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Abstract

Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8–14Hz), which have been
shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are
commonly considered a single oscillator anchored at an individual alpha frequency (;10Hz), previous work
suggests that individual alpha frequency reflects a spatial mixture of different brain rhythms. In this study, we
assess whether independent component analysis (ICA) can disentangle functionally distinct posterior alpha
rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded
in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the exis-
tence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory re-
tention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable
alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in
power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors
(Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for
Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak
width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results
demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynam-
ics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.
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Significance Statement

alpha Oscillations are the most prominent feature of the human brain’s electrical activity, and consist of
rhythmic neuronal activity in posterior parts of the cortex. alpha Is usually considered a single brain rhythm
that changes in power and frequency to support cognitive operations. We here show that posterior alpha
entails at least two dissociable rhythms with distinct functions and characteristics. These findings could
solve previous inconsistencies in the literature regarding the direction of task-related alpha power/fre-
quency modulations and their relation to cognitive performance. In addition, the existence of two distinct
posterior alpha rhythms could have important consequences for the design of neurostimulation protocols
aimed at modulating alpha oscillations and subsequently cognition.

Introduction
Working memory entails the storage of information over

brief periods of time for its later manipulation (Repovs and

Baddeley, 2006; Baddeley, 2010). Traditionally, working
memory has been linked to the prefrontal cortex, as neu-
rons in this area show increased spiking when information
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has to be transiently stored (Fuster and Alexander, 1971;
D’Esposito and Postle, 2015). However, more recent re-
search has shown that the brain mechanisms support-
ing working memory are not limited to the activity of
individual neurons in a specific part of the cortex (Miller
et al., 2018). Rather, memory traces are distributed in
the brain, involving areas beyond the prefrontal cortex
(Christophel et al., 2017, 2018). Moreover, the transient
maintenance of information involves changes at net-
work level that cannot be well addressed when studying
the activity of single neurons (Miller et al., 2018). Neural
oscillations, which reflect the summed activity of neural
populations (Cohen, 2017), are thought to play an important
role in the transient storage of information in the brain
(Lundqvist et al., 2016, 2018; Wolinski et al., 2018).
In the human brain, neural oscillations are dominated

by alpha rhythms (8–14Hz; Hari et al., 1997; Bazanova
and Vernon, 2014). Although alpha rhythms are most
prominent in posterior areas, they are also found in senso-
rimotor and auditory cortex (commonly referred to as
“mu” and “tau” rhythms, respectively; Lehtelä et al., 1997;
Pfurtscheller et al., 2000; Haegens et al., 2011; Bastarrika-
Iriarte and Caballero-Gaudes, 2019). Previous work has
shown that alpha oscillations desynchronize (decrease in
power) in task-relevant areas and synchronize (increase in
power) in task-irrelevant areas in a wide variety of cognitive
tasks (Klimesch, 1999; Jensen et al., 2002; Jokisch and
Jensen, 2007; Haegens et al., 2009). Based on these results,
it has been proposed that alpha’s function is to gate infor-
mation through the brain via functional inhibition (Klimesch
et al., 2007; Jensen and Mazaheri, 2010). In line with this
idea, recent research in humans demonstrates that the
amplitude of alpha oscillations is negatively associated
with neural excitability (Chapeton et al., 2019; Haegens et
al., 2022; Iemi et al., 2022).
Posterior alpha oscillations are thought to be espe-

cially relevant in visual working memory (de Vries et al.,
2020). Although several studies have shown significant
power modulations of posterior alpha rhythms when
visual information has to be transiently stored, the di-
rection of these power modulations is highly inconsis-
tent (Pavlov and Kotchoubey, 2022). Studies reporting
increased alpha power during visual memory mainte-
nance argue that this increase is aimed to block visual
input by inhibiting (task-irrelevant) occipital and/or pari-
etal areas (Jensen et al., 2002; Tuladhar et al., 2007;
Bonnefond and Jensen, 2012). In contrast, studies re-
porting posterior alpha power decreases during memo-
ry retention argue that these occipitoparietal areas are
actually task-relevant and need to be disinhibited to

support the short-term storage of visual information
(van Ede et al., 2017; de Vries et al., 2018; Erickson et
al., 2019).
A possible explanation for the inconsistent findings re-

