ=
ffiffiffi
2

p
, and the other corre-

sponding to the ‘triplet’ projector onto its orthogonal complement:

Pt := I � Ps, ð2Þ

(which projects onto the subspace spanned by the ‘triplet’ of states
00j i, 11j i,ð 01j i+ 10j iÞ=

ffiffiffi
2

p
). Note that because

ðU � UÞPs ðUy � UyÞ=Ps ð3Þ

for any single-qubit unitary U, this measurement has the important
property, relevant to later discussion, that it is rotationally invariant,
i.e., invariant under local changes of basis/reference frame. The
manifest rotational and permutational invariance of the singlet/triplet
projectors underpins their generic physical naturalness - these
subspaces will often be energetically separated, even in physical
systems with degrees of freedom unrelated to the total angular
momentum of spin-1/2 particles.

While the scheme of ref. 8 used only the s/t measurement for all
dynamical and readout purposes, an additional necessary assumption
was that input qubits could be prepared in at least three single-qubit
(possibly mixed) states ρa, ρb, ρc with linearly independent Bloch vec-
tors. Rotational invariance then implies that s/t measurements are
universal given only an initial qubit mixed state of the form

Z
dU U�3N ρ�N

a � ρ�N
b � ρ�N

c

� �
Uy�3N , ð4Þ

where the integral represents a uniform average, over the Haar mea-
sure dU, of all possible single-qubit unitaries U performed identically
on every qubit in the system. Here 3N, the total number of qubits
involved in implementing the computation, grows only polynomially
in the underlying algorithm size.

The universality of s/t measurements under other assumptions
was reconsidered recently by Freedman, Hastings and Shokrian-Zini1,
in which the authors proposed a remarkable conjecture, referred to as
the ‘STP=BQP conjecture’, namely that s/t measurements alone are
universal given essentially arbitrary input states. In ref. 1, the authors
posed the conjecture by formally assuming that the inputs are a supply
of singlet states. However, it is clear that the inputs could be chosen in
many other ways. For instance, maximally mixed qubits are an
equivalent choice as they can be produced from singlet states by dis-
carding one particle, and can produce singlet states when measured
with the s/t measurement. Moreover, as s/t measurements can create
singlet states fromalmost every input source, the only exception being
inputs of such high symmetry they return only (or mostly) triplet
outcomes, the STP=BQP conjecture in fact implies that the s/t mea-
surement is quantum universal given almost any input states.

In this paper, we show that the STP=BQP conjecture is in fact true.
We do so by demonstrating that replacing Eq. (4) with even a resource
of only maximally mixed single-qubits suffices to make the s/t mea-
surement universal. We choose to assume that the inputs are maxi-
mally mixed, as these are the only rotationally invariant single-qubit
states, and this choice renders our scheme more obviously
minimalistic.

Results
In this section, we give an overview of the main ingredients of the
proof, including some required elements from previous works1, 8.
Technical details are deferred to the 'Methods'.

Prior work
First let us briefly summarise the parts of refs. 1, 8 that we will need. In
refs. 1, 8, various ways were proposed for using s/t measurements to
perform quantum computation using additional single-qubit resour-
ces, which may be either states8 or unitaries1. In any such scheme, it is
clear that as the s/t measurement is the onlymultiparticle operation, it
must be the resource that is used to build multiparty entanglement.
Further, as the s/t measurement gives probabilistic outcomes, this has
to be done offline, so that we only use the entanglement once we are
satisfied that it has been created to a sufficient quality.

In ref. 8, this was achieved by building cluster states2, using the
triplet outcome of the s/t measurement to fuse smaller entangled
clusters into bigger ones, having initially started from entanglement
created by the singlet outcome. To execute the computation, single
particle measurements were constructed by using s/t measurements
and ancilla qubits prepared in known states along the desired mea-
surement axis. In both building the cluster states and executing the
measurements, it was initially assumed in8 that there are supplies of
highly pure single-qubit states. However, as shown in detail in ref. 8,
this assumption could be relaxed significantly to assumeonly the input
ensemble of Eq. (4). Hence the ensemble (4), and s/tmeasurements on
arbitrary pairs of qubits, are sufficient for universal quantum
computation.

In ref. 1, the computational power of s/t measurements was con-
sidered in other contexts, with the aim of proposing and providing
supporting evidence for the STP=BQP conjecture. In addition to
demonstrating quantum universality when the s/t measurement is
supplemented by single-qubit X, Z gates1, demonstrated that the s/t
measurement alone is at least as powerful as the weak model of per-
mutational quantum computation9, and with the addition of post
selection, it is equivalent to post-BQP. A sampling problem was also
proposed that by definition could be efficiently solved using s/t mea-
surements, in spite of suggestions that it might not be possible clas-
sically efficiently.

