
Multiscale Simulation of Fluids: Coupling Molecular and
Continuum

Edward R. Smith∗a and Panagiotis E. Theodorakis∗b

Computer simulation is an important tool for scientific progress, especially when lab experiments are
either extremely costly and difficult or lack the required resolution. However, all of the simulation
methods come with limitations. In molecular dynamics (MD) simulation, the length and time scales
that can be captured are limited, while computational fluid dynamics (CFD) methods are built on
a range of assumptions, from the continuum hypothesis itself, to a variety of closure assumptions.
To address these issues, the coupling of different methodologies provides a way to retain the best
of both methods. Here, we provide a perspective on multiscale simulation based on the coupling
of MD and CFD with each a distinct part of the simulation domain. This style of coupling allows
molecular detail to be present only where it is needed, so CFD can model larger scales than possible
with MD alone. We present a unified perspective of the literature, showing the links between state
and flux coupling and discuss the various assumptions required for both. A unique challenge in
such coupled simulation is obtaining averages and constraining local parts of a molecular simulation.
We highlight that incorrect localisation has resulted in an error in the literature for both pressure
tensor and coupling constraints. We then finish with some applications, focused on the simulation
of fluids. Thus, we hope to motivate further research in this exciting area with applications across
the spectrum of scientific disciplines.

Technological advancements in computer software and hardware,
combined with scientific ingenuity has led to the development of
a wealth of novel computational methodologies over the years.
This has established computer simulation as a key tool in a wide
spectrum of fields in science and engineering across academia and
industry. Moreover, the implementation of simulation techniques
is often provided as open-source or free software, which allows
for the widespread use of the methods in various applications,
accelerating software development, and facilitating scientific ex-
change, validation, and eventually progress. As a result, unprece-
dented perspectives in scientific research unfold, with simulation
already having a leading role in the study of physical and chemi-
cal processes, and novel materials’ design. This is important since
simulation can offer advantages in cases that lab experiments are
costly, difficult, dangerous, lack the necessary resolution or are
simply impossible.

Luckily, a number of well-established simulation methods sup-
ported by open-source or free software are available to scientists
nowadays. However, each simulation method is only suitable for
capturing a particular range of length and time scales of a phe-
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nomenon. For example, at the scale of most engineering prob-
lems, the continuum assumptions allow a fluid to be described
using partial differential equations. These equations require a
number of assumptions to model fluids, such as a constant vis-
cosity coefficient1, a sharp interface with well-defined surface
tension2 or a simple relationship between angle and movement
of a contact line3, which can be shown to break down at small
enough scales. At these small scales, molecular dynamics (MD)
simulation is able to describe the wider range of physics required.
However, MD is limited to systems in nanometre length scales
and nanosecond time scales. With fit-for-purpose hardware and
software, MD has been applied in systems of up to 2 billion par-
ticles4 or second time scales.5 This is still well short of the 1025

molecules present in a single m3 of air and, barring a revolution in
computing power, will remain unsuitable for problems beyond the
microscale. Hence, it is very much desirable to invent new simula-
tion protocols that will be able to combine a multitude of distinct
methods under the same hood (single simulation), thus coher-
ently providing a detailed description of the system’s behaviour
across scales. In turn, this might allow for a better understanding
of the studied phenomena. The coupling of simulation methods
that share time and length scales allows information to be easily
transferred from one simulation technique/domain to the other.
This guarantees a well-defined ‘interface’ between the two meth-
ods/domains. The basis of this method is the exchange of quanti-
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ties between the continuum and the MD domain during the sim-
ulation using constraints and averaging to guarantee consistency
at the interface.

In this perspective article, we aim to provide a discussion on
the current status and outlook of coupled simulation approaches
with a focus on the area of fluid dynamics. Of particular interest
is the theoretical underpinnings of coupled MD–continuum mod-
elling in fluids with domain decomposition. Some examples of
application areas are also given. Therefore, this does not aim to
be a thorough review of the literature for every single simulation
method, there have been a wide range of reviews.6–12. We also do
not aim to discuss aspects, such as the creation of coarse-grained
models from bottom-up approaches (e.g. iterative Boltzmann in-
version methods, free energy methods, etc.13), or the coupling of
simulation methods with experimental data.14 Nor is it a discus-
sion of the combination of different force-fields in the same simu-
lation method (e.g. MD as in the case of GōEN15 and GōMARTINI
models16) used in fields, such as biophysics.17,18

Instead, the focus here is on the development of the theoretical
coupling methods that have matured over the years. In a 2006
report anticipating the world beyond 2020, multi-scale modelling
is imagined to be foundational for many emerging technologies,
shaping the future of research.19 This was inspired by quantum
to classical coupling using MD, important to the 2013 Nobel Prize
awarded to Arieh Warshe, Michael Levitt, and Martin Karplus (a
brief overview of these methods will be given in Section 1). How-
ever, in many ways the coupling of molecular to continuum sys-
tems for fluid dynamics have not taken off in the same way. Fluid
coupling models remain in their infancy and very few industrial
success stories using multi-scale linked simulations that incorpo-
rate molecular detail have been put out. Perhaps a major factor is
the tragic loss of two pioneers and champions in multiscale mod-
elling, first Jason Reese in 2019 at only 51 then Mark Robbins
in 2020 at 64. The effect on both the scientific community and
the research funding landscape is profound. In addition, coupled
simulation has never become mainstream in the fluid dynamics
community, suffering from a combination of implementational
complexity and limited or niche areas of application. This po-
tential challenge was identified back in 2006 by Ref. 19 underlin-
ing the overwhelming software complexity requiring ‘industrial-
scale’ and industry-wide support. A limitation also acknowledged
succinctly in Tong et al. 11 , It is the time to introduce the multi-
scale methods, especially the “coupling methods”, to the applications
on more practical multiscale heat transfer and fluid flow problems.
Both the fundamental and practical researches will benefit from this
applications, and the multiscale simulations will have a promising
future. A recent review of multiscale modelling for nanofluids12

suggests further development and improvement are required be-
fore these methods can be applied to the study of nanofluidics.

The state of the literature is summarised by Tong et al. 11 , para-
phrasing Fish that “most new technologies began with a native eu-
phoria” when the inventions were overpromised. The rapid devel-
opment led to a “peak of hype” and followed by a period of crash
when the immaturity of the ideas was overreacted. This can be
seen graphically in Fig. 1 where the literature on domain de-
composition coupling is shown superimposed on a Gartner hype
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Fig. 1 The literature on domain decomposition coupling as a function
of time shown on the Gartner hyper cycle, 20 a model for the growth of
new technologies where the expectations of a technology over time show
a peak followed by a trough. The theoretical contributions are shown in
red, the applications in black, and the review articles are shown in blue.

cycle20. Although a fairly arbitrary model for the adoption of a
new technology, it provides a useful perspective on the develop-
ment of coupling technology. The literature is coloured by pa-
pers developing theory or methods (in red), papers applying cou-
pling to problems (black) or publications which review or pro-
vide perspectives on coupling (blue). After a wave of literature
developing the method, expectations reach a peak followed by a
period where the important applications and industrial adoption
are slow to catch up. Recent years see a large number of review
articles, which characterise the evocatively titled ‘trough of dis-
illusionment’, but with some impressive applications starting to
appear. The lack of methodological development (points in red)
is also clear after the peak on Fig 1. It is for this reason the current
perspective focuses on unifying the literature in order to establish
a framework to continue development of the theory to handle the
cases needed for increased industrial adoption. In this perspec-
tive we set out the state of the art in theoretical development,
before listing the recent applications which demonstrate the cou-
pling method, in the hope it can lead the field to the ‘plateau
of productivity’. Although a large factor in getting to produc-
tivity is the software for coupling, this will not be detailed here
and have been omitted from Fig 1. A range of coupling software
exists, which can be divided into monolithic21, frameworks22,23

and libraries24–26. Many of these types of coupling models are
summarised in various published reviews27–29 including previ-
ous work by the authors.30 Instead we focus on the theoretical
aspects of the problem.

There are a disparate range of methodologies for domain de-
composition coupling, often with researchers working using a
preferred model. With this in mind, we focus in this perspective
on trying to present a unified framework which can link together
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various models applied throughout the literature. We show the
similarity between the different approaches, and provide a rig-
orous underpinning to unify the literature and provide a tool to
enable new theoretical developments.

Through our discussion, we aim to lower the barrier for em-
barking on hybrid multiscale computer simulations. The rapidly
evolving field of machine learning for fluids looks set to provide
promising ways of course-graining and coupling through data-
driven approximation of underlying physical processes. However,
such data driven machine learning methods cannot replace the
theoretical development of schemes which respect conservation
laws, as focused on in this perspective. Moreover, such mathe-
matical forms for coupled conservation laws are likely to be es-
sential ingredients to build constraints into physics-inspired neu-
ral network64. This is particularly important, as building the new
generation of powerful coupled (hybrid) simulation methods and
exploiting the increasing capabilities in software and hardware
requires scientists with broader computational and scientific skills
and creativity, based on a deeper knowledge of multiple simula-
tion methodologies across scientific fields. Thus, our perspective
article also provides opportunities for experts that are thinking of
exploring the capabilities of hybrid simulation schemes in their
research areas.

1 Brief Perspective on Other Coupling Approaches

1.1 Ab initio Molecular Dynamics

Ab initio MD methods belong to this category of coupled sim-
ulation approaches. Here, classical examples are the Born–
Oppenheimer MD, the Ehrenfest MD, and the Car–Parrinello MD
(CPMD) methods.65,66 The goal of these methods is to enhance
the capability of MD in describing processes that depend on the
electronic degrees of freedom and, also, better describe many-
body effects. From the perspective of quantum methods the use
of MD enables a faster evolution of the nuclear positions, based
on empirical interactions. The aim of ab initio MD is to carry out
the classical dynamics of nuclei and use a quantum dynamics ap-
proach for electrons. Among the ab initio MD methods, the most
prominent is probably Car–Parrinello MD (CPMD), since it allows
for larger time steps in the classical approach and avoids solving
the electronic structure problem at each time. The method has
been well-established over the years with further developments
that include its application in various statistical ensembles. The
electronic degrees of freedom are introduced into the model as
additional degrees of freedom as part of an extended Lagrangian
equation of motion, which evolves both the ionic and electronic
degrees of freedom. As an advantage, CPMD does not require ma-
trix diagonalisation, as in the case of the Born–Oppenheimer MD,
and electrons are assumed to be in the electronic ground state
(adiabatic approximation) during the motion of the ions (nuclei).
The application of the CPMD method in fluids includes mainly
examples such as the proton transport in bulk water.67 Research
in this area is active and new developments are expected to en-
able larger time and length scales while at the same time hold-
ing the capabilities of describing the electronic state of a system,
which would allow for the study of more complex phenomena,

especially those relying on charge interactions. Ab initio MD sim-
ulations are still more focused on material design (structure and
properties, including electronic properties), rather than fluid dy-
namics problems that require the simulation of flow changes or
even heat transfer. However, subjects such as tribology require a
detailed model of the fluid and solid material with some interface
interactions dependant on the Ab initio detail.68 As computing
capabilities continuously increase, a wider range of applications
in fluid dynamics might start to employ ab initio MD methods in
the future. These might be used to parametrise intermolecular
interactions at these interfaces for use in classical solvers, or ap-
plied directly in coupled QM–MM methods as described in the
next subsection 1.2.

