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The synchronization between neural oscillations at different frequencies has been proposed as a core mechanism for the coordination
and integration of neural systems at different spatiotemporal scales. Because neural oscillations of different frequencies can only fully
synchronize when their “peak” frequencies form harmonic relationships (e.g., f2 � f1 /2), the present study explored whether the transient
occurrence of harmonic cross-frequency relationship between task-relevant rhythms underlies efficient cognitive processing. Continu-
ous EEG recordings (51 human participants; 14 males) were obtained during an arithmetic task, rest and breath focus. In two separate
experiments, we consistently show that the proportion of epochs displaying a 2:1 harmonic relationship between alpha (8 –14 Hz) and
theta (4 – 8 Hz) peak frequencies (i.e., alphapeak � 10.6 Hz; thetapeak � 5.3 Hz), was significantly higher when cognitive demands
increased. In addition, a higher incidence of 2:1 harmonic cross-frequency relationships was significantly associated with increased
alpha–theta phase synchrony and improved arithmetic task performance, thereby underlining the functional relevance of this cross-
frequency configuration. Notably, opposite dynamics were identified for a specific range of “nonharmonic” alpha–theta cross-frequency
relationships (i.e., alphapeak /thetapeak � 1.1–1.6), which showed a higher incidence during rest compared with the arithmetic task. The
observation that alpha and theta rhythms shifted into harmonic versus nonharmonic cross-frequency relationships depending on
(cognitive) task demands is in line with the notion that the neural frequency architecture entails optimal frequency arrangements to
facilitate cross-frequency “coupling” and “decoupling”.
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Introduction
Decades of research suggest that the rhythmic synchronization of
neural populations underlie neural communication and infor-

mation transmission in the brain (Varela et al., 2001; Fries, 2005,
2015). Because neural oscillations at different frequencies have
been shown to represent distinct functions (Kopell et al., 2010),
anatomical sources (Debener et al., 2005) and scales of cortical
integration (von Stein and Sarnthein, 2000; Canolty and Knight,
2010), the synchronization between these rhythms (i.e., “cross-
frequency coupling”) has been proposed as a core mechanism for
the coordination and integration of neural systems at different
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Significance Statement

Neural activity is known to oscillate within discrete frequency bands and the interplay between these brain rhythms is hypothe-
sized to underlie cognitive functions. A recent theory posits that shifts in the peak frequencies of oscillatory rhythms form the
principal mechanism by which cross-frequency coupling and decoupling is implemented in the brain. In line with this notion, we
show that the occurrence of a cross-frequency arrangement that mathematically enables coupling between alpha and theta
rhythms is more prominent during active cognitive processing (compared with rest and non-cognitively demanding tasks) and is
associated with improved cognitive performance. Together, our results open new vistas for future research on cross-frequency
dynamics in the brain and their functional role in cognitive processing.
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spatiotemporal scales (Canolty and Knight, 2010; Palva and
Palva, 2018). In support for this notion, significant relationships
have been demonstrated between behavioral performance in cog-
nitive tasks and the degree of cross-frequency interactions quan-
tified through phase–phase synchrony (Siebenhühner et al.,
2016), amplitude–amplitude correlations (Popov et al., 2018),
and phase–amplitude coupling (Axmacher et al., 2010; Lisman
and Jensen, 2013).

Mathematically, two oscillators of different frequencies can
only fully synchronize when forming harmonics (e.g., f2 � f1/2).
Unlike nonharmonic relationships (e.g., f2 � f1/1.6), a harmonic
frequency arrangement leads to a pattern of frequent and regular
excitatory phase meetings, thereby enabling (cross-frequency)
synchronization (Pletzer et al., 2010). Based on this mathematical
reality, a theoretical framework was posited by Klimesch (2012,
2013) and Pletzer et al. (2010), hypothesizing that the specific
frequency architecture of neural oscillations may approximate a
geometrical series of exponent “2” (e.g., � � 2.5, � � 5, � � 10,
� � 20, � � 40, etc.) to facilitate “harmonic” relationships (and
therefore, synchronization) between different rhythms. Accord-
ingly, transient changes in the “peak” frequency of different
rhythms are proposed to form a flexible mechanism to maximize
cross-frequency coupling or decoupling (Klimesch, 2012). For
example, the specific arrangement of the peak frequencies of two
adjacent frequency bands (e.g., alpha and theta) will determine
whether they will form a harmonic (e.g.10/5 Hz � 2) or nonhar-
monic (e.g., 8/5 Hz � 1.6) ratio and, consequently, whether their
synchronization will be facilitated or prevented. In line with this
hypothesis, previous research has shown that peak frequencies in
different bands can transiently shift under different experimental
conditions (Foffani et al., 2005; Haegens et al., 2014; Lowet et al.,
2017; Mierau et al., 2017). To date, however, these shifts in peak
frequencies have not been investigated in the context of facilitat-
ing or altering cross-frequency dynamics. Indeed, despite the in-
tuitive appeal of interpreting the neural frequency architecture in
terms of a geometrically organized system of harmonic oscillators
(Pletzer et al., 2010; Klimesch, 2012, 2013), its experimental ap-
plication and functional relevance remains unexplored.

