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Abstract. In this article, we introduce a new community-contributed command
called xtbunitroot, which implements the panel-data unit-root tests developed
by Karavias and Tzavalis (2014, Computational Statistics and Data Analysis 76:
391–407). These tests allow for one or two structural breaks in deterministic
components of the series and can be seen as panel-data counterparts of the tests
by Zivot and Andrews (1992, Journal of Business and Economic Statistics 10:
251–270) and Lumsdaine and Papell (1997, Review of Economics and Statistics
79: 212–218). The dates of the breaks can be known or unknown. The tests allow
for intercepts and linear trends, nonnormal errors, and cross-section heteroskedas-
ticity and dependence. They have power against homogeneous and heterogeneous
alternatives and can be applied to panels with small or large time-series dimen-
sions.
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1 Introduction
A fundamental property of time-series data is stationarity. If a time series is stationary,
then all the standard tools of statistical analysis can be applied; the series can be
used in regression models, its mean and variance estimated, and its future forecasted.
Frequently, though, time series are nonstationary, or unit-root processes as they are
called, and in this case their statistical analysis is different. If nonstationarity is not
accounted for, many problems arise for inference and prediction, the most notable of
which is that of spurious regression; see, for example, Granger and Newbold (1974).
Spurious regression leads to high R2 and statistically significant coefficients, when in fact
there might be no relationship between the series of interest. Therefore, determining
whether a series is stationary should be one of the first steps in any time-series and
panel-data (which consist of multiple time series) analysis. Unit-root tests are statistical
hypothesis tests used to infer whether a series is a unit root or a stationary process; see,
for example, Dickey and Fuller (1979).
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In a seminal article, Perron (1989) demonstrated that structural breaks can adversely
impact the behavior of unit-root tests. Structural breaks are shocks that are exogenous
to the model but have a lasting effect because they change the model parameters.
Structural breaks occur when a system is hit by large-scale phenomena; in economics,
for example, such events include wars, policy changes, a pandemic like COVID-19, or a
financial crisis. These shocks can make stationary series look as if they are nonstationary
and therefore mislead the unit-root tests to accept the null hypothesis of nonstationarity
when it is not true. To deal with this problem, Perron (1989) proposed new unit-
root tests that allow for a structural break in the constant and trend of the series.
Perron’s approach, however, assumed that the date of the structural break is known
to the researcher. Zivot and Andrews (1992) and Banerjee, Lumsdaine, and Stock
(1992) extended Perron (1989) by allowing the date of the break to be endogenously
determined by the data, and Lumsdaine and Papell (1997) further extended Zivot and
Andrews (1992) to the case of two structural breaks at unknown dates.

Structural breaks can affect panel (longitudinal) data unit-root tests in the same
way. In response, Karavias and Tzavalis (2014) proposed panel-data unit-root tests
that allow for structural breaks in the intercepts of the series or in both the intercepts
and linear trends. The break dates are assumed to be common for all series, but the
magnitude of the break can differ across series. The null hypothesis is the same as in
Zivot and Andrews (1992) and Lumsdaine and Papell (1997); under the null, the panel
series are assumed to constitute unit-root processes without breaks, while under the
alternative, they are stationary around breaking means or breaking means and trends.

The Karavias and Tzavalis (2014) tests are widely applicable and possess some
unique optimality properties, as has been shown in Karavias and Tzavalis (2017, 2019).
In terms of applicability, they can be used in both small- and large-T settings, where
T is the number of time-series observations. They allow for multiple common breaks,
and the dates of the breaks can be known or unknown. In the latter case, they can
be endogenously determined from the data. The errors can be nonnormal and have
cross-sectional heteroskedasticity and dependence. Finally, the autoregressive coeffi-
cients under the alternative can be homogeneous or heterogeneous, which means that
either they can be the same for all units or they can differ between units. In terms of
their optimality properties, the tests are invariant under the null to the initial condition,
which means that no assumptions on the first observations are necessary, as is the case
in other fixed-T tests. Furthermore, the tests are invariant to the coefficients of the
deterministic components, and are powerful in the presence of linear trends.

