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ABSTRACT
A novel method-of-moments approach is proposed for the estimation of factor-augmented panel data
models with endogenous regressors when T is fixed. The underlying methodology involves approximating
the unobserved common factors using observed factor proxies. The resulting moment conditions are linear
in the parameters. The proposed approach addresses several issues which arise with existing nonlinear
estimators that are available in fixed T panels, such as local minima-related problems, a sensitivity to
particular normalization schemes, and a potential lack of global identification. We apply our approach to
a large panel of households and estimate the price elasticity of urban water demand. A simulation study
confirms that our approach performs well in finite samples.
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1. Introduction

The common factor approach has attracted considerable interest
within panel data analysis because it offers a wide scope for
controlling for unobservables, including situations where there
is cross-sectional dependence (see, e.g., Sarafidis and Wansbeek
2012, 2020).

Holtz-Eakin, Newey, and Rosen (1988), Ahn, Lee, and
Schmidt (2013), Robertson and Sarafidis (2015), Robertson,
Sarafidis, and Westerlund (2018), and Juodis (2018), among
others, have proposed various estimators for panels with
endogenous covariates and “fixed T,” where T denotes the
number of time series observations. A common feature of these
approaches is that identification relies on nonlinear moment
conditions. For panels with “large T,” popular (least-squares
type) methods include those developed by Pesaran (2006) and
Bai (2009), known in the literature as common correlated effects
(CCE) and principal components (PC), respectively.

Given the computational simplicity inherent in CCE and PC,
these approaches have been highly popular, both in terms of
extending them to several additional theoretical settings (see,
e.g., Kapetanios, Serlenga, and Shin 2020; Norkute et al. 2020 for
recent developments), as well as in terms of applying these pro-
cedures to a large range of empirical areas. In contrast, it is fair to
say that the literature on fixed-T panels remains largely unused
by empirical researchers, despite its aforementioned volume.
There are several factors that might help to explain this obser-
vation. First, there is usually no underlying theory to guide the
selection of good starting values for a potentially large number
of nuisance parameters, such as the unobserved common fac-
tors. This can potentially lead to local minima-related problems,
frequently arising in estimation of factor models using iterative
algorithms (see, e.g., Jiang et al. 2017). Second, identification of
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the parameters of interest typically requires imposing certain
normalization restrictions. However, as was discussed in Kru-
iniger (2008) and Juodis and Sarafidis (2018), the choice of the
normalization scheme can be crucial for the properties of esti-
mators that rely on some form of quasi-differencing, depending
on the underlying data generating process for the unknown
factors. For example, the approach proposed by Holtz-Eakin,
Newey, and Rosen (1988) requires that all factors take nonzero
values in all time periods. Finally, as shown by Hayakawa (2016),
the nonlinear moment conditions proposed in the literature do
not always satisfy the global identification assumption, which is
a necessary condition for consistency of GMM estimation.

The present article develops a novel GMM approach; the
main idea is to replace the unobserved factors with proxies con-
structed from observables. We put forward two distinct meth-
ods for constructing factor proxies. The first one involves the use
of a multiple weighting scheme applied on a single observable,
which can be either an external variable or a regressor. The
second method employs a single weighting scheme applied to
multiple variables. We show that these two methods can also be
combined. In both cases, the underlying assumption is that the
variables employed to construct the factor proxies are driven
by the common shocks that are relevant for the main variable
of interest. The resulting method of moments estimator has
a closed form solution, and avoids the aforementioned issues
associated with nonlinear estimators. Under suitable regularity
conditions (discussed in the article), the proposed estimator is
consistent and asymptotically mixed-normal.

In response to issues associated with nonlinear method of
moments estimators, Westerlund, Petrova, and Norkute (2019)
recently advocated the use of pooled CCE in fixed-T pan-
els. However, the computational simplicity of CCE comes with
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a price, as the method requires all regressors to be strictly
exogenous and to exhibit a common factor structure. The latter
restriction prohibits, for example, nonlinear partial effects, such
as in regressions with quadratic terms. Recently, De Vos and
Everaert (2019) extended CCE in fixed-T panels to the case of
a lagged dependent variable, assuming that all other covariates
are strictly exogenous. However, the proposed procedure is
no longer linear and requires bias correction. In contrast, the
approach presented in this article does not need bias correc-
tion of any sort, and accommodates regressors with different
degrees of exogeneity, without imposing the requirement that
all covariates (and/or instruments) have as many factors as the
main variable on interest. At the same time, the resulting GMM
estimator possesses the appealing linearity property of the CCE
estimator.

We use our approach to estimate the price elasticity of res-
idential water usage demand. This topic is of large interest,
not only among economists but also across international envi-
ronmental agencies, regulators, water utilities, and the general
public. We find that urban water demand is more elastic in
the long-run than in the short-run, which may be attributed to
habit formation and technological constraints of water appliance
efficiency. This result casts doubt on the potential effectiveness
of scarcity pricing to balance demand and supply of water in
periods of transitory droughts.

The remainder of this article is organized as follows. Sec-
tion 2 introduces a linear panel model with common shocks.
Section 3 develops the proposed approach. Section 4 reports
a Monte Carlo study to assess the finite sample performance
of the estimator. Section 5 presents the empirical application.
Finally, Section 7 concludes. A supplementary appendix to this
article discusses extensions to unbalanced panels and models
with observed factors. In addition, it provides further finite
sample evidence and contains proofs of our theoretical results.

1.1. Notation

The generic constants δ and M are used to denote a small and
a large positive real number, respectively. For a generic matrix
A, vec(A) denotes the vertical column stacking operator, and
Col(A) denotes the column space of A. Moreover, ⊗ denotes
the Kronecker product. li,s:q, s ≤ q, is defined as li,s:q =
(li,s, . . . , li,q)′. Finally, all random variables are defined on a
common probability space (�,A, P).

2. Model

We consider the following panel data model with a multifactor
error structure:

yi,t = x′
i,tβ + λ′

if t + εi,t ; i = 1, . . . , N; t = 1, . . . , T, (1)

where xi,t = (x(1)
i,t , . . . , x(K)

i,t )′ denotes the vector of explanatory
variables and β = (β1, . . . , βK)′ is the vector of the parameters
of interest. f t denotes the [L×1] vector of unobserved common
factors, λi denotes the associated factor loadings for individual
i, and εi,t is the remaining error term.

The multifactor error structure is appealing because it allows
for multiple sources of multiplicative unobserved heterogeneity,

as opposed to the one-way (or two-way) error components
structure, which represents additive heterogeneity. For example,
in a partial adjustment model of factor input prices, the factor
component may capture common shocks that hit all producers,
albeit with different intensities. In the estimation of production
functions, the factor component may absorb different sources
of technical inefficiency, which vary over time in an arbitrary
way. In an empirical model of household water usage demand,
the factor component may capture nonlinear effects of house-
hold size (typically unobserved) that depend on time-varying
weather conditions.

Stacking the observations over time for each i, the model can
be rewritten in vector form as

yi = Xiβ + Fλi + εi; i = 1, . . . , N, (2)

where yi = (yi,1, . . . , yi,T)′, Xi = (xi,1, . . . , xi,T)′, εi =
(εi,1, . . . , εi,T)′, while F = (f 1, . . . , f T)′ is of dimension [T × L].

Denote by F the σ -field generated by all common shocks
driving the individual-specific variables in the system. As such,
F contains all factors F, but we also allow variables {(xi,t , λi)}T

t=1
to be a function of other common shocks (not necessarily of
linear factor structure), resulting in additional sources of depen-
dence across cross-sectional units. For example, one can allow
xi,t = b

(
ψi, gt , ζi,t

)
, where b (·) is a linear/nonlinear function in

all arguments.

Assumption 2.1. The DGP for all i and t satisfies the following
restrictions:

1. (Xi, εi, λi) are identically distributed and independent
across i, conditional on F .

2. Each time-varying element p(·)
i,t in pi,t =

(
p(1)

i,t , . . . , p(K+1)
i,t

)′

≡ (x′
i,t , εi,t)′ satisfies E

[∣∣∣p(·)
i,t

∣∣∣4+δ
]

< ∞ for all t.

3. Each time-invariant element λ
(·)
i in λi = (λ

(1)
i , . . . , λ(L)

i )′

satisfies E
[∣∣∣λ(·)

i

∣∣∣4+δ
]

< ∞.

4. EF [εi,t|λi, x(1)
i,1:τ1(t), . . . , x(K)

i,1:τK (t)] = 0 ∀t, for some positive
integers τ1(t), . . . , τK(t).

Besides the fact that F is assumed to be random, the above
assumptions are standard in the literature (see, e.g., Ahn, Lee,
and Schmidt 2013, Assumption BA.1). Given the conditional
independence assumption, all stochastic convergence modes
in this article are conditional on F . We will emphasize this
technicality further in Section 3, when we discuss the asymptotic
distribution of the proposed estimator. These assumptions are
general enough to allow for conditional heteroscedasticity in
both dimensions, for example, εi,t = σiξtηi,t , where ηi,t is
iid over i and t with unit variance, ξt is a sequence of con-
stants, while σi is an iid sequence over i. Subject to some addi-
tional summability restrictions, the conditional iid restriction
can be further relaxed to conditional independence with hetero-
geneous population moments, without affecting the consistency
of the estimator. The supplementary appendix provides one
such example. For instance, σi and λi could be treated as a
sequence of fixed constants, as was advocated in Hsiao, Pesaran,
and Tahmiscioglu (2002). However, such setup would require
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additional technical restrictions for the limits to be well defined
(see, e.g., Gagliardini, Ossola, and Scaillet 2016, p. 996, for a
related discussion).

Assumption 2.1.4 characterizes the exogeneity properties of
the covariates. In particular, covariates that satisfy τk(t) = T
(τk(t) = t) are strictly (weakly) exogenous with respect to
the idiosyncratic error component, and endogenous otherwise.
The estimator proposed in this article allows for strictly/weakly
exogenous regressors, such as lagged dependent variables and
endogenous regressors.

Let zi be a [d × 1] vector containing all internal instruments
that are available by Assumption 2.1.4, as well as external instru-
ments satisfying the corresponding assumption. Also, let S =
diag (S1, . . . , ST) denote a block-diagonal matrix with a typical
block-diagonal entry equal to St , where St is a [ζt × d] selection
matrix of zeros and ones that picks ζt valid instruments at time
t from zi.