In this study, continuous EEG recordings (19 electrodes;
51 participants) were obtained during an arithmetic task with
an important working memory component and two non-
cognitively demanding conditions (i.e., rest and breath focus) to
assess whether transient harmonic relationships between the
peak frequencies of two adjacent rhythms are of functional rele-
vance for cognitive processing. Given the well established role of
alpha–theta cross-frequency interactions in tasks involving
working memory and executive control (Schack et al., 2005; Ka-
wasaki et al., 2010; Dimitriadis et al., 2016; Akiyama et al., 2017;
Li et al., 2017; Popov et al., 2018), we specifically focused on the
occurrence of transient harmonic relationships between alpha
(8 –14 Hz) and theta (4 – 8 Hz) peak frequencies. Because, from
a mathematical perspective, a 2:1 harmonic relationship
between alpha and theta peaks is anticipated to facilitate cross-
frequency coupling (allowing frequent and regular cross-
frequency excitatory phase meetings), we here specifically
tested (1) whether the transient occurrence of this relationship
will be more prominent during the arithmetic task condition
(compared with the non-cognitively demanding conditions),
and (2) whether an increased occurrence of harmonic cross-
frequency relationships will be predictive of improved arith-
metic task performance.

Materials and Methods
Participants
A total of 21 and 33 adults participated in Experiment 1 (5 males, age
range 20 –28 years) and Experiment 2 (9 males, age range 20 –29 years),
respectively. Participants were recruited through flyers and via social
media from various campuses of the University of Leuven. Informed
written consent was obtained from all participants before the study. Con-
sent forms and study design were approved by the local Ethics Commit-
tee for Biomedical Research at the University of Leuven. Participants
were compensated for their participation (10 € per hour). One partici-
pant of Experiment 1 was excluded from the final analyses because of
technical problems during data acquisition. Two participants of Experi-
ment 2 were excluded because of excessive EEG artifacts.

Experimental design
In Experiment 1, continuous EEG recordings were performed during the
following three conditions: “arithmetic”, “rest”, and “breath focus” (with
the order randomized across subjects). During the experimental arith-
metic condition, participants sat on a chair with their eyes closed and
were instructed to perform (in silence) a simple arithmetic task itera-
tively. Participants were required to sum two numbers (1 digit integers:
x1, x2) to then sum the last number (x2) and the obtained summation
number (x1 � x2) iteratively (i.e., x1 � x2 � x3; x2 � x3 � x4, etc.). When
the summation exceeded 200, participants were required to press a key
button with their right middle finger and report the obtained summation
number. After the key press, two new numbers were given and the pro-
cedure was repeated until the participant completed �6 min of EEG
recordings. The two numbers provided at the beginning of each trial were
the same for all participants and they were always presented aurally by the
experimenter. Note that, by design, the number of trials that were com-
pleted within these 6 min varied across participants (average number of
trials � 4, range 3–7). For each participant, accuracy (100 � absolute
difference from correct answer) and response time (time from aural
presentation of stimuli until key press) were averaged across trials to
compute a performance index per subject. During the rest condition
participants sat with their eyes closed for a total duration of 6 min and
were asked “to relax, and not to fall asleep”. Finally, during the breath
focus condition, participants were explicitly asked to focus on their
breathing while closing their eyes for a duration of 6 min, after the ex-
perimenter read out loud a short introductory text on meditative breath-
ing techniques.

In Experiment 2, continuous EEG recordings were performed during
similar conditions as those adopted in Experiment 1, but with the follow-
ing adjustments. For the experimental arithmetic condition, the number
of trials was now fixed to N � 5, to obtain an equal number of trials across
participants (i.e., regardless of individual response time). As such, the
total EEG recoding time was now variable across participants (mean �
11.52 min, SD � 4.63). Furthermore, in Experiment 2, the breath focus
condition was slightly altered to match its motor requirements to the
motor requirements of the arithmetic condition. Specifically, in the
breath focus condition, participants were now instructed to explicitly
focus on their breathing by silently counting their breaths and, impor-
tantly, to press a key button with their right middle finger every tenth
exhalation. The breath focus condition was performed for a duration of
�15 min.

EEG recordings and preprocessing
The Nexus-32 system and BioTrace software (Mind Media) were used to
perform electroencephalography (EEG) recordings. Continuous EEG
was recorded with a 21-electrode cap positioned according to the 10-20
system (MediFactory). Skin abrasion and electrode paste (Nuprep) were
used to reduce the electrode impedances �10 k� during the recordings.
The EEG signal was amplified using a unipolar amplifier with a sampling
rate of 256 Hz.

Raw EEG data from both experiments are available at the open
science framework webpage: https://osf.io/gh6q3/?view_only�2f3e881
eec294739b1f2519d8c522bf9.