This article introduces xtbunitroot, a new community-contributed command that
implements the panel-data unit-root tests of Karavias and Tzavalis (2014). The com-
mand includes the options of one or two breaks at known or unknown dates. This is the
first command that allows for panel unit-root tests with structural breaks, and therefore
it is a complement to the official xtunitroot command and the community-contributed
multipurt (Eberhardt 2011), xtfisher (Merryman 2005), and pescadf (Lewandowski
2007) commands.
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The breaks can affect the intercepts only or the intercepts and the linear trends of
the series. If the dates of the breaks are unknown, then a bootstrap procedure described
in Karavias and Tzavalis (2019) is used to derive the critical value and the p-value of
the test. Other options include the allowance of cross-section heteroskedasticity, cross-
section dependence as in O’Connell (1998), and normal errors. Unbalanced panels are
also supported.

The xtbunitroot command is applied to examine stationarity in four fundamental
bank balance sheet variables frequently used in the banking literature: returns on assets,
returns on equity, total assets, and noninterest income. Their stationarity properties
affect model building and economic evaluation; see, for example, Kripfganz and Sarafidis
(2021) and Delis and Karavias (2015), and in panel forecasting, see, for example, Liu,
Moon, and Schorfheide (2020). We examine a sample of 500 randomly selected U.S.
banks for the period 2018Q3 to 2020Q4. This period contains the shock of the COVID-
19 pandemic and the lockdown, which could have caused a structural break in the series.
We find that returns on assets, returns on equity, and noninterest income are stationary,
but total assets are nonstationary.

The remainder of the article is organized as follows. In section 2, we present the
panel unit-root tests as developed by Karavias and Tzavalis (2014) and their exten-
sion to two breaks along the lines of Karavias and Tzavalis (2019). This section also
provides some Monte Carlo simulations on the behavior of the tests with two breaks.
The simulations have been done using the xtbunitroot command. Section 3 describes
the syntax of xtbunitroot. Section 4 illustrates the command by analyzing the four
banking variables. Section 5 concludes the article.

2 Panel unit-root tests with structural breaks
2.1 One break

For panels with N cross-section units, T time-series observations, and one common
break, Karavias and Tzavalis (2014) give two models. The first model can be used
to test the null hypothesis of a random walk against the alternative hypothesis of a
stationary series with a break in the intercepts (means) of the series,

H0 : yi,t = yi,t−1 + ui,t

H1 : yi,t = ϕyi,t−1 + (1− ϕ) {a1,iI(t ≤ b) + a2,iI(t > b)}+ ui,t (1)

where i = 1, . . . , N and t = 1, . . . , T . In the above model, ϕ is the autoregressive
parameter, and a1,i and a2,i are the fixed effects before and after the break, which
happens on date b. The notation I(·) denotes the indicator function.

The second model tests the null hypothesis of a random walk with drift against the
alternative of a trend-stationary panel process with a break in the intercepts and linear
trends at time b:

H0 : yi,t = yi,t−1 + βi + ui,t
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and

H1 : yi,t = ϕyi,t−1 + ϕ {β1,iI(t ≤ b) + β2,iI(t > b)}
+ (1− ϕ) {a1,iI(t ≤ b) + a2,iI(t > b)}
+ (1− ϕ) {β1,itI(t ≤ b) + β2,itI(t > b)}+ ui,t (2)

In the above formulation, βi is the drift under the null hypothesis, while β1,i and β2,i

are the trend coefficients under the alternative hypothesis.

We will henceforth denote by M1 the model with intercepts (1) and by M2 the
model with both intercepts and trends (2). For M1, the break is allowed to be in
I1 = {1, 2, . . . , T − 1}, and for M2 the break is allowed to be in I2 = {2, . . . , T − 2}.1

The alternative hypothesis is homogeneous across different individuals, but Karavias
and Tzavalis (2016) have shown that the test has power against heterogeneous alterna-
tives as well, when ϕi 6= ϕj and ϕi, ϕj < 1 for i, j = 1, . . . , N and i 6= j. Furthermore,
Juodis, Karavias, and Sarafidis (2021) argue that pooled estimators can lead to power
gains as opposed to mean-group-type estimators like those of Im, Pesaran, and Shin
(2003).