Under Assumption 2.1, the following set of ζ ≡ ∑T
t=1 ζt

population moment conditions is valid by construction:

EF
[
Z′

i
(
yi − Xiβ0 − Fλi

)]
= S

(
vec

(
EF

[
zi

(
yi − Xiβ0

)′] − Gz,λF′))
= 0ζ , (3)

where Z′
i ≡ S (IT ⊗ zi) and Gz,λ ≡ EF

(
ziλ

′
i
)

is a [d × L]
unknown population matrix that absorbs the unobserved
covariances between instruments and factor loadings. The
moment conditions in Equation (3) give rise to the estimators
proposed by Robertson and Sarafidis (2015) (with Gz,λ
estimated) and Ahn, Lee, and Schmidt (2013) (with Gz,λ quasi-
differenced). Either way, the resulting moment conditions
are nonlinear and, hence, potentially subject to the issues
discussed in Section 1. In what follows, we put forward a
strategy that circumvents the nonlinearity of the moment
conditions in Equation (3). For future reference, notice that the
last term in Equation (3) can be rewritten as S

(
vec

(
Gz,λF′)) =

S (F ⊗ Id) gz,λ, where gz,λ = vec
(
Gz,λ

)
.

3. A New Approach for Dealing With Unobserved
Factors in Fixed-T Panels

Let Fe denote a [T × Le] dimensional matrix with Le ≥ L,
such that F ∈ Col(Fe). Furthermore, let F̂e be a consistent
estimator of the column space of Fe. In Section 3.1, we derive the
asymptotic properties of the proposed GMM estimator based
on F̂e, assuming that the model is identified from Equation
(3). In Sections 3.2 and 3.3, we discuss different methods for
constructing F̂e, depending on the model at hand. Finally, in
Sections 3.4 and 3.5, we analyze identification, and we put for-
ward two alternative procedures for implementing our approach
in practice.

3.1. The Estimator

Assumption 3.1 ensures that F̂e is an appropriate plug-in estima-
tor of Fe. Our setup is sufficiently general in that it allows for two
important cases, namely: (i) the number of estimated factors is
larger than the true number of factors that enter into the error
term of the equation for y; (ii) the number of factor proxies in

F̂e that is required to identify F is larger than L. These cases are
illustrated in Examples 1 (or 3), and 2, respectively.

Assumption 3.1. Factor proxies are asymptotically linear such
that

√
N

(̂
Fe − FeAN

) =
(

N−1/2 ∑N
i=1 Ψ i

)
+ oP(1) and Ψ i =

(IT ⊗ψ ′
i)B′

N . Here AN is an [Le×Le] rotation matrix, ψ i is a [q×
1] vector, and BN is a [Le × Tq] selection matrix. Furthermore,

1. ψ i is identically distributed and independent across i, con-
ditional on F . Moreover, ψ

(·)
i in ψ i = (ψ

(1)
i , . . . , ψ(q)

i )′

satisfies E
[∣∣∣ψ(·)

i

∣∣∣4+δ
]

< ∞, with EF [ψ i] = 0q.

2. AN and BN are such that AN
p−→ A and BN

p−→ B. Here
A, B are F-measurable.

3. For any value of N, including N → ∞: rk(AN) = Le a.s.
4. F ∈ Col(Fe) and rk(Fe) = Le a.s.

Assumption 3.1 is fairly intuitive. In particular, Assump-
tions 3.1.1 and Assumption 3.1.2 are employed so as to enable
the application of a standard central limit theorem. Notice that,
similarly to Z′

i, Ψ ′
i has a Kronecker product form. Thus, BN

is a selection matrix which, for each point t (i.e., for each
f̂ t,e), selects those elements of ψ i that are of first-order (

√
N)

importance. Therefore, the length of ψ i need not be equal to
TLe, the number of elements in F̂e. Section 3.3 provides more
details. Assumptions 3.1.3 and Assumption 3.1.4 ensure that the
factor proxies in F̂e asymptotically identify the Le-dimensional
column space of Fe a.s. Finally, if Assumption 3.1.4 is violated
such that F �∈ Col(Fe), then in the limit F̂e will not approximate
F in the model equation.

Let β0 denote the true value of β , and g0 ≡ vec(Gz,λe(A−1
N )′),

which is of dimension [dLe × 1]. That is, we define Gz,λe with
respect to the extended [Le × 1] vector of factor loadings λi,e,
where λi,e ≡ Rλi, with R being the selection matrix of the
form F = FeR (the existence of R is guaranteed by part (d)).
Moreover, denote by θ = (

β ′, g ′)′ the full parameter vector,
and the corresponding true parameter vector by θ0. It is worth
mentioning that Gz,λe and AN cannot be separately identified
due to the usual rotation problem in factor models.

Using the plug-in principle and replacing F by F̂e in Equation
(3), we define the following set of ζ estimating equations for θ :

μN (θ) ≡ 1
N

N∑
i=1

Z′
i
(
yi − Xiβ

) − S
(̂
Fe ⊗ Id

)
g. (4)

The GMM estimator is defined as the minimizer of the following
objection function:

θ̂ = arg min
θ

μN (θ)′ ΩNμN (θ) , (5)

where ΩN is some prespecified positive definite matrix. Notice
that μN (θ) is linear in θ , and thus the estimator θ̂ has a closed
form solution.

The asymptotic distribution of the GMM estimator is deter-
mined primarily by the leading term in Equation (4). In partic-
ular, μN(θ) can be expanded as follows:

μN(θ) = 1
N

N∑
i=1

μi(θ) + oP(N−1/2), (6)
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where

μi(θ) = Z′
i
(
yi − Xiβ

) − S ((FeAN + Ψ i) ⊗ Id) g. (7)

The following assumption imposes appropriate regularity
conditions on μN(θ).

Assumption 3.2.

1. Γ β ≡ plimN→∞ − [
∂μN (θ) /∂β ′] = EF

[
Z′

iXi
]

is F-
measurable and has full column rank a.s.

2. Γ g ≡ plimN→∞ − [
∂μN (θ) /∂g ′] = S (FeA ⊗ Id) is F-

measurable and has full column rank a.s.
3. The full-parameter Jacobian matrix Γ ≡ (

Γ β , Γ g
)

has full
column rank a.s.

4. Δ ≡ plimN→∞ N−1 ∑N
i=1 μi(θ0)μi(θ0)

′ is F-measurable
and has full column rank a.s.

It is worth noting that Assumptions 2.1 and 3.1 are suf-
ficient to ensure convergence in probability of the matrices
defined in Assumption 3.2. Thus, the only nontrivial restrictions
imposed in Assumption 3.2 are the rank restrictions. Assump-
tion 3.2.1 is a standard identification condition in IV estimation
and requires the instruments to be correlated with the regres-
sors. Assumption 3.2.2 requires that FeAN has full column rank,
which is already implied by Assumption 3.1.2. Violations of
this restriction are examined in Section 3.4. Assumption 3.2.3
assumes that Γ β and Γ g are linearly independent. That is,
EF

[
Z′

iXi
]

cannot lie in the column space of Fe. As an example,
Assumption 3.2.3 excludes situations where Zi and/or Xi have
degenerate idiosyncratic components with variance that is local-
to-zero. Essentially, Assumption 3.2.3 is the GMM analogue
of the generalized non-collinearity condition of least-squares
based factor estimates, as per Bai (2009) and Moon and Weidner
(2015). Lastly, Assumption 3.2.4 is also a standard condition and
ensures that point-identified inference is asymptotically valid.

Remark 1. The Jacobian matrix Γ has ζ rows and K + dLe
columns. Therefore, Assumption 3.2 requires that ζ ≥ K +
dLe. To illustrate the meaning of this requirement, suppose that
all elements of zi are strictly exogenous, such that the largest
possible set of (internal) instruments is given by ζ = dT. A
necessary condition for identification is that d(T − Le) ≥ K,
which means that the number of factor proxies, Le, should be
strictly smaller than the number of time periods, T. Similar
conclusions apply when some of the elements in zi are weakly
exogenous or endogenous, except in this case g is not identifiable
without additional normalizations, see Section 3.3 in Juodis and
Sarafidis (2018) for details.

The following theorem summarizes the properties of the
proposed estimator.

Theorem 1. Suppose that Assumptions 2.1, 3.1, and 3.2 hold
true. Then for N → ∞,

√
N

(̂
θ − θ0

) d−→
[(

Γ ′ΩΓ
)−1

Γ ′Ω
]
Δ1/2π (F-stably),

(8)
where Ω is some F-measurable matrix such that plimN→∞
ΩN = Ω , while Γ , Ω , and Δ are independent of π ∼ N(0ζ , Iζ ).

Proof. See the supplementary appendix.

Theorem 1 adopts the notion of C-stable convergence, intro-
duced by Kuersteiner and Prucha (2013), and characterizes con-
vergence asF-stable. Hence, the GMM estimator θ̂ is consistent,
and asymptotically mixed-normal. While this is an important
distinction between the properties of the proposed estimator
and those of Robertson and Sarafidis (2015) (who treated factors
as fixed), it plays no role for inference procedures based on
standardized statistics, as long as Γ and Δ can be consistently
estimated from their sample analogues. The result of Theorem 1
is general enough to establish general stable convergence, but
we present the result as F-stable because we wish to emphasize
measurability of all random matrices with respect to F .

As our focus lies on asymptotically linear estimators of Fe,
consistent estimation of Δ requires a plug-in estimator of Ψ i. In
particular, if such estimator Ψ̂ i is available, Δ can be estimated
consistently using the conventional formula

Δ̂ = 1
N

N∑
i=1

μ̂i
(̂
θ
)
μ̂i

(̂
θ
)′ , (9)

where μ̂i(θ) is the feasible plug-in estimate of μi(θ), that is,

μ̂i(θ) = Z′
i
(
yi − Xiβ

) − S
(
(̂Fe + Ψ̂ i) ⊗ Id

)
g. (10)

Finally, the usual two-step GMM estimator can be obtained by
setting ΩN = Δ̂

−1.

3.2. Construction of Factor Proxies,̂Fe

This section puts forward two specific methods for constructing
F̂e. These methods are motivated by our empirical application as
well as common practice in the large-T panel data literature.

3.2.1. Method I: One Variable and Multiple Weights
Suppose there exists a single variable vi = (

vi,1, . . . , vi,T
)′ driven

by F, as well as possibly additional factors. That is, vi satisfies

vi = Feγ i + ui, (11)

where Fe is [T × Le] with Le ≥ L, such that F ∈ Col(Fe). vi
can be either internal, that is, one of the regressors, or exter-
nal, in the spirit of Pesaran, Smith, and Yamagata (2013). The
existence of such variable is quite plausible in panel data mod-
els (see, e.g., Hansen and Liao 2019; Karabıyık, Urbain, and
Westerlund 2019) because economic agents inhabit common
economic environments and therefore many variables are often
subject to common shocks, such as changes in technology and
productivity, changes in preferences and tastes, and so on.