garding posterior alpha modulations during visual working
memory is the existence of multiple alpha rhythms. More
than 20 years ago, Klimesch and colleagues proposed a
division of the alpha band in different sub-bands (i.e.,
“upper alpha” and “lower alpha”) based on their differ-
ential power modulations during a wide range of cogni-
tive tasks (Klimesch et al., 1993; Klimesch, 1999).
However, since alpha rhythms were not spatially sepa-
rated in these studies, it was not possible to assess
whether power modulations in the two alpha sub-bands
reflected the activity of two different oscillators or a
change in frequency of a single oscillator (Haegens et
al., 2014; Mierau et al., 2017). Later studies that did per-
form source separation supported the idea of multiple
posterior alpha rhythms. Specifically, spatially distinct
posterior alpha rhythms have been identified in the con-
text of resting state (Barzegaran et al., 2017), visual per-
ception (Gulbinaite et al., 2017; Benwell et al., 2019)
and multimodal attention (Sokoliuk et al., 2019).
Previous literature has shown that independent compo-

nent analysis (ICA) is a powerful analytical tool to separate
brain rhythms in Magneto- and Electro-Encephalography
(M/EEG) (Debener et al., 2005; Wagner et al., 2018; Benwell
et al., 2019). ICA is a blind source separation technique that
aims to identify signals whose time courses convey maxi-
mally distinct information. When applied to M/EEG data,
ICA is thought to be able to separate locally synchronous
activity from distinct “cortical patches” (i.e., compact neu-
ronal populations with strong short-range anatomic con-
nections; Onton et al., 2006). The main advantage of ICA
relative to other source localization techniques is that it
simplifies the M/EEG inverse problem by modeling which
signals are contained in the volume conducted scalp data
instead of estimating the projection weights of all possible
sources (Delorme et al., 2012).
In this study, we use ICA to examine whether alpha power

modulations in posterior regions during short-term memory
retention reflect the activity of one or several brain rhythms.
We acquired magnetoencephalography (MEG) during a vis-
ual working-memory task in which participants (N=33) had
to briefly remember one out of four spatial directions, while
task difficulty was modulated by introducing visual distrac-
tors. We first assessed alpha dynamics at sensor level by
comparing alpha power and frequency between fixation
and memory retention. Then, we performed the same com-
parison using statistically independent posterior sources as
extracted through ICA (Delorme et al., 2012). Interestingly,
while results at sensor level suggested a change in power
and frequency of a single posterior alpha rhythm during
memory retention, our ICA results demonstrated that poste-
rior alpha dynamics reflect the activity of at least two alpha
rhythms with distinct functions and spatiospectral charac-
teristics. We believe that these results have important impli-
cations not only for the analysis and interpretation of alpha
oscillations in M/EEG but also for their potential modulation
through different neurostimulation techniques.

This work was supported by The Netherlands Organisation for Scientific
Research (NWO) Vidi Grant 016.Vidi.185.137 and by National Institutes of
Health Grant R01-MH123679.
Correspondence should be addressed to Julio Rodriguez-Larios at

juliorlarios@gmail.com.
https://doi.org/10.1523/ENEURO.0159-22.2022

Copyright © 2022 Rodriguez-Larios et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 12

September/October 2022, 9(5) ENEURO.0159-22.2022 eNeuro.org

mailto:juliorlarios@gmail.com
https://doi.org/10.1523/ENEURO.0159-22.2022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Materials and Methods
Participants
A total of 35 healthy right-handed adult participants

(mean age 25.2 years, range 20–33; 17 female, 18 male)
took part in the experiment. Participants reported normal
or corrected-to-normal vision and no history of neurologic
or mental illnesses. Before the experiment, participants
were informed about the MEG system as well as safety
regulations and signed an informed consent form. The
study falls under the general ethics approval (CMO 2014/
288 “Imaging Human Cognition”) in accordance with the
Declaration of Helsinki. After participation, the partici-
pants received a monetary reward. Two participants were

excluded because of technical problems during data
acquisition.