1.2 Coupling Quantum–Molecular Mechanics

While in the case of ab initio MD methods the classical and elec-
tronic degrees of freedom are attempted to be solved together, for
example, based on an extended Lagrangian of motion,66 a more
common strategy is to use methods with different resolution for
different parts of the system and establish the interface region be-
tween the methods. In this category of coupling fall quantum me-
chanics/molecular mechanics (QMMM) methods,69 which have
been very popular in investigating biological systems.70 Here,
a part of the system is treated classically, while another part
that is of particular interest for a process is simulated quantum-
mechanically. The classical approach usually refers to molecular-
mechanics (MM) simulations, which include a detailed descrip-
tion of the system, that is, all atoms are explicitly modelled, angle
and dihedral-angle potentials, point charges, etc.. A focus of this
method is to establish accurate descriptions of the interactions
between the QM and the MM systems, especially for situations of
covalently bonded atoms and electrostatic QMMM interactions,
or when particles are moving between the QM and the MM do-
mains. Various approaches trying to address these issues have
been considered, with this area being under intensive develop-
ment, for example, through various embedding methods, such as
mechanical, electrostatic and polarised, and boundary schemes,
such as link atom, boundary atom, and localised-orbital schemes.
A common approach for QMMM simulations is ONIOM,71 which
is available in most popular open-source MD softwares with a
focus on biological systems. However, most simulations in fluid
dynamics do not require the focus on the nature of such proper-
ties and such methods are less used in fluids. Still, as we manage
to gain greater ability to describe the properties and structure of
fluids and simulate ever larger systems, the ability of obtaining
electronic structure information can emerge as an asset in the
future, especially in micro-chip technologies. Efforts to couple
various methods in this area also remain in the focus of simula-
tion, such as the recent effort to couple Density Functional The-
ory with Dynamical Mean Field Theory within the Framework of
Linear Combination of Numerical Atomic Orbitals.72 It will be
interesting to couple such methods with larger time- and length-
scale resolutions in the case of fluids simulation. In tribological
applications, such coupled methods have recently been applied
to model shear and boundary lubrication where reactions would
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be expected to occur.73 Finally, method developments in the cou-
pling of QM and MM domains can provide a basin of ideas for
the molecular–continuum coupling, which is important in fluid
dynamics phenomena and will be discussed in more detail later.

1.3 Coupling Molecular-Molecular and Molecular-Mesoscale

There are a range of cases where the coupling between discrete
methods can be beneficial. For example, coupling Monte Carlo
(MC) and MD methods can take place for both all-atom and
coarse-grained models, and at the molecular and mesoscale level.
The method can be implemented as a multistep approach74 or
within the single simulation in cycles of MC and MD,75 where MC
can refer to a range of different methods, e.g. Wang–Landau.76

Since both methods are particle-based in the context of fluids
and the same force-field is used (unless coupling takes place at
the level of model description, as, for example, in the case of
AdResS77,78), the coupling is mainly of a technical nature. In this
approach, the advantages of both methods are exploited in the
same simulation. On the one hand, in the case of MC a large
selection of potential moves are available to facilitate larger con-
formation changes of the system and the exploration of the phase
space of the system including complex moves which would be
unlikely to occur even in long MD runs. Moreover, MC offers the
advantage of directly sampling the energy of a system. On the
other hand, in the case of MD the dynamics can be obtained as
a function of time, and the molecular velocities are available for
each system snapshot. In addition, MD is a method that is easy to
scale on massively parallel computing architectures. One aspect
that requires consideration is differences related to the concept of
time in the two methods, as the time in MC is something that can
be only indirectly defined, for example, through diffusion. Re-
garding applications of MC–MD schemes in fluids, the approach
has been particularly useful in soft matter systems with complex
molecules and open-source software is generally available, which
can combine MD and MC in various ensembles.79 An increase
in the computational efficiency has been noted when configura-
tional bias is included in the MC scheme. Typically, such simu-
lations can be beneficial for simulation of molecules, for exam-
ple regarding the hydration of a buried binding pocket in bovine
pancreatic trypsin inhibitor.79 Although different bias can be in-
cluded in both the MD and the MC approaches, MC allows for a
greater flexibility since MD requires a more careful treatment of
the system dynamics. Approaches, such as metadynamics,80 are
a possible route for biasing MD simulations to efficiently explore
the phase space (characterised by the collective variables) of a
system allowing the bias to be assessed. Still such approaches are
more mature in the area of MC simulation, which may provide
further motivation toward coupled MC–MD simulations.

The coupling of MD with classical density functional theory
(DFT) can be viewed as an embedded method, since informa-
tion obtained from the MD simulation is communicated and anal-
ysed by using the classical DFT level of theory.81–83 Classical DFT
methods are dedicated to acquiring free energy expressions that
are suitable for describing the characteristics of a system. Apart
from the ideal free energy term, those expressions depend on

the system, and are different for polymer, colloids, etc. Then,
the equilibrium density distribution is self-consistently obtained
through an iterative procedure that aims at minimising the free
energy. The accuracy of the theoretical assumptions and the abil-
ity to provide analytical expressions for the same will determine
the outcome of the DFT framework. In the case of the MD–
DFT approach, one does not need to self-consistently solve the
equations to obtain the density of the system at each grid cell.
The detailed density distribution based on the particles’ position
is provided by the MD simulation and the DFT can be used to
determine the different free energy components and their rela-
tive contribution to the free energy, which is often important for
identifying key physical aspects of the system. A recent example
of such an approach is the application of the method to identify
the free energy term that mostly contributes to the rugotaxis mo-
tion of droplets on wavy substrates.83 Another similar example of
this kind of coupling, the reference interaction site model (RISM)
can be coupled with MD or MC simulations, thus avoiding the
necessity of iteratively solving the RISM equations, as has been
shown in the calculation of solvation free energies of several small
molecules.84 In this kind of coupling, parts of the theory that are
difficult to obtain analytically, can be provided as data to the dif-
ferent theories, as, for example in the case of MD–DFT coupling.
This aspect is important for an accurate theoretical description
of a system, but, also, to validate and improve the theory. In
this kind of methods, MD and MC are equivalent in providing the
necessary data for the coupling.

In another form of coupling, one of the methods can be at the
molecular scale to readily include the molecular-level detail of
the system and the other can address the mesoscale description
of the fluid flow. Lattice Boltzmann (LB) is often identified as
one such mesoscale method, although as it is often tuned to re-
produce CFD style behaviour, so is perhaps closer to a continuum
method. The LB origins in the Boltzmann equation still qualify it
as somewhat more fundamental than CFD, opening up potential
coupling approaches using the single particle distribution func-
tions which are not possible using continuum models. Coupling
examples using MD–LB allows for exploiting the ability of MD to
deal with the simulation of molecules, which is important to de-
scribe the molecule–molecule interaction, but the same time also
allows for a hydrodynamics-based description of the system.85

Coupling of LB with MC has not been reported in the literature to
the best of our knowledge. Also, LB can be coupled with particle-
based models through Euler–Lagrange approaches, and various
such examples already exist in the literature.86 Variation on these
LB methods87 are often inspired by method previous developed
in fluid dynamics, while various approaches can be considered for
the particles, such as the discrete element method (DEM).88 We
will not expand here our discussion on all possible particle-based
models available in the literature, since this clearly goes beyond
the scope. Coupling of LB with MD offers advantages as both
methods aim at modelling motion of fluids and are both massively
parallelised and suitable for a range of diverse system geometries.
The coupling to the LB equations can take place through an ad-
ditional local external force to the equations and interpolation
protocols, while at the same time the fluid also acts as a heat
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bath for the MD particles. The approach has been demonstrated
for complex fluids,85 and recently for MD particles interacting via
the MARTINI force-field.89 Future directions in this area of cou-
pling may include the incorporation of long-range potentials and
devising new interpolation schemes for the coupling of the LB and
MD domains. This might include developments on the theoretical
descriptions as well as technical aspects related to the linking of
lattice and off-lattice simulation models.

The extension to the simulation of biological molecules is par-
ticularly attractive for simulating solvent adequately far away
from the biological molecule that we are interested to study.90

When this type of coupling is also combined with different simu-
lation box geometries can probably further minimise the compu-
tational resources required to simulate the solvent surrounding a
biomolecule, as is commonly done in the area of biophysics, for
example, for simulating proteins in solvents.

Finally, the coupling of molecular-scale models may include a
variety of different particle-based models, including mesoscale
models, such as dissipative particle dynamics methods (DPD).
These mesoscopic models can sit as a coupling buffer between
atomistic and continuum hydrodynamics.91

1.4 Coupling Continuum to Continuum

In the more general category of coupling in computational fluid
dynamics, one can add the techniques used to add particles to
continuum flows or modelling of fluid–solid interactions combin-
ing different approaches, e.g. finite element Analysis (FEA) with
CFD. We could also consider modelling fluid in different reference
frames with the moving fluid considered as a particle. This is com-
monly known as Euler–Lagrangian simulation approach. There
are a number of different models suitable for simulating dispersed
phases (e.g. colloids, droplets, bubbles, sand) in continuum flows,
i.e. two-phase or more generally multiphase flows. Rather more
common in the literature are studies that deal with the cou-
pling of FEM with DEM92 for investigating various phenomena
of particles in flows, including heat transfer processes. An alter-
native is the Euler–Euler approach for simulating such systems.,
with multiphase effects taken into account in the fluids properties
and through closure relations. In contrast, in the case of Euler–
Lagrangian schemes, the continuous medium can be modelled by
the continuum equations (e.g. momentum equation), while sep-
arate equations dictate the motion of the particles (Lagrangian
approach), for example, Newton’s equation with interactions be-
tween the particles. Coupling the two systems of equations is the
goal of this approach with various options for treating the par-
ticles being available. An example here from recent work is the
simulation of cloud formation.93 In this case, ‘particles’ can even
refer to surfactant-laden droplets with different properties, which
can even change during the simulation as a result of droplet coa-
lescence. Moreover, the model incorporates effects that arise from
the reduction of surface tension due to the presence of surfactants
by adopting a statistical physics (stochastic) approach for droplet
processes (e.g. coalescence) based on the superdroplet method.94

This indicates the variety of possibilities that can be used for the
particle models in an Euler–Lagrangian approach, including the

coupling of ideas between computational fluid dynamics and sta-
tistical physics, which significantly extends the range of applica-
tions even when the approach is solely applied in the macroscale
domain itself. Euler–Lagrangian models constitute a very active
field of research in computational fluid dynamics, which may ben-
efit from some of the techniques described in Sec. 2. The ap-
plication of a particle-based mesoscale method, i.e. smoothed-
particle hydrodynamics (SPH) with a continuum approach, i.e.
finite element method (FEM) has also been reported in the lit-
erature.95 Further work and exchange between the particle- and
the continuum-simulation communities may enable the coupling
of continuum models with a range of particle-based approaches
towards novel applications of multiscale simulation.