Let wi denote an [Le×1] vector of individual-specific weights,
such that EF

[
uiw′

i
] = OT×Le and EF

[
γ iw′

i
] = Gγ ,w a.s. In

terms of the general notation employed in Assumption 3.1, this
setup corresponds to setting A = Gγ ,w and Ψ i = uiw′

i +
Fe(γ iw′

i − Gγ ,w). Thus, Assumption 3.1 translates into the
requirement that rk

(
Gγ ,w

) = Le. In this case,

F̂e = 1
N

N∑
i=1

viw′
i, (12)
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is a suitable estimator of Fe. Furthermore, the corresponding
plug-in estimator of Ψ̂ i is simply given by

Ψ̂ i = viw′
i − F̂e. (13)

It is apparent that Method I permits cases where the Le factor
proxies in F̂e identify more factors than those entering into the
error term of the equation for y. Such generality is appealing
because vi may contain more factors than those that already
drive yi,t .

Example 1. Suppose that L = 1, such that the factor component
in Equation (2) reduces to f (1)λ

(1)
i , but vi is driven by two factors,

that is, Fe = (f (1), f (2)) and wi is a [2 × 1] vector. Then,

F̂e = 1
N

N∑
i=1

viw′
i

p−→ FeA, (14)

where A = EF [γ iw′
i]. Consistent estimability of β requires that

rk(A) = 2. Notice that if one makes use of one weight only, wi,
A = EF [γ iwi] has at most rank 1. Thus, in this case F̂e cannot
estimate f (1) consistently, unless EF [γ (2)

i wi] = 0, where γ
(2)
i

denotes the bottom entry in γ i. Section 3.4 discusses in detail
the situation where the full rank restriction on A is violated.

The aforedescribed method requires two distinct ingredients:
vi and wi. There are several potential choices for wi. Consider
initially the case Le = L = 1 and suppose that the factor
component in Equation (11) reduces to f (1)γ

(1)
i . One simple

choice is to set the value of the weight across all individuals equal
to a fixed constant, that is, wi = 1. In this case, Equation (12)
becomes the cross-sectional average of vi, whereas Gγ ,w reduces
to μγ ≡ EF

[
γ

(1)
i

]
. Thus, Assumption 3.1 implies that μγ �= 0

and EF [ui] = 0T . An alternative choice, and one which is
especially appealing in autoregressive models, is to use random
weights that are independent across i conditional on F , such as
lagged values of the observed data. For instance, in ARDL(p, q)
models a natural choice is to set wi = yi,0 (or wi = x(k)

i,0 ), which
requires EF [γ (1)

i yi,0] �= 0 (or EF [γ (1)
i x(k)

i,0 ] �= 0), as in the
“correlated random effects” framework.

When Le > 1, the use of a single weight would violate
Assumption 3.1, as was pointed out in Example 1. Thus, a pos-
sible “automated” strategy for constructing the [Le × 1] dimen-
sional vector wi is to pick the first Le −1 observations of a single
regressor, such that wi =

(
1, x(k)

i,1:L−1

)
for some k. Alterna-

tively, one can rely upon the initial condition of dependent and
independent variables, that is, wi =

(
1, yi,0, x(1)

i,0 , . . . , x(Le−2)
i,0

)′
.

Lastly, one can use powers of yi,0 or x(k)
i,0 , such as y2

i,0 and so
on. This option does not require the distribution of yi,t to be
symmetric because noncentral moments are used. To illustrate
the aforementioned strategies, let K = 2, L = 3, x(1)

i,t ≡ yi,t−1,
and let x(2)

i,t ≡ xi,t be treated as weakly exogenous. For this spec-
ification, one could set wi = (1, yi,0, yi,1)′, wi = (1, yi,0, xi,0)′, or
wi = (1, yi,0, y2

i,0)
′.

Since the parameters of interest can be estimated based on
different weighting schemes, the approach proposed in this
article provides a more flexible way of dealing with unobserved

factors compared to other methods that are available in the
literature. The practical question of how to actually select
among different values of wi (and/or different v’s) is discussed in
Section 3.5.

Remark 2. Independently from this research, Gagliardini and
Gouriéroux (2017) and Fan and Liao (2019) have recently advo-
cated a similar construction of factor proxies, which involves
prespecified (potentially arbitrary) weights wi. Unlike our study,
the prime focus of those studies lies on the asymptotic properties
of factor estimates when both N and T are large.

3.2.2. Method II: Multiple Variables, Single Weight
The second approach involves the construction of factor proxies
based on a prespecified single weighting scheme, wi, and
Le distinct time-varying variables. As before, these variables
can be either internal or external. In particular, let V i =
(v(1)

i , . . . , v(Le)
i ) be a [T × Le] matrix, such that

V i = FeΥ i + U i, (15)

where Υ i =
(
γ

(1)
i , . . . , γ (Le)

i

)
and U i =

(
u(1)

i , . . . , u(Le)
i

)
. In

this case, F̂e is defined as

F̂e = 1
N

N∑
i=1

V iwi = 1
N

N∑
i=1

(FeΥ iwi + U iwi). (16)

Notice that the use of a single weight requires that such weight is
valid for each column of V i, that is, EF [U iwi] = OT×Le . How-
ever, the above formulation does not imply that each column in
V i must be driven by the full set of columns in Fe. For instance,
let L = Le = 2, F = Fe = (f (1), f (2)) with v(1)

i = f (1)γ
(1)
i + u(1)

i
and v(2)

i = f (2)γ
(2)
i + u(2)

i . This structure can be represented by
Equation (15) using a diagonal Υ i matrix.

We note that the setup in Method II is sufficiently general in
that it accommodates cases where the number of factor proxies
required to approximate F is larger than L itself. The following
example illustrates this point.

Example 2. Consider an autoregressive, AR(1), model with
L = 1:

yi,t = αyi,t−1 + λift + εi,t ; t = 1, . . . , T, (17)

or, in vector form,

yi = αyi,−1 + f λi + εi, (18)

where yi,−1 = (yi,0, . . . , yi,T−1)
′, f = (f1, . . . , fT)′ and yi is

defined in Equation (2). As it is shown in Everaert and De
Groote (2016) and Juodis, Karabıyık, and Westerlund (2020),
the CCE-style factor proxies, F̂e = (y, y−1), which arise in
our context by setting V i = (yi, yi,−1) and wi = 1, satisfy
Assumption 3.1 provided that EF [λi] �= 0. In this setup, none
of the two factor proxies in F̂e alone is able to estimate f consis-
tently; instead only a linear combination of both columns can be
estimated consistently. In particular, if we define Fe ≡ EF [V i],
then Fe = (f (1)

e , f (2)
e ) with f (1)

e = αf (2)
e + EF [λi]f , while f (2)

e is
a cumulative function of the lags of f and the initial condition,
that is, f (2)

1,e = EF [yi,0], and f (2)
t,e = EF [λi]ft−1 + αf (2)

t−1,e for
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t = 2, . . . , T. Notice that in this case R = (1, −α)′/ EF [λi], and
the extended vector of factor loadings λi,e is defined accordingly.
As has been discussed, alternative choices for wi = 1 do exist.
For instance, when EF [λi] = 0, a plausible strategy is to set
wi = yi,0 and drop the first observation from estimation of the
AR(1) model in Equation (17).

Remark 3. Method II is motivated by, although it is not nested
within, the seminal CCE approach of Pesaran (2006). In par-
ticular, CCE considers deterministic weights (mostly wi = 1),
and assumes that all K regressors, Xi, are strictly exogenous
with respect to εi. In contrast, here wi can be stochastic, as
Example 2 points out. Moreover, not all regressors need to be
strictly exogenous. Finally, the restriction EF [λi] �= 0 is testable
within our framework, see Section 3.4. In the supplementary
appendix, we study a stylized setup in which both the proposed
linear GMM approach and CCE are consistent for T fixed;
specifically, we focus on a model with one strictly exogenous
regressor, which is driven by the same (single) factor that enters
into the error term of the equation for y, such that EF [γi] �= 0.
We demonstrate that under spherical error components, the
CCE estimator and the linear GMM estimator based on wi = 1
have the same asymptotic variance.

Remark 4. Depending on the model at hand, one can also com-
bine multiple time-varying variables, V i, with multiple time-
invariant weights, wi, to construct F̂e. As an example, let V i =
(v(1)

i , v(2)
i ) and wi =

(
w(1)

i , w(2)
i

)′
, in which case potential factor

proxies can be constructed by using all possible combinations of
V i and wi, that is,

F̂e = 1
N

N∑
i=1

V i ⊗ w′
i. (19)

Alternatively, one can consider only a subset of available proxies.
For instance,

F̂e = 1
N

N∑
i=1

(v(1)
i w(1)

i , v(2)
i w(2)

i ). (20)

This flexibility provides a further advantage of the factor-proxies
formulation used in this article over that of Pesaran (2006).
The practical question of how to actually select among differ-
ent values of wi (and/or different values of vi) is discussed in
Section 3.5.

Irrespective of the method that is considered to construct
factor proxies, notice that F̂e can be expressed as

F̂e = FeA + Ψ ; Ψ = 1
N

N∑
i=1

Ψ i, (21)

where here Ψ i is defined as

Ψ i = (Fe(Ai − A) + Ei) , (22)

for some Ai. Thus, F̂e is a linear estimator of the column space
of Fe. In what follows we put forward an estimator that is only
asymptotically linear, but not linear for fixed N and T.

3.3. Regularized Factor Proxies

This section analyzes the important case where the model is
“fundamentally identified,” but the practitioner includes more
weights, or more variables than necessary in the approxima-
tion of Fe. In the context of Assumption 3.1, this implies that
Assumption 3.1.3 is violated but Assumption 3.1.4 is not.

To formalize this idea, let R ≥ Le be the total number of
factor proxies and F̂R denote the corresponding factor proxies
with dimension [T × R]. Following Equation (21), irrespective
of the method considered to construct factor proxies, F̂R can be
decomposed as

F̂R = FeAR + Ψ
(R); Ψ

(R) = 1
N

N∑
i=1

Ψ
(R)
i , (23)

where Ψ = (ψ
(R)

1 , . . . , ψ (R)

T )′ is [T × R], and AR is [Le × R]
with rank Le. As a result, rk(EF [̂FR]) = Le and Γ g , defined in
Assumption 3.2, is of reduced rank.