Karavias and Tzavalis (2014) propose estimating the autoregressive parameter ϕ
with the following pooled least-squares estimator,

ϕ̂ =

(
N∑
i=1

y′
i,−1Q

b
myi,−1

)−1( N∑
i=1

y′
i,−1Q

b
myi

)
, m = {M1,M2}

where yi = (yi,1, . . . , yi,T )
′ and yi,−1 = (yi,0, . . . , yi,T−1)

′ are T × 1 vectors. The or-
thogonal projection matrix Qb

m is defined as Qb
m = IT −Xb

m(Xb′
mXb

m)−1Xb′
m, where IT

is the T × T identity matrix and Xb
M1 = (e1, e2) and Xb

M2 = (e1, e2, τ1, τ2) are T × 2
and T × 4 matrices, respectively, where

e1,t =

{
1 if t ≤ b

0 elsewhere
, e2,t =

{
1 if t > b

0 elsewhere

and

τ1,t =

{
t if t ≤ b

0 elsewhere
, τ2,t =

{
t if t > b

0 elsewhere

The superscripts b in Qb
m and Xb

m denote dependence on the break date.

The estimator ϕ̂ is asymptotically inconsistent; therefore, it must be modified. If
the date of the break b is known, the following statistic is asymptotically normally
distributed as N →∞,

Z(b) =
√
N
{
Cb(ku, σ

2
u)
}−1/2 (

ϕ̂−Bb − 1
) L−→ N(0, 1)

1. Notice that in the above setup, we have a total of T + 1 observations to simplify notation. In the
presentation of the xtbunitroot command and in the example below, we assume that the total
number of time-series observations is T , and therefore, I1 and I2 become I1 = {2, . . . , T − 1} and
I2 = {3, . . . , T − 2}.
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where Bb is the bias correction and Cb is the variance of the bias-corrected (modified) es-
timator. The parameters ku and σ2

u are error moments to be estimated, but if the errors
are normally distributed, they are removed from Cb, which becomes a simple function
of the break date and the number of time-series observations. Normality also removes
any nuisance parameters related to cross-section heteroskedasticity. The assumptions
for the above result are mild, with the strongest being that there is no residual serial
correlation in the errors ui,t.

To deal with cross-sectional dependence in error terms, one popular approach is
demeaning the series across i by subtracting the cross-sectional averages for all t before
conducting the test (see, for example, O’Connell [1998]),

ỹi,t = yi,t − yt

where

yt =
1

N

N∑
i=1

yi,t

If the date of the break is unknown, Karavias and Tzavalis (2014) follow Zivot and
Andrews (1992) and propose the following statistic to test for unit roots:

minZ = min
b∈Im

Z(b) for m = {M1,M2}

The limiting distribution of this statistic is shown to depend on the time dimension
T . Following Karavias and Tzavalis (2019), the xtbunitroot command implements a
bootstrap algorithm to derive the critical values and p-values of minZ. The asymptotic
distribution is valid for T fixed and N →∞. The xtbunitroot command also reports
the date with the most evidence against the null hypothesis b̂ = argminb∈ImZ(b). Notice,
however, that the break date estimator is not consistent. For consistent break date
estimation in small or large T , one may use the xtbreak command of Ditzen, Karavias,
and Westerlund (2021) (see also Karavias, Narayan, and Westerlund [Forthcoming]).

The xtbunitroot command supports unbalanced panels. In this case, the missing
values in the formulas are zeroed out because this method maximizes the power of tests;
see, for example, Karavias, Tzavalis, and Zhang (2022).