A keyprimitive proposed in ref. 1, whichwewill alsomakeuseof in
the present work, is the implementation of (an exponentially good)
measurement of the total angular momentum by using only repeated
pairwise s/t measurements.

Proof strategy
We show that the STP=BQP conjecture is indeed correct by following
the approach of our previous work8, but dropping the assumption that
we have been given the resource (4).We show instead how such a state
may be approximately created efficiently using only s/t measurements
acting upon maximally mixed input qubits.

The construction proceeds in two steps, a maximally mixed sym-
metric state preparation step (‘MMSS preparation’), and a relative
localisation step (Fig. 1).

To understand these steps, let us ask ourselves how we might go
about creating the state (4)? It is clear that we cannot produce (say) N
copies of a particular pure state ψ

�� ��N just using our available
resources, as ψ

�� ��N is not invariant under an arbitraryU⊗N, whereas the
s/tmeasurements andmaximally mixed states are. However, wemight
consider trying to produce the following state, which we call a maxi-
mally mixed symmetric state (‘MMSS’):

ρsym
N :=

Z
dU U�N ψ

�� �
ψ
� ���N

� 	
Uy�N : ð5Þ

This state has an ensemble interpretation of comprising N copies
of an unknown pure state, and it is invariant under arbitraryU⊗N. From
standard results in the theory of symmetric group representations
and/or the theory of quantum angular momentum, it is also equal to
themaximallymixed state on the subspace of symmetric states, hence
the symbol ρsym

N . The first step of our argument—theMMSS preparation
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step—is to show how we can efficiently prepare a state that is a good
approximation to ρsym

N . We do this by starting with two maximally
mixed qubits and measuring them with an s/t measurement. With
probability 3/4 the qubits are left in the state ρsym

2 . We then add
maximally mixed qubits one at a time, and each time we do this we
perform a total angular momentum measurement using a procedure
described in ref. 1. We will see that if this measurement yields the right
outcome then we successfully transform ρsym

n ! ρsym
n+ 1 to high accu-

racy, whereas if it fails we transform ρsym
n ! ρsym

n�1 to high accuracy. It
turns out that probabilities of eachoutcome are such that this ‘random
walk’ reaches our target ρsym

N with only a polynomial cost.We note that
this protocol is very similar in spirit to the protocols of section 2 of
ref. 1, and it is possible that an appropriate variant of their splitting
protocol could be used to create ρsym

N more efficiently (the splitting
protocol is a primitive inwhich given an initialmulti-qubit state of total
angular momentum S, one divides the qubits into two sets A,B and
uses s/t measurements to efficiently realise with high accuracy any
desired local total angular momenta SA, SB of each subset consistent
with the constraint ∣SA − SB∣ ≤ S ≤ SA + SB, and parts of the protocol
target the generation of symmetric subspace states on certain
subsystems).

In the second step, “relative localisation”we see how to transform
three copies of ρsym

N0 into a good quality copy of (4) for an N 0 that need
only be polynomially larger than N. This is done using measurement-
induced relative localisation, in full analogywith a similar phenomenon
for optical phase, Bose-Einstein condensate phase, and particle posi-
tion studied indetail in ref. 10. Tounderstandwhatwemeanby relative
localisation, consider two input copies of ρsym

N0 . Each canbe interpreted
as a supply of (generically different) unknown pure states, say aj i and
b
�� �

. Ifwewere to take aqubit in aj i and aqubit in b
�� �

andmeasure them
with a s/t measurement, then the probability of getting a triplet

outcome is given by:

1 + ajb� ��� ��2
2

ð6Þ

The probability of getting a triplet therefore tells us the angle
between the Bloch vectors of the two unknown states aj i and b

�� �
.

Hence, we may take two copies of ρsym
N0 and repeatedly take one qubit

from each source, measuring them using s/t measurements. The
observed frequency of triplet outcomes will allow us to estimate the
angle between the Bloch vectors to high precision. Once we are
satisfied with the statistical precision that we have reached, we stop
and use the remaining unmeasured qubits for computation. They can
be considered to be in a state that is a good approximation of

Z
dU U�2N aj i ah j�N � b

�� �
b
� ���N

� 	
Uy�2N ð7Þ

for some arbitrary aj i, b
�� �

, with 0 < ∣〈a∣b〉∣2 < 1 determined by the
observed frequency of triplet outcomes. Creating (4) follows exactly
the same process, but starting with three copies of ρsym

N0 rather than
two.Up topicking anarbitraryhandedness of our coordinate system, it
turns out that the frequency of triplet outcomes observed between the
three sources allows us to create (4) with high accuracy at polynomial
cost. This allows us to conclude that the STP=BQP conjecture is indeed
correct.