Experimental design
MEG was recorded while participants performed a vis-

ual working memory task (Fig. 1A). This task was de-
signed to emulate real-life situations in which participants
would navigate in a city using directions that they had
to keep in mind for a short period of time. The goal of
the task was to remember one out of four directions.
Participants were first presented with a visual direction
cue (0.25 s) pointing to the upper left, upper right, bottom
left, or bottom right. After a delay period (3 s), a second

Figure 1. Task and main analytical approach. A, Task schematic. Participants were asked to remember a visual direction cue (i.e.,
upper left, upper right, bottom left, or bottom right) for 3 s (memory delay). In 50% of the trials, the delay period contained four vis-
ual distractors. Based on the content of a second cue (i.e., “stay” or “switch”), participants had to report the direction of the first
cue or its opposite. B, ICA-based selection in an exemplary subject. A selection of independent components was performed based
on their topography (top panel), estimated source (middle), and spectrum (bottom). Only independent components with a brain to-
pography (IClabel algorithm classification. 0.80), an estimated dipole in occipital or parietal cortex and a peak in the a range were
selected for analysis (in this example, the component marked in the red rectangle). The frequency band of each independent com-
ponent was defined based on the average spectrum (peak frequency and width; gray area). Condition-related modulations in band
power (i.e., delay vs fixation, distractor vs no distractor) were assessed through single-trial analysis of each independent
component.
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cue was presented (0.25 s). The second cue was either a
“stay” cue, meaning that the correct answer was the di-
rection indicated by the first cue, or a “switch” cue, in-
dicating that the correct answer was the direction
opposite to the first cue. After the second cue, a re-
sponse mapping diagram was shown, indicating which
button corresponded to which direction. The corre-
spondence between each button and direction was
randomized between blocks (a total of eight different
response mapping diagrams were shown). Participants
were instructed to answer as quickly and as accurately
as possible, with the right hand via a button press. In
50% of the trials, the delay period contained four dis-
tractors (randomly drawn direction cues) that were pre-
sented at a 0.33-s interstimulus interval. Participants
were instructed to ignore the distractors and to keep
only the first cue in mind. Participants performed eight
blocks of 48 trials (;5min each), with short breaks be-
tween blocks. Participants were seated upright in the
MEG helmet and were instructed to keep their head posi-
tion as stable as possible for the duration of the experi-
ment. Before the MEG recording, participants performed a
training block (16 trials) to make sure that they understood
the task correctly. The experimental stimuli were pro-
grammed and presented with the software Presentation
(version 18.0, Neurobehavioural Systems).

Data acquisition
MEG data were recorded with a 275-channel CTF MEG

system with axial gradiometers at a sampling rate of
1200Hz (CTF MEG systems, VSM MedTech Ltd.). Six
channels were disabled because of permanent malfunc-
tion. In order to monitor the head position of the partici-
pants and to allow for adjustments to the original position
in between blocks, the real-time representation of the par-
ticipant’s head position was monitored using three head
localization coils at the right and left ear canals as well as
the nasion (Stolk et al., 2013). These points were further
used as offline anatomic landmarks to align the MEG data
with structural images of the participant’s brain for source
reconstruction. Further, movement of the left eye was
tracked during the experiment using an Eyelink eyetracker
(SR Research Ltd.). After the experiment, the participant’s
head shape was digitized using a Polhemus 3D tracking
device (Polhemus). In a separate session, an anatomic
MRI scan of the participant’s brain was recorded, unless
the participant’s scan could be obtained from the data-
base of the institute. The MRI data were recorded with the
3T Siemens Magnetom Skyra MR scanner.

MEG analysis
MEG analysis was performed using the Fieldtrip toolbox

(Oostenveld et al., 2011), EEGlab (Delorme and Makeig,
2004), and customMATLAB scripts (version R2021a).

Preprocessing
The raw continuous data were downsampled to 300Hz

and epoched relative to the first cue (from �1.5 to 110 s).
A band-stop filter was applied at 50, 100, and 150Hz
to remove line noise and its harmonics. The data were

visually inspected to reject trials with artifacts (e.g., mus-
cle artifacts, SQUID sensor jumps). Next, the data were
bandpass filtered between 3 and 30Hz (Butterworth IIR
filter) and ICA was computed (i.e., EEGlab implementation
of the infomax ICA algorithm by Bell and Sejnowski,
1995). Finally, the IClabel algorithm (Pion-Tonachini et al.,
2019) was used to classify components in the categories
Brain, Muscle, Eye, Heart, Line Noise, Channel Noise, and
Other based on their spatial topography.