Example 3. Consider the following model in vector form:

yi = β1x(1)
i + β2x(2)

i + f (1)λ
(1)
i + εi, (24)

where f (1) is [T × 1]. Thus, K = 2 and L = 1. Let

x(1)
i = f (1)πi + u(1)

i , (25)
and Le = 2, such that

x(2)
i = Feξ i + u(2)

i , (26)

where Fe =
(

f (1), f (2)
)

is of order [T × 2], and ξ i is a vector
of order [2 × 1]. One possible strategy is to proxy Fe using
the full set of observables, by setting V i =

(
x(1)

i , x(2)
i , yi

)
and

wi = 1. This is standard practice in CCE estimation, with the
aim to avoid the need for estimating the number of factors in
the model. In terms of the notation used in Equation (15), we
have Υ i =

(
γ

(1)
i , γ (2)

i , γ (3)
i

)
, which is a [2 × 3] matrix with

γ
(1)
i = (πi, 0)′, γ (2)

i = ξ i and γ
(3)
i = λi + β1γ

(1)
i + β2ξ i, where

λi = (λ
(1)
i , 0)′. In this case, EF [Υ iwi] does not have full column

rank. Essentially, too many variables are used for approximating
Fe. In this section, we put forward a method that overcomes this
problem within our GMM approach.

Under these circumstances, it is straightforward to show that
the GMM estimator considered thus far remains consistent.
However, it turns out that the asymptotic distribution of β̂ can
be highly nonstandard, due to a degeneracy of the g estimates.
For this reason, it is essential to use factor proxies that are non-
degenerate, that is, none of the columns of F̂e are asymptotically
collinear.

In what follows, we put forward a regularization approach for
constructing F̂e such that Assumptions 3.1.1–Assumption 3.1.3
of Assumption 3.1 are satisfied. Our regularization method uses
the singular value decomposition of F̂R, or, equivalently, the
principal components of F̂RF̂′

R.
To begin with, let ΛN be a [Le ×Le] diagonal matrix contain-

ing the Le largest eigenvalues of T−1F̂RF̂′
R in descending order.

The following assumption ensures that the asymptotic distribu-
tion of the proposed regularized estimator is well defined (see,
e.g., Bai 2003 for a similar condition):
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Assumption 3.3. The eigenvalues of the [Le × Le] matrix
(ARA′

R)
(
F′

eFe
)

are distinct a.s.

Let F̃ = √
TÛLe denote the scaled regularized, principal com-

ponents (PC) estimator for Fe, where ÛLe denotes the associ-
ated eigenvectors (left singular vectors) corresponding to the Le
largest eigenvalues of T−1F̂RF̂′

R. The fixed T consistency of the
PC factor estimator F̃, which is of dimension [T × Le], follows
intuitively from the results in Connor and Korajczyk (1986) and
Bai (2003). As it is emphasized in Bai (2003), a necessary and
sufficient condition for fixed T consistency is that F̂RF̂′

R
p−→

FeMF′
e + κIT , for some matrix M and some scalar κ ≥ 0.

In our case, this necessary condition is satisfied trivially with
κ = 0. However, a new proof for the asymptotic distribution of
F̃ = (f̃ 1, . . . , f̃ T)′ is required when T is fixed. This is achieved
by Theorem 2.

Theorem 2. Suppose that Assumption 3.3 holds true, and F̂R
satisfies Equation (21) together with Assumption 3.1, except that
rk(AR) = Le < R. Then the regularized factor estimator F̃
satisfies Assumption 3.1, with

AN = (ARA′
R)

(
F̃′Fe

T

)
Λ−1

N . (27)

Furthermore, each row Ψ
(t)
i in Ψ i is of the following form:

Ψ
(t)
i = Λ−1

N
1
T

( T∑
s=1

f̃ s

(
f ′

s,eARψ
(R)
i,t + f ′

t,eARψ
(R)
i,s

))
;

t = 1, . . . , T. (28)

Proof. See the supplementary appendix.

It is straightforward to see from the expression in Equa-
tion (28) that the leading variance term of F̃ is affine in each
{ARψ i,t}T

t=1. This implies that the inclusion of uninformative
factor proxies, that is, proxies that do not identify Fe, has no
impact on the first-order asymptotic properties of F̃. Essentially,
the PC estimator of factors performs estimation of the factor
space and factor proxy selection at the same time.

Since F̃ satisfies Assumption 3.1, it can be used as a plug-
in estimator in the GMM objective function. Consistent esti-
mation of the variance-covariance matrix Δ, requires replacing
unknown quantities in Ψ i with their plug-in counterparts. In
particular, the f ′

s,eAR terms in Equation (28) can be consistently
estimated by (̂f (R)

s )′. Furthermore, depending on the method
used to construct the factor proxies, the plug-in counterparts
of ψ

(R)
i,t are given by either

ψ̂
(R)

i,t = wivi,t − f̂ (R)

t , (29)

or

ψ̂
(R)

i,t = vi,twi − f̂ (R)

t , (30)

where vi,t = (v(1)
i,t , . . . , v(Le)

i,t )′.

Remark 5. The above strategy for selection of factor proxies
is not optimal from the point of view of obtaining a GMM
estimator for β0 with minimal asymptotic variance. Specifically,
the PC estimator is a weighted average of all individual factor
proxies, with corresponding weights being determined outside
the GMM objective function. One could proxy Fe by combin-
ing factor proxies optimally. However, such an approach has a
major drawback, in that the resulting moment conditions are
nonlinear. To illustrate this, consider a linear combination of
wi = (w(1)

i , w(2)
i )′ that takes the form w̃i = aw(1)

i + (1 − a)w(2)
i .

It is clear that in the absence of knowledge of a, the resulting
moment conditions involve products of unknown parameters,
namely AR and a. Hence, the appealing linearity of the proposed
approach no longer holds, and instead one may use, for exam-
ple, the FIVU and FIVR estimators of Robertson and Sarafidis
(2015), which are asymptotically more efficient because they
involve joint estimation of β and F using the full set of moment
conditions.

3.4. Identification

Assumption 3.1 plays a major role in characterizing the large
sample properties of the proposed GMM estimator. In this sec-
tion, we discuss several departures from Assumption 3.1, as well
as diagnostic checks that can be used to detect these departures.
To save space, we focus on factor proxies constructed using
multiple wi, as in Equation (12).

At first, consider the case where F �∈ Col(Fe) but otherwise
all remaining parts of Assumption 3.1 are satisfied. For instance,
suppose that some of the factors in yi are entirely different
from those that drive vi, or alternatively Le < L. In neither
case can the factor proxies approximate the column space of F
asymptotically. As a result, it is straightforward to show that the
GMM estimator for β0 is inconsistent. That is,

β̂ − β0
p−→

(
Γ ′

βΓ β − Γ ′
βΓ g

(
Γ ′

gΓ g
)−1

Γ ′
gΓ β

)−1

×
(

Γ ′
β − Γ ′

βΓ g
(
Γ ′

gΓ g
)−1

Γ ′
g

)
S vec

(
Gz,λF′) , (31)

where Γ β and Γ g denote the two constituent blocks of the Jaco-
bian matrix of the moment conditions, as defined in Assump-
tion 3.2. Such identification failure can be detected using the
usual overidentifying restrictions test, commonly referred to as
J-statistic.

Next, consider the case where Gγ ,w is not of full rank, such
that F �∈ Col(FeGγ ,w). As an example, let Le = L = 1 and
wi = 1, such that EF (γiwi) = μγ . The full rank condition
on Gγ ,w is violated when μγ = 0. More generally, suppose that
rk(Gγ ,w) = Q < Le ≤ L a.s. Let Gγ ,w = CD′, where both C and
D are [Le×Q] matrices of rank Q a.s. Furthermore, let D⊥ denote
the orthogonal complement of D, that is, D⊥ satisfies rk(D⊥) =
Le − Q and D′D⊥ = OQ×(Le−Q). Theorem 3 summarizes the
asymptotic distribution of β̂ when Gγ ,w is rank-deficient.

Theorem 3. Suppose that Assumption 2.1 is satisfied, and con-
sider factor proxies with AN = Gγ ,w with rk(Gγ ,w) = Q <
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Le ≤ L. Then for ΩN = I, as N → ∞:

β̂ − β0
d−→

(
Γ ′

βΓ β − Γ ′
βΞ

(
Ξ ′Ξ

)−1
Ξ ′Γ β

)−1

×
(
Γ ′

β − Γ ′
βΞ

(
Ξ ′Ξ

)−1
Ξ ′) S vec

(
Gz,λF′) , (32)

F-stably, where Ξ = S((Ξd, Ξ s) ⊗ Id), Ξd = FeC(D′D),
and Ξ s is such that vec(Ξ s) ∼ Δ

1/2
F πF with ΔF =

EF [vec(viw′
iD⊥) vec(viw′

iD⊥)′], and πF ∼ N(0(Le−Q)T ,
I(Le−Q)T).

Proof. See the supplementary appendix.

It is clear that the GMM estimator converges to a random
limit because the Ξ s matrix is stochastic. This result is in line
with existing weak instruments results for IV/GMM estimators
(see, e.g., Staiger and Stock 1997). However, a major difference
between Theorem 3 and existing literature is that in the usual
weak-IV setup, the limit remains random even after condi-
tioning on the (random) Jacobian matrix. In contrast, in the
present case, the right-hand side of Equation (32) is a nonzero
constant vector, conditional on F and πF . As a result, failure
of identification associated with rk(Gγ ,w) = Q < Le ≤ L a.s.
implies model mis-specification. This can be detected using the
usual J-statistic again.

Remark 6. The stochastic nature of the identification failure in
Theorem 3 can be easily avoided using regularized factor proxies
as in Section 3.3, obtained using a consistent estimate of Le.

3.5. Implementation

We take it as given in the section that a set of potential factor
proxies has been collected into a [T ×R] matrix F̂R, using either
Method I, Method II, or a combination of both. For example,
under Method II one could construct F̂R based on all available
observables, that is, the dependent variable, the regressors, as
well as possible external variables. Unfortunately, as we dis-
cussed in Section 3.3, it turns out that including more variables
(or, equivalently for Method I, more weights) than necessary in
the approximation of Fe, can render the asymptotic distribution
of the GMM estimator highly nonstandard. To circumvent this
potential issue, in what follows we put forward two distinct
methods that practitioners may use to implement the plug-in
principle embedded in our approach. Firstly, a “regularization”
method, then a “best-subset selection” method. Both methods
are illustrated in the empirical section.