2 Coupling Molecular to Continuum

Most of the focus in fluids dynamics relates to the motion of flu-
ids and particularly on the interactions at the interfaces.83,96–99

These interfaces can be between a solid and a liquid, or where
two different fluids meet such as a liquid–vapour coexistence100

or between two immiscible liquids.101 These regions typically re-
quire a detailed molecular picture due to rapid changes and com-
plexities of the interface itself. This detail is not required in the
bulk, where fluid motion will be broadly identical and well de-
scribed by a continuum model. As a result, continuum–molecular
coupling can be used to put molecular details only where it is
needed.

2.1 Coupling Types

Broadly speaking, classical fluid coupling can be divided into
three categories102 as shown in Fig. 2. In the simplest exam-
ple of Fig. 2a, MD is run to obtain parameters for computational
fluids dynamics (CFD). This style of parameterisation: extracting
viscosity, heat flux or other transport coefficients to use in contin-
uum models, is the aim of non-equilibrium MD (NEMD) dating
back to the start of molecular simulation.103,104 In this type of
coupling, both length and time scales are decoupled so a short
small MD run, especially using periodic boundaries,105 can be
representative of long temporal and spatial scales. The required
assumption is that the MD domain is representative of a larger
scale, accounting for finite-size effects106 with sufficient averag-
ing time to ensure the validity of the ergodic hypothesis. Machine
learning could be used here to store more complicated behaviour
than is possible with constitutive laws, for example using Artificial
Neural Networks.107

Embedded coupling shown in Fig 2b and described in
Ref. 108, is also known as the heterogeneous multi-scale method
(HMM).109 This is used in the case where complexity is too great
to be characterised by simple coefficients, so small representative
molecular models are run to provide refinements to the contin-
uum model. Typically, a state of strain is applied to the individual
MD runs and the resulting stress is relayed back to the continuum
solver. Such techniques, e.g. SLLOD,110 are valid for one direc-
tional shear and limited cases of elongation with use of a coor-
dinate transform.111 This limits their applicability to simple sys-
tems and a general constraint for three dimensions is required.112
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c) Domain Decomposition

MD and CFD linked along an 
interface with each has an 

independent part of the solution 
domain

b) Embedded Models (HMM)

MD runs spawned to test CFD 
assumptions where needed, e.g. at high 

shear locations

a) Table or Coefficients

MD parameter study stored in table 
or used to parameterise CFD 

coefficient

Fig. 2 Three categories of classical coupling.

HMM has been shown to be a special case of the Mori–Zwanzig
formalism.113 An edited form of this embedded coupling was
given in Ref. 114, while a detailed discussion of the limitations
and shortcomings of the HMM method was reviewed in Ref. 115.
Embedded coupling runs short and small representative runs so
also decouples time scales from the MD and CFD system. The
required assumption is that these short small runs reach a steady
state, which would not change if run for longer. An example of
this is the viscosity, where simulation length would only need to
be sufficient for the molecule state to decorrelate. Machine learn-
ing again looks to have potential in this field. This could be built
into continuum models, a kind of super resolution sub-sampling
with techniques used for molecular in microscopes116 but follow-
ing similar idea of drawing small scale turbulence into larger sim-
ulations117, where MD represents a higher-resolution region.

Finally, domain decompositional coupling shown in Fig 2c uses
molecular detail in a sub-region of the wider domain. This region
is then part of the large continuum simulation and the two run
together with each assigned to its respective part of the domain.
This technique is ideally suited to problems where molecular de-
tails are only required in a local region, such as near the wall
or at the liquid–vapour interface. The continuum then becomes
a technique for extending the limited spatial scale possible with
molecular simulation, in that only very small regions of explicit
MD detail are required. However, the two simulations are locked
into the same temporal scale, as the continuum is then evolving at
the same time scale as the molecular system. This should there-
fore be seen as a technique for accelerating MD systems, not one
for including molecular detail in continuum scale problems. How-
ever, some techniques for resolving this timescale discrepancy do
exist.118,119 The earliest of these was in the work of Hadjicon-
stantinou et al. 37 , where a Schwartz alternating method is used.
This makes use of the observation that MD systems often reach
a steady state quickly for given driving fluxes. This quickly con-
verging MD system is then iterated with the continuum to obtain
a pseudo-steady solution, which satisfies both. This technique
has been used in Bugel et al. 47 to coupled interfaces. In this way,
the MD systems can be run for short times to provide dynamics
equivalent to a much longer time step.

Given the limitations of domain decomposition style coupling
to the molecular time and length scale, it is reasonable to question

• Discrete molecules

CFD→MD Boundary 

condition

MD→CFD 

Boundary 

condition

Buffer

Finite Volume Solver

Fig. 3 A domain decomposition coupling setup showing 1) the averaged
region to get the CFD boundary (bottom boundary), 2) the region with an
applied constraint at the top of the domain where a boundary termination
force is applied to stop molecules escaping (top boundary). A buffer
region is inserted for computational reasons so the constrained molecular
region doesn’t cause a direct feedback with the region averaged to get
the boundary.

why it is worth developing this technique. Domain decomposition
is a technique to accelerate molecular simulation, by expanding
the spatial domain that can be simulated using the cheaper CFD
model. It is therefore not a technique which can be used to build
molecular detail into CFD, at least in its current form, given the
time-scale separation. The applications areas for this are there-
fore where MD is essential: the high pressures and strain rates of
Tribology; the initial nucleation of boiling; the chemical reactions
at an interface and the fundamental understanding of wall–fluid
interaction, where direct numerical simulation might be applica-
ble. Such coupling is the only possible approach in many appli-
cations where the continuum assumption or empirically derived
constitutive laws fundamentally fail. The widespread utility of
both classical and quantum modelling in materials science shows
the potential utility of these non-continuum models. The promise
of the technique for materials justifies the investment to solve
these theoretical problems in fluids, and domain decomposition
represents the ideal test bed to develop these solutions. Using the
ideas of adaptive grid refinement, a domain decomposition could
be imagined to provide insight for just the scales and times it is
needed, before being switched off to allow longer time and length
scales.

2.2 Introduction to Domain Decomposition
The anatomy of a domain decomposition coupling is shown in
Fig. 3. This requires three features, including 1) a region which
is averaged to provide a boundary condition to the continuum
solver, 2) a constrained region where the fluid is driven to agree
with the continuum flow-field and 3) some method of bounding
the MD region at the top, either using a boundary force, a buffer
of molecules, or an open boundary where molecules can be in-
serted.

The history of domain decomposition coupling for fluid dynam-
ics starts with O’Connell and Thompson 31 in 1995. Despite an
initial flurry of interest, work on the theoretical framework, es-
pecially the constraint forces, largely stopped with the work of
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Flekkøy et al. 56 and has since focused on development of molec-
ular insertion.9 In comparison, the solid mechanics community
has seen extensive research into the theoretical underpinning of
atomistic–continuum coupling, traced back to the first papers in
the 1970s.120 This has led to a wide range of different solid cou-
pling methodologies such as the quasicontinuum, CLS method,
the FEAt, the fully non-local QC (QC-FNL) method and the CADD
method, all summarised and compared in.Curtin and Miller 120

Solid mechanics typically uses the finite element form of the con-
tinuum equations, which has a clear mathematical link to the con-
tinuum equations of motion.

In solids, lattice deformations are often small so the Cauchy–
Born rule can be invoked to place atoms on finite element
nodes and match deformation. For fluid dynamics, such one
to one linking of atoms and nodes is not possible. Instead,
an Eulerian framework is commonly used, tracking the aver-
age flow of molecules as they move through a reference cell
or control volume. The framework to understand these molec-
ular averages comes from statistical mechanics, in particular
NEMD.103,104,121,122 However, the NEMD community is distinct
from the coupling one, perhaps due to the more applied na-
ture of coupled simulation. In this section, we attempt to ap-
ply two NEMD techniques to the field of coupling. In particular
linking continuum and molecular equations through Irving and
Kirkwood 123 and constrained dynamics using Gauss’ principle of
Least Constraint103,121 to development of two of the key com-
ponents of coupling: 1) coarse-graining the MD to get continuum
fields and 2) the application of constraints to match MD dynamics
to the CFD.

2.3 Averaging Molecular Systems

Domain decomposition coupling requires the molecular system
be averaged to provide the CFD boundary condition. In the liter-
ature, coupled boundary exchange is split into state coupling,31

obtaining the velocity and scalar pressure from MD simulation,
and flux coupling, which directly couples the stress tensor from
the MD system.34,57 The Navier–Stokes equation is derived from
a stress tensor, making assumptions about isotropy of the fluid,
Stokes hypothesis, and incompressibility to express everything in
terms of velocity and pressure. As a result, the stress-tensor ap-
proach is more general, making none of the assumptions but po-
tentially introducing more noise into the CFD solver.124 Although
pressure measurements are said to be prohibitively noisy for cou-
pling,37,125 it can be shown that this depends on the definition
of error and statepoint of the system.126 As a result, the choice
should be based on a method which best ensures conservation
laws are valid during coupling. The finite volume (FV) method is
the naturally conservative form of the continuum equations, us-
ing the equation shown in Fig. 3 expressed in terms of surface
fluxes. To explore this, in this section we will express both state
and flux coupling in terms of an explicitly localisation operator,
which allows an equivalent to the FV form to be obtained in the
MD system. This in turn provides a more rigorous expression of
the averaging operation, which can be used in constrained dy-
namics. This operator also allows a form of stress tensor, which

improves on the virial form commonly used in the coupling liter-
ature.