Preprocessing was performed with the MATLAB-based toolbox “Lets-
wave 6” (MATLAB version r2017b). Raw EEG data were filtered using a
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0.5– 40 Hz bandpass filter (Butterworth filter order � 4) and were seg-
mented into 0.5 s epochs to remove those epochs with amplitudes 	100
mV. The remaining epochs were then concatenated and the continuous
signals were mathematically re-referenced off-line to linked ears (average
of A1 and A2). Next, independent component analysis (ICA) was used to
manually select and remove components with spatial topographies char-
acteristic of eye blinks and horizontal eye movements. For this purpose,
ICA decomposition was performed with the RUNICA algorithm (as im-
plemented in EEGLAB) using the SQUARE method. On average, two
components were rejected per subject.

Transient peak detection and determination of
cross-frequency relationships
The time-frequency representation of the data was obtained using short-
term fast Fourier transform (STFFT) computed through the MATLAB
toolbox Letswave 6 (Hanning window length of 1 s and sliding step of 25
bins; i.e., 90.23% overlap). A frequency precision of 10 points per fre-
quency was chosen (i.e., from 0.1 Hz until 40 Hz in 400 frequency lines).
Then, transient peak frequencies of the theta (4 – 8 Hz) and alpha (8 –14
Hz) bands were detected for each (overlapping) 1 s epochs of trans-
formed data using the find local maxima function implemented in
MATLAB r2017b (i.e., findpeaks). With this algorithm, data samples that
are larger than their two neighboring samples were identified as “local
peaks” within the specified alpha and theta frequency ranges. For a lim-
ited number of epochs (5.23% of total number of epochs, across experi-
ments, conditions, subjects, and electrodes), no clear peaks were detected
in the theta (4 – 8 Hz) or alpha (8 –14 Hz) bands and these epochs were
therefore excluded from further analyses. When two or more peaks were
detected in one frequency band, only the peak with highest amplitude
was selected. Based on the identified peak frequencies, the numerical
ratio of the alpha and theta peaks ( peak-frequencyalpha/peak-
frequencytheta) was calculated for each epoch and rounded to the first
decimal place (e.g., 10/5 Hz � 2.0). Hence, the obtained ratio-values
ranged between 1.1 and 3.4 in steps of 0.1. Finally, the proportion of
epochs in which the alpha–theta peak ratio equaled 2.0 (henceforward
termed “harmonic locking”) was determined for each electrode, subject,
and condition. Figure 1A visualizes the transient (epoch-wise) variability
of alpha and theta peak frequencies over time (i.e., 10 s) for an exemplary
subject and electrode, as well as the transient numerical ratio over time.
Figure 1B visualizes the frequency spectra of two exemplary epochs in
which the identified alpha and theta peak frequencies formed a harmonic
(2:1) versus a nonharmonic (1.6:1) cross-frequency relationship. Figure
1C visualizes the distribution of alpha and theta peak frequencies that
yielded harmonic 2:1 cross-frequency relationships (across experiments,

conditions, subjects, and electrodes). While distinct pairs of alpha and
theta peak frequencies led to harmonic 2:1 relationships, it can be seen
from the distribution that harmonic relationships were predominantly
evident for alpha peak frequencies centered �10.6 Hz (1.33 SD) and
theta peak frequencies centered �5.3 Hz (0.67 SD).

Statistical analysis
For each experiment (1 and 2), condition-related differences in the pro-
portion of epochs that displayed 2:1 harmonic locking were examined
using paired-sample t tests, controlling for the type I error rate arising
from multiple comparisons across electrodes through nonparametric
cluster-based permutation statistics (Maris and Oostenveld, 2007) as
implemented in the MATLAB toolbox FieldTrip (Oostenveld et al.,
2011). Data were randomly partitioned (Monte Carlo approximation;
1000 permutations) and the maximal cluster-level statistics (the sum of t
values across spatially adjacent electrodes) were extracted for each ran-
dom partition to estimate a “null” distribution of effect size. Then, the
cluster-corrected p value was defined as the proportion of random par-
titions in the null distribution whose test statistics exceeded the one
obtained for each significant cluster ( p � 0.05) in the original (non-
shuffled) data.

The same statistical procedure was used to assess whether interindi-
vidual differences in harmonic locking during arithmetic task were re-
lated to task performance (i.e., accuracy/response time). In this case,
analyses were performed across experiments (combined dataset; n � 51)
using Pearson’s partial correlation coefficient (controlling for “experi-
ment”) as the test statistic.

Finally, nonparametric permutation statistics were also used to ex-
plore the specificity of the 2:1 harmonic cross-frequency ratio for induc-
ing condition-related differences (see Results, Exploring the ratio
specificity of the condition effect). For this analysis, data from Experi-
ments 1 and 2 were also combined (i.e., the common conditions arith-
metic and rest). In short, the proportion of epochs displaying any of the
other possible cross-frequency relationships were computed (i.e., ratios
within a range of 1.1–3.4, with a step-size of 0.1; separately for each
subject, condition, and electrode) and paired-sample t tests were per-
formed comparing arithmetic versus rest conditions, separately for each
electrode and cross-frequency ratio. Here, cluster-based permutation
statistics were adopted to assess statistical significance while controlling
for multiple comparisons across electrodes and cross-frequency ratios,
i.e., identifying significant clusters based on spatial (electrodes) and
cross-frequency ratio adjacency.