Sensor-level analysis
First, independent components that were classified as

muscle, eyes, heart or channel noise by the IClabel algo-
rithm with a probability higher than 80% were discarded.
Further analysis was performed at sensor level after back-
projecting the remaining components. We computed the
planar representation of the MEG field distribution from
the single-trial data using the nearest-neighbor method.
This transformation facilitates the interpretation of the
sensor level data as it makes the signal amplitude maxi-
mal above its source (as implemented in Fieldtrip func-
tions ft_meg_planar and ft_combine_planar). The power
spectrum of each channel between 5 and 25Hz was ob-
tained using a multitaper frequency transformation (ft_fre-
qanalysis). This transformation was done separately for
the fixation (1 s) and the memory delay period (1-s window
centered in the delay period). The data were zero-padded
to 5 s to obtain a frequency resolution of 0.2Hz. alpha
Band power was estimated as the mean power values be-
tween 8 and 14Hz across trials. Individual alpha power
and frequency were estimated using the MATLAB find-
peaks algorithm (i.e., maximum peak between 8 and
14Hz).

Component-level analysis
A series of conditions were imposed to select posterior

oscillatory components in the alpha range. First, inde-
pendent components had to be classified as brain com-
ponents by the IClabel algorithm with a probability
higher than 80%. Second, independent components had
to show a maximum peak in the alpha range (as detected
with the MATLAB findpeaks function). Third, independ-
ent components needed to project to a single dipole in
occipital or parietal cortex. For that purpose, the whole
brain was scanned with a single dipole to find the loca-
tion where the dipole model was best able to explain the
topography of each independent component (ft_dipole-
fitting). The source localization of dipoles was done
using individual T1-weighted anatomic images of the
participants’ brains. For that, individual MRIs were first
normalized in MNI space (ft_volumenormalise) and seg-
mented (ft_volumesegment). Then a realistic single-shell
headmodel was computed (ft_prepare_headmodel)
based on the surface mesh obtained from the seg-
mented MRI (ft_prepare_mesh; Nolte, 2003). Finally, to
automatically identify dipoles that were located in occipi-
tal and parietal cortices we used the AAL atlas (Tzourio-
Mazoyer et al., 2002) available in the Fieldtrip toolbox
(Oostenveld et al., 2011). The frequency transformation
of independent components was identical to the one
used for sensor level analysis. The only difference is that
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to estimate alpha power per condition in single trials, the
individual alpha band was previously defined per com-
ponent based on its average power spectrum (across tri-
als; Fig. 1B). This approach was adopted to compensate
for the lower signal-to-noise ratio of oscillatory activity
when estimated in single trials. For visualization pur-
poses, independent components were also transformed
in the time-frequency domain (5–25Hz) using Morlet
wavelets of six cycles (function BOSC_tf; see Whitten et
al., 2011).
A similar approach was adopted to estimate peak fre-

quency in single trials. In this case, independent compo-
nents were first filtered (MATLAB function firl1) around
their individual alpha band, after which instantaneous fre-
quency was estimated with the method developed in
Cohen (2014). In short, instantaneous frequency was
computed by multiplying the first temporal derivative of the
phase angle time series (extracted through its Hilbert trans-
form) by the sampling rate and dividing it by 2p . Then, a me-
dian filter was applied to the instantaneous frequency time
series (10 steps between 10 and 400ms) to attenuate non-
physiological frequency jumps. Instantaneous frequency
was averaged within the fixation period and the memory
delay (1-s windows) to get an estimation of peak frequency
in each period.

Statistical analysis
Behavioral data
Repeated-measures ANOVA was performed with the

JASP software (Love et al., 2019), post hoc paired sam-
ples t test were performed in MATLAB R2021a. The effect
size was estimated as eta squared (h2) for the ANOVA
and as Cohen’s d for the t tests.

MEG data
The comparison of MEG parameters of interest be-

tween conditions was performed using paired samples
and independent samples t tests (MATLAB R2021a imple-
mentation). For the comparison of the parameters of inter-
est in independent components at single-trial level (i.e.,
power/frequency during memory retentions vs delay), we
employed Wilcoxon signed-rank test (MATLAB R2021a)
to minimize the effect of possible outliers because they
are more likely to occur when analyzing single trials
(Cohen and Cavanagh, 2011). In order to assess a possi-
ble relationship between MEG parameters and accuracy,
a median split approach was adopted. In short, trials were
divided into two groups based on the median of the MEG
parameter (i.e., high and low alpha power) and mean ac-
curacy was compared between “high” and “low” trials at
group level (paired-samples t tests). We corrected for
multiple comparisons using the false discovery rate (FDR)
method (Benjamini and Hochberg, 1995). Effect size was
estimated through Cohen’s d estimate.