3.5.1. Regularization
This approach builds upon the regularized factor proxies ana-
lyzed in Section 3.3 and consists of the following steps:

1. Obtain a consistent estimate of the underlying number of
factors in F̂R, given by L̂e, using either a sequential pivotal
rank testing as proposed by Kleibergen and Paap (2006), or
the eigenvalue ratio (ER) and the growth ratio (GR) statistics
as in Ahn and Horenstein (2013).

2. Use the regularized estimator F̃ as the plug-in estimator for
the GMM objective function to estimate θ̂ . If the model is
not rejected by the J-statistic, no further steps are required.

Assuming that L̂e is not large relative to L̂, the only disadvantage
of this approach is ultimately some loss in terms of efficiency
due to the fact that for Le > L one estimates the extended Gz,λe ,
as for example in Example 2.

Remark 7. Let rmax = min(T, R)−1. The estimator for Le based
on the ER-statistic is defined as

L̂e = arg max
r∈{1,...,rmax}

ER(r); ER(r) = λr(T−1F̂RF̂′
R)

λr+1(T−1F̂RF̂′
R)

, (33)

where λr(T−1F̂RF̂′
R) is the rth largest eigenvalue of T−1F̂RF̂′

R.
This procedure yields a consistent estimate of Le because for
r < Le ER(r) remains bounded a.s., whereas for r = Le

ER(r) → ∞ as λr+1(T−1F̂RF̂′
R)

p−→ 0 by the continuity of
the eigenvalues. However, as it currently stands, the ER proce-
dure excludes the possibility that L̂e = R < T, that is, the
dimension of the column space of F̂R is exactly R. We fix this
shortcoming by borrowing the mock-eigenvalue idea of Ahn
and Horenstein (2013) and suggesting that a single, redundant
column in F̂R always be included. For example, one can easily
construct a redundant factor proxy as N−1 ∑N

i=1 viw+
i , where

w+
i is randomly drawn from any zero mean distribution (e.g.,

the Rademacher {−1; 1} distribution) and vi is either defined in
Equation (11), or it is one of the columns of V i in Equation (15).
In this way, we extend the definition of R to R+1 manually, thus
avoiding the boundary problem of the original ER-statistic. The
GR-statistic is discussed in greater detail in the supplementary
appendix.

3.5.2. Best-Subset Selection
The best-subset selection method is a model selection approach
that is motivated by the machine learning literature (see, e.g.,
Hastie, Tibshirani, and Friedman 2017, sec. 3.3). In the present
context, the method aims to determine the combination of
factor proxies that yields the smallest BIC value. In particular, let
R be the number of factor proxies at hand, F̂R, and Lmax (≥ Le)
be the maximum number of unobserved factors considered in
estimation. In practice, Lmax could be set as the largest possi-
ble value of L that is feasible to allow in estimation. Further-
more, let B(Lmax) denote the set of different combinations of
columns in F̂R of sizes P = 1, . . . , Lmax. To illustrate, consider
Example 3 with Lmax = 2. Therein, R = 3 since F̂R =
N−1 ∑N

i=1

(
x(1)

i , x(2)
i , yi

)
wi ≡

(̂
f (1)

R , f̂ (2)

R , f̂ (3)

R

)
. For P = 1, one

can use either one of f̂ (1)

R , f̂ (2)

R and f̂ (3)

R . For P = 2, possible
combinations of factor proxies are

{̂
f (1)

R , f̂ (2)

R

}
,
{̂

f (1)

R , f̂ (3)

R

}
, and{̂

f (2)

R , f̂ (3)

R

}
. In total, the cardinality of the set B(Lmax) is at most

|B(Lmax)| = (3
1
) + (3

2
) = 6.

Within our framework, a consistent estimate of the number
of factors and the selected combination of factor proxies can
be determined using a Schwartz/Bayesian model information
criterion (BIC), as proposed originally by Cragg and Donald
(1997) and Ahn, Lee, and Schmidt (2013). This is formalized
right below.

Proposition 1. Let p = 1, . . . , |B(Lmax)| and QN,p
(̂
θ (ΩN) |̂F(p)

)
be the value of the objective function evaluated at θ̂ given ΩN
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and some F̂(p) ∈ B(Lmax):

QN,p
(̂
θ (ΩN) |̂F(p)

)
= μN

(̂
θ
) ′ΩNμN

(̂
θ
)

.

Consider the following BIC:

SN,p = N × QN,p
(̂
θ (ΩN) |̂F(p)

)
− ln (N) × h

(
p
)

, (34)

where h
(
p
) = ρ × (

ζ − dim
(̂
θ |p(P)

)) = O(1), a strictly
decreasing function of P with 0 < ρ < ∞. Under the set of
our assumptions, we have

P̂ = arg min
F̂(p)∈B(Lmax)

SN,p
p−→ L as N → ∞.

Proof. The proof follows directly from Cragg and Donald
(1997). The only difference is that for every value of L several
weights are potentially available, that is, one needs to consider
minimum BIC for each value of P = 1, . . . , Lmax first.

Proposition 1 implies that practitioners can estimate mod-
els for all choices of B(Lmax) and pick P̂ (together with the
associated combination of factor proxies) as the value of L that
corresponds to the smallest BIC value. The above result holds
as long as for P = L there exists an element in B(Lmax) that
ensures that the GMM estimator is consistent. For instance,
in the context of Example 3 where L = 1, one such element
in B(Lmax) is given by N−1 ∑N

i x(2)
i = f̂ (2)

R . Notice that in
this case, the GMM estimator based on best-subset selection is
more efficient than the GMM estimator based on regularization
because asymptotically the former employs 1 factor proxy and
the latter employs 2 factor proxies. On the other hand, if no such
element exists (as, e.g., in Example 2), but there exists at least one
F̂(p) that satisfies Assumption 3.1 with Le > L, then BIC will
consistently estimate Le instead. Finally, if no such F̂(p) exists,
then BIC will not consistently estimate L or Le due to lack of
identification, as discussed in Section 3.4. Note that the selected
model will be rejected with high probability by the J-statistic in
this case.

4. Finite Sample Evidence

4.1. Setup

We consider the following dynamic model with one or two
factors:

yi,t = αyi,t−1 + βxi,t +
2∑

r=1
λ

y
r,ifr,t + ε

y
i,t ;

xi,t = δyi,t−1 + αxxi,t−1 + λx
1,if1,t + εx

i,t ,
for t > 0, while for t = 0 we set:

yi,0 =
2∑

r=1
λr,ifr,0 + ε

y
i,0; xi,0 = λx

1,if1,0 + εx
i,0.

Additional covariates to be used in the construction of factor
proxies are generated as

v(1)
i,t = λv1

1,if1,t + εv1
i,t ; v(2)

i,t =
2∑

r=1
λv2

r,i fr,t + εv
i,t .

The factor loadings for the first factor are normally dis-
tributed with mean equal to μλ and unit variance, such that

λ
ψ
1,i = μλ + ρ(λ

y
1,i − μλ) +

√
1 − ρ2υ

ψ
1,i; υ

ψ
1,i ∼ N (0, 1),

where ψ ∈ {x, v1, v2}, and λ
y
1,i ∼ N (μλ, 1). ρ denotes the

correlation coefficient between the factor loadings of the yi,t and
xi,t , and yi,t and v(1)

i,t , v(2)
i,t processes.

The properties of the factor loadings that correspond to f2,t
depend on the setup we consider. In particular, in the case where
L = Le = 1 we simply set λ

y
2,i = λv2

2,i = 0 for all i. In the case
where L = Le = 2 the corresponding factor loadings are drawn
independently of other factors loadings, that is,

λ
y
2,i ∼ N (μλ, 1); λv2

2,i ∼ N (μv2
λ , 1). (35)

Such a setup facilitates the interpretability of the simulation
results, without overly parameterizing what is already a large set
of nuisance parameters. In what follows, we fix μv2

λ = 1. Finally,
all factors are drawn as fr,t ∼ N (0, 1).

The idiosyncratic errors are generated as

ε
y
i,t ∼ N (0, 1) ; εx

i,t ∼ N
(
0, σ 2

x
)

; εv1
i,t ∼ N (0, 1) ;

εv2
i,t ∼ N (0, 1) ; t ≥ 0.

In all designs the value of σ 2
x is fixed to ensure that the signal-

to-noise ratio of the model

SNR ≡ 1
T

T∑
t=1

var
(

yi,t|λy
1,i, λ

y
2,i, λ

x
1,i, λ

x
2,i,

{
f1,s

}t
s=0 ,

{
f2,s

}t
s=0

)
var(εy

i,t)
−1,

equals 5. The chosen SNR value lies within the range of values
considered in the literature, for example, Bun and Kiviet (2006)
specifies SNR ∈ {3; 9}.

We consider N ∈ {200; 800}, T ∈ {4; 8}, α ∈ {0.4; 0.8},
and we set β = 1 − α, such that the “long-run” parameter
equals 1. The values of the remaining parameters are as follows:
δ ∈ {0; 0.3}, μλ = 1, ρ = 0.6, and αx = 0.6. The number
of replications performed equals 2000 for each design and the
factors are drawn in each replication.

Remark 8. The supplementary appendix to the present article
provides further finite sample results that correspond to alter-
native designs. In particular, among other setups, we examine
the case where vi contains more factors than those that already
drive y (i.e., Le > L); moreover, we examine the effect of lack
of identification by setting μλ = 0, and we also specify a model
with an additional covariate. In addition, we report results with
respect to the nonlinear GMM estimators of Ahn, Lee, and
Schmidt (2013) and Robertson and Sarafidis (2015) for the one-
factor design.

4.2. Results

We investigate the finite sample properties of the following
four estimators: “F1” denotes the GMM estimator that uses v(1)

i
and wi = 1; “F2” is the GMM estimator that uses (v(1)

i , v(2)
i )

and wi = 1; “Fr” denotes the regularized GMM estimator
that uses (v(1)

i , v(2)
i ) and wi = (1, yi,0)′, as described in the

regularization approach outlined in Section 3.5. To isolate the
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effect of regularization on the construction of factor proxies,
we take Le as given. Results corresponding to Fr based on an
estimate of Le are reported in the supplementary appendix of the
article; finally, “Fbic” denotes the estimator that employs differ-
ent combinations of factor proxies based on the choices above,
and picks up the proxies corresponding to the minimum BIC
value. Thus, Fbic represents the best-subset selection approach
outlined in Section 3.5. The value of ρ in the BIC function is set
equal to 0.75, following BIC1 in Ahn, Lee, and Schmidt (2013),
and Zhu, Sarafidis, and Silvapulle (2020).