Figure 1. Transient detection of alpha/theta peak frequencies and determination of cross-frequency relationships. Transient peak frequencies of the theta (4 – 8 Hz) and alpha (8 –14 Hz) bands
were detected within 1 s epochs and the numerical ratio between the alpha and theta peak frequencies was calculated (peak-frequencyalpha/peak-frequencytheta). A, Visualizes the transient
(epoch-wise) variability of alpha and theta peak frequencies over time (i.e., 10 s) for an exemplary subject and electrode, as well as the transient numerical ratio over time. B, Visualizes the frequency
spectra of two exemplary epochs in which the identified alpha and theta peak frequencies (indicated by asterisks) formed a harmonic (2:1) versus a nonharmonic (1.6:1) cross-frequency relationship.
C, Visualizes the distribution of alpha and theta peak frequencies that yielded harmonic 2:1 cross-frequency relationships (across experiments, conditions, subjects, and electrodes).
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Secondary analyses
Mean alpha–theta peak frequencies and their relation to harmonic locking.
In the primary analyses, we assessed condition-related differences in 2:1
harmonic locking (% of epochs in which the alpha and theta peak fre-
quencies display a harmonic ratio; i.e., alpha–theta � 2.0), and relation-
ships between harmonic locking and arithmetic task performance.
Secondary analyses were performed to explore whether similar
condition-related differences and relationships with task performance
are evident when mean alpha and theta peak frequencies are analyzed
separately. Correlation analyses were also performed to assess whether
interindividual differences in mean alpha and theta peak frequencies
were related to harmonic locking. Mean peak frequencies of the alpha
and theta band were estimated per subject, electrode, and condition by
averaging the peak frequency of transiently detected peaks over time.
Similar to the primary analyses, the significance of condition-related
differences (arithmetic vs rest conditions; paired-sample t test) and the
correlation analyses (Pearson’s partial correlation controlling for exper-
iment) was assessed using nonparametric cluster-based permutation sta-
tistics (see Statistical analysis).

Cross-frequency phase synchronization and its relationship to harmonic
locking. Because a harmonic relationship between alpha–theta rhythms
mathematically enables stable and frequent phase meetings, it is expected
that a greater incidence of harmonic locking is related to increased alpha–
theta cross-frequency phase synchronization. Hence, secondary analyses
were performed to assess whether interindividual differences in cross-
frequency phase synchronization are related to interindividual
differences in harmonic locking. In addition, we explored whether
cross-frequency phase synchronization was significantly modulated dur-
ing arithmetic task compared with rest and whether it was related to
arithmetic task performance. Alpha–theta 2:1 phase synchrony was com-
puted within each electrode as follows. First, the EEG signal was filtered
for alpha (8 –14 Hz) and theta (4 – 8 Hz) bands with a plateau-shaped
zero phase digital filter with transition zones of 15% (Cohen, 2014).
Second, Hilbert transform was applied to the filtered data to obtain phase
angle time series. Third, phase locking value (PLV) time series were
computed with a sliding window of 500 ms (for MATLAB code, see
Scheffer-Teixeira and Tort, 2016). Finally, PLVs were averaged over time
to obtain a single estimation of alpha–theta 2:1 phase synchrony per
subject, electrode and condition. Similar to previous analyses, the signif-
icance of condition-related differences (between arithmetic and rest con-
ditions; paired-sample t test) and the correlation analyses (Pearson’s
partial correlation controlling for experiment) was assessed using non-
parametric cluster-based permutation statistics (see Statistical analysis).

Transient peak detection accounting for the 1/f trend in the EEG spec-
trum. Neural oscillations are embedded in a background signal that dis-
plays a decrease in power with increasing frequency (i.e., 1/f background
spectrum). To rule out the possibility that this spectral pattern biased
transient peak detections toward lower frequencies, we repeated the anal-
ysis taking only into account those alpha and theta peak frequencies that
exceed the 1/f background spectrum. For this purpose, we estimated the
1/f trend (separately for each subject, electrode) by fitting a line in log–log
space to the EEG frequency spectrum (averaged over time) using the
robustfit function in MATLAB (Whitten et al., 2011; for the implemen-
tation of this or similar approaches, see Caplan et al., 2015; Watrous et al.,
2018). Next, transient peaks in the alpha and theta bands exceeding the
estimated 1/f trend line were identified and harmonic relationships be-
tween alpha/theta peaks were computed (see Transient peak detection
and determination of cross-frequency relationships). The statistical anal-
ysis was performed as described earlier (see Statistical analysis).