Data and code accessibility
MEG data and MATLAB scripts to reproduce our findings

will be made publicly available through the Open Science
Framework (OSF) webpage: https://osf.io/h56b3/.

Results
Behavioral performance
Mean accuracy was 87.5% across conditions (SD=

19.4). Repeated-measures ANOVA revealed a significant
main effect of the factor distractor (F(1,32) = 11.54; p=
0.002; h2 = 0.102). Post hoc paired sample t tests showed
that accuracy was greater for the no distractor than for
the distractor condition (t(32) = �3.39; p=0.0018; d=0.59).
Nomain effect of rule (i.e., stay vs switch) or rule by distrac-
tor interaction was found.
Mean reaction time was 698ms across conditions

(SD=255). Repeated-measures ANOVA revealed a main
effect of rule (F(1,32) = 8.79; p=0.006; h2 = 0.12). Post hoc
paired sample t tests showed that reaction time was shorter
for stay versus switch rules (t(32) =2.96; p=0.0057; d=0.51).
No effect of distractor nor rule by distractor interaction was
found. Note that since the decision-button association
changed in each trial, reaction times are difficult to interpret
in this task. For this reason, we focused on accuracy to as-
sess brain-behavior associations.

Posterior alpha peak at sensor-level increases in
power and decreases in frequency during memory
retention
No significant differences between conditions in alpha

power were found when estimated using an a priori defini-
tion of the alpha band (8–14Hz; Fig. 2A, top plot).
However, individual alpha peak power showed a signifi-
cant increase during the memory delay in posterior and
right frontocentral sensors (p, 0.05 after FDR correction;
Fig. 2A, middle plot). In addition, individual alpha fre-
quency decreased significantly in posterior and frontal
sensors (p,0.05 after FDR correction; Fig. 2A, bottom
plot). Hence, some posterior sensors showed a significant
modulation in both individual alpha peak power and fre-
quency (Fig. 2B). No significant distractor effect (compari-
son of distractor vs no distractor conditions) or relation to
accuracy (median split approach) were found in either in-
dividual alpha power or frequency at sensor level.

ICA reveals two distinct alpha components based on
their power modulations during thememory delay
In order to assess whether the reported changes in pos-

terior alpha power reflect the activity of one or several
brain rhythms, we performed the same condition compar-
isons that we performed at sensor level using independ-
ent posterior alpha components (Fig. 1B). We found a
total of 170 posterior alpha components (across subjects)
based on their topography at sensor level, their spectrum,
and their estimated source. The power of 111 compo-
nents was significantly modulated during the memory
delay relative to fixation (p,0.05 after FDR correction;
mean number of components per subject = 3.3; SD=2.9).
Unlike sensor-level analysis, the comparison of posterior
alpha components in single subjects revealed both in-
creases and decreases in alpha power during the memory
delay. Specifically, the power of 68 alpha components
showed a significant increase during memory delay relative
to fixation (hereafter called Alpha1), while the power of 43
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alpha components showed a significant decrease (hereafter
called Alpha2; Fig. 3A). The breakdown across subjects was
as follows: nine subjects showed both types of alpha com-
ponents, 11 subjects showed Alpha1 components only,
seven subjects showed Alpha2 components only, and six
subjects showed no significant alpha components.
In addition, we assessed whether the frequencies of

Alpha1 and Alpha2 components were differentially modu-
lated during memory delay. However, we did not find signifi-
cant differences between Alpha1 and Alpha2 components
in frequency modulations associated with memory retention
(t(109) = �1.45; p=0.14; d=0.28). Both Alpha1 and Alpha2
components significantly decreased in frequency during the
memory delay relative to fixation (t(67) = �8.18, p, 0.001;
d=1.00; t(42) =�6.98, p, 0.001; d=1.07).
In summary, single-subject analysis of posterior alpha

components demonstrates the existence of at least two dis-
tinct rhythms (Alpha1 and Alpha2) based on their opposite
power modulations during memory retention.

Alpha1 and Alpha2 show opposite distractor-related
power modulations
In order to assess whether the power of Alpha1 and

Alpha2 components was differentially modulated in the
presence of distractors, we first estimated the distractor

effect in individual components (distractor vs no distrac-
tor) through Wilcoxon signed rank tests. Then we tested
at group level whether the z-values of Alpha1 and Alpha2
components differed significantly from 0 (one sample t
test) and from each other (independent samples t test).
We found that alpha components that increased in power
during the memory delay (i.e., Alpha1) showed a signifi-
cant power increase in the presence of distractors (t(67) =
2.66; p=0.0097; d=0.32) while alpha components that
decreased in power during the memory delay (i.e.,
Alpha2) showed a significant power decrease in the pres-
ence of distractors (t(42) = �5.78; p, 0.001; d=0.88).
Hence, Alpha1 and Alpha2 showed opposite and signifi-
cantly different (t(109) = 5.42; p, 0.001; d=1.05) distrac-
tor-related power modulations (Fig. 3B,E).