We note that our constructions are unlikely to be optimal, and it is
likely that further work could make them significantly more efficient.

Discussion
If we consider operations needed to build a quantum computer from
scratch (i.e., without a prior source of entanglement), it is clear that for
quantum resources we at least need (i) a supply of qubits, (ii) at least
one two-qubit operation to generate entanglement, and (iii) at least
one binary outcomemeasurement so that the computation readout is
humanly accessible. The STP=BQP theorem is noteworthy because it
meets (ii) and (iii) with only a single two-outcome, two-qubit mea-
surement, with no other dynamical operation or measurement nee-
ded. It is hence even more remarkable that it meets (i) in a manner
almost completely agnostic about the initial state of the qubit
resource: provided that we are promised that a sufficient number of
singlet outcomes will occur, the singlet outcomes can be used to
prepare the single-qubit maximally mixed states required.

The model is also minimal with respect to its use of rotationally
invariant primitives. This could be of practical import for systems
subject to collective decoherence.

From a foundational perspective, it also is interesting that the
computation would be described identically, and using real numbers
only, in every choice of reference frame.

Elaborating on this last point: consider two non-communicating
parties observing a physical system performing a classical computa-
tion, and each writing down amathematical description of such. It can
reasonably be arranged that these descriptions are identical, perhaps
up to an ambiguity about which physical state of a bit in the machine
corresponds to mathematical 0, and which to 1.

The same is not true if the parties instead observe a device
implementing a quantum computation via the standard circuit archi-
tecture. While some physical systems do have an intrinsic natural (say)
Z eigenbasis (e.g., right/left circular polarisation of a photon, ground/
excited atomic states), agreeing on the X eigenbasis (corresponding to
agreeing on an orientation in space for polarisation, or origin of time
for atomic energy levels) for all known physical qubits requires extra
exchange of physical information to align the reference frame in
question11. This lack of agreement could be annoying. As one example,
if one observer does a universal computation using a simple (say, real-

⊗
2

(b)

| ⟩0 ⊗

| ⟩⊗

singlet/triplet 
measurements

(a)

Fig. 1 | The two steps of the protocol. a MMSS preparation: Bringing up a maxi-
mally mixed qubit to an MMSS ρsym

K of K qubits, and measuring its total angular
momentum using a procedure from1 implements a biased random walk that
probabilistically generates an MMSS of increasing size. b Relative Localisation:
Begin with two MMSS states ofM +N qubits. Each can be interpreted as a random
mixture of many copies of an unknown pure state. By pairing up and measuringM
qubits from each using the s/t measurement (red ovals) we build up information
about the relative angle the Bloch vectors of these unknown pure states make
against each other. This allows us to estimate the unknown pure states to high
accuracy, up to an unimportant global unitary transformation. The remaining
qubits can hence be used, together with s/t measurements, to implement cluster
state quantum computation, as detailed in ref. 8.
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valued) gate set the other would typically disagree and say that it was
messy and complex-valued. Another is that because the parties dis-
agree on the correct Pauli bases, procedures that would be manifestly
fault-tolerant using the stabiliser formalism to one observer would not
be so to the other.

By contrast, the scheme presented in this work has the following
property: nomatter howmany suchdisagreeablymisalignedobservers
there are, we can arrange for them to all describe a single universal
quantumcomputation being performed in suchaway that every single
experimenter will at all times during the computation assign the exact
same mathematical description in terms of states and operators to
all elements of the computation. (Again up to an ambiguity as to
which of the outcomes Ps/t is assigned 0/1.) It is perhaps also philoso-
phically interesting that this descriptionwould at all times remain real-
valued.

While other schemes for achieving similarbasis independence can
be constructed using methods reviewed in ref. 12 on encoding and
processing information in decoherence-free subsystems, they are
considerably more complex than the methods of this work. For
example, they require encoding in large multi-qubit states, more
complicated unitary gates, and often make use of intermediate
operations that are not, in fact, rotationally invariant.