2.2 Extension to two-break case

The alternative hypotheses in M1 and M2 allow for two breaks. In this case, (1) and
(2) become

H1 : yi,t = ϕyi,t−1

+ (1− ϕ) {a1,iI(t ≤ b1) + a2,iI(b1 < t ≤ b2) + a3,iI(t > b2)}+ ui,t (3)
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and

H1 : yi,t = ϕyi,t−1 + ϕ {β1,iI(t ≤ b1) + β2,iI(b1 < t ≤ b2) + β3,iI(t > b2)}
+ (1− ϕ) {a1,iI(t ≤ b1) + a2,iI(b1 < t ≤ b2) + a3,iI(t > b2)}
+ (1− ϕ) {β1,itI(t ≤ b1) + β2,itI(b1 < t ≤ b2) + β3,itI(t > b2)}+ ui,t (4)

The pooled least-squares estimator is based on the Qb1,b2
m orthogonal projection ma-

trix, where Qb1,b2
m = IT −Xb1,b2

m (Xb1,b2′
m Xb1,b2

m )−1Xb1,b2′
m and where Xb1,b2

M1 = (e1, e2, e3)

and Xb1,b2
M2 = (e1, e2, e3, τ1, τ2, τ3) are T × 3 and T × 6 matrices, respectively, with

e1,t =

{
1 if t ≤ b1

0 elsewhere
, e2,t =

{
1 if b1 < t ≤ b2

0 elsewhere
, e3,t =

{
1 if t > b2

0 elsewhere

The vector τt is defined as

τ1,t =

{
t if t ≤ b1

0 elsewhere
, τ2,t =

{
t if b1 < t ≤ b2

0 elsewhere
, τ3,t =

{
t if t > b2

0 elsewhere

The distributions of the test statistics are as before; Z(b1, b2) is standard normal when
b1 and b2 are known, and

minZ = min
b1,b2∈Im

Z(b1, b2) for m = {M1,M2}

can be used when the dates of the breaks are unknown. Its limiting distribution can
be calculated using the bootstrap. Notice that b1 and b2 cannot be in two consecutive
dates for M2, which is the same situation as in a single time series; see, for example,
Lumsdaine and Papell (1997). The xtbunitroot command implements a bootstrap
algorithm to derive the critical values and p-values. This asymptotic distribution is
valid for T fixed and N → ∞, and the combination of dates with the most evidence
against the null hypothesis {b̂1, b̂2} = argminb1,b2∈ImZ(b) is reported.

To provide some evidence on the behavior of the test statistic with two breaks,
we conduct a small Monte Carlo experiment. Consider the data-generation process in
(1) and (2) under the null and (3) and (4) under the alternative. We assume that
the error term ui,t ∼ independent and identically distributed N(0, 1). The panel-data
series yi,t is generated with autoregressive coefficient ϕ = 1 to investigate the size at
5% significance level and ϕ = {0.90, 0.95} to investigate the power of the test. As we
set ϕ very close to 1, it will be hard to reject the null under H1 : ϕ < 1. The initial
values yi,0 are generated as yi,0 ∼ independent and identically distributed N(0, 1). For
the M1 and M2 models, we generate the intercept and trend coefficients as follows:
a1,i ∼ U(−0.5, 0), a2,i ∼ U(0, 0.5), and a3,i ∼ U(0.5, 1). The slope coefficients for the
linear trends are generated as β1,i ∼ U(0, 0.025), β2,i ∼ U(0.025, 0.05), and β3,i ∼
U(0.05, 0.075). These parameter choices follow Karavias and Tzavalis (2014) and are
made to make it harder to reject the null H0 : φ = 1. We set break dates to the following
fractions of the sample, λ1 = 0.25, λ2 = 0.75. The number of bootstrap replications is
set to 100, which is the default in xtbunitroot.



670 Panel unit-root tests with structural breaks

The results of the exercise appear in table 1. We can see that for both known and
unknown breaks, the size of the tests is always very close to its nominal 5% level, and
the power is satisfactory and increasing with both N and T .

Table 1. Size and power of the tests for two known and unknown breaks

Panel A: Known breaks
ϕ = 1 ϕ = 0.95 ϕ = 0.90

(N,T ) 10 25 50 10 25 50 10 25 50

M1 25 0.060 0.057 0.071 0.180 0.359 0.719 0.311 0.684 0.990
50 0.055 0.062 0.053 0.226 0.566 0.915 0.441 0.918 1.000
100 0.050 0.054 0.061 0.355 0.809 0.996 0.687 0.995 1.000

M2 25 0.056 0.059 0.070 0.062 0.087 0.184 0.077 0.170 0.607
50 0.052 0.051 0.060 0.059 0.093 0.258 0.077 0.240 0.840
100 0.055 0.061 0.057 0.064 0.117 0.384 0.095 0.375 0.985