Velocity (state) coupling has traditionally been expressed in the
literature as obtaining the CFD boundary from a restricted sum
over molecules in the MD–CFD overlapping cells,

u =
NI

∑
i=1

ṙi = ∑
i∈cell

ṙi, (1)

This is a well-established binning operation in the MD literature,
and as such has received minimal scrutiny in the development
of coupling. There is, however, a subtlety in Eq. 1, where the
second sum over NI could equally denote molecules at a point
NI = NI(r, t) or following a collection of molecules evolving in
space, i.e. NI = NI(t). The set notation i ∈ cell is more explicit,
clearly stating only molecules located inside a cell at a given time.
However, this does not tell us how these sums should behave
when using the calculus, for example the time derivative of the
sum of molecules i ∈ cell must consider how the set itself changes
in time. This seemingly minor consideration means the typically
used constraints developed in the coupling literature are missing
a critical term, as will be discussed in Sec. 2.4. In continuum
fluid mechanics the relationship between following a moving col-
lection of fluid particles and monitoring flow through a fixed re-
gion in space is given by Reynold’s transport theorem, a central
concept in fluid mechanics.127 To get the molecular equivalent of
Reynold’s transport theorem, we formalise the localisation using
a control volume integral of the Irving and Kirkwood 123 Dirac
delta function.128 The coarse-grained density and momentum in
a control volume can therefore be written,

∫
V

ρdV =
N

∑
i=1

miϑi = ∆V ρ
MD = MI

∫
V

ρudV =
N

∑
i=1

miṙϑi = ∆V [ρu]MD (2)

where ϑi is zero outside a given volume and one inside, a func-
tion comprised from the product of Heaviside functions to se-
lect molecules inside the Heavisides. In the cubiodal case ϑi =

ΛxiΛyiΛzi where Λαi = H(α+−αi)−H(α−−αi) and α ∈ {x,y,z}.
The cuboid has volume ∆V which is between the limits denoted
by superscript + and −, and can be made to correspond to an
identical sized CFD region. The notation for the average density
ρMD and momentum [ρu]MD inside the volume V is introduced
and so the average control volume velocity can be defined as
uMD = [ρu]MD/ρMD. This has the advantage that the ϑi function
takes care of localisation during mathematical operations. It is
for this reason that taking the time evolution of Eq. (2) yields the
molecular version of Reynold’s transport theorem.128 The molec-
ular equations of Eq. (2) are expressed in the same form as the
mass and momentum used in the finite volume (FV) method. The
FV form is most natural for CFD simulation, owing to the conser-
vative nature and ease of meshing for arbitrary geometry.129

Explicit localisation can also be used to derive a local stress
tensor, to be used in flux coupling. Here, the volume average
(VA) form of pressure is given by an integral of the Irving and
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Kirkwood 123 stress tensor,

∫
V

P(r, t)dV =
VA

P ∆V =
N

∑
i=1

miṙiṙiϑi +
N

∑
i, j

fi jri jℓi j, (3)

and the ℓi j function takes the length of inter-molecular inter-
action inside a volume of size ∆V . For simplicity of presenta-
tion, this work doesn’t separate the convective term, i.e. we do
not do the usual decomposition ∑miṙiṙi = ρuu+∑mivivi where
vi = ṙi − u. We have also assumed a linear path of interactions
between molecules130 to avoid any ambiguity in the definition of
pressure.131 This VA pressure of Eq. (3) appears similar to the
virial pressure,

Virial

P ∆V =
N

∑
i=1

miṙiṙiϑi +
N

∑
i, j

fi jri jϑi. (4)

However, the pressure of Eq. (3) satisfies momentum conserva-
tion near a wall, while the virial pressure does not.132 This is
because the virial pressure assumes a homogenous system, repre-
senting a truncation to the first term in an expansion of Eq. 3.103

Using the virial in a heterogenous MD system is known to give
spurious pressure peaks near an interface.133 Despite this error,
the virial pressure is the default in two widely used open-source
codes, LAMMPS and GROMACS, at the time of writing132 and
has been widely used in the coupling literature. As coupled simu-
lations are heterogenous by construction, using the virial pressure
for coupled simulations will very likely be incorrect.

The VA form is an improvement on the virial pressure, but the
most natural framework for fluid dynamics is the control vol-
ume, or finite volume (FV) form, where conservation is ensured
as fluxes leaving one cell are exactly equal to the fluxes into a
connected cell. For a CFD solver in FV form, the boundary condi-
tion is therefore required to be a flux. In the coupling literature

this virial pressure is dotted with the surface normal
Virial

P ·n, to get
it as a surface flux. Often the pressure uses an interpolation op-
eration with the adjacent continuum cell to get this pressure at
the location of the cells surface.40 However, a formal version of
surface flux already exists in the NEMD literature, known as the
Method of Planes (MOP) pressure.133 This is obtained from the
flow of momentum carried by molecules over a given surface, for
example take the x+ surface, and the intermolecular forces acting
over that surface

MOP

P x+ =
MOP

P K
x+ +

MOP

P C
x+ (5)

with the dashes defining surface crossings following the notation
from the literature.56

MOP

P K
x+∆Ax+ =

1
∆t

N

∑
i=1

miṙiẋidS(xt
i ,x

t+∆t
i ) ≡

Nx+

∑
i′

mi′ ṙi′ (6)

MOP

P C
x+∆Ax+ =

N

∑
i=1

N

∑
j ̸=i

fi jdS(xi,x j) ≡
Nx+

∑
i j′

fi j′ (7)

These surfaces crossings are exactly defined in terms of rigorous
mathematical functions obtained from derivatives of ϑi.128,134

Here, the crossing function is non-zero only when a molecule is
crossing a surface of the finite volume,

dS(xs,xe) =
[
sign(x+− xe)− sign(x+− xs)

]
ΛycΛzc (8)

where xs is the start of a straight line and xe is the end, which can
represent a molecule i evolving in time from position xt

i = xi(t)
to position xt+∆t

i = xi(t + ∆t) or the line of interaction between
two molecules xi and x j. Note, we have written the kinetic term
of Eq. (6) as the integral over a time step (1/∆t)

∫ t+∆t
t δ (x+−

xi)ΛyiΛzidt, so it is in the same form as the configurational term.
The expression in Eq. (8) can be directly implemented in code,
where the signum functions determine whether the particle has
crossed a plane and, for cubic volumes, a trivial plane-line inter-
sect calculation can give the position of crossing yc and zc. The
crossings are used in Λyc and Λzc, respectively, which determine
which control volume face it has crossed. More generally for com-
plicated control volumes this is a ray-tracing problem over every
bounding volume surface.134 The importance of using crossings
was recognised in Donev et al. 135 , who used a ray-tracing ap-
proach, essentially equivalent to the kinetic part of the pressure
Eq. (6). This was used in coupling between CFD and Direct Sim-
ulation Monte Carlo (DSMC), building on earlier work.136 Using
this surface flux form here extends the same approach to dense
fluid MD simulation, so includes the configurational term. The
MOP form of pressure does not introduce the spurious oscilla-
tions, which plague the virial form of Eq. (4) and can be shown
to be equivalent to the VA form137 in the limiting case that the
volumes thickness tends to zero.

Most importantly for coupling, the surface pressure of Eq.
(5) is the only form that guarantees finite-volume style conser-
vation132 to machine precision in the MD system,

d
dt

N

∑
n=1

mnṙnϑn =
Nsur f

∑
α=1

MOP

P α ∆Aα =
Nsur f

∑
α=1

∫
Aα

P ·dAα . (9)

The sum is over all surfaces of any bounding volume and the
equality to the continuum form of surface flux over Nsur f surfaces
of the control volume ∑

Nsur f
α=1

∫
Aα

P ·dAα follows directly from the
time evolution of Eq. (2). In this way, it behaves in an identical
way to the FV form used in CFD, where ensuring conservation is
used to evolve the system in time. In the next section, the lo-
calised momentum and pressure presented here are used in the
constrained dynamics equations to derive rigorous localised algo-
rithms. By simplifying these we can explore the link between the
various constraint equations used in the literature and provide a
general framework to understand different coupling methodolo-
gies. These forms of constraint can also be expressed in terms of
exactly conservative finite volumes, the form used in fluid dynam-
ics solvers.

2.4 Constraint Force

A constraint force is a non-unique problem in which the total mo-
mentum of multiple molecules must be driven to some setpoint
value. This setpoint is the momentum in the overlapping con-
tinuum cells, labelled CFD → MD in Fig. 3. We start by outlining
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some methods for doing this based on Maxwell’s Demon including
particle velocity selection and selectively permeable membranes,
before discussing blending functions inspired by two-phase mod-
els from CFD. We then move on to a presentation of the constraint
algorithms, which are derived from the minimisation principles of
physics. In particular, we show a term is missing from the most
commonly used expression in the literature, due to a lack of ex-
plicit localisation of the form introduced in the previous section.

2.4.1 Maxwell’s Demon

Hadjiconstantinou 124 applied the transfer from the continuum-
to-molecular by selecting velocities from a Maxwell Boltzmann
distribution,

f (ṙ) =
(

m
2πkBT

) 3
2

exp
(
−m(ṙ−u)2

2kBT

)
, (10)

for molecules located near the boundary of the domain. Here,
kB is Boltzmann’s constant, u the continuum velocity, and T the
continuum temperature. The molecular domain of interest is sur-
rounded by a molecular reservoir. The molecule velocities are
completely re-defined in line with the velocities of the overlap-
ping continuum region. A Taylor series expansion to first order
is used to establish the velocities and temperatures to be speci-
fied in the Maxwell Boltzmann distribution of Eq. (10). The ef-
fects on the dynamics of this ‘Maxwell’s Demon’ approach are lo-
calised near the simulation boundary and the performance is said
to compare favourably to constrained dynamics approaches.124

The application of the Maxwell Boltzmann distribution was later
found to result in slip,125 which was reduced by replacing the
Maxwell Boltzmann distribution function by a non-equilibrium
distribution from the Chapman Enskog expansion or previous MD
simulations.125

Liu et al. 118 introduce a control-style algorithm, which min-
imises the disturbance to a system and avoids applying any forces.
This is motivated by the observation that any applied forces can
have undesirable consequences as they add energy, have magni-
tudes 1012 times that of gravity, and assume a constant pressure
difference.118 To avoid applying forces, Liu et al. 118 use a selec-
tively permeable membrane to bias flow in a certain direction.
This membrane is also like Maxwell’s demon, effectively reflect-
ing certain molecules and allowing others through in a manner
that ensures the required flow profile.

2.4.2 State Coupling

State coupling aims to control the state of the system, namely
the density, velocity and temperature as opposed to the fluxes of
these quantities such as pressure and heat flux. A set of cou-
pling constraint equations is put forward in the original work of
Markesteijn et al. 51 and extended in Korotkin et al. 44 In this ap-
proach, blending functions are used, which are inspired by two-
phase flows in hydrodynamics, and share similarities with AdResS
for molecular insertions (see section 2.5) and some of the cou-

pling techniques developed in the solid mechanics literature.