We do not anticipate that our scheme is optimal in terms of
resource scaling, nor is it explicitly fault-tolerant in its present form. In
this regard it isworthnoting that a considerably simpler approach than
generation of increasingly large cluster states and subsequent simu-
lation of single-qubit measurements (as was done in ref. 8) would
probably be to implement fusion-based quantum computing13. In that
approach, one need only show the ability to create small, constant-
sized states and the ability to implement a Bellmeasurement (or oneof
its fusion variations). That approach also will automatically yield fault
tolerance. A deeper analysis of such may merit further attention.

Methods
In this section, we present details of the proof that STP=BQP. As
described in the Results there are two steps to the procedure: the
MMSS preparation step, and the relative localisation step. In the first
subsection, we describe the MMSS preparation, and in the following
two subsections we describe the relative localisation.

MMSS preparation
The construction proceeds recursively. Suppose that we start with K
qubits prepared in ρsym

K . We bring in a new qubit in the maximally
mixed state and randomly pickpairsof qubits to undergo a polynomial
number of s/t measurements (more efficient choices than random
pairings will certainly exist—for example, interpreting the switches of
the networks in ref. 14 as s/t measurement locations). If we only ever
find triplet outcomes, we perform an exponentially good approximate
projection1 into the state ρsym

K + 1. This occurs with probability P(K) = (
K + 2)/(2K + 2) > 1/2. If we ever find a singlet outcome we discard those
two qubits and the remaining K − 1 qubits are left in ρsym

K�1.
We can interpret the protocol as a 1-d randomwalk process where

we begin at K = 1, and have a probability P(K) of stepping to the right,
and 1 − P(K) of stepping to the left. The boundary at K =0 is absorbing
(fail, restart) and let us consider our target to be creating ρsym

N for some
fixed N. The solution to this problem can be found in ref. 15. Note that
the particle must eventually be absorbed at one or the other of the
boundaries. Eq. (2.7) of ref. 15 for our case yields that the probability it
is absorbed at the right hand boundary is (N + 1)/2N, i.e., slightly higher
than 1/2. Thuswehave finite probability of eventual success. To ensure
the resources consumed (qubits/time steps) are polynomial, we need
to compute the conditional mean for the number of steps before
stopping (absorption at a boundary). This can be found by solving the
recurrence relations (3.1)–(3.3) in ref. 15. For starting at K = 1, we find

the expected number of steps before absorption is (N2 + 3N − 4)/6,
which grows polynomially with N.

Relative localisation
The second step is to see how two sufficiently large maximally mixed
symmetric states can be converted into an ensemble equivalent to a
Haar–twirled product state over pure states with fixed overlap, i.e., a
state of the form:

Z
dU U�2N aj i ah j�N � b

�� �
b
� ���N

� 	
Uy�2N ð8Þ

for some arbitrary (but known) aj i, b
�� �

with 0 < ∣〈a∣b〉∣2 < 1.
This can be done by using measurement-induced localisation of

the relative angle between initial (mixtures of) spin coherent states,
similar to the cases studied in ref. 10. Once we localise two such
ensembles, we can use the same procedure to relationally localise
further ensembles to the first two—we leave that analysis to the next
subsection, and here consider only two ensembles.

The basic intuition is simple: we start with two sources
ρsym
N +M � ρsym

N +M , as created in the first step, and interpret each as an
ensemble ofN +M copies of a randomly selectedpure state.Wepair up
M of the spins from each source and perform the singlet/triplet mea-
surement on each pair, enabling us to get a good estimate of the
overlap between the two (random) pure states. We then use the
remaining 2N qubits for computation, under the assumption that the
overlap is the estimated one (we remark that the relative localisation
could possibly be induced more efficiently using approximate total
angular measurement protocols of ref. 1 together with some form of
global angular momentum inference scheme, see ref. 16). As we now
demonstrate, a fixed overall error across the 2N qubits requires M to
grow only polynomially in N.

Because of the collective unitary freedom, we are free to decide
that the first MMSS is actually a source of 0j i�N +M , and the second
state θ

�� ��N +M
is specified by the relative angle θ∈ [0,π) its Bloch

vector makes with the first source state, where θ has p.d.f sinðθÞ=2. An
s/t measurement on 0j i � θ

�� �
gives a triplet outcome with probability

q= ð1 + cos2ðθ=2ÞÞ=2= ð3 + cosðθÞÞ=4: The total probability over the M
measurements of obtaining n1 triplet outcomes is

Pðn1Þ=
Z π

0
dθ

M

n1


 �
qn1 ð1� qÞM�n1

sinðθÞ
2

ð9Þ

=2
M

n1


 �Z 1

1=2
dqqn1 ð1� qÞM�n1 ð10Þ

This has the convenient interpretation that the probability of
seeing a given number of triplets is described by a Bernoulli trial with a
uniformly chosen q in the interval [1/2, 1]. Estimating θ corresponds to
estimating q given the observedM, n1, so we will also write q

�� �
: = θ

�� �
.