Alpha1 and Alpha2 power modulations have an
opposite relation to accuracy
In order to assess the behavioral relevance of Alpha1

and Alpha2 power modulations, we compared the accu-
racy between trials with high and low alpha power during
the delay (% change from fixation). Since the presence of
distractors was associated with lower accuracy, we per-
formed this analysis for distractor and no-distractor con-
ditions separately. For the distractor condition, accuracy

Figure 2. Sensor level analysis. A, Topographic plots depicting the t values from the condition comparison (memory delay vs fixa-
tion) in a band power (top), individual a peak power (middle), and individual a peak frequency (bottom). Significant differences
(p,0.05 after FDR correction) are marked with asterisks. B, Mean power spectrum for fixation (black graph) and memory delay (or-
ange) of sensors showing significant changes in individual a peak power and frequency (shaded area depicts SD across subjects;
sensors included in spectra indicated in inset).
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Figure 3. Power modulations of independent a components. A, Power changes during the memory delay relative to fixation. Z-
values (representing the memory retention effect in each component) are plotted as a function of their peak frequency (each
color codes for a different subject). Components showing a significant increase in power during the memory delay were de-
nominated Alpha1 while components showing a significant decrease were denominated Alpha2. The mean topography of the
power change is plotted separately for Alpha1 (red) and Alpha2 (blue) components. B, Differential distractor-related power
modulations of Alpha1 and Alpha2 components. Z-values represent the distractor effect in individual components. At group
level, Alpha1 components (red) showed significantly more power in the presence of distractors while Alpha2 components (blue)
showed significantly less. Colored asterisks mark statistical significance (p, 0.05) of the Alpha1 (red) or Alpha2 (blue) distribu-
tions against 0 (one-sample t test). Black asterisks mark significant differences (p, 0.05) between Alpha1 and Alpha2 distribu-
tions. C, Effect of power modulations on accuracy in the distractor condition. Accuracy was compared for high power and low
power trials (median split), showing a significantly greater accuracy for trials with high Alpha1 power in the distractor condition.
D, Same as C for the no-distractor condition, showing a significantly lower accuracy for trials with high Alpha2 power in the
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was significantly higher for trials showing greater Alpha1
power (t(67) = 2.97; p=0.0041; d=0.36), while no differen-
ces were found in Alpha2 power (t(42) = 0.54; p= 0.58;
d=0.08). However, power-related differences in accuracy
between Alpha1 and Alpha2 did not reach statistical sig-
nificance (t(109) = 1.18; p=0.24; d=0.23). For the no-dis-
tractor condition, accuracy was significantly higher for
trials with lower Alpha2 power (t(42) = �2.79; p=0.0078;
d=0.42), while no significant difference was found in
Alpha1 power (t(67) = 1.42; p=0.15; d=0.17). In this case,
power-related differences in accuracy between Alpha1
and Alpha2 components did reach statistical significance
(t(109) = 2.76; p=0.0067; d=0.53).
In summary, in the presence of visual distractors, better

accuracy was associated with higher Alpha1 power, while
in the absence of visual distractors, better accuracy was
associated with lower Alpha2 power.

Alpha1 and Alpha2 components differ in their
spatiospectral characteristics
In order to assess whether Alpha1 and Alpha2 rhythms

differ in their spatiospectral characteristics, we compared
three different spectral parameters (peak frequency,
peak width, and relative amplitude; Fig. 4A) and the loca-
tion of their estimated main source through dipole fitting
(x-, y-, and z-axes; Fig. 4B). This analysis revealed that
Alpha1 components tended to have a lower peak fre-
quency (t(109) = �6.00; p, 0.001; d= 1.16), a narrower
peak width (t(109) = �2.43; p= 0.016; d= 0.47), a greater
relative peak amplitude (t(109) = 5.68; p, 0.001; d= 1.10),
and a more central source estimation (t(109) = 2.86;
p= 0.005; d= 0.55) than Alpha2 components (Fig. 4C).
No significant differences were found between the source
estimation of Alpha1 and Alpha2 components in the other
two axes (i.e., ventral to dorsal and posterior to anterior).