ṙi =
pi
mi

+ s
(

u− pi
m

)
+

s(1− s)α
ρMD φρ (11a)

ṗi = (1− s)Fi +
s(1− s)

ρMD
∂

∂ r
·
(

α
[ρu]MD

ρMD φρ +β ϕu

)
. (11b)

Here, the flux of density φρ = ∂

∂ r
(
ρ −ρMD) and flux of momenta

ϕu =
∂

∂ r
(
ρu− [ρu]MD) are introduced where ρMD and [ρu]MD are

as defined in Eq. 2 and the overbar quantities are the weighted
average of continuum and MD systems, with density ρ = sρ −
(1 − s)ρMD and velocity u = s(ρu − (1 − s)[ρu]MD)/ρ. For the
case when s = 0, we reclaim the MD equations, ṙi = ṗi/mi and
ṗi = Ḟ i. For s = 1, the equations becomes, ṙi = u and ṗi = 0, so
the molecules are frozen, unaffected by intermolecular forces and
all moving at the velocity of the overlapping continuum. In the
gradual transitions from s = 0 to s = 1, any difference between
the density and momentum in the two systems act to force the
molecules in the direction of that difference, an example of s= 0.5
is included in the appendix.

These schemes represent quite a strict constraint, being exact
velocity specification of every molecule in the continuum region.
In some ways, they appear to mix state and flux coupling, but the
fluxes are included to minimise the difference in density and ve-
locity states between the two systems, chosen by trial and error
from a choice of soft and hard constraints.51 The forcing of Eq.
(11a) and Eq. (11b) have the advantage of being flexible, with
a blending function allowing easy application in complex geome-
tries.

Arguably, the most physically-meaningful choice for a coupling
scheme is one that is built on NEMD theory, designed to obey
the variational forms of the equations of motion. These aim to
control the average properties of a group of molecules in a way
that minimises the departure from the original unconstrained dy-
namics. There is a long history of developing constraints in the
NEMD literature.103,121 These rely on the variational forms of the
equations of motion, such as the principle of least action,

δA = δ

t2∫
t1

[L +λC]dt = 0, (12)

where L is the Lagrangian, C is some constraint applied to the
system, and λ a Lagrangian multiplier derived to enforce the de-
sired constraint. Constraints applied in this manner allow for the
dynamics of the system to evolve in a physically correct manner
(minimising the action) while simultaneously satisfying a pre-
scribed constraint condition. This is of vital importance when the
molecular system must evolve in a consistent manner with the
continuum system. The constraint C can be either holonomic (a
function of position and time only C(r, t) = 0), or non-holonomic
(a function of position, velocity, and time, C(r, ṙ, t) = 0). It is
known that Eq. (12), when used in the Euler–Lagrange form,
does not give the correct equations of motion for non-holonomic
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constraints,138 although some controversy exists.*

This controversy is important as the original work of O’Connell
and Thompson 31 , used an Euler–Lagrange equation with a con-
straint on the momentum of the MD system, see O’Connell 141 for
full details. The constraint of O’Connell and Thompson 31 drives
the MD system until it agrees with the continuum.

OCT

C (ṙ, t) = MIuI(t)−
NI(t)

∑
n=1

mnṙn = 0, (13)

where MIuI is the continuum momentum in cell I that overlaps
the cell in the MD region (refer to Fig. 3, where this constrained
region is labelled ‘CFD → MD Boundary condition’). This ap-
parently non-holonomic constraint is, in fact, semi-holonomic
and can be integrated to give a holonomic constraint.126 This
semi-holonomic property means applying the constraint using the
Euler–Lagrange equation139 results in the following equations,

ṙi =
pi
mi

+ ξ

[
MI

mNI
uI −

1
NI

NI

∑
n=1

pn
m

]
(14a)

ṗi = − ∂φ

∂ ri
= Fi, (14b)

written in Hamilton form. O’Connell and Thompson 31 introduce
a tuning or relaxation coefficient ξ to allow the strength of con-
straint to be reduced. The term multiplied by ξ is proportional
to the momentum difference between the molecular and con-
tinuum systems, a proportional control in the language of con-
trol theory. In the review of Bian and Praprotnik 9 the work of
O’Connell and Thompson 31 is described as ‘relaxation dynamics’,
and in Delgado-Buscalioni 49 as a Langevin equation. However, it
is important to note the derivation in the thesis of O’Connell 141

is rigorously derived from the principle of least action, with no
stochastic terms, and is mathematically and physically identical
to the form given in the work of Nie et al. 58 as shown later in this
section.

Despite its rigorous derivation from minimisation principles,
the constraint of O’Connell and Thompson 31 is missing the lo-
calisation in space implied by a sum over NI molecules, which we
include through the ϑ function introduced in Sec. 2.3. This sub-
tle difference has two important implications, 1) the constraint is
not semi-holonomic with localisation (they depend on position)
so it is no longer clear if the principle of least action is applicable
and 2) the explicit localisation results in surface flux terms miss-
ing in previous derivations. This localisation can be included by
rewriting the constraint of Eq. (13) in terms of ϑi as follows,

CV

C(r, ṙ, t) =
N

∑
n=1

mnṙnϑn −
∫

V
ρu(t)dV = 0, (15)

Note the continuum is explicitly written in control volume or FV
form, acknowledging the overlap between continuum and molec-
ular must be over a finite volume in space and not a differential

* Goldstein et al. 139 3rd edition in the errata at http://astro.physics.sc.edu/Goldstein/
acknowledges several errors and suggests the reference by Flannery 140

point.62,128 The constraint derived from the principle of least ac-
tion with explicit localisation is then of the form,

ṙi =
pi
mi

+
ϑi

MI

[
N

∑
n=1

pnϑn −
∫

V
ρudV

]
(16a)

ṗi = Fi +
mi′

MI

[
N

∑
n=1

pnϑn −
∫

V
ρudV

]
, (16b)

where Eq. (16b) has a flux term mi′ =
Nsur f

∑
α=1

miδ (α − xi)ΛyiΛzi

which is only non-zero when a molecule is crossing one of the
volume surfaces. Comparing Eq. (16b) to the O’Connell and
Thompson 31 equation Eq. (14b) we see the flux term was miss-
ing in previous work due to the lack of explicit localisation. It is
likely this omission has not been noticed because the proportional
control force in Eq. (16a) removes any difference between molec-
ular and continuum momenta, so any error from this missing flux
term is corrected at each step. However, this missing term be-
comes essential when we consider the commonly used reformu-
lation of O’Connell and Thompson 31 presented in the paper of
Nie et al. 58 In its original form Nie et al. 58 obtained this by dif-
ferentiating Eq. (14a) and combining with equation Eq. (14b) to
give a single equation in the form,

mir̈i = Fi + FC
i (17)

where the constraint force is,

NCER

FC
i = − 1

NI

NI

∑
n=1

Fn +
DuI

Dt
. (18)

≈− 1
NI

NI

∑
n=1

Fn +
1

∆tMD

[
uI(t +∆tMD)−

1
NI

NI

∑
n=1

ṙn(t)

]
. (19)

In combining the equations of O’Connell and Thompson 31 , to get
the constraint of Eq. (18), this changes the form of constraint to a
differential control algorithm. Differential control aims to ensure
the time evolution of both systems is the same. Such constraints
typically perform poorly in MD systems, a well-known problem
in the NEMD literature highlighted by the drift in Gaussian ther-
mostats.103 To overcome the limitations of using a differential
constraint, Nie et al. 58 discretised the time derivative in a way
that applies a further constraint proportional to the velocity in
both systems, to get Eq. (19). This is justified by the requirement
that the velocity of the cell at time t should tend to the velocity of
the continuum at time t +∆tMD , that is,

DuI

Dt
≈ uI(t +∆tMD)−uI(t)

∆tMD
≈ 1

∆tMD

[
uI(t +∆tMD)−

1
NI

NI

∑
n=1

ṙn(t)

]
.

(20)

The form of Eq. (19) can also be obtained directly from a leapfrog
discretisation of Eqs. (14a) and (14b), as shown in the appendix,
which emphasise the similarity between O’Connell and Thomp-
son 31 and Nie et al. 58 However, the special discretisation of Eq.
(20) is actually introducing a new proportional control, which
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means the equation is no longer the form that would be derived
from the principle of least action. The proportional term then
ensures the systems agree is the same as the main part of the
velocity controllers of,Borg et al. 60

BORG

FC
i = Kp

mi

∆t

[
u(t +∆t)− 1

NI

NI

∑
n=1

ṙn(t)

]
, (21)

while the sum of forcing term 1
mNI

∑
NI
i=1 Fi is not essential to the

functioning of Eq. (19). Despite this, later work by Yen et al. 142

proposed that the sum of the force terms be averaged in Eq. (18)
over M iterations to address concerns with signal to noise ratios,
applied together with the time averaged MD velocity instead of
the instantaneous values in Eq. (20),

1
mNI

NI

∑
i=1

Fi ≈
〈

1
mNI

NI

∑
i=1

Fi

〉
;

1
NI

NI

∑
i=1

ṙi(t) ≈
〈

1
NI

NI

∑
i=1

ṙi(t)
〉

,

where angular brackets here denote an average over M∆t. A
further extension of this averaged force model was deployed by
Sun et al. 61 , who applied the same force on all molecules in
the overlap region. This could potentially have caused problems
if the continuum profile varied sufficiently rapidly in the over-
lap region as this behaviour would not be captured. Borrow-
ing the Quadratic Upstream Interpolation for Convective Kinet-
ics (QUICK129) scheme from the continuum literature, the force
applied was varied linearly across the overlap region to provide
the required velocity profile. Similarly the temperature was con-
trolled using a series of Langevin thermostats with set points
based on the QUICK scheme.61

In a similar vein, Wang and He 45 re-introduced the scaling pa-
rameter ξ (t) of O’Connell and Thompson 31 to the formula of Eq.
(19). The ξ parameter was derived as a function of time by re-
arranging the constrained equation of motion and the constraint
was applied gradually over many MD time steps. Superior per-
formance for noisy simulation is reported by Sun et al. 61 , Yen
et al. 142 , and Wang and He 45 when using averaged or scaled
form of the Nie et al. 58 constraint. However, these changes rep-
resent a further departure from the equation obtained from the
minimisation principles.