Assessing the possibility of artifactual harmonics due to non-sinusoidal
signals. Non-sinusoidal (e.g., spiky) signals can produce harmonic peaks
in power spectra and have been highlighted as a source of “artifactual”
cross-frequency coupling (Kramer et al., 2008; Scheffer-Teixeira and
Tort, 2016; Cole and Voytek, 2017). In this way, if the identified har-
monic alpha–theta peak frequencies were induced by non-sinusoidal
properties of the slower (theta) oscillations, the power of the faster (al-
pha) oscillations should be tightly linked to the power of the slower
(theta; Palva et al., 2005; Palva and Palva, 2018). To assess this possibility,
we computed Spearman’s rank-order correlations between the power
time series of the most frequently observed harmonic frequencies in the
alpha and theta bands. In particular, the power time series of three dif-
ferent pairs of harmonic frequencies (i.e., 5 and 10 Hz; 5.5 and 11 Hz; 6
and 12 Hz) were extracted through STFFT (see Transient peak detection
and determination of cross-frequency relationships) and Spearman’s
rank-order correlations (as implemented in MATLAB r2017b) were per-
formed for each pair of harmonic frequencies per subject and electrode.
Finally, Spearman’s � and p values were averaged across subjects and
electrodes to obtain a single estimation of power correlation for each of
the three alpha–theta frequency pairs.

Results
Condition-specific differences in alpha–theta
harmonic locking
In both experiments, cluster-based permutation analyses re-
vealed that the proportion of epochs displaying 2:1 harmonic

Figure 2. Condition-related differences in alpha–theta harmonic locking in Experiment 1 (top row) and Experiment 2 (bottom row). Topographical heat maps represent t values (paired-sample
t tests) at each electrode and asterisks mark significant electrodes ( p � 0.05, cluster-based permutation analysis). In both experiments, the occurrence of harmonic locking (proportion of epochs
in which alpha and theta peaks display a harmonic 2:1 relationship) was significantly higher during the arithmetic task condition compared with rest and breath focus conditions in the following
clusters of electrodes: Experiment 1: clusterarithmetic-rest: Pz-P3–T5-O1; clusterarithmetic-breath: P3–T5-T3; Experiment 2: clusterarithmetic-rest: all electrodes; clusterarithmetic-breath: all electrodes.
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locking was significantly higher during the arithmetic condition,
compared with the rest and breath focus conditions (Fig. 2).

In Experiment 1, the comparison of harmonic locking be-
tween the arithmetic condition and the rest/breath focus condi-
tions led to the identification of respectively two (t(19) � 12.7; p �
0.002; t(19) � 5.8; p � 0.019) and one (t(19) � 7.56; p � 0.006)
significant positive clusters (Fig. 2, top left and middle), indicat-
ing a significant increase in the proportion of harmonic locking
during arithmetic task compared with rest (in electrodes T5, P3,
Pz, and O2) and breath focus conditions (in electrodes and T3,
T5, and P3). No significant clusters were identified for the com-
parison between the rest and breath focus conditions.

In Experiment 2, the comparison of harmonic locking be-
tween arithmetic and rest/breath focus conditions led to the iden-
tification of one significant positive cluster covering all electrodes
(Fig. 2, bottom left and middle; t(30) � 60.9; p � 0.001; t(30) �
49.62; p � 0.001). Similar to Experiment 1, no significant differ-
ences were evident between the rest and breath focus conditions.

Relationship between alpha–theta harmonic locking and
arithmetic task performance
Across Experiments 1 and 2 (n � 51), partial correlation analyses
revealed a significant positive correlation between interindi-
vidual differences in arithmetic task performance (i.e., accuracy/
response time) and harmonic locking during arithmetic task,
thereby indicating that better performers tended to display a
greater proportion of transient 2:1 alpha–theta cross-frequency
relationships. As visualized in Figure 3A, the positive relationship
between harmonic locking and task performance was evident in a
posterior cluster encompassing electrodes Pz, P4, and O2 (mean r
value � 0.41; t(50) � 9.62; p � 0.003) as well as in a right fronto-
temporal cluster including electrodes T4 and F8 (mean r value �
0.42; t(50) � 6.59; p � 0.004). Figure 3B visualizes the relationship
within each electrode.

Exploring the ratio specificity of the condition effect
Here we explore whether the reported condition-effect in har-
monic locking (i.e., increased occurrence during arithmetic task)

was specific to this frequency arrangement. To do so, condition-
related differences (between arithmetic and rest conditions) were
assessed for each cross-frequency ratio (i.e., ratios within a range
of 1.1–3.4, with a step size of 0.1). Significant clusters based on
spatial (electrodes) and cross-frequency ratio adjacency were
identified using cluster-based permutation statistics.

Figure 4A visualizes the occurrence of each cross-frequency
relationship (proportion of epochs averaged across electrodes)
separately for arithmetic and rest conditions (error bars indicate
SD across subjects). In Figure 4B, condition-related differences in
proportions (between arithmetic, and rest) are visualized by plot-
ting, for each ratio, the respective paired-sample t test values
(higher t values indicate a higher incidence of a ratio in the arith-
metic versus the rest condition when averaging across electrodes).
Cluster-based permutation statistics identified a significant pos-
itive cluster within a range of cross-frequency ratios between 1.8
and 3.0 (t(50) � 611.19; p � 0.01), indicating a significantly higher
occurrence of these ratios during the arithmetic, compared with
the rest condition (see gray area in Fig. 4B, gray area; note that the
effect was maximal �ratio 2.0). Also a significant negative cluster
was identified within a range of cross-frequency ratios between
1.1 and 1.6, indicating a significantly lower occurrence of these
ratios during the arithmetic, compared with the rest condition
(t(50) � �350.24; p � 0.002). The spatial distribution of these
clusters is visualized in the topographical heat maps in Figure 4C.