Panel B: Unknown breaks
ϕ = 1 ϕ = 0.95 ϕ = 0.90

(N,T ) 10 15 25 10 15 25 10 15 25

M1 25 0.030 0.030 0.030 0.070 0.250 0.410 0.270 0.580 0.770
50 0.020 0.050 0.070 0.300 0.440 0.700 0.580 0.810 0.970
100 0.020 0.070 0.040 0.400 0.720 0.930 0.810 0.990 1.000

M2 25 0.080 0.050 0.060 0.080 0.070 0.060 0.100 0.100 0.130
50 0.060 0.080 0.050 0.070 0.060 0.050 0.070 0.100 0.080
100 0.060 0.040 0.010 0.050 0.040 0.040 0.050 0.080 0.200

notes: The reported values are rejection probabilities. For ϕ = 1, the reported rejec-
tion rates give the size of the test, while for ϕ < 1, they give the power of the test. The
M1 model includes intercepts, while the M2 model includes both intercepts and linear
trends. The dates of the breaks are b1 = b0.25T c, b2 = b0.75T c.

3 The xtbunitroot command
3.1 Syntax

xtbunitroot varname
[

if
] [

in
] [

, trend known(#1

[
#2

]
) unknown(#3

[
#4

]
)

normal csd het nobootstrap showindex level(#) seed(#)
]

where varname is the variable to be tested for nonstationarity. You must xtset your
data before using xtbunitroot. If no option is specified, the default will be the model
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with a single break in the intercepts, at an unknown date: xtbunitroot varname,
unknown(1 100). varname can contain time-series operators.

3.2 Options

trend specifies that the deterministic component of the model include individual in-
tercepts (means) and individual linear trends. The common breaks affect both in-
tercepts and trends. Breaks in consecutive dates are not allowed in this model. In
this model, the breaks can be in dates from 3 to T − 2, while in the model with
intercepts, the breaks can take place from 2 up to T − 1.

known(#1

[
#2

]
) specifies the number and places of breaks. This option implements

the case when the dates of the breaks are known. The #1 input specifies the location
of the first break, and the

[
#2

]
input specifies the location of the second break. If

only one break is assumed, known(#1) can be used. The inputs should be in terms
of time ordering (from 1 to T ), instead of using dates, that is, 1995 or 2020. The
break dates should be in order. For example, known(5) means the break occurs in
period 5, and known(3 7) means the first break occurs in period 3 and the second
break occurs in period 7.

unknown(#3

[
#4

]
) specifies the number of breaks and the number of bootstrap repli-

cations. This option is used when the dates of the breaks are unknown to the re-
searcher. The number of bootstrap replications,

[
#4

]
, can be omitted. The option

unknown(2) states that there are two unknown breaks and the critical and p-values
will be calculated based on the default number of bootstrap replications, which is
set to 100.

normal specifies that the errors be normally distributed.

csd subtracts the cross-section averages for each time period and applies the tests in
the demeaned series.

het specifies that the errors be cross-sectionally heteroskedastic. If both het and normal
are specified, the results will be the same as in the case that only normal is used,
because if the errors are normal, then heteroskedastic variances drop out.

nobootstrap prevents the command from running the bootstrap. The bootstrap is
necessary for calculating critical values and p-values for the test when the dates of
the breaks are unknown. However, if the dataset is very large, then the bootstrap
can be time consuming. This option stops the bootstrap but returns the minZ
statistic and the estimated break dates. The minZ statistic can then be compared
with the approximate critical values that appear in table 1 of Karavias and Tzavalis
(2014), which is reported in the command output. This option can be used only with
the option normal because the available critical values are for normally distributed
errors.
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showindex specifies that the estimated break date be reported as a time index. For
example, an estimated break point at the 9th observation will be reported as 9
instead of 2021q4.

level(#) specifies the level of the test used. The default is level(5), and all integers
between 1 and 99 are applicable. For example, level(10) sets the level of the
one-sided null hypothesis to 10%.

seed(#) specifies the seed used in the bootstrap process for the case of unknown breaks.
The default is seed(123). Seed is important for reproducing bootstrap-based results.