To derive a truly localised constraint from minimisation princi-
ples, we use Gauss’ principle of least constraint as the constraint
of Eq. (15) is non-holonomic,

∂

∂ r̈ j

[
1
2

N

∑
i=1

mi

(
r̈i −

Fi

mi

)2
−λC

]
= 0. (22)

This is because Gauss’ Principle, as stated in Flannery 143 p23, is
‘a true minimisation principle, [...] with the additional and power-
ful advantage that it can be applied to general non-holonomic con-
straints’. Equation (22) minimises the local difference between
forces and acceleration at every time, with any form of constraint
applied every timestep. The price for this generality is the loss of
energy conservation ensured by Hamilton’s principle with holo-
nomic constraints.

Applying Gauss’ principle to the explicitly localised constraint

Eq. (15) to derive the constraint force,62

CV

FC
i =− miϑi

MI

[
d
dt

N

∑
n=1

mnṙnϑn −
d
dt

∫
V

ρudV

]
(23)

=− miϑi

MI

[
Nsur f

∑
α=1

(
Nα

∑
n′

mn′ ṙn′ +
Nα

∑
nm′

fnm′

)
− d

dt

∫
V

ρudV

]
(24)

=− miϑi

MI

Nsur f

∑
α=1

Nα

∑
n′

mn′ ṙn′ +
NCER

FC
i (25)

The first line, Eq. (23), simply states the time evolution of the
molecular volume must be subtracted and replaced by the time
evolution of its overlapping CFD counterpart. The momentum
equation ( Eq. (9)) is then used to obtain Eq. (24) in terms of
surface fluxes. The final equality gives Eq. (25), to compare to
the Nie et al. 58 constraint force. This is obtained by noticing two
things, the first is the sum of NI forces Fn is the same as the sum of
forces over the control volume surface ∑

Nsur f
α=1 ∑

Nα

nm′ fnm′ = ∑
NI
n=1 Fn.

This is because all internal forces between molecules inside a con-
trol volume are equal and opposite, so only surface fluxes are
non-zero after the summation over NI . The second is that the
time evolution of a control volume is a more precise notation for
the substantial derivative. As the continuum cell must overlap a
finite molecular volume Du/Dt must apply to a control volume
so d

dt
∫
V ρudV ≡ DuI

Dt . Therefore, we see an additional surface flux
term ∑

Nsur f
α=1 ∑

Nα

n′ mn′ ṙn′ when compared to the force of Nie et al. 58

We come to perhaps the most important result of this perspec-
tive: without this additional flux term, the differential constraint
of Eq. (25) will not work. The Nie et al. 58 constraint and its
derivatives are widely used,21,45,48,55,61,145,146 so this error is sig-
nificant to a wide range of coupling applications. It is worth not-
ing, an identical form to Eq. (25) is obtained by directly combin-
ing Eqs. (16a) and (16b), see Smith et al. 62 for details. Explicit
localisation is therefore vital to obtaining the correct constraint.
This also changes the nature of the constraint, the CFD and MD
systems must agree as time evolves. As a result, the constraint
becomes iterative in order to ensure the applied force gives the
correct momentum at the next timestep.

Implementation of Eq. (25) requires iteration to ensure fluxes
are accounted for during the application of the constraint. The
fluxes are the surface crossings (molecules carrying momentum
into and out of a volume) which are added to the intermolecu-
lar forces (forces acting over the volume surface). To understand
this, consider the process shown graphically in Fig. 4a for the case
where the momentum in the CFD system is constant, so the con-
tinuum time evolution is zero i.e. d

dt
∫
V ρudV = 0. First, an initial

guess for the evolution of molecules over the next timestep is de-
termined from just the intermolecular forces. The molecules are
projected forward and the fluxes measured over the control vol-
ume surface. The constraint force is obtained by summing both
these fluxes and surface forces according to Eq. (25). This con-
straint force is then applied and the projected evolution of the
molecules recalculated. If any molecules that previously left or
entered a volume no longer do, the fluxes must be updated. This
in turn changes the constraint force. Hence, a new force must
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Fig. 4 The iterative process required for an exact constraint derived from
the principle of least action or Gauss’ principle is shown schematically
in a), while the time evolving results for a control volume in an MD
simulation are shown in b) switched on at about time 1.0 to ensure the
time evolution of the control volume is equal to zero after a signum
function used to set average momentum to zero. The momentum due to
surface crossings is shown on the top line, intermolecular forces crossing
the surface on the next line down and the required constraint force in the
middle, (i.e. a force exactly equal to crossings and forces cancels out any
momentum change). Details of the complete molecular setup are given
in Smith et al. 144

Fig. 5 A weighting function constructed to give dilatational flow in the
left control volume and rotational flow on the right by choice of surface

pressures, with magnitudes of
Surf
C α shown as blue arrows, where each

arrow is the velocity vector at the location of a molecule. The red line
shows the linear variation of force in the y direction as discussed in the
text while the parabolic addition is chosen to ensure the sum of forces on
all molecules obeys the required total momentum change, in this case,
the total momentum change in both volumes is zero despite these spatial
variations.

be calculated and this process iterated until a constraint force is
consistent with the surface crossings it causes. Usually, the pro-
cess takes a few iterations, even with a 3D grid of adjacent vol-
umes each iterating their own constraint force and fluxes. The
resulting constraint force is shown in Fig. 4b, where this force is
constructed each timestep to ensure all momentum change due to
fluxes over the volume surface are cancelled out. The constraint
is turned on just before time t = 1.0 (simulation units) using a
sigmoid function to guide the constrained volume to a constant
momentum value of

∫
V ρudV = 0. After the constraint is applied,

the momentum stays exactly at zero, the time derivative of mo-
mentum in the volume is kept at zero by the differential constraint
adding a force equal to flux and surface force each time. Note that
intermolecular forces are not changed and each molecule has its
own momentum, the constraint only acts to ensure the total for
the volume is tweaked to compensate for any surface fluxes or
forces that could change the momentum inside.

Part of the reason the Nie et al. 58 constraint is widely used
is its simplicity and robustness; at its core it is just an applied
force proportional to velocity difference. The true form from the
variational principles should be a differential constraint, which
requires tracking of all surface fluxes and iteration. Applying such
a constraint is more complex, but it is essential to apply a minimal
constraint consistent with the underlying physics.

2.4.3 Flux Coupling

The importance of including fluxes naturally brings us to flux cou-
pling. The first paper on flux coupling by Flekkøy et al. 34 in-
volved introducing a flux of molecules at a rate of Ṅ = dN/dt into
the molecular domain to ensure mass conservation. With molec-
ular actively introduced, the flux is therefore easily controlled by
choosing the momentum of the molecules inserted, mṄ⟨ṙ′⟩. The
velocities ṙ′ are chosen randomly from a Maxwell Boltzmann dis-
tribution with mean value based on the continuum velocity u.

Momentum conservation is ensured by constructing an applied

force
FWF

FC
i to add up to the pressure minus this momentum flux, so

the resulting constraint force is then of the form,

FWF

FC
i =

g(yi)

∑
i

g(yi)

[
AP ·n−∑

n′
mn′ ṙn′

]
. (26)

Here g(yi) is a weighting with an arbitrary function form based on
distance from the top of the domain. The flux term appearing in
Eq. (26) from Flekkøy et al. 34 appears to be equal to the molec-
ular insertion, ∑n′ mn′ ṙn′ = mṄ⟨ṙ′⟩, although more generally this
could be any molecule entering the region where the constraint
is applied.

Delgado-Buscalioni and Coveney 147 extended this model by in-
troducing an energy-based flux for the purpose of simulating un-
steady flow. The weighting function was set to unity, g(yi) = 1,
so that the applied force was the same for all molecules to al-
low easier control on the energy added as external work done
becomes, ∑ FC

i vi = FC · u. The correct energy flux is ensured by
inserting molecules with the appropriate kinetic energy from the
Maxwell Boltzmann distribution and at a location that matches
the required potential energy. Finding the required energy for
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molecular insertions is a complicated aspect of coupling, and is
discussed in Section 2.5. The conduction (as a temperature gra-
dient) is matched to the continuum using a series of thermostats.

Flekkøy, Delgado-Buscalioni and Coveney56 later reformulated
this flux constraint to include a fluctuating part to control the
energy addition directly,

FDC

FC
i =

FWF

FC
i +FC′. (27)

The constant part,
FWF

FC
i , is identical to Eq. (26) with weighting

function equal to unity while the fluctuating term, FC′, adds no
net momentum, instead providing only energy,

FC′ =
vi

∑
NI
i=1 v2

i

(
E A−∑

i′
εi′ −

FWF

FC
i ·u

)
. (28)

The magnitude of fluctuating force applied to each particle is
based on the particles thermal energy, i.e. minus streaming
term vi = ṙi − u. The proposed force is said to be derived with
the aim of ensuring a reversible force, one that adds no energy
and ensures the probability distribution feq = exp(−kBH /T )/Z
is preserved at every time step, where Z is the partition func-
tion, H the Hamiltonian, and kB is Boltzmann’s constant. Later
work by the same group,41,42 replaced the continuum solver with
the equations of fluctuating hydrodynamics.148 These stochastic
equations add an extra noise term to retain the small scale fluc-
tuations in the continuum solver. The noise term is generated
using a Wiener process and was tuned to satisfy the fluctuation–
dissipation theorem. This allows molecular fluctuations to be pre-
served in the continuum part of the solver. These flux coupling de-
velopments are summarised in a review by Delgado-Buscalioni 49 .