In sum, these exploratory analyses revealed that an increase in
cognitive demands (i.e., during the arithmetic task) induced a
significant reduction in the occurrence of a set of lower-end ratios
(i.e., �1.7) in addition to a relative increase in the occurrence of
cross-frequency ratios clustered �2.0 (i.e., 1.8 –3.0; Fig. 4A,B).

Secondary analyses
Mean alpha–theta peak frequencies and their relation to
harmonic locking
Across experiments (n � 51), cluster-based permutation analysis
revealed that the mean peak frequency in alpha band was signifi-
cantly faster during the arithmetic task compared with rest (t(50) �
76.68; p � 0.001; cluster across all electrodes), whereas the mean

Figure 3. Relationship between alpha–theta harmonic locking and arithmetic task performance. The topographical heat map in A represents correlation r values (partial correlation, corrected
for experiment) at each electrode and asterisks mark significant clusters of electrodes ( p � 0.05, cluster-based permutation analysis). Significant positive correlations were identified in a posterior
cluster encompassing electrodes Pz, P4, and O2 and in a right frontotemporal cluster including electrodes T4 and F8. B, Visualizes the relationship separately for each significant electrode (i.e., F8,
T4, Pz, P4, and O2).
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peak frequency in theta band was significantly slower during the
arithmetic task compared with rest (t(50) � �62.48; p � 0.001; clus-
ter across all electrodes). Furthermore, interindividual differences in
harmonic locking during arithmetic task were significantly corre-
lated with a faster mean alpha peak frequency (mean r value � 0.54;
t(50) � 83.45; p � 0.001; cluster across all electrodes) and a slower
mean theta peak frequency (mean r value � �0.59; t(50) � �97.14;
p � 0.001; cluster across all electrodes). However, unlike harmonic
locking, interindividual differences in mean alpha and theta peak
frequencies were not significantly correlated to arithmetic task per-
formance (no significant clusters).

Together, these results suggest that although the incidence of
harmonic locking was facilitated by an acceleration of alpha peak
frequencies, and a deceleration of theta peak frequencies; it ap-
pears that enhanced task performance is predominantly related
to the transient formation of harmonic relationship between the
respective alpha–theta peak frequencies rather than to a deceler-
ation or acceleration of the peak frequencies per se.

Cross-frequency phase synchronization and its relation to
harmonic locking
Subjects with a higher proportion of harmonic locking (percent-
age of epochs for which the alpha and theta peak frequencies
formed a 2:1 harmonic ratio) during arithmetic task displayed a
higher phase locking value (mean r value � 0.67; t(50) � 123.87;
p � 0.001; cluster across all electrodes). Cross-frequency phase
synchronization between alpha and theta oscillations was also
shown to be significantly higher during the arithmetic compared
with the rest condition (significant positive cluster encompassing
all electrodes; t(50) � 85.17, p � 0.001). However, interindividual
differences in cross-frequency phase synchrony were not signifi-
cantly correlated to arithmetic task performance (no significant

clusters). Together, these analyses confirm that a greater inci-
dence of harmonic relationships between alpha–theta peak fre-
quencies is related to increased alpha–theta phase synchrony.

Transient peak detection accounting for the 1/f trend in the
EEG spectrum
Secondary analyses showed that the main pattern of results re-
mained unchanged when accounting for the 1/f trend in the EEG
spectrum (see Materials and Methods). In particular, the com-
parison of harmonic locking between the arithmetic and rest con-
dition led to the identification of a significant positive cluster
(t(50) � 72.52; p � 0.001; cluster across all electrodes; analysis
performed in combined datasets). Also similar to the primary
analysis, a significant positive correlation between harmonic
locking during arithmetic task and performance was identified in
a posterior (mean r value � 0.41, t(50) � 9.62, p � 0.009; elec-
trodes Pz, P4, and O2) and a right temporal cluster (mean r
value � 0.42, t(50) � 6.59, p � 0.018; electrodes T4 and F8).

Assessing the possibility of artifactual harmonics due to
non-sinusoidal signals
Spearman’s rank-order correlations between the time courses of al-
pha and theta power at distinct pairs of harmonic alpha–theta fre-
quencies were extremely low and not significant (5 and 10 Hz: r �
0.038; p � 0.16; 5.5 and 11 Hz: r � 0.039; p � 0.15; 6 and 12 Hz: r �
0.039; p � 0.16; average correlation across subjects, electrodes, and
conditions). As such, it is anticipated that the identified harmonic
relationships between alpha–theta peak frequencies are unlikely to
reflect harmonic peaks induced by non-sinusoidal properties of a
single oscillator (as in this case the power of the alpha and theta
oscillations should have been tightly linked).