Considering the function

Tða,bÞ :=
Z 1

1=2
dqqað1� qÞb ð11Þ

=
a!b!

ða+b + 1Þ!
1

2a+b+ 1
Xa
j =0

a+ b+ 1

j


 �
ð12Þ

we can use standard identities (en.wikipedia.org/wiki/binomial_
coefficient) for partial sums of binomial coefficients to see that

T(a, b) is exponentially close (inM = (a + b)) to a+b
a


 �
ða+ b+ 1Þ


 ��1
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when a > (a + b)/2. Applying this to P(n1), wefind that it is exponentially
close to 2/(M + 1), whichmeans that with high probability on any given
run of the procedure we will observe n1 >M/2 triplet outcomes, and
from now on, we consider only situations where this has occurred.

The probability density of q given n1 triplet outcomes is (over the
domain q 2 1=2, 1

� 
):

Pr qjn1,M
� �

=
qn1 1� qð ÞM�n1

T n1,M � n1

� � , ð13Þ

fromwhichwewish to bound the goodness of our estimated value of q
(and hence θ). The mean and variance for this inference problem are
given by

μ=
Tðn1 + 1,M � n1Þ
Tðn1,M � n1Þ

≈
n1 + 1
M +2

σ2 =
Tðn1 + 2,M � n1Þ
Tðn1,M � n1Þ

� μ2 ≈
ðn1 + 1ÞðM + 1� n1Þ
ðM +2Þ2ðM +3Þ

,
ð14Þ

where≈ denotes exponential closeness. A simple upper bound on the
variance is then σ2 < 1/M.

Now,we are roughly in the following situation:wewill operate as if
q = μ, i.e., the state of the second N qubits is μ

�� ��N
(by collective

rotational freedom taken to be a state in the right semicircle of the XZ
plane in the Bloch sphere), but with a low probability (≤1/h2 by the
Chebyshev inequality (en.wikipedia.org/wiki/chebyshev’s_inequality))
the actual value of q could be further than hσ from this. In later cal-
culations, we will pick h =M1/6. The error we want to understand will
ultimately arise from the trace distance between the estimated state
and the actual one, and so we wish to bound this.

To make things simpler we first ask, for any pair of q1, q2 with a
fixed value of ∣q1 − q2∣, what is the largest possible trace distance
between the corresponding quantum states q1

�� �
, q2
�� �

? Elementary
considerations yield:

k q1
�� �

q1

� ��� q2

�� �
q2
� �� k ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8jq1 � q2j

p
ð15Þ

This can be shown as follows. The state q
�� �

has z component of its
Bloch vector given by z = 4q − 3, so a given value of ∣q1 − q2∣ constrains
the Bloch vectors of q1

�� �
, q2

�� �
to have a projection on the z axis to a

fixed interval 4∣q1 − q2∣. Positioning one endof this interval at either the
north or south poles of the Bloch sphere yields the largest possible
trace distance consistent with this projected value. We can use Eq. (15)
to bound the overall error via:

k jμihμj�N �
Z

dq Prðqjn1,MÞjqihqj�N k ð16Þ

≤
Z

dq Prðqjn1,MÞ k jμihμj�N � jqihqj�N k ð17Þ

≤
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p Z
dq Prðqjn1,MÞ k jμihμj � jqihqj k ð18Þ

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þ

p Z
dq Prðqjn1,MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq� μj

p
ð19Þ

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dq Prðqjn1,MÞjq� μj

s
ð20Þ

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h2 +hσ

s
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þ

p ffiffiffiffiffiffiffiffiffiffi
2

M1=3

s
ð21Þ

where the first inequality is the triangle inequality, the second is
because for pure states it holds that k ψ�N � ϕ�N k ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
k

ψ� ϕ k, the third is from the bound (15), the fourth is concavity of the
square root, the fifth is from the largest probabilities (and ∣q − μ∣
values) consistent with the Chebyshev inequality, and the last is
obtained by using σ ≤ 1=

ffiffiffiffiffi
M

p
and picking h =M1/6.

We deduce that given the target overall error of ϵ, we can choose
M ∼ ðN=ϵ2Þ3, which is a polynomial cost.