Discussion
In this study we used ICA to examine whether posterior

alpha power modulations during visual working memory
reflect the dynamics of one or several brain rhythms. We
recorded MEG while participants (N=33) performed a vis-
ual working-memory task in which one out of four spatial
directions had to be remembered for a short period of
time. Task difficulty was modulated by introducing visual
distractors during memory retention. Group analysis at
sensor level suggested that posterior alpha consists of a
single oscillator that increases in power and decreases in
frequency during memory retention. In contrast, the anal-
ysis of independent components in single subjects re-
vealed the existence of an alpha rhythm that increases in
power during the memory delay (Alpha1), and an alpha
rhythm that decreases in power during the memory
delay (Alpha2). Interestingly, the power of Alpha1 and
Alpha2 rhythms was differentially modulated by the

presence of distractors (Alpha1 increased in power while
Alpha2 decreased) and had an opposite relationship with
accuracy (positive for Alpha1 and negative for Alpha2). In
addition, Alpha1 and Alpha2 rhythms differed significantly
in their spatiospectral characteristics. Specifically, Alpha1
rhythms showed a lower peak frequency, a narrower peak
width, a greater relative peak amplitude and a more central
source than Alpha2 rhythms. Thus, our results show that
modulations in posterior alpha oscillations during memory
retention reflect the dynamics of at least two distinct
brain rhythms with different functions and spatiospec-
tral characteristics.
The existence of alpha rhythms that increase and de-

crease in power during memory retention depending on
their spatial origin is in line with prevailing theories of alpha
function (Klimesch et al., 2007; Jensen and Mazaheri, 2010).
According to these theories, alpha power reflects local corti-
cal inhibition and therefore should increase in task-irrelevant
areas and decrease in task-relevant areas. In the context of
memory retention, it can be predicted that brain regions that
are relevant to the transient maintenance of visual informa-
tion would show alpha power decrease (disinhibition). On
the other hand, brain regions that are irrelevant for memory
maintenance (and could potentially interfere with the task)
would show alpha power increase (inhibition). Although
source estimation through dipole fitting in M/EEG has to be
interpreted with caution (Leahy et al., 1998), the spatial dis-
tribution of the two observed types of alpha components
suggests that, at least in occipital cortex, Alpha1 rhythms
mostly originate in early visual areas while Alpha2 rhythms
localize to higher-order areas (Fig. 4B). This is supported by
their spectral profiles, since higher-order areas are thought
to show a more pronounced 1/f trend (Ibarra Chaoul and
Siegel, 2021) and higher peak frequency (Lundqvist et al.,
2020), i.e., in line with what we see in Alpha2 components
when compared with Alpha1 (Fig. 4A). Based on these re-
sults and previous evidence (Tuladhar et al., 2007; Popov et
al., 2017; de Vries et al., 2018), we speculate that Alpha1
power increases reflect the inhibition of lower-order areas
involved in visual processing, while Alpha2 power decreases
reflect the disinhibition of higher-order areas supporting the
transient storage of visual information.
If Alpha1 and Alpha2 rhythms duringmemory retention re-

flect the inhibition and disinhibition of task-irrelevant and
task-relevant areas respectively, we would expect that be-
havioral performance improves when Alpha1 power in-
creases and Alpha2 power decreases. Interestingly, Alpha1
power increases and Alpha2 power decreases were associ-
ated with better accuracy in different experimental condi-
tions. Specifically, Alpha1 power was positively associated
with accuracy only in the presence of distractors, while
Alpha2 power was negatively associated with accuracy only
in the absence of distractors. We hypothesize that behav-
ioral performance in distractor and no-distractor conditions
depends on different factors. On the one hand, incorrect

continued
no-distractor condition. E, Average time-frequency representation of Alpha1 and Alpha2 components for the distractor and the
no distractor conditions. The black vertical line indicates the presentation of the first cue. The white vertical line marks the pre-
sentation of second cue.
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responses in the distractor condition might mostly be be-
cause of the interference of visual distractors. In this scenario,
Alpha1 power increases become predictive of behavior be-
cause it inhibits areas involved in visual processing to avoid
interference during memory retention. On the other hand, in
the condition without distractors, incorrect responses might
predominantly be caused by lapses of attention because of
mind wandering and/or drowsiness (Braboszcz and Delorme,