All estimators use the maximum number of moment condi-
tions with respect to lagged values of yi,t and xi,t , although for
comparison purposes xi,t is always treated as weakly exogenous
regardless of the value of δ. Notice that, for reasons explained in
the supplementary appendix, setting wi = 1 leads to slightly
better results compared to wi = yi,0 in the present design.
Therefore for L = Le = 1, F1 can be viewed as an “oracle”
estimator because it makes use of the true number of factors,
as well as the “right” choice of vi and wi. Likewise, F2 can be
viewed as an oracle estimator for L = Le = 2. Therefore, the
performances of F1 and F2 may serve as good benchmarks for
the performance of Fr and Fbic.

Tables A1 and A2 report results in terms of bias, RMSE,
standard deviation and empirical size of the t-test for L = Le =
1 and L = Le = 2, respectively. Nominal size is set equal to 5%.
We make use of corrected standard errors, which are computed
based on Windmeijer (2005). This is important because, as is
well known in the dynamic panel data literature, the two-step
GMM estimator may exhibit substantial size distortions, espe-
cially when the number of moment conditions is large relative
to N.

As can be seen from Table A1, all four estimators show
negligible bias under all combinations of N, T, α, and δ. In
addition, the RMSE values of all estimators are small and fall
roughly at the rate of

√
N, as predicted by our theory. Fr per-

forms very similar to F1 in terms of RMSE, which indicates that
the proposed regularization approach works very well. On the
other hand, RMSE is slightly higher for Fbic (especially when
N = 200), which mostly reflects the fact that L is treated as
unknown. Finally, the empirical size of all estimators is close
to the nominal value for both α and β in most cases, unless N
is relatively small and T is relatively large, in which case there
appear to be upward size distortions. This outcome implies that
using too many moment conditions when the cross-sectional
dimension is small can result in size distortions, despite the
standard error correction. However, it is worth emphasizing that
in practice this problem can be mitigated substantially by using
only a subset of the moment conditions available. Since this
has already been demonstrated by Juodis and Sarafidis (2018)
using simulated data for the factor-augmented model, we do not
explore this possibility here.

Similar conclusions can be drawn from Table A2 where L =
Le = 2, focusing upon the performance of Fr and Fbic vis-a-
vis F2. It is worth noting that F1 is not consistent in this case
because it estimates one factor only. Thus, it is not surprising
that in most cases F1 exhibits large RMSE and substantial size
distortions.

Table A3 reports results on the overidentifying restrictions
(J) test statistic (nominal size equals 5%) for F1, F2, and Fr. In

addition, this table reports selection frequencies of L̂ based on
BIC, and L̂e using the ER-statistic, as outlined in Section 3.5.
Notice that since L = Le, P = L and therefore we do not
distinguish between P̂ and L̂. As we can see, for L = Le =
1, the size of the J-statistic corresponding to both F1 and Fr
is close to the 5% level in most circumstances, unless N is
relatively small and T is relatively large, in which case there
is a small downward size distortion, especially for F2. As has
been mentioned, such small-sample distortions can be mitigated
in practice by using a smaller number of moment conditions.
Similar conclusions hold in regards to the performance of the
J-statistic corresponding to F2 and Fr for L = Le = 2. Note that
since F1 is not consistent in the two-factor case, the results of
the J-statistic corresponding to F1 reflect power, which appears
to be high under all circumstances.

In regards to model selection, for L = Le = 1 all methods
appear to perform well and select the true number of factors
with high frequency. As expected, model selection becomes less
straightforward for L = Le = 2, especially when both N and
T are small. Partially, this may attributed to the fact that for
small values of T the two factors can be highly collinear in
some simulated samples, even if they are drawn independently.
However, it is clear that the frequency of selecting L̂ = 2 and
L̂e = 2 rises substantially with larger values of either N or T.
Finally, the corresponding rows of ER-statistic in Table A3 need
not sum to 1, due to rounding.

5. Application: Estimation of the Price Elasticity of
Urban Water Demand

A large number of studies have focused on the estimation of the
price elasticity of water usage demand (see, e.g., House-Peters
and Chang 2011; Araral and Wang 2013 for excellent surveys).
The vast majority of the literature assumes that the effect of
weather is linear. However, as Maidment and Miaou (1986) and
Gato, Jayasuriya, and Roberts (2007) pointed out, water usage
is most likely to respond to changes in weather conditions in
a nonlinear fashion. We address this concern in what follows
by allowing for nonlinear effects of weather conditions, depend-
ing on household/property-specific unobserved characteristics,
such as household size, garden size, and others. This setup is
represented by a common factor structure.

5.1. Data and Methodology

We make use of publicly available multi-household level data
from New South Wales, Australia, provided by the Sydney Water
Corporation (SWC), see also Abrams et al. (2012). SWC is the
largest water utility in Australia, serving more than 4 million
people, while its area of operations covers around 12,700 km2.

Our sample contains 4500 multi-household units, each one
being observed over a period of 5 years, 2004–2008. Each unit
represents an average of four to six households, to preserve
privacy. Additional descriptive statistics of the data are reported
in the supplementary appendix to this article. The model that
we consider for studying the price elasticity of water demand is
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as follows:
yi,t = αyi,t−1 + β1pricei,t + β2raini,t + β3tempi,t + εi,t ;
εi,t = λ′

if t + εi,t , (36)
for i = 1, . . . , N(= 4500) and t = 1, . . . , T(= 4), where
yi,t denotes the natural logarithm of the average daily water
consumption for household i at year t, expressed in thousands
of liters of water (kL); pricei,t is the average real price paid
per kiloliter of water used by household i at time t; and raini,t
and tempi,t denote the average amounts of daily rainfall (mm)
and temperature (◦C) during year t. The dynamic specifica-
tion accommodates partial adjustment mechanisms in water
demand. This is due to both habit formation in water con-
sumption and energy efficiency constraints associated with the
existing stock of durable goods within households. The log-
linear functional form implies that price elasticity depends on
the level of price itself. That is, the higher the level of the
price, the more sensitive consumers become to changes in price.
This is consistent with utility theory (see, e.g., Al-Qunaibet and
Johnston 1985). The weather variables are unit-specific because
they are determined by the physical proximity of each property
to a total of thirteen weather stations that exist across Sydney,
operated by the Australian Bureau of Meteorology. This reflects
the fact that weather patterns can vary substantially across NSW
and, more specifically, the coast generally has more rainfall and
cooler conditions than many areas located inland.

The common factor structure allows for nonlinear unob-
served heterogeneity across individual units, due to differences
in the number of people living in a household, pool owner-
ship, garden size and structure, and so on. As an example,
consider two properties: one with two household members, no
swimming pool and a small garden, and another one with five
members, a large garden and a pool. The difference in average
yearly consumption between the two properties is expected to be
proportionately larger under extreme weather conditions than
under normal conditions. To put this differently, the change in
water consumption following an extreme weather event is likely
to be smaller for the former property than the latter.

The formulation above requires that household size (and
other property-specific characteristics) remains constant over
the 5-year period of our analysis. While it is unreasonable to
expect such condition to be fulfilled for all households in the
sample, recall that each individual unit i = 1, . . . , N represents
an average of four to six households, which is due to the data
aggregation implemented by SWC in the original dataset. As
a result, changes in household size over time are likely to be
smoothed out to a large extent. If this is not true, our estimator
will not be consistent. This implies that violation of such restric-
tion can indeed be detected in practice using the usual J-statistic.

We implement our methodology by assuming that the unob-
served factor component is approximated by an external vari-
able, the average daily soil moisture index (smi) observed for
unit i at period t. smi is computed based on a combination of
precipitation, temperature and soil moisture, and is used widely
as an index accounting for extreme weather and soil drought
intensity (see, e.g., Hunt et al. 2009). Hence, in terms of the
notation used in Section 3.1, we set vi,t = smii,t .

We estimate the model by fitting L = {0, 1, 2} factors. We
employ three weights, namely wi = (

1, yi,0, y2
i,0

)′. In terms of

the notation introduced in Section 3, we have Lmax = 2, R = 3
and the set B(Lmax) contains all 6 possible permutations of
F̂R = 1

N
∑N

i=1 viw′
i, where vi is constructed by stacking smii,t

for t = 1, . . . , T in a [T × 1] vector. The implementation of
our approach based on regularization follows closely the steps
described in Section 3.5, with Le estimated from T−1F̂RF̂′

R using
the ER-statistic outlined therein. The implementation based on
best-subset selection estimates the model using six different
combinations of weights, that is, those in B(Lmax). The esti-
mated number of factors, P̂, as well as the associated selected
weight combination, are determined using the BIC criterion
documented in Section 3.5. The value of ρ in the BIC function
is set equal to 0.75, as in the Monte Carlo setup.

5.2. Results

Table 1 reports results for ten different specifications. In specific,
M0 denotes the estimator that imposes εi,t = εi,t , that is, it
assumes unobserved heterogeneity away. MDIF and MSYS denote
the first-differenced and system GMM estimators proposed by
Arellano and Bond (1991) and Arellano and Bover (1995),
respectively. Both estimators allow for an additive two-way error
components structure and are obtained using the xtabond2
command in Stata 15 (see Roodman 2009). MF̃ denotes the
GMM estimator that uses regularized factor proxies, F̃, based
on L̂e = 1 (the value of which is obtained from the ER-statistic).
In addition, M1c, M1y0 , and M1y2

0
denote the GMM estimators

that impose Le = 1 and use wi = 1, wi = yi,0 and wi = y2
i,0,

respectively. Finally, M2c,y0 imposes Le = 2 with weights given
by wi = (

1, yi,0
) ′. The same holds for M2c,y2

0
and M2y0,y2

0
, except

that wi = (
1, y2

i,0
) ′ and wi = (

yi0, y2
i0
) ′, respectively.

In all models the price variable is treated as endogenous
and is instrumented by appropriate lagged values of the same
variable. This is because during the period of the analysis a two-
tier pricing scheme was in place in NSW, such that consumers
paid a higher price when their consumption levels exceeded a
certain threshold. On the other hand, all weather variables are
treated as exogenous with respect to εi,t .