Relatively localising a further source
We now describe how the errors arising from the relative locali-
sation of a further source to the first two may be controlled. The
method is essentially analogous to the discussion in the previous
subsection, albeit with some modifications to control more com-
plicated integrals. Let us begin by assuming that we have already
taken two MMSS sources, and have relatively localised them. One
source is (by the protocol) exactly 0j i, the other is μ

�� �
, which is

subject to statistical error. However, we will proceed as if it is
exact, noting by our previous argument that the error introduced
by assuming this can be made arbitrarily small at polynomial cost.
Recall that μ

�� �
can be assumed to have Bloch vector components

x > 0 and y = 0 (i.e., is in the positive x direction of the XZ plane).
Now we bring in a third MMSS, which we consider to be a source of
a random state ψ

�� �
. This source will give a Bloch vector linearly

independent from the other two sources almost surely. We will
localise it relative to the other two sources by using triplet mea-
surements. We will call this ‘two source relative localisation’, and
refer to the previous relative localisation as ‘single source relative
localisation’. As 0j i and μ

�� �
are in the XZ plane, the two source

relative localisation will give us information on the x and z com-
ponents of the Bloch vector of ψ

�� �
. As ψ

�� �
is pure, the y component

will then be fixed up to a sign as y= ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � z2

p
. We are free to

pick one sign as that corresponds to choosing the handedness of
our coordinate system, so we will assume that y= +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � z2

p
.

Denote the Bloch vectors of 0j i and μ
�� �

by (0, 0, 1) and
ðsinðθÞ,0, cosðθÞÞ (where θ∈ (0, π)), respectively, and denote the
Bloch vector of the random state ψ

�� �
by (x, y, z). The probabilities

of getting triplet outcomes whenmeasuring 0j i � ψ
�� �

and μ
�� �� ψ

�� �
are the random variables given by:

qa =
1 + 0jψ� ��� ��2

2
=
3+ z
4

qb =
1 + μjψ� ��� ��2

2
=
3 + x sinðθÞ+ z cosðθÞ

4

ð22Þ

respectively. A pair (qa, qb) is hence in one-to-one correspondence
with (x, z), and so through observed estimates of (qa, qb), we will be
able to estimate ψ

�� �
(as we take y= +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � z2

p
). If there were no

connection between 0j i and μ
�� �

there would be no correlation
between qa, qb. However, because of Eq. (22), there will be
restrictions on the possible values of qa, qb. Let Q be the set
{qa, qb∣qa∈ [1/2, 1], qb∈ [1/2, 1]} of all possible qa, qb pairs, when we
neglect correlations, and denote by R⊂Q the subset of values of
qa, qb permitted by Eq. (22). Note R depends on the value of θ.
However, we suppress this dependence as it will not play a
significant role. OverQ let us denote the p.d.f. of qa, qb by f(qa, qb) -
although this will be zero onQ\R, it is convenient to define it on the
whole ofQ. Again, f(qa, qb) depends on θ but the precise details will
not be needed. To simplify our computations we will later neglect
the correlations between qa, qb, and perform inference as if they
come from a product distribution on the whole ofQ. This will allow
us to utilise bounds computed for the single-source relative
localisation. Even though this adds an additional layer of
approximation, it allows relatively straightforward bounds on
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error to be computed, and the overall error incurred can still be
made arbitrarily small at polynomial cost.

We begin by constructing for the two source case, a bound similar
to Eq. (15). First consider two pure states ψ1

�� �
, ψ2

�� �
with Bloch vectors

ðx1, y1 = +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1 � z21

q
, z1Þ and ðx2, y2 = +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22 � z22

q
, z2Þ respec-

tively. Consider the projections of the Bloch vectors in the XZ plane
(i.e., (x1, z1) and (x2, z2)), these projections have a separation

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 + ðz1 � z2Þ2

q
. What is the largest possible trace

distance between the two pure states, consistent with a given value of
l? It is not difficult to show that the solution is the same as given in Eq.
(15), i.e.,

k ψ2

�� �
ψ2

� ��� ψ1

�� �
ψ1

� �� k ≤ 2
ffiffiffiffiffi
8l

p
ð23Þ

It is convenient to derive an upper bound to l utilising qa, qb as our
coordinates instead of x, z. Given two pure states ψ1