Figure 4. Assessment of condition-related differences for all possible alpha–theta cross-frequency relationships (i.e., ratios within a range of 1.1–3.4). A, Visualizes the occurrence of each
cross-frequency relationship (proportion of epochs, averaged across electrodes), separately for arithmetic and rest conditions (error bars indicate SD across subjects). B, Visualizes condition-related
differences (between arithmetic, and rest, averaged across electrodes) in the proportion of each ratio by plotting the respective paired samples t test values (i.e., higher t values indicate a higher
incidence of a ratio in the arithmetic vs the rest condition) averaged across electrodes. A positive cluster of cross-frequency ratios ranging between 1.8 and 3.0 was identified, indicating an increased
occurrence of these ratios during the arithmetic compared with the rest condition (gray area). In addition, a negative cluster was identified withina range of cross-frequency ratios between 1.1 and 1.6, indicating
a lower occurrence of these ratios during the arithmetic compared with the rest condition (gray area). The topographical heat maps in C visualize the spatial distribution of these clusters.
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Discussion
The present study sought to assess whether a transient 2:1 rela-
tionship between peak frequencies in the alpha (8 –14 Hz) and
theta (4 – 8 Hz) bands is of functional relevance during an arith-
metic task with an important working memory component. In
line with our hypothesis, we showed in two separate experiments
that the proportion of epochs presenting harmonic locking (i.e.,
2:1 ratio between alpha and theta peak frequencies) increased
significantly during arithmetic task compared with rest and
breath focus (with or without a motor response). Notably, sub-
sequent correlational analyses demonstrated that a higher inci-
dence of harmonic locking during the arithmetic condition was
related to improved arithmetic task performance.

A harmonic relationship between two rhythms of different
frequencies is a necessary condition for their synchronization to
occur. Because brain rhythms are known to be non-stationary in
terms of transiently changing their peak frequency over time
(Foffani et al., 2005; Lowet et al., 2017; Mierau et al., 2017), it has
been proposed that cross-frequency synchronization could be
continuously enabled or prevented by the transient occurrence of
harmonic versus nonharmonic relationships between their peak
frequencies (Pletzer et al., 2010; Klimesch, 2012). Here we specif-
ically quantified opportunities for cross-frequency synchroniza-
tion by transiently assessing the occurrence of harmonic
relationships between the peak frequencies of two adjacent
rhythms. By doing so, we consistently demonstrated that an in-
crease in cognitive demands (i.e., retention and manipulation of
selective information during the arithmetic task) was accompa-
nied by a significant increase in the incidence of harmonic 2:1
cross-frequency relationships between alpha and theta peak fre-
quencies. Furthermore, a relationship with task performance was
evident, indicating that an increased occurrence of harmonic
locking (i.e., transient 2:1 ratios) was associated with improved
arithmetic performance. These results are in line with previous
evidence pointing to the importance of alpha–theta interactions
in tasks requiring working memory and executive control (Ka-
wasaki et al., 2010; Dimitriadis et al., 2016; Akiyama et al., 2017;
Popov et al., 2018). In this respect, it has been suggested that
alpha oscillations subserve short-term maintenance of informa-
tion (Kawasaki et al., 2010; Chik, 2013; Akiyama et al., 2017) as
well as reactivation of semantic knowledge (Klimesch et al.,
1999), whereas theta oscillations underlie executive control
(Schack et al., 2005; Lisman and Jensen, 2013). Based on our
results, we propose that the integration between cognitive func-
tions encompassed in alpha and theta rhythms is facilitated
through 2:1 harmonic relationships, as this frequency arrange-
ment would enable cross-frequency (phase) synchronization
(and therefore information transmission; Fries, 2005, 2015) to
occur between their underlying neural networks. In line with this
notion, secondary analyses confirmed that harmonic relation-
ships between alpha–theta rhythms mathematically enable stable
and frequent phase meetings, by showing that a greater incidence
of harmonic alpha–theta relationships was related to increased
alpha–theta 2:1 phase synchrony. Together, and in line with re-
cent theoretical accounts (Pletzer et al., 2010; Klimesch, 2012,
2013), our results suggest that changes in the peak frequency of
brain oscillations during different tasks (Foffani et al., 2005; Hae-
gens et al., 2014; Mierau et al., 2017) could represent a neural
mechanism to enable phase coupling to occur between task-
relevant rhythms through the formation of harmonic cross-
frequency relationships.