3.3 Stored results

xtbunitroot stores the following in r():

Scalars
r(N) number of total observations
r(N_g) number of cross-sectional units
r(T) number of time periods
r(breaks) number of breaks
r(break1) time index of the first break
r(break2) time index of the second break
r(seed) seed
r(Z) Z or minZ statistic
r(pvalue) p-value for the Z or minZ statistic
r(cv) asymptotic or bootstrap critical value
r(boot) number of bootstrap replications
r(fihat) estimate of autoregressive parameter
r(khat) estimate of k
r(shat) estimate of error variance

Macros
r(idvar) name of panel ID variable
r(tvar) name of panel time variable
r(varname) name of tested variable
r(model) type of model: constant or trend
r(date1) date of the first break
r(date2) date of the second break
r(avert) average number of time periods

Matrices
r(kui) individual k for heteroskedastic errors
r(sigmai) individual variances for heteroskedastic errors

4 Example
4.1 Unit-root tests for bank balance sheet variables

Unit-root processes were originally important for macroeconomic variables. However,
as Holtz-Eakin, Newey, and Rosen (1988) argue, such dynamic relationships can appear
in other economic variables for which long time series may not be available. In this
case, the panel dimension of the data can be used for inference.
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In this section, we focus on bank balance sheet variables taken from the call reports
of the Federal Deposit Insurance Corporation. This is a very popular dataset; see, for
example, Kripfganz and Sarafidis (2021) and Juodis, Karavias, and Sarafidis (2021)
for some recent applications. However, while stationarity of the bank balance sheet
variables is frequently assumed, it is almost never tested. The contribution of this
section is to examine the stationarity of four variables of interest, namely, returns on
assets, returns on equity, total assets, and noninterest income. The returns on assets
(roa) are defined as net income after taxes and extraordinary items and is given as a
percent of average total assets. The returns on equity (roe) are defined as net income
over average total equity; total assets (tassets) are the year-to-date average of total
assets; and noninterest income (nii) is defined as income derived from bank services
and sources other than interest bearing assets, over average total assets.

We collect data for a random sample of 500 banks from the third quarter of 2018
to the fourth quarter of 2020. This period includes the COVID-19 pandemic, which may
have caused breaks in the intercepts and trends of the series. The short dimension of the
data is chosen so that our sample of banks does not suffer from survivorship bias. The
data are publicly available, and they have been downloaded from the Federal Deposit
Insurance Corporation website.2

In the following, we perform panel unit-root tests allowing for structural breaks in
the aforementioned variables. We assume that our sample is large enough so that the
idiosyncratic errors ui,t are normally distributed. The errors can be cross-sectionally
heteroskedastic, but under the normality assumption, the tests are invariant to het-
eroskedasticity. Finally, we assume error cross-section dependence, caused possibly by
the monetary policy rate.

We start the analysis with the roa series. First, we assume that the date of the break
is known to be the first quarter of 2020. Second, we allow the break to be unknown
and determined from the data. In the latter case, the critical values are taken using 100
bootstrap samples, which is the default. The results are given below:

2. See https://www.fdic.gov/. The sample used is available at
https://sites.google.com/site/yianniskaravias/ and the Boston College Statistical Software Com-
ponents Archive.

https://www.fdic.gov/
https://sites.google.com/site/yianniskaravias/
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. use xtbunitroot_example

. xtset fed_rssd time
Panel variable: fed_rssd (strongly balanced)
Time variable: time, 1 to 10

Delta: 1 unit
. xtbunitroot roa, known(7) normal csd
Karavias and Tzavalis (2014) panel unit root test for roa

H0: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes

Number of panels: 500 Avrge number of periods: 10.00
Number of breaks: 1
Cross-section dependence: Yes Linear time trend: No
Cross-section heteroskedasticity: No Normal errors: Yes

Statistic Asymtotic critical-value p-value

Z-statistic -15.5212 -1.6449 0.0000

Result: the null is rejected
Known break date(s): 7
Significance level of test: .05

The output above indicates that the Z(b) statistic is equal to −15.521, which is far
less than the critical value of −1.645; therefore, we can reject the null hypothesis of
nonstationarity. The break under the alternative takes place in observation 7, which
corresponds to the first quarter of 2020. The output also reports the result “the null
is rejected”, which is the outcome at the 5% significance level. The following output
presents the results for roa, when the date of the break is unknown.