We can show the link between state and flux coupling, and, at
the same time, show a direct derivation of flux coupling starting
from Gauss’ principle of least constraint. Recognising the contin-
uum time evolution can be written in terms of surface fluxes over
Nsur f surfaces d

dt
∫
V ρudV = ∑

Nsur f
α=1

∫
Aα

P ·dAα , we obtain from Eq.
(24),

CV

FC
i =

miϑi

MI

Nsur f

∑
α=1

[∫
Aα

P ·dAα −
Nα

∑
n′

mn′ ṙn′ −
Nα

∑
nm′

fnm′

]
︸ ︷︷ ︸

Surf
C α

. (29)

We introduce the notation
Surf

C α to highlight this is in the form of a
constraint minimising the difference between the continuum and
molecular pressures on a surface α. It is instructive to compare
to the flux form of Flekkøy et al. 34 as shown in Eq. (26), chosen
with the arbitrary weighting function as g(r) = miϑi and noting
MI = ∑

N
i=1 miϑi. As the constraint of Eq. (29) is derived for a con-

trol volume, it requires the sum of fluxes over all the surfaces of
that volume (6 for a cuboid) in order to constrain the momentum
inside that volume. To understand this in terms of the momen-
tum constraint of Eq. (26), we consider the typical geometry of
application used by Flekkøy et al. 34 56 As flux constraints are ap-
plied to a buffer of molecules terminating with an open boundary
to a vacuum at the domain top, no intermolecular forces would

exist on the top surface y+ and insertion is used to ensure the re-
quired momentum agrees between continuum and molecular. As
a result, the momentum agreement on the top surface y+ would
be automatically ensured so does not appear in the constraint
equations. Assuming periodic boundaries in the other directions,
fluxes on connected faces x+ to x− and z+ to z− would cancel. As
a result, only fluxes on the bottom surface need to be considered
in the applied force to ensure momentum control of the volume,

CV

FC
i =

FWF

FC
i −miϑi

MI

Ny−

∑
nm′

fnm′ . (30)

For this particular geometry, the form of flux constraint from
Flekkøy et al. 34 can be considered to be identical except for
an additional intermolecular force term fnm′ . It is natural to
ask why this additional term is not essential for flux based
coupling to work successfully, as shown by various publica-
tions.34,39–41,49,54,56 It is possible the impact of this missing in-
termolecular force term requires a correction, as used in Delgado-
Buscalioni 49 applied to the whole volume in order to ensure
conservation between CFD and MD. It is also possible this term,
which depends on molecular configuration, is zero on average
even for cases of strong flows. Most likely is that the form of con-

straint in
FWF

FC
i has a feedback structure, so any difference between

molecular momentum flux and continuum pressure is applied as
a force to drive the flow (ensuring they agree). However, if an ex-
act control on the momentum is required, or an application needs
constraint in a region which is not the entire top of the simula-
tion, then every single force and flux must be accounted for with
iteration as described in Fig. 4 applied.

We have not considered the energy control introduced in Eq.
(28). As the force in Eq. (29) is derived from Gauss’ principle
with a non-holonomic constraint, it necessarily adds energy to
the system. In the limit of zero volume size, it can be shown
that Eq. (29) adds the same energy to the system as the SLLOD
equations of motion, important as SLLOD was derived to ensure,
among other considerations, that the correct work is done on the
MD system. More generally, we can ask if a momentum constraint
force should add additional energy to the MD? Coupling to a CFD
solver puts that continuum domain outside of the MD domain,
so a coupling constraint would be expected to do work on the
MD system in order to drive it. The non-holonomic nature of the
constraint supports the conclusion, i.e. a local control of momen-
tum as required for coupling, makes energy addition inevitable.
If the continuum problem requires coupling of the energy equa-
tion, then energy control will be needed at the interface. The
added constraint of Eq. (28) used in Flekkøy et al. 56 aims to
control both stress heat and energy flux. There is no reason this
could not be included in the extended control volume approach
discussed here, provided care is taken to ensure momentum con-
trol is respected. This could be built in as an additional constraint
on energy added to Gauss’ principle.

This section has shown the sum of fluxes over all surfaces of
a volume, with iteration, is required to enforce the correctly lo-
calised momentum constraint derived from Gauss’ principle. For
the specific geometry of a single constrained region at the top of
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Fig. 6 An overview of the mathematical link between the different forms of coupling constraint in the literature.

the domain, only a single surface needs to be controlled and this
is equivalent to the flux coupling forms presented in the litera-
ture, as shown in Eq. (30). However, the iterative and multi-
surface nature of the control volume flux constraint allows us to
go beyond this single-controlled region and provide exact con-
trol over all surfaces in a grid of contiguous volumes. To do this,
we use a finite element approximation to Eq. (29) in order to
distribute the forces with a weighting function g(r) allowing us
to specify the fluxes over each surface independently. This must
be designed to ensure the sum over the volume still satisfies the
momentum constraint condition.144 Perhaps the simplest form of
weighting function to achieve this in a cuboidal volume is g(ri) =

h(ri) + η f (ri) where the vector position denotes the product of
the components in each dimension, e.g. h(ri) = h(xi)h(yi)h(zi)

and f (ri) = f (xi) f (yi) f (zi). Using a linearly varying weight be-

tween surfaces, e.g. in x, h(xi) = (
Surf

C x+ −
Surf

C x− )x̃i +
Surf

C x− for 0 <

x̃i < 1 or expressed in terms of the commonly used finite ele-
ment shape functions between bottom x− and top x+ position,

h(xi) =
Surf

C x+N+(xi)−
Surf

C x−N−(xi) where N+(xi) = [x+−xi]/∆x and
N−(xi) = [xi − x−]/∆x with ∆x = x+ − x−.149 The added term is
constructed to be zero at the surfaces f (xi) = x̃2

i − x̃i or in general
coordinates, f (xi) = x2

i − xi(x++ x−)+ x+x−.

The η function is then chosen to ensure that ∑
N
i=1 g(ri) = 1,

which requires,

η =

1−
N

∑
n=1

h(rn)ϑn

N

∑
n=1

f (rn)ϑn

, (31)

Notice that the form of h could be changed to any functional form,
for example a higher order element or even the radial distribution

forcing used in Werder et al. 39 , and Eq. (31) would still ensure
total weighting sums to unity. This constraint allows the flux over
all surfaces of a control volume to be controlled, giving compli-
cated flow-fields as shown in Fig 5. An example of using this
function to varying stress control in one dimension is shown in
the appendix.

In the most general case, three flux components on six sur-
faces can be constrained allowing 18 stresses and three momen-
tum values to be enforced on the MD system. The distribution
functions of Eq. (29) could also be chosen to control other quan-

tities, for example aiming for a particular mass flux (e.g.
Surf

C α =∫
Aα

ρu · dAα −∑
Nα

n′ mn′ = 0). This could entail controlling the lin-
ear variation of pressure so as to ensure the mass flux matches
at the CFD–MD interface. Seen through this lens, the iterating
required to enforce the constraint shown in Fig. 4 is analogous to
the iteration used to enforce mass continuity in a CFD pressure
solver by controlling pressure. Given the extensive work done on
numerics and pressure solvers in the CFD community over almost
seventy years, further work is certainly justified to develop such
coupling framework further. Especially for multi-phase, thermal
or visco-elastic models, where the coupling requirements become
more complex, distribution of forces provides a method to control
the MD system. More generally, the presented framework here
links the main coupling approaches, as summarised in Fig. 6 and
provides a potential starting point for a theoretical development
to address more complex coupling requirements. It also has the
potential to solve long-standing problems in embedded style cou-
pling of applying Lees Edwards in 3D112 by allowing full control
of the stress tensor in all directions.
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2.5 Molecular Insertion

Molecular insertion has been the focus of extensive research, we
briefly outline the main developments here, and refer readers to
Cortes-Huerto et al. 150 for a recent review. The work of O’Connell
and Thompson 31 did not use particle insertion as a force is ap-
plied to stop molecules escaping, while Nie et al. 58 used the gap
created by this force to make molecular insertion straight for-
ward. In Flekkøy et al. 34 the method used to insert particles is
not stated explicitly, but later papers based on the same flux cou-
pling147 use a steepest decent algorithm (USHER) to insert atoms
at a location that gives the required potential energy.36 For atoms
and even simple molecules, this works well as it is often possible
to find locations. More complex molecules, especially with long-
chain are not possible to insert in this manner. One approach is
to gradually increase the additional detail of these complicated
molecules, forcing a region to accommodate them, as presented
in the FADE algorithm.151 The most mature method for complex
molecular insertion is the adaptive resolution scheme (AdResS).
In this method, one part of the system is treated at the all-atom
level and another part at the coarse-grained (CG) level, thus al-
lowing on the fly exchange of molecules between the atomic and
CG levels of description through a hybrid region (Fig. 7).77,78

Fig. 7 Illustration of an AdResS system setup for tetrahedral molecules
that can move freely between the atomistic and the CG regions through a
hybrid region as indicated. Reprinted figure with permission from Ref. 152.
Copyright (2013) by the American Physical Society.

In the context of fluids, examples of the AdResS approach refer
to the simulation of liquid water152,153, which serves as a proof-
of-concept for further applications. In Ref. 153, a TIP3P model
was used for the all-atom representation of water and a respec-
tive CG description as well. We should however underline that the
development of all-atom models for water with CG force-fields is
still a very challenging aspect. For this, intensive research has
led to the development of different models with each reproduc-
ing a certain range of water properties. In any case, a CG model
can be obtained by the all-atom model by bottom-up approaches,
for example, by matching various dynamic and structural prop-
erties (e.g. using inverse methods154), as well as, (thermody-
namic) properties, such as pressure, etc. between the different
levels of descriptions. Top-down approaches are also common, as
in the case of MARTINI155 and SAFT156,157 force-fields. In the

Fig. 8 Droplet on a substrate simulated via a molecular-scale MC
method. The VOF in the cell is used to track the interface of the droplet,
where exchange of particles takes place to investigate liquid–vapour equi-
librium, condensation or evaporation phenomena. From Ref. 165.

context of AdResS, for example, a dynamic clustering algorithm
that concurrently couples atomistic and CG representations has
been applied in the case of a hybrid SPC/MARTINI model.158,159

In this case, the existence of a hybrid regime can act as a glue
between popular force fields, such as the SPC/E160 and the MAR-
TINI.155 Finally, the link to the continuum has been demonstrated
in the simulation of molecular liquids via a triple-scale simula-
tion.161 In this case the all-atom and CG descriptions is coupled
via the AdResS scheme, while the CG level is coupled to the con-
tinuum model. Recipes to address the insertion of large molecules
in the hybrid particle–continuum have been proposed, while the
model seems to describe the hydrodynamics of the system.161 The
AdResS scheme has been also used with mesoscale models, such
as dissipative particle dynamics (DPD),162 where the exchange
of the information between the domains is based on the open
boundary method.163,164 While there are various versions of DPD
models, these models use particle descriptions, which renders the
AdResS framework generally suitable for this type of coupling.

2.6 Applications
The early work on coupling typically focused on canonical flows
such as the Couette and Poiseuille solutions of the Navier–Stokes
equations. The flux coupling of Flekkøy et al. 34 was tested to
simulate steady state Couette flow using molecular regions at the
top and bottom of the domain and a continuum region between
them, as well as steady state Poiseuille flow with a molecular re-
gion simulating the length of the channel (including both walls)
in the streamwise direction. This flux exchange method was ex-
tended to include conservation of energy for force-driven flow
over a flat wall.35 Sun et al. 61 apply their model to Poiseuille
flow with energy exchange and later to a wall of equally spaced
posts.48 The work of Yan et al. 166 represents an application of
domain decomposition coupling to explore slip of a polymer melt
where the near-wall region is modelled with MD and the remain-
ing domain by CFD. They show that as shear rate drops, the com-
putational saving increases up to two orders of magnitude. This
use of coupling avoids the need for wall models and they show
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the slip measures agrees very well with previous pure MD simula-
tions. Applying coupled simulations using complex molecules for
tribology applications has been discussed in Fernandez 167 , while
the consideration of developing slip models from coupling was
given in Yang et al. 168 A variety of different materials with vary-
ing textures linked to varying interaction with fluids is considered
in Yousefi-Nasab et al. 55 Heat transfer was the focus of recent
coupling work,169 while a specific application with LAMMPS and
OpenFOAM is presented in Cosden and Lukes 21 .