All estimators that allow for a common factor structure, make
use of ζ = 40 moment conditions, whereas MDIF and MSYS
make use of 17 and 21 moment conditions, respectively. The
difference in the number of moment conditions between the
GMM estimators that impose an additive structure and those
that allow for a genuine factor model is mainly due to their treat-
ment of the exogenous weather variables. In the former case,
standard practice involves taking first differences to remove
unobserved (linear) heterogeneity and then using the exogenous
weather variables as Anderson–Hsiao type instruments. In the
latter case, present and lagged values of the weather variables
are included as instruments in each time period, to allow for
possible arbitrary correlations between nonlinear heterogeneity
and weather conditions.

Results are reported in terms of the estimated coefficients and
standard errors (in parentheses), where β̂1/(1− α̂) corresponds
to the long-run price coefficient, the standard error of which has
been obtained using the Delta method. Furthermore, Table 1
reports the J-statistic and its p-value (in square brackets), the
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Table 1. Results.

M0 MDIF MSYS MF̃ M1c M1y0 M1y2
0

M2c,y0 M2c,y2
0

M2y0,y2
0

α̂ 0.942 0.504 0.771 0.405 0.414 0.405 0.393 0.354 0.382 0.395
(0.004) (0.045) (0.018) (0.047) (0.048) (0.048) (0.047) (0.082) (0.082) (0.087)

β̂1 0.170 −0.032 0.261 −0.185 −0.178 −0.187 −0.192 −0.247 −0.225 −0.190
(0.015) (0.361) (0.419) (0.034) (0.035) (0.035) (0.034) (0.061) (0.054) (0.051)

β̂2 −0.051 −0.001 −0.003 −0.013 −0.013 −0.021 −0.013 −0.030 −0.011 −0.018
(0.003) (0.008) (0.009) (0.006) (0.006) (0.010) (0.006) (0.009) (0.010) (0.011)

β̂3 −0.008 0.034 0.029 0.050 0.050 0.084 0.050 0.032 0.060 0.051
(0.001) (0.012) (0.013) (0.010) (0.010) (0.019) (0.010) (0.013) (0.015) (0.016)

β̂1
1−α̂

2.93 −0.065 1.14 −0.310 −0.303 −0.314 −0.316 −0.383 −0.364 −0.314
(0.075) (0.726) (1.86) (0.078) (0.079) (0.079) (0.077) (0.137) (0.128) (0.113)

J-test 156.3 27.6 49.2 28.8 28.7 28.9 28.9 13.6 16.1 15.6
p-value [0.000] [0.002] [0.000] [0.092] [0.094] [0.092] [0.091] [0.096] [0.042] [0.050]
ζ 40 17 21 40 40 40 40 40 40 40

dim (θ) 5 9 10 20 20 20 20 32 32 32

BIC 10.6 −17.8 −4.91 −54.48 −54.54 −54.46 −54.39 −19.69 −17.24 −17.74

number of moment conditions and of parameters estimated for
each model, and finally the value of the BIC.

It is clear that the p-value of the J-statistic is close to zero
when we fit either zero factors or the two-way (additive) error
components structure, which implies that the model is mis-
specified. This is also reflected in the estimated price coefficient,
which is largely statistically insignificant for both MDIF and
MSYS, and for the latter it even has the wrong sign. We note
that these results are not sensitive to the number of instruments
employed. For example, using only the two most recent lags of
the dependent variable as instruments, that is, yi,t−2 and yi,t−3,
along with the collapse option in Stata, the J-statistic for MSYS
roughly equals 27.6, and so the p-value remains close to zero.

On the other hand, fitting one or two genuine factors fails to
reject the specified model at the 1% level of significance. This
finding provides evidence that the factor structure is supported
by the data compared to the additive error components model,
and demonstrates the importance of controlling for nonlinear
heterogeneity.

More specifically, recall that the ER-statistic indicates that
L̂e = 1. In addition, according to the BIC criterion, P̂ = 1.
Furthermore, M1c, the estimator that uses a constant weight,
wi = 1, minimizes the overall BIC criterion. The results from
adopting the regularization approach (MF̃) and the best-subset
selection approach (M1c) are similar. While this may be partially
attributed to L̂e = P̂ = 1, it is evident that the estimated price
elasticity of demand appears to be robust across different factor
proxies and different values of L. This is a desirable outcome.

In what follows we discuss further findings based on MF̃ .
A unit (dollar) increase in the price of water is estimated to
reduce water consumption by approximately 18.5% and 31.0%
in the short- and long-run, respectively. Similarly, a unit increase
in rain (temperature) is expected to reduce (increase) water
consumption by approximately 1.13% (5.00%) in the short-run.

The price elasticity of demand is computed by multiplying
the relevant price coefficients with a range of values for price.
Table 2 presents elasticity estimates at four different values of
price; namely, mean and median price, as well as the 10th and

Table 2. Point-wise predicted elasticities for MFR .

10th perc. Mean Median 90th perc.

Price 1.17 1.35 1.37 1.56
SR elasticity −0.216 −0.249 −0.253 −0.288
LR elasticity −0.362 −0.419 −0.426 −0.483

90th percentiles. For example, at the median price of $1.37 per
kL, a 1% increase in the price of water lowers demand by about
0.25% in the short-run and 0.43% in the long-run.

As expected, urban water demand appears to be much more
elastic in the long-run than in the short-run. This may be
attributed to habit formation and technological constraints of
water appliance efficiency. Moreover, the value of α̂ = 0.405
implies that it takes about 2.5 years for 90% of the total price
effect to be realized, all other things being constant. This out-
come casts doubt on the potential effectiveness of scarcity pric-
ing to balance demand and supply of water in periods of transi-
tory droughts.

In comparison to other studies in the literature, the estimated
price elasticity of demand is in the low-to-middle range of
results. For instance, the long-run price coefficient is not sta-
tistically different to the value obtained by Nauges and Thomas
(2003) (see Table III in their article) although theirs is derived
from the constant-elasticity model using municipal-level data
and includes average income but not weather conditions.

7. Concluding Remarks

This article puts forward a novel method-of-moments approach
for estimation of factor-augmented panel data models with
endogenous regressors and T fixed. The underlying idea is to
proxy the factors by observed variables, so that the resulting
moment conditions are linear in the parameters. The proposed
methodology addresses several issues that arise with existing
nonlinear GMM estimators, such as local minima-related prob-
lems and a potential lack of global identification. At the same
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time, the proposed methodology retains the appealing features
of the method of moments in that it accommodates weakly
exogenous and endogenous regressors without the need for bias
correction.

We note that although this article has explicitly assumed that
vi (or V i) has an additive factor structure with corresponding
factor loadings γ i (Υ i), in practice, as it is clear from Equation
(21), the additive factor specification is sufficient but not neces-
sary. In particular, since the proposed estimation method uses
information from EF [̂Fe] only, it is sufficient that this expected
value is of reduced rank structure, that is, EF [̂Fe] = FeA. The
deviations from the mean, that is, Ψ = N−1 ∑N

i=1 Ψ i, can still
contain unobserved common shocks so long as they satisfy the
conditional independence in Assumption 2.1. Finally, Fe and
A should be simply regarded as correspondingly the left and
right singular vectors (up to a scaling) of EF [̂Fe]. Thus, the
FeA decomposition can be assumed completely without loss of
generality, provided that Le is defined accordingly.

We hope that the proposed methodology will enhance the
application of multifactor error structures in panels involving
micro level data, and encourage empirical researchers to imple-
ment such approaches in practice. Furthermore, since the result-
ing method of moments estimator has a close form solution, our
approach can be extended straightforwardly to several different
set ups, such as multidimensional panels, spatial panels, pseudo

panels, and threshold models, to mention a few. We leave these
avenues for future research.

Supplementary Materials

The supplementary appendix to this article provides additional results
about the method developed in the present article. In particular, Section S1
analyses several extensions of the model analyzed in the main text, includ-
ing unbalanced panels, observed factors, and consistency of the GMM
estimator under an alternative set of assumptions, in which the factor load-
ings are treated as a sequence of constants. Section S2 provides descriptive
statistics for the data used in the empirical illustration. Section S3 reports
additional Monte Carlo results. Finally, Section S4 provides proofs of the
main theoretical results put forward in the article.
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Appendix A: Monte Carlo Results

Table A1. Estimation results for L = 1 and Le = 1 setup.

Designs F1 F2 Fr Fbic

N T α δ Bias RMSE Std Size Bias RMSE Std Size Bias RMSE Std Size Bias RMSE Std Size

α

200 4 0.4 0.0 0.00 0.02 0.02 0.06 0.00 0.05 0.05 0.02 0.00 0.02 0.02 0.06 0.00 0.04 0.04 0.07
200 4 0.4 0.3 0.00 0.03 0.03 0.05 −0.01 0.07 0.07 0.02 0.00 0.03 0.03 0.07 0.00 0.04 0.04 0.08
200 4 0.8 0.0 0.00 0.03 0.03 0.06 0.00 0.05 0.05 0.02 0.00 0.02 0.02 0.07 0.00 0.03 0.03 0.07
200 4 0.8 0.3 0.00 0.03 0.03 0.07 0.00 0.06 0.06 0.03 0.00 0.03 0.03 0.07 0.00 0.03 0.03 0.08
200 8 0.4 0.0 0.00 0.02 0.02 0.11 0.00 0.02 0.02 0.06 0.00 0.01 0.01 0.09 0.00 0.02 0.02 0.11
200 8 0.4 0.3 −0.01 0.03 0.03 0.18 −0.01 0.03 0.03 0.09 −0.01 0.03 0.03 0.15 −0.01 0.04 0.03 0.18
200 8 0.8 0.0 0.00 0.01 0.01 0.10 0.00 0.02 0.02 0.07 0.00 0.01 0.01 0.12 0.00 0.02 0.02 0.13
200 8 0.8 0.3 0.00 0.02 0.02 0.13 0.00 0.02 0.02 0.07 0.00 0.02 0.02 0.13 0.00 0.02 0.02 0.13
800 4 0.4 0.0 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.02 0.00 0.01 0.01 0.04 0.00 0.01 0.01 0.07
800 4 0.4 0.3 0.00 0.02 0.02 0.05 0.00 0.04 0.04 0.02 0.00 0.02 0.02 0.06 0.00 0.02 0.02 0.06
800 4 0.8 0.0 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.02 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07
800 4 0.8 0.3 0.00 0.01 0.01 0.05 0.00 0.04 0.04 0.02 0.00 0.01 0.01 0.05 0.00 0.02 0.02 0.06
800 8 0.4 0.0 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.4 0.3 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.8 0.0 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.07
800 8 0.8 0.3 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.07