Pletzer et al. (2010) previously demonstrated that the golden
mean (i.e., 1.618…) constitutes the best possible ratio to avoid
spurious phase synchronizations between adjacent rhythms and
related to this property, it has been hypothesized that its occur-
rence in EEG cross-frequency interactions may reflect an optimal
configuration for establishing an efficient decoupling mechanism
(Pletzer et al., 2010; Klimesch, 2012, 2013). Indeed, in the theo-
retical accounts by Klimesch (2012, 2013) and Pletzer et al.
(2010), the EEG frequency architecture was proposed to entail
“optimal” frequency domains for facilitating cross-frequency
“coupling” (i.e., based on harmonic numerical ratios), but also
for facilitating controlled cross-frequency decoupling (i.e., based
on nonharmonic numerical ratios approximating the golden
mean 1.618…). In this view, the peak frequency within a fre-
quency band is proposed to transiently shift to guarantee either
maximal coupling or decoupling with neighboring frequency do-
mains. For example, as underlined by Klimesch (2012), “with
theta oscillating at a dominant frequency of 5 Hz, the peak fre-
quency of the alpha band may transiently shift from 10 to 8 Hz, to
obtain separation from theta (8/1.618 � 5 Hz), or may stay at 10
Hz to enable optimal coupling with theta”. Interestingly, our
exploratory analysis revealed a proportionally high incidence
(both during rest and arithmetic task performance) of alpha–
theta cross-frequency relationships approximating the golden
mean (i.e., 1.6; Fig. 4A), thereby providing initial experimental
support to the notion that this configuration forms a prevalent
physiological state within the EEG frequency architecture.

Furthermore, contrary to harmonic locking, it was shown that
the occurrence of cross-frequency ratios around the golden mean
(1.6) was higher during the rest compared with the arithmetic
condition. This finding may provide initial support to the notion
that nonharmonic cross-frequency relationships based on the
golden mean reflect an optimal frequency arrangement for facil-
itating cross-frequency decoupling. During resting-state, the
brain’s neural circuitry may adjust its frequency architecture to a
state in which cross-frequency decoupling is actively facilitated
[i.e., to avoid spurious (unwanted) phase synchronization;
Pletzer et al., 2010]. However, when cognitive task demands in-
crease (as during the arithmetic task), the brain’s neural circuitry
may inversely need to adjust its frequency architecture to a state
in which, on the one hand, cross-frequency decoupling (1.618
ratio) is prevented; and on the other hand, cross-frequency
coupling (2.0 harmonic ratio) is facilitated (Pletzer et al., 2010;
Klimesch, 2012, 2013). Note that prior studies investigating
cross-frequency dynamics in the brain have largely overlooked
the presence and relevance of nonharmonic cross-frequency re-
lationships because cross-frequency phase synchrony can be only
estimated between harmonic frequencies (Palva et al., 2005; Palva
and Palva, 2018; Lobier et al., 2018). In this view, future studies
are needed to further explore the occurrence of nonharmonic
cross-frequency relationships and their functional relevance with
respect to cross-frequency interactions and cognitive processing.

The here adopted method for assessing cross-frequency dynam-
ics (i.e., based on the calculation of transient numerical ratios be-
tween peak frequencies of 2 brain rhythms) follows a holistic and
probabilistic approach as it quantifies short-lived changes in the
neural frequency architecture that would (mathematically) enable
cross-frequency coupling or decoupling. Despite its simplicity, we
anticipate that this novel approach to electrophysiological data can
open new vistas for future basic and translational neuroscience re-
search. Nevertheless, some important limitations of the adopted ap-
proach and obtained results pattern should be underlined. First, the
detection of transient alpha and theta peak frequencies might be
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significantly improved by an a priori spatial localization of brain
activity occurring at each frequency band (Haegens et al., 2014). This
type of source localization analysis could clarify whether the occur-
rence of alpha–theta harmonic relationships differs significantly be-
tween different brain regions. Unfortunately, source localization
could not be reliably performed in our data given the small number
electrodes (Song et al., 2015), so these relevant questions relating to
the spatial distribution of the occurrence of alpha–theta harmonic
relationships remain open for future research. In the same way, fu-
ture research may be warranted to further explore the influence of
transient alpha–theta cross-frequency relationships on cognitive
performance. In this context, neurofeedback and/or brain stimula-
tion protocols can be envisaged to assess whether the up or down-
training of specific cross-frequency relationships (i.e., harmonic vs
nonharmonic) have a causal impact on cognitive performance.

In summary, the present study suggests that transient numerical
ratios between the peak frequencies of two brain rhythms are of
functional relevance for cognitive processing. Specifically, we
showed that the transient occurrence of harmonic 2:1 cross-
frequency relationships between alpha (8–14 Hz) and theta (4–8
Hz) oscillations (mathematically facilitating phase synchrony) in-
creased during an arithmetic task and correlated to improved cog-
nitive performance. In addition, exploratory analysis revealed that
the increase in harmonic 2:1 cross-frequency relationships during
arithmetic task occurred at the expense of a reduced occurrence of
set of nonharmonic cross-frequency relationships that would math-
ematically hinder phase synchrony. Our findings are interpreted in
the light of recent theoretical accounts (Pletzer et al., 2010; Klimesch,
2012, 2013) positing that transient peak frequency shifts could en-
compass a flexible mechanism to facilitate cross-frequency coupling
(harmonic relationships) and decoupling (nonharmonic relation-
ships) between different brain rhythms.
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