The early work of Nie et al. 58 also explored Couette flow and
built in a post to induce a flow in the wall-normal direction. They
extended this work later to lid-driven cavity flow59 to explore
the singularity present where the stationary and moving walls
meet. The Nie et al. 58 model has been applied to a large cou-
pled simulation by Yen et al. 142 They simulated a large scale Cou-
ette flow, an order of magnitude larger than that of Nie et al. 58

with a proportionally smaller shear rate. Start-up Couette flow
was also simulated by Kamali and Kharazmi 146 with fluid flows
for various micro- and nano-scale geometries studied. Delgado-
Buscalioni and Coveney 147 simulated an oscillating wall (Stokes
2nd problem), which is a rare example of an unsteady problem.
More extensive tests of unsteady coupling modelled include the
flow of a shockwave between domains.42 Recently, such applica-
tion have been extended to practical problems such as the trans-
mission of ultrasound.54 More complex flow past nano-tubes in
the form of cylinders was considered in Werder et al. 39 , although
only for creeping flow. It would be possible to push these simu-
lations into the unsteady regimes, which have been shown to be
possible using pure MD.170 It is also possible to extend coupled
simulation to turbulent flow,30 where the pure MD case171 can be
seen to reproduce turbulence at the nanoscale and so a coupled
model could allow quick optimisation of molecular wall effects on
turbulent structures.

The blending function approach of Eqs (11a) and (11a) lends
itself well to complex problems, such as the diffusion of a
biomolecules in water due to Couette flow53 and a PCV2 virus
capsid in water,52 as well an exploration of the violation of con-
tinuum laws in atomic force microscopes.172

In the context of multi-phase flow, the moving contact line was
considered as early as 1999,33 with later simulations of coupled
droplets145 and droplet impinging on a surface.50 Another exam-
ple uses MD simulations to generate data which is sent to a phase-
field model based on the Helmholtz energy equation of state and
evaluated by CFD.173 The volume of fluid (VOF) method appears
as a simple and robust approach to identify the interface between
two different phases, for example between a liquid and a gas
phase, due to the large density differences between the phases
(Fig. 8). A scheme, such as VOF, can be combined with an off-
lattice MC approach to simulate evaporation and nucleation phe-
nomena at the molecular level.165 The overall coupling protocol
allows for the exchange of particles at the interface without the
need to simulate gas molecules far from the liquid–gas interface
and can be used with any force-field, be it all-atom or CG, thus
allowing the simulation of a broad range of complex liquids, for
example, nanofluids.174

3 Conclusions and Future Perspectives

A great number of coupling possibilities can be realised between
currently available simulation methods. The list of available
methods (and acronyms) is quite long, for example, MC, MD,
DFT, VOF, FV, FEA, LB, etc. The possibilities are at least as many
as the possible combinations of these methods and a great amount
of work has been dedicated to linking the various methodologies
in the most computationally efficient way and as close as possible
obeying the physical laws. Here, we have not attempted to pro-
vide a detailed description of these methods, but rather provide
a perspective on coupling efforts in a very focused area: MD cou-
pled to continuum methods for fluid dynamics, in particular the
popular finite volume (FV) method. Coupling time scales is im-
portant here but has been discussed in the literature.57,63,119 In-
stead, the focus is on an area where less progress has been made,
developing a theoretical framework for domain decomposition
coupling, summarised as follow: Using an explicit localisation
function based on the FV form applied to an MD system results in
the form of fluxes on the surface, the MOP pressure, which avoids
the well-known errors associated with the virial pressure. This de-
scription in terms of surface pressure and fluxes is consistent with
the FV method used in the CFD and can be shown to be exactly
conservative in an MD system. Applying this FV localisation to
the derivation of a constrained dynamics algorithm results in an
new surface flux term, exposing an error in the central works on
coupling31,58 and consequently all subsequent papers. The cor-
rected constraint is differential in nature, requiring iteration to
ensure the time evolution of both systems match. This general
constrained form can be simplified to different well-known ex-
pressions from the literature, summarised in Fig 6, including the
derivation of the flux forms from variational principles. Extend-
ing to the a finite element form gives a generalised flux coupling
which can be applied to every surface of a volume in space, not
just the domain top. Comprehensive control using, for example
all 18 surface components of pressure, is possible and provides a
template for a more general class of coupling methods. Attempts
to overcome this theoretical barrier through artificial-intelligence
approaches are already taking place64 and these developments
should provide a groundwork to build models on. These insights
are presented in the hope that they will be a stepping stone for
further work and ideas in the development of a rigourous ground-
work for coupled simulation.
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Appendix

Discretising O’Connell and Thompson

A discretisation of Eqs (14a) and (14b) of O’Connell and Thomp-
son 31 using the leapfrog scheme shows,

ri(t +∆t) = ri(t)+∆t
(

pi(t +∆t/2)
mi

+ξ

[
MI(t)

mNI(t)
uI(t +∆t)− 1

NI(t)

NI(t)

∑
n=1

pn(t +∆t/2)
m

])
pi(t +∆t/2) = pi(t −∆t/2)+∆tFi(t), (32a)

these can then be combined to give,

ri(t +∆t)− ri(t)
∆t

=
pi(t −∆t/2)

mi
+∆tFi(t)−

∆t
NI(t)

NI(t)

∑
n=1

Fn(t)

+ξ

[
MI(t)

mNI(t)
uI(t +∆t)− 1

NI(t)

NI(t)

∑
n=1

pn(t −∆t/2)
mn

]
,

(33)

where for unit mass we have MI = mNI , setting ξ = 1, replac-
ing the momentum notation pi/mi = ṙi and used the first-order
backward Euler finite difference approximation ṙi(t−∆t/2)/∆t =
(ri(t)− ri(t −∆t))/(∆t)2 and second derivative r̈i = [ri(t +∆t)−
2ri(t) + ri(t − ∆t)]/(∆t)2 , the form can be seen to be identical
to Eq. (19) from Nie et al. 58 with the velocity at the half step
consistent with the leapfrog scheme,

r̈i = Fi(t)−
1

NI(t)

NI(t)

∑
n=1

Fn(t)+
1
∆t

[
uI(t +∆t)− 1

NI(t)

NI(t)

∑
n=1

ṙn(t −∆t/2)

]
.

(34)

Note that NI is itself a function of time and dependent on the
molecular position.

Understanding the Blended Region

The constraint force of Markesteijn et al. 51 half way across the
blending region e.g. for s = 0.5 is shown here,

ṙi =
pi

2mi
+

ρu− [ρu]MD

ρ −ρMD +
α

8ρMD
∂

∂ r

(
ρ −ρ

MD
)

ṗi =
Fi

2
+

1
8ρMD

∂

∂ r
·
(

α
[ρu]MD

ρMD
∂

∂ r

(
ρ −ρ

MD
)
. . .

+β
∂

∂ r

(
ρu− [ρu]MD

))
where the intermolecular force and momentum is half from the
normal MD dynamics with the other half made up by the average
of the MD and continuum system for velocity and the remaining
force being a result of the gradients in differences. The gradient of
the difference in density and pressure in the CFD and MD regions
can be seen to apply a force driving the molecules

The flux terms φρ and ρu are introduced in the derivation of

Markesteijn et al. 51 to give a diffusion between the two phases.
These are apparently chosen as fluxes because this was found to
give better behaviour than simply applying the direct difference
between MD and continuum density and momenta. Later work
rewrites the diffusion in terms of surface fluxes.44 The equations
are made conservative by ensuring the applied force to the MD
system is equal and opposite to the continuum, where a fluc-
tuating hydrodynamics model is used. An assumption in this
derivation is the external force on the system is equal to the diver-
gence of the pressure tensor including the fluctuating component
FC =∇ · [P+P′] for any system away from equilibrium. As a re-
sult, the molecular form of the pressure tensor does not appear in
the equations.

An Example of Controlling Stress On 2 Surface in One Dimen-
sional

To understand how this works, consider a force which varies only
in y, we can rewrite Eq. (29) as

Lin

FC
i (yi) = −

CV

FC
i

[ Linear︷ ︸︸ ︷
Surf

C y+N+(yi)−
Surf

C y−N−(yi)

−η

[
y2

i − yi(y++ y−)+ y+y−
]

︸ ︷︷ ︸
Quadratic

]
, (36)

so the forces applied on the top surface
Surf

C y+ subtracts molecu-
lar surface pressure and adds the CFD pressure value to drive the
system to have pressure AyPy+ , while the bottom is driven toward
AyPy− with a linear variation between them as shown schemati-
cally in Fig. 5. A quadratic correction is then added, to ensure the
total is as required to ensure the correct time evolution of mo-
mentum inside the volume. Figure 5 shows an example of how
we can use this to induce complex flow patterns, both elonga-
tion and rotational flow in two adjacent volumes, while keeping
momentum in both volumes the same i.e. d/dt ∑

N
i=1 miriϑi = 0.
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vanainen, H. Martinez-Seara, N. Reuter, R. B. Best, I. Vat-
tulainen, L. Monticelli, X. Periole, A. H. Tieleman, D. P.
de Vries and S. J. Marrink, Nat. Methods, 2021, 382–388.

156 E. A. Müller and G. Jackson, Annu. Rev. Chem. Biomol. Eng.,
2014, 5, 405–427.

157 T. Lafitte, A. Apostolakou, C. Avendaño, A. Galindo, C. S.
Adjiman, E. A. Müller and G. Jackson, J. Chem. Phys., 2013,
139, 154504.

158 J. Zavadlav, S. J. Marrink and M. Praprotnik, J. Chem. Theory
Comput., 2016, 12, 4138–4145.

159 J. Zavadlav, S. J. Marrink and M. Praprotnik, Interface Focus,
2019, 9, 20180075.

160 H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys.
Chem., 1987, 91, 6269–6271.

161 R. Delgado-Buscalioni, K. Kremer and M. Praprotnik, J.
Chem. Phys., 2008, 128, 114110.

162 P. Papež and M. Praprotnik, J. Chem. Theory. Comput., 2022,

20 | 1–21Journal Name, [year], [vol.],



18, 1227–1240.
163 E. G. Flekkøy, R. Delgado-Buscalioni and P. V. Coveney, Phys.

Rev. E, 2005, 72, 026703.
164 R. Delgado-Buscalioni, J. Sablić and M. Praprotnik, Eur.
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