2011; Andrillon et al., 2019, 2021; Rodriguez-Larios and
Alaerts, 2021). Previous literature suggests that lapses of
attention involve reduced cortical processing of external
events (Smallwood et al., 2008). If an external event is not
properly processed by the brain during an attentional lapse,
its content cannot be maintained in working memory.
Hence, we can expect that the recruitment of cortical
areas supporting short-term memory retention (i.e.,

Figure 4. Spatiospectral differences between Alpha1 and Alpha2 components. A, Average spectrum of Alpha1 and Alpha2 compo-
nents across the complete trial (shaded area depicts SD). B, Source localization of Alpha1 (red) and Alpha2 (blue) components as
estimated through dipole fitting. The top panel shows the horizontal plane while the bottom panel shows the coronal plane. C, Plots
depicting significant differences in four spatiospectral parameters: peak width (top left panel), peak frequency (top right), relative
amplitude (bottom left) and location (bottom right).
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Alpha2 desynchronization) is less pronounced (or even
absent) during an attentional lapse because there is lit-
tle or no information to be retained. Nonetheless, it is
important to note that the reported differences in ac-
curacy depending on Alpha1/Alpha2 power modula-
tions must be interpreted with caution because of the
small number of incorrect trials (mean accuracy was
87% across conditions). In order to overcome this limi-
tation in future work, it would be important to assess
the here reported effects with a more difficult task or
by adjusting task-difficulty at an interindividual level.
Recent literature points to the physiological and com-

putational relevance of frequency modulations of neural
oscillations (Cohen, 2014; Lowet et al., 2017; Klimesch,
2018). However, because of volume conduction, spurious
frequency modulations at sensor level can emerge as a
result of differential power modulation of multiple brain
rhythms with distinct peak frequencies (Donoghue et al.,
2022; Schaworonkow and Nikulin, 2022). Using ICA, we
here demonstrate the existence of two distinct alpha
rhythms in posterior cortex with different peak frequen-
cies and opposite power modulations during memory re-
tention. In light of these results, we cannot rule out the
possibility that previously reported frequency changes in
posterior alpha during different cognitive tasks (Angelakis
et al., 2004; Haegens et al., 2014; Babu Henry Samuel et
al., 2018; Rodriguez-Larios and Alaerts, 2019) are actually
reflecting differential power modulations of multiple alpha
rhythms with different peak frequencies. Therefore, future
studies are needed to assess whether the previously re-
ported alpha frequency changes in M/EEG during differ-
ent cognitive tasks hold after the spatial separation of
different alpha rhythms.
The spatial separation of different alpha rhythms could

resolve some of the previous inconsistencies in the litera-
ture concerning the role of alpha phase, power and fre-
quency in cognition (Samaha et al., 2020; Michail et al.,
2022; Pavlov and Kotchoubey, 2022; Zazio et al., 2022).
Similarly, separating different alpha rhythms could allow us
to understand why some neurofeedback and neurostimu-
lation protocols do not have the expected effect in some
subjects (Orendá�cová and Kvašnõák, 2021). If we tune the
neurofeedback/stimulation parameters (and/or assess
their effects) at sensor level, we cannot know whether we
are modulating the power or frequency of one or several
alpha rhythms. As different alpha rhythms could be more
prominent in different subjects because of interindividual
differences in brain anatomy and functional specialization,
this might have a key impact on the effects of their modu-
lation (Duffau, 2017; Mikkonen et al., 2020).
In conclusion, our results show that posterior alpha

dynamics during memory retention reflect the activity
of at least two brain rhythms with distinct functions
and spatiospectral characteristics. Alpha1 rhythms in-
creased in power during memory retention and in the pres-
ence of visual distractors, while Alpha2 rhythms showed
the opposite power modulations. In addition, Alpha1 and
Alpha2 rhythms had an opposite relationship with accuracy
(positive for Alpha1 and negative for Alpha2). Lastly,
Alpha1 and Alpha2 differed significantly in several spectral

parameters (peak frequency, peak width and relative am-
plitude) and in the location of their estimated main source. In
the light of previous results and theoretical accounts
(Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Haegens et al., 2022; Iemi et al., 2022), we hypothesize
that during memory retention, Alpha1 rhythms increase
in power to inhibit visual processing while Alpha2 rhythms
decrease in power to disinhibit areas supporting the short-
term storage of visual information.
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