. xtbunitroot roa, unknown(1) normal csd
Karavias and Tzavalis (2014) panel unit root test for roa

H0: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes

Number of panels: 500 Avrge number of periods: 10.00
Number of breaks: 1 Bootstrap replications: 100
Cross-section dependence: Yes Linear time trend: No
Cross-section heteroskedasticity: No Normal errors: Yes

Statistic Bootstrap critical-value p-value

minZ-statistic -25.1619 8.5546 0.0000

Result: the null is rejected
Estimated break date(s): 6
Significance level of test: .05
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We can see from the above output that the minZ statistic is equal to −25.162, which
is much smaller than the bootstrap critical value of 8.555; therefore, we once more reject
the null hypothesis. The p-value is also reported and implies that the null hypothesis is
rejected at the 1% significance level. The date with the most evidence against the null is
observation 6, which corresponds to the fourth quarter of 2019, although this estimator
is not expected to provide a consistent estimate of the break date, as mentioned earlier.

For the remaining three variables, we will implement the tests being agnostic about
the date of the break. For tassets and nii, we also include linear trends.

. xtbunitroot roe, unknown(1) normal csd
Karavias and Tzavalis (2014) panel unit root test for roe

H0: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes

Number of panels: 500 Avrge number of periods: 10.00
Number of breaks: 1 Bootstrap replications: 100
Cross-section dependence: Yes Linear time trend: No
Cross-section heteroskedasticity: No Normal errors: Yes

Statistic Bootstrap critical-value p-value

minZ-statistic -20.9965 -19.4133 0.0100

Result: the null is rejected
Estimated break date(s): 8
Significance level of test: .05
. xtbunitroot tassets, unknown(1) normal csd trend
Karavias and Tzavalis (2014) panel unit root test for tassets

H0: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes

Number of panels: 500 Avrge number of periods: 10.00
Number of breaks: 1 Bootstrap replications: 100
Cross-section dependence: Yes Linear time trend: Yes
Cross-section heteroskedasticity: No Normal errors: Yes

Statistic Bootstrap critical-value p-value

minZ-statistic -8.3437 -69.5491 0.6200

Result: the null is not rejected
Significance level of test: .05
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. xtbunitroot nii, unknown(1) normal csd trend
Karavias and Tzavalis (2014) panel unit root test for nii

H0: All panel time series are unit root processes
H1: Some or all of the panel time series are stationary processes

Number of panels: 500 Avrge number of periods: 10.00
Number of breaks: 1 Bootstrap replications: 100
Cross-section dependence: Yes Linear time trend: Yes
Cross-section heteroskedasticity: No Normal errors: Yes

Statistic Bootstrap critical-value p-value

minZ-statistic -26.7284 -18.3424 0.0000

Result: the null is rejected
Estimated break date(s): 6
Significance level of test: .05

As we can see from the above outputs, roe and nii are stationary, while tassets
is not. When the null hypothesis is not rejected at the 5% level, the output does not
report the break date; however, this date can be recovered from r(break1). In smaller
datasets, one may wish to employ higher levels of significance using the level() option.
For tassets, the date with the most evidence against the null is the first quarter of
2019; however, the p-value is high, and we cannot reject the null hypothesis.

5 Concluding remarks
This article introduced a new community-contributed command, xtbunitroot, that
implements the panel-data unit-root tests with structural breaks, developed by Karavias
and Tzavalis (2014). This is the first command that allows for panel unit-root tests
with structural breaks; it allows for one or two breaks under an alternative that can be
known or unknown. It also allows for linear trends, cross-sectional heteroskedasticity
and dependence, and nonnormal errors. The xtbunitroot command was applied to four
bank balance sheet variables, and it was found that returns on assets, returns on equity,
and noninterest income are stationary variables, but total assets are nonstationary.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0687 (to install program files, if available)

. net get st0687 (to install ancillary files, if available)
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