β

200 4 0.4 0.0 0.00 0.03 0.03 0.07 0.00 0.07 0.07 0.02 0.00 0.02 0.02 0.07 0.00 0.06 0.06 0.06
200 4 0.4 0.3 0.00 0.03 0.03 0.06 0.01 0.08 0.08 0.02 0.00 0.03 0.03 0.07 0.00 0.04 0.04 0.06
200 4 0.8 0.0 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.02 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
200 4 0.8 0.3 0.00 0.01 0.01 0.05 0.00 0.04 0.04 0.03 0.00 0.01 0.01 0.06 0.00 0.02 0.02 0.06
200 8 0.4 0.0 0.00 0.02 0.02 0.11 0.00 0.02 0.02 0.06 0.00 0.02 0.02 0.11 0.01 0.02 0.02 0.13
200 8 0.4 0.3 0.01 0.04 0.03 0.19 0.01 0.03 0.03 0.10 0.01 0.03 0.03 0.16 0.01 0.04 0.04 0.19
200 8 0.8 0.0 0.00 0.01 0.01 0.10 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.10 0.00 0.01 0.01 0.10
200 8 0.8 0.3 0.00 0.02 0.02 0.13 0.00 0.02 0.02 0.07 0.00 0.01 0.01 0.12 0.00 0.02 0.02 0.14
800 4 0.4 0.0 0.00 0.01 0.01 0.06 0.00 0.05 0.05 0.02 0.00 0.01 0.01 0.06 0.00 0.02 0.02 0.06
800 4 0.4 0.3 0.00 0.02 0.02 0.05 0.00 0.05 0.05 0.03 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.05
800 4 0.8 0.0 0.00 0.01 0.01 0.06 0.00 0.02 0.02 0.02 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 4 0.8 0.3 0.00 0.01 0.01 0.05 0.00 0.03 0.03 0.02 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06
800 8 0.4 0.0 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07
800 8 0.4 0.3 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.8 0.0 0.00 0.00 0.00 0.06 0.00 0.01 0.01 0.04 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
800 8 0.8 0.3 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
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Table A2. Estimation results for L = 2 and Le = 2 setup.

Designs F1 F2 Fr Fbic

N T α δ Bias RMSE Std Size Bias RMSE Std Size Bias RMSE Std Size Bias RMSE Std Size

α

200 4 0.4 0.0 −0.02 0.14 0.14 0.60 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 −0.01 0.09 0.09 0.09
200 4 0.4 0.3 −0.05 0.26 0.26 0.66 0.00 0.06 0.06 0.04 0.00 0.06 0.06 0.05 −0.01 0.22 0.22 0.09
200 4 0.8 0.0 −0.02 0.14 0.13 0.60 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.05 −0.01 0.09 0.09 0.10
200 4 0.8 0.3 −0.03 0.17 0.17 0.64 0.00 0.05 0.05 0.05 0.00 0.05 0.05 0.06 −0.01 0.15 0.15 0.11
200 8 0.4 0.0 −0.03 0.11 0.11 0.76 0.00 0.02 0.02 0.08 0.00 0.02 0.02 0.08 0.00 0.02 0.02 0.09
200 8 0.4 0.3 −0.10 0.33 0.31 0.83 0.00 0.03 0.03 0.11 0.00 0.03 0.03 0.11 0.00 0.04 0.04 0.11
200 8 0.8 0.0 −0.02 0.09 0.09 0.73 0.00 0.01 0.01 0.09 0.00 0.01 0.01 0.09 0.00 0.02 0.02 0.09
200 8 0.8 0.3 −0.08 0.20 0.18 0.79 0.00 0.02 0.02 0.10 0.00 0.02 0.02 0.10 0.00 0.02 0.02 0.11
800 4 0.4 0.0 −0.02 0.14 0.14 0.79 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.04 0.00 0.06 0.06 0.07
800 4 0.4 0.3 −0.05 0.25 0.24 0.80 0.00 0.03 0.03 0.06 0.00 0.03 0.03 0.05 −0.01 0.13 0.13 0.08
800 4 0.8 0.0 −0.02 0.13 0.13 0.78 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.05 0.00 0.04 0.04 0.08
800 4 0.8 0.3 −0.04 0.17 0.17 0.80 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.06 −0.01 0.12 0.12 0.08
800 8 0.4 0.0 −0.02 0.11 0.10 0.85 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.4 0.3 −0.09 0.31 0.30 0.91 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07
800 8 0.8 0.0 −0.02 0.08 0.08 0.84 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.8 0.3 −0.07 0.17 0.16 0.87 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.08

β

200 4 0.4 0.0 0.02 0.14 0.14 0.42 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.05 0.01 0.21 0.21 0.08
200 4 0.4 0.3 0.04 0.26 0.26 0.54 0.00 0.07 0.07 0.05 0.00 0.08 0.08 0.06 0.00 0.28 0.28 0.08
200 4 0.8 0.0 0.01 0.05 0.05 0.32 0.00 0.03 0.03 0.05 0.00 0.03 0.03 0.06 0.00 0.07 0.07 0.06
200 4 0.8 0.3 0.01 0.07 0.07 0.35 0.00 0.04 0.04 0.05 0.00 0.04 0.04 0.04 0.01 0.13 0.13 0.07
200 8 0.4 0.0 0.03 0.13 0.13 0.71 0.00 0.02 0.02 0.09 0.00 0.02 0.02 0.09 0.00 0.02 0.02 0.09
200 8 0.4 0.3 0.11 0.39 0.37 0.81 0.00 0.03 0.03 0.11 0.00 0.03 0.03 0.11 0.00 0.04 0.04 0.12
200 8 0.8 0.0 0.01 0.05 0.05 0.61 0.00 0.01 0.01 0.09 0.00 0.01 0.01 0.09 0.00 0.01 0.01 0.10
200 8 0.8 0.3 0.07 0.19 0.18 0.74 0.00 0.02 0.02 0.10 0.00 0.02 0.02 0.10 0.00 0.02 0.02 0.11
800 4 0.4 0.0 0.02 0.14 0.14 0.64 0.00 0.03 0.03 0.05 0.00 0.03 0.03 0.05 0.00 0.18 0.18 0.07
800 4 0.4 0.3 0.04 0.24 0.24 0.72 0.00 0.03 0.03 0.05 0.00 0.04 0.04 0.05 0.01 0.12 0.12 0.07
800 4 0.8 0.0 0.00 0.04 0.04 0.53 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.05 0.00 0.13 0.13 0.07
800 4 0.8 0.3 0.01 0.08 0.08 0.56 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.06 0.00 0.12 0.12 0.07
800 8 0.4 0.0 0.03 0.12 0.11 0.81 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.4 0.3 0.09 0.37 0.36 0.90 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07
800 8 0.8 0.0 0.01 0.04 0.04 0.74 0.00 0.01 0.01 0.05 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.06
800 8 0.8 0.3 0.06 0.16 0.15 0.83 0.00 0.01 0.01 0.07 0.00 0.01 0.01 0.06 0.00 0.01 0.01 0.07

Table A3. Model selection and specification testing results.

L = Le = 1 L = Le = 2

Designs J-statistic BIC ER Le J-statistic BIC ER Le

N T α δ F1 F2 Fr #L̂ = 1 #L̂ = 2 #L̂e = 1 #L̂e = 2 #L̂e = 3 F1 F2 Fr #L̂ = 1 #L̂ = 2 #L̂e = 1 #L̂e = 2 #L̂e = 3

200 4 0.4 0.0 0.03 0.01 0.05 0.98 0.02 0.98 0.00 0.02 0.97 0.05 0.05 0.16 0.84 0.16 0.76 0.08
200 4 0.4 0.3 0.03 0.01 0.04 0.98 0.02 0.97 0.00 0.02 0.96 0.04 0.05 0.16 0.84 0.17 0.76 0.07
200 4 0.8 0.0 0.05 0.02 0.05 0.98 0.02 0.98 0.00 0.02 0.96 0.04 0.04 0.20 0.80 0.17 0.76 0.08
200 4 0.8 0.3 0.04 0.02 0.04 0.98 0.02 0.97 0.00 0.03 0.95 0.04 0.04 0.20 0.80 0.15 0.77 0.08
200 8 0.4 0.0 0.03 0.01 0.03 0.96 0.04 1 0.00 0.00 1 0.03 0.02 0.01 0.99 0.06 0.93 0.01
200 8 0.4 0.3 0.03 0.01 0.03 0.96 0.04 1 0.00 0.00 1 0.02 0.02 0.02 0.98 0.07 0.93 0.01
200 8 0.8 0.0 0.02 0.01 0.03 0.97 0.03 1 0.00 0.00 1 0.03 0.03 0.01 0.99 0.07 0.92 0.01
200 8 0.8 0.3 0.03 0.01 0.03 0.97 0.03 1 0.00 0.00 1 0.02 0.02 0.02 0.98 0.06 0.93 0.01
800 4 0.4 0.0 0.06 0.02 0.06 0.99 0.01 0.99 0.00 0.01 1 0.05 0.05 0.05 0.95 0.07 0.91 0.03
800 4 0.4 0.3 0.04 0.02 0.04 1 0.00 0.99 0.00 0.01 1 0.05 0.05 0.04 0.96 0.07 0.90 0.03
800 4 0.8 0.0 0.04 0.02 0.04 1 0.00 0.99 0.00 0.01 0.99 0.04 0.04 0.06 0.94 0.08 0.89 0.03
800 4 0.8 0.3 0.05 0.02 0.06 1 0.00 0.99 0.00 0.01 1 0.05 0.06 0.05 0.95 0.07 0.90 0.03
800 8 0.4 0.0 0.05 0.02 0.04 1 0.01 1 0.00 0.00 1 0.05 0.05 0.00 1 0.01 0.99 0.00
800 8 0.4 0.3 0.04 0.02 0.04 0.99 0.01 1 0.00 0.00 1 0.05 0.04 0.00 1 0.01 0.99 0.00
800 8 0.8 0.0 0.05 0.02 0.05 1 0.00 1 0.00 0.00 1 0.05 0.05 0.00 1 0.01 0.99 0.00
800 8 0.8 0.3 0.05 0.02 0.05 0.99 0.01 1 0.00 0.00 1 0.05 0.04 0.00 1 0.01 0.99 0.00
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