�� �
, ψ2

�� �
repre-

sented by (qa, qb) and (qa +Δqa, qb +Δqb), respectively, let us bound
the value of l. We note that we can write Eq. (22) as:

qa

qb


 �
=
1
4

0 1

sinðθÞ cosðθÞ


 �
x

z


 �
� 3
4

1 0

0 1


 �
ð24Þ

Define a matrix A such that

A�1 =
1
4

0 1

sinðθÞ cosðθÞ


 �
ð25Þ

(A is well-defined under our assumption that θ∈ (0,π)). Denoting the
operator norm of A by constant c (while this depends upon θ, in this
stage of the relative localisation we are treating θ as a constant), and
using the triangle inequality, we find that

l ≤ cjΔqaj+ cjΔqbj: ð26Þ

We then may put this together with Eq. (23), and use the triangle
inequality once more, to give:

k ψ2

�� �
ψ2

� ��� ψ1

�� �
ψ1

� �� k ≤ 2
ffiffiffiffiffiffi
8c

p
jΔqaj1=2 + jΔqbj1=2

� 	
ð27Þ

It will be convenient to use this inequality is it separates con-
tributions from errors in estimates of qa and errors in estimates of qb,
and this will allow us to straightforwardly apply the single-source
analysis. Let na, nb be the number of triplet outcomes observed when
localising to M copies of 0j i, and M copies of μ

�� �
, respectively. Let

(omitting the ‘dqadqb’ in this and all subsequent double integrals to
keep the notation uncluttered)

Prðqa,qbjna,nb,MÞ := f ðqa, qbÞqna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nbR
Qf ðqa,qbÞqna

a ð1� qaÞM�naqnb
b ð1� qbÞM�nb

ð28Þ
be the probability density of the state being described by qa, qb
conditioned upon observing na, nb triplets when measuring
againstM copies of 0j i andM copies of μ

�� �
. As we will be neglecting

correlations between qa and qb when estimating them in our two
source relative localisation, we use the single-source estimates.
Consequently, let μa, μb be the mean values of qa, qb, and σ2

a,σ
2
b the

corresponding variances, as constructed in Eq. (14) for the single-
source case. Let σ = maxfσa,σbg≤ 1=

ffiffiffiffiffi
M

p
. Let μa,μb

�� �
be the pure

state corresponding to setting qa = μa and qb = μb exactly,
and qa,qb

�� �
be the pure state corresponding to setting qa and qb

exactly. In analogy to the single-source relative localisation,

we have (omitting steps that are essentially identical to the
previous case):

k jμa,μbihμa,μbj�N �
Z
Q
Prðqa,qbjna,nb,MÞjqa,qbihqa,qbj�N k ð29Þ

≤
Z
Q
Prðqa,qbjna,nb,MÞ k jμa,μbihμa,μbj�N � jqa,qbihqa, qbj�N k

ð30Þ

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þc

p Z
Q
Prðqa, qbjna,nb,MÞjqa � μaj1=2 + sim b ð31Þ

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðN � 1Þc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Q
Prðqa,qbjna,nb,MÞjqa � μaj

s
+ sim b ð32Þ

We would hence like to control expressions like:

Z
Q
Prðqa,qbjna,nb,MÞjqa � μaj ð33Þ

where Pr(qa, qb∣na, nb,M) is given by Eq. (28). Intuitively, it is clear that
while the conditional probability Pr(qa, qb∣na, nb,M) is correlated
across qa, qb, after doing many observations we should still expect the
posterior distribution on qa, qb to become strongly peaked around
μa, μb anyway, and so our estimates adapted from the single-source
scheme should still be close. Let us show that this is indeed the case
with high enough probability. Let Ch⊂Q be the ‘close’ set
{qa, qb∣qa∈ [μa − hσ, μa + hσ], qb∈ [μb − hσ, μb + hσ]} of qa, qb values that
are within hσ of the estimates, and Fh =Q\Th be the ‘far’ set of qa, qb
values that are more than hσ from the estimates, where σ is the
maximum of the two variances. We will pick the value of h later. Let us
also define the product measure Prod(qa, qb∣na, nb,M)≔ Pr(qa∣na,M)
Pr(qb∣nb,M) thatwould arise if therewereno correlation (i.e., if wewere
relatively localising to two sources that are independent of each other,
using the single-source scheme). Explicitly:

Prodðqa,qbjna,nb,MÞ=
1
4

� �
qna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nbR
Q

1
4

� �
qna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nb
ð34Þ

(although the inclusion of the 1/4 in both the numerator and
denominator is superfluous, we include it as it is the analogue of
f(qa, qb)). Let us define the following integrals:

C =
Z

Ch

f ðqa,qbÞqna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nb ð35Þ

F =
Z

Fh

f ðqa,qbÞqna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nb ð36Þ

From the definitions of these integrals, we have that

Z
Q
Prðqa,qbjna,nb,MÞjqa � μaj≤

hσC + F
C + F

≤hσ +
F
C

≤
hffiffiffiffiffi
M

p +
F
C

ð37Þ

To control this error, we need to first need to upper bound F/C.
We will do this by first computing an upper bound to F and a lower
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bound to C. For F we first note that:

F ≤ max
Fh

qna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nb

� 	
ð38Þ

= max
Fh

ð2�MHð n!a j q
!

aÞ�MHð n!aÞ�MHð n!bj q
!

bÞ�MHð n!bÞÞ ð39Þ

where the relative entropyHð n!aj q!aÞ and Shannon entropyHð n!aÞ are
constructed from the probability distributions defined by

n!a : =
na

M
, 1� na

M

� 	
ð40Þ

q!a : = ðqa, 1� qaÞ ð41Þ

with similar definitions for b. We may now appeal to Pinsker’s
inequality (en.wikipedia.org/wiki/pinsker’s_inequality) to lower bound
the relative entropy. Together with the fact that Hð n!aÞ,Hð n!bÞ≥0 we
obtain:

F ≤ 2
�Mmin

Fh
k n!a� q!ak2 + k n

!
b� q!bk2

� 	
=2 ð42Þ

where the norm represents the 1-norm. To a high degree of
approximation μa = na/M and μb = nb/M, and so from our definition of
Fh, this becomes:

F ≤O 2�4Mh2σ2
� 	

: ð43Þ

Now let us turn to lower bounding C. Let us tentatively assume
that min

Ch

f ðqa, qbÞ> k, for some constant k >0 (which up to some

relatively mild restrictions we will be able to choose). We will later
discuss why we may make this assumption with high enough prob-
ability. Hence we have:

C ≥ 4k
Z

Ch

1
4


 �
qna
a ð1� qaÞM�naqnb

b ð1� qbÞM�nb ð44Þ

We now note that the integral in this lower bound is the prob-
ability, under the product distribution, of each of qa, qbbeingwithinhσ
of their means. Exploiting the Chebyshev inequality (applied inde-
pendently to both parts of the product distribution) we hence get

C ≥4k 1� 1

h2


 �2

ð45Þ

Putting the upper bound on F together with the lower bound forC
gives

Z
Q
Prðqa,qbjna,nb,MÞjqa � μaj≤

hffiffiffiffiffi
M

p +
Oð2�4Mh2σ2 Þ
4k 1� 1

h2

� 	2 ð46Þ

If we nowpick, for example,h =M1/4, then the previous boundbecomes

Z
Q
Prðqa,qbjna,nb,MÞjqa � μaj≤OðM�1=4Þ+Oð2�4M1=2 Þ ð47Þ

As with the single-source case, this leads to a polynomial overhead for
any desired target error.

What remains is demonstrating that we may pick a suitable con-
stant k > 0. For a given (large enough) value ofM and observed values
of na, nbwewould like the resulting set Ch (which is fixed by na, nb and

by our choice of h =M1/4) to be such that min
Ch

f ðqa,qbÞ> k. For a given k

consider the upper level set Lk of f(qa, qb), i.e., Lk≔ {(qa, qb)∣f(qa, qb) ≥
k}, so our requirement can be re-expressed as the requirement Ch⊂ Lk.
Assume that we have picked a k such that Lk is of non-zero size. For a
small constant tolerance ϵ >0 that we shortly choose, consider the
subset W ϵ

k � Lk of (qa, qb)∈ Lk such that for Δ≔ hσ + ϵ, the neigh-
bourhood (qa −Δ, qa +Δ) × (qb −Δ, qb +Δ) is contained in Lk. As the
upper bound hσ ≤ 1/M1/4 is not increasing inM, we can assume (say by
assumingwedo not considerM less than some large enough constant)
that this target subset W ϵ

k is of constant size. So with constant prob-
ability the values of qa, qb that are realised will fall within W ϵ

k . The
values of na/M ≈ μa, nb/M ≈ μb will converge to these qa, qb exponen-
tially quickly inM, and so by choosing the tolerance ϵ to accommodate
this, with constant probability the observed na, nb will be such that
Ch⊂ Lk. If the observed na, nb do not satisfy Ch⊂ Lk, we may simply
abandon and repeat until we get a suitable na, nb.
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