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Abstract: This study aimed to investigate the potential of supercritical carbon dioxide (sCO2), organic
Rankine cycle (ORC), and thermoelectric generator (TEG) systems for application in automotive
exhaust waste heat recovery (WHR) applications. More specifically, this paper focuses on heavy-duty
diesel engines applications such as marine, trucks, and locomotives. The results of the simulations
show that sCO2 systems are capable of recovering the highest amount of power from exhaust gases,
followed by ORC systems. The sCO2 system recovered 19.5 kW at the point of maximum brake power
and 10.1 kW at the point of maximum torque. Similarly, the ORC system recovered 14.7 kW at the
point of maximum brake power and 7.9 kW at the point of maximum torque. Furthermore, at a point
of low power and torque, the sCO2 system recovered 4.2 kW of power and the ORC system recovered
3.3 kW. The TEG system produced significantly less power (533 W at maximum brake power, 126 W
at maximum torque, and 7 W at low power and torque) at all three points of interest due to the low
system efficiency in comparison to sCO2 and ORC systems. From the results, it can be concluded that
sCO2 and ORC systems have the biggest potential impact in exhaust WHR applications provided the
availability of heat and that their level of complexity does not become prohibitive.

Keywords: waste heat recovery; WHR; diesel engine; organic Rankine cycle; ORC; supercritical
carbon dioxide; sCO2; thermoelectric generator; TEG; fuel economy; fuel efficiency; fuel consumption
reduction

1. Introduction

Diesel engines were widely used for heavy goods transportation, agriculture, and
industrial machines for many decades. However, with growing pressure from environ-
mental groups and government regulation, automotive manufacturers are being forced to
improve engine efficiency and reduce fuel consumption, consequently leading to reduced
CO2 and other greenhouse gas (GHG) emissions into the atmosphere. Figure 1 shows
the typical energy losses in a heavy-duty diesel engine. As can be seen in the diagram,
over half of the fuel energy is wasted mainly through exhaust and cooling systems [1]. A
waste heat recovery system has the potential to convert some of this wasted energy into
electricity, which can be used to reduce the load on the vehicle alternator or power auxiliary
components, such as the air conditioning and lights [2,3]. Therefore, fuel consumption can
be reduced.
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There are three promising systems that are being investigated currently in the industry
for use in automotive exhaust waste heat recovery applications. These are the thermoelectric
generators (TEGs), the organic Rankine cycle (ORC)-based systems, and supercritical carbon
dioxide (sCO2)-based systems [4–7]. These systems can not only be used for exhaust heat
recovery, but also in many other industries, such as nuclear power generation, fossil fuel
power generation, and shipboard power. These were specifically chosen as they are at
the highest state of technological readiness compared to newer option (thermo-acoustic
systems, for example) available that are under early to mid-stage research.
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sures throughout the cycle, which results in a higher density working fluid, thereby facil-
itating smaller equipment sizes and physical footprint, and hence lower capital cost [12]. 

Due to the compact nature of these systems, their environmentally friendly charac-
teristics, safety levels, and the properties of the working fluid, sCO2 cycles emerged as a 
promising method in engine waste heat recovery. The technical feasibility of using CO2-
based systems in engine waste heat recovery was already verified as it is already being 
used in vehicle air conditioning systems [13–16].  
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1.1. Supercritical Carbon Dioxide (sCO2) Cycles

CO2 is an environmentally benign natural working fluid that is inexpensive, non-
flammable, non-explosive, and abundant in nature. Furthermore, it has a low global
warming potential (GWP) and no ozone-depleting potential (ODP) [8–11], which are impor-
tant environmental characteristics when selecting the working fluid for a thermodynamic
power generation cycle. The layout of these waste heat recovery systems can be seen in
Figure 2 below.

As CO2 approaches its critical point, it becomes more incompressible; therefore,
the compressor work can be decreased substantially, leading to higher thermodynamic
cycle efficiencies. Another benefit of using sCO2 cycles is that they operate at much
higher pressures throughout the cycle, which results in a higher density working fluid,
thereby facilitating smaller equipment sizes and physical footprint, and hence lower capital
cost [12].

Due to the compact nature of these systems, their environmentally friendly charac-
teristics, safety levels, and the properties of the working fluid, sCO2 cycles emerged as a
promising method in engine waste heat recovery. The technical feasibility of using CO2-
based systems in engine waste heat recovery was already verified as it is already being
used in vehicle air conditioning systems [13–16].

Manjunath et al. carried out a study on sCO2 waste heat recovery cycles for shipboard
power applications. The study compared a proposed system that uses the sCO2 Brayton
cycle to a conventional topping Brayton cycle that is already used for the application. They
found that an increase in power output of around 18% can be achieved, as well as an
increase in the overall shipboard power system efficiency of more than 11% [17]. Song
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et al. carried out a simulation study to test the performance improvement of a preheating
sCO2 cycle-based system for engine waste heat recovery. The engine in consideration was
an inline six turbocharged diesel engine that was used previously for ORC waste heat
recovery studies. The results from the simulation show that the improved system can better
utilize the regeneration heat load and hence improve system performance. Moreover, the
maximum net output of the system is 7.4% higher than the original system. By adopting
the improved preheating system, the engine power output was increased by 6.9% [1].
Furthermore, a similar study carried on the same engine with similar sCO2-based systems
found that the engine power output was increased by 8.5%, indicating a tremendous
potential for practical applications [1].
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The cost of sCO2 systems varies significantly with the architecture of the system.
Marchionni et al. studied the cost of various sCO2 architectures (in the 160–175 kWe range).
They found that the simple recompression and simple recuperation layouts have investment
costs of USD/kWe 1175 and USD/kWe 862.5, respectively. More complex systems such as
the recompression, reheating layout can have costs as high as USD/kWe 1675 [18].

1.2. Organic Rankine Cycle (ORC)

ORC waste heat recovery systems were heavily investigated for application in heavy-
duty diesel engines for several decades. Mahmoudi et al. carried out an extensive literature
review on ORC research. They found that diesel engines and gas turbines are the most
used heat sources for WHR studies [19]. The layout of the system onboard diesel engine
with exhaust gas recirculation (EGR) can be seen in Figure 3 below.

One of the first studies carried out was by Teng et al. who simulated an ORC WHR
system on a Cummins ISX heavy-duty diesel engine with a rated brake power of 275 kW.
The results of the simulations show that 55 kW of mechanical work was recovered by the
ORC WHR system in steady-state conditions, which is equivalent to about a 20% increase
in engine power without any additional fuel consumption [20]. Moreover, the efficiency
of the ORC system was found to be 29.5% [20]. Another study carried out by Cipollone
et al. tested an IVECO N67 engine operating at 1500 rpm and 25% load (a brake power of
35 kW). The ORC system was able to recover 2 kW of electric power at this power range [21].
Additionally, Pesyridis et al. carried out a study on a 10.3 L, 316 kW turbocharged heavy-
duty diesel engine using an ORC WHR system. The system was able to recover 2–4 kW at
low speeds and 8–16 kW at high speeds [22,23]. Moreover, Arunachalam et al. simulated an
ORC WHR system on a 13 L, 367 kW Volvo D-13 engine using a mixture of 80% water and
20% ethanol as the working fluid. They found that the efficiency of the WHR system varied
between 9 and 23% depending on the source of the waste heat [24]. Moreover, Varshil and
Deshmouk [25] reviewed ORC performance for diesel engines of various configurations
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and found that there is a potential of improving fuel economy by up to 5% through effective
implementation of ORC systems for waste heat recovery.
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The focus more recently was on investigating the fuel economy potential of using
ORC WHR systems. An experiment based on a 10.8 L 2006-MY Cummins ISM diesel
engine in typical driving conditions was carried out by Teng et al. [26]. Thermodynamic
analysis showed that up to a 5% fuel economy improvement was achieved using the
WHR system above. Moreover, Laouid et al. conducted a multi-objective optimization of
different organic Rankine cycle configurations and also found fuel economy improvements
of 5–8.78%, with the latter being obtained by an ORC with an internal heat exchanger [27].
Hoang carried out an extensive review on ORC WHR diesel engine studies. He found that
up to a 10% fuel saving can be achieved realistically, as well as 10–25% thermal efficiency
for single-loop ORC systems and 60–90% for dual- or multi-loop ORC systems [28]. These
exact findings were replicated by Chintala et al., who carried out a similar technical review
on compression ignition engines using ORC WHR systems. They also found that R245fa
is the best working fluid for these systems due to its good performance as a refrigerant,
its availability, and its low economic and environmental impacts [29]. ORC systems were
also heavily investigated for mobile marine applications. Mat Nawi et al. carried out a
study using bioethanol as the working fluid in the ORC system. The results show that
the ORC system was able to recover 5 kW of power from a 996 kW marine diesel engine
running at 1500 rpm [30]. Moreover, Mondejar et al. found that ORC systems recovering
heat from exhaust gases produced by marine diesel engines running on low-sulphur fuels
could yield fuel savings of 10–15% [31]. In terms of both simulation and experimental
studies, the fuel economy improvement ranges from 2 to 10%. These values depend on the
design and selection of components, the working fluid used, and the architecture of the
WHR system [32].

1.3. Thermoelectric Generators (TEG)

Thermoelectric processes are those the result in the direct conversion of thermal
energy into electrical energy. Thermoelectric generators (TEG) have great potential to
be used in waste heat recovery applications in power plants and automotive vehicles.
They have many advantages, including low maintenance, zero environmental impact,
silent operation, compactness, and stability. However, there are considerable technical
challenges still remaining that, thus far, limited the progress of these systems. These
include low efficiency and low maximum operating temperature, which are dictated by the
selection of thermoelectric materials, as well as integration effects that arise from increased
mass, complexity, and increased exhaust backpressure. Figure 4 below shows a typical
thermoelectric module that can be used to generate electricity.
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Kumar et al. created a model for a TEG WHR system based on a General Motors
prototype Chevrolet Suburban. They were able to obtain a thermoelectric efficiency of 5.5%
and heat exchanger transfer efficiency of 64% [33]. Lan et al. used a novel combination of
TEG with and without ORC. They were able to produce 400 W of power and claimed a
1.8 to 4.3% fuel consumption reduction along a different drive cycle with TEG offering a
1.4% fuel saving on the WLTP on its own [34]. Kim et al. carried out an experiment to test
the WHR performance of a TEG showing that the power produced by the TEG increases
with engine load and speed. Moreover, a maximum power output of 119 W at 2000 rpm
was achieved, as well as a maximum conversion efficiency of approximately 2.8% [35,36].
Lan et al. conducted a study to see how the location of the TEG affects the fuel economy
potential in light-duty automotive applications. The study found that by placing a TEG
closer to the exhaust manifold, the fuel-saving potential can increase by 50% [37].

Bang et al. studied the application of TEGs in medium-sized trucks. They found that
these systems can save around 1.04 kL of fuel over 10 years, therefore justifying an econom-
ically acceptable cost of USD/kW 2905 for a TEG system [38,39]. This is significantly less
than ORC systems due to the reduced complexity of the system. Moreover, Hendricks et al.
carried out a cost analysis on an automotive TEG system using Skutterudite modules.
They found that the most dominant components contributing to system costs are the heat
exchangers used [40].

The aim of this study is to investigate the power recovery potential through the use of
either ORC, sCO2, or TEG systems in automotive exhaust waste heat recovery applications
in order to assess their suitability for automotive exhaust waste heat recovery systems. This
will be achieved by completing the following objectives:

• Create a heavy-duty diesel engine model on GT-SUITE;
• Create TEG, ORC, and sCO2 system models on GT-SUITE and simulate these systems

with the diesel engine model;
• Compare obtained results from simulations to relevant literature to come to a con-

clusion about which technology is most suitable for automotive exhaust waste heat
recovery systems;

• The following sections include the Modelling Methodology in Section 2, where the
heavy-duty diesel engine model is developed and described and then, in turn, the
ORC, sCO2, and TEG models are, also, developed and described;

• In Section 3, the results for all three main waste heat recovery systems tested, are
presented, as is their efficiency in improving the diesel engine’s performance;

• Section 4 concludes with a summary of the main findings and purpose of this work.

2. Modelling Methodology

This work was carried out using the GT-SUITE software to model these systems. The
software can be used to simulate the physics of fluid, mechanical, thermal, and electrical
flow. The heavy-duty diesel engine, as well as the WHR systems, were built and simulated
on GT-ISE using both the GT-POWER and the GT-SUITE components. Once this was
completed, GT-POST, which is a post-processing tool than can quickly generate 2D and
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3D plots from simulations, was used to analyze the results of the simulations as well as
combine data from different cases. This section will describe in sufficient detail to allow
repeatability, the creation of the diesel engine and WHR models that the results of this
project are obtained from.

An important part of modelling in GT-SUITE is calibrating the different components
in a system. In this project, the first step was to create standalone calibration models for the
heat exchangers, compressors, pumps, and turbines used in the diesel engine and WHR
models. These models were compared to reference test data provided by manufacturers of
GT-SUITE for WHR applications, as well as other calibration data found in the literature.
Once the components were calibrated and the quality of fit in comparison to test data was
acceptable, the simulations for this project were initiated. The calibration data, as well as
the key parameters for the design of the systems, can be found in the ‘Appendices A–C’
section of the report.

2.1. Heavy-Duty Diesel Engine Modelling

The engine used for this project is a 4-stroke, 6-cylinder, 11.7 L diesel engine with a
compression ratio of 16:1. This is representative of typical engines that are currently used,
for example, in heavy-duty trucks. The overall engine model can be seen in Figure 5. The
modifications that were carried out on the base engine will be discussed below.
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Figure 5. 6-Cylinder, 4-stroke, 11.7 L heavy-duty modified diesel engine model in GT- SUITE.

The engine cylinder temperatures are specified and can be changed for different sce-
narios in Table 1. The in-cylinder heat transfer model used in this study is the ‘WoschniGT’
model. This model uses a formula that closely emulates the classical Woschni correlation
without swirl. However, the difference lies in the treatment of the heat transfer coefficients
while the valves are open. The ‘WoschniGT’ model accounts for the heat transfer increased
by inflow velocities through intake valves, as well as the backflow through the exhaust
valves. Furthermore, the combustion model used is the direct injection (DI), three-term
Wiebe function, which can be used when the fuel is injected directly into the cylinder.
The DI-Wiebe function attempts to model the burn rate of diesel combustion by summing
up three separate curves: a main curve, a premixed curve, and a tail curve. The chosen
properties of the combustion model and heat transfer model can be found in Appendix A.
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Table 1. Heavy-duty diesel engine specifications modelled in GT-SUITE.

Parameter Value

Engine type 11.7 L, inline, 6-cylinder, 4-stroke
Turbocharged diesel

Bore x stroke (mm) 119 × 175
Compression ratio 16:1

Connecting rod length (mm) 300
Maximum brake power (kW) 305–1800 rpm

Maximum torque (N·m) 1540–1400 rpm
Engine firing order 1-5-3-6-2-4

Head temperature (K) 570
Piston temperature (K) 600

Cylinder temperature (K) 480

In this model, the brake power from the engine is controlled by the amount of fuel
injected into the cylinders. This brake power target, as well as the injected mass of fuel, is
specified in the case setup section. Fueling is limited within the controller by an air-fuel
ratio limit. Furthermore, the turbocharger adds a new dimension to the model, especially
in regards to the convergence of the simulation. In general, the turbocharger can take a
while to reach a steady speed even after flow convergence. Therefore, the turbocharger
compressor and turbine need to be mapped accordingly. The desired turbocharger speed
(in rpm) is defined by the user for the application in question. The compressor and turbine
calibration data can both be found in Appendix A.

Once all of the necessary parameters are defined, the user can enter all of the relevant
inputs needed for their simulation. In this project, the values chosen can be seen in Table 2.
The final obtained results for the simulation can be found in the ‘Results and Discussion’
section of the report. Below, ‘RPM’ stands for ‘revolutions per minute.

Table 2. Final chosen parameters for heavy-duty diesel engine model in GT-SUITE.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Brake power target (KW) 240 270 295 305 270 225 155 90
Injected mass of fuel (mg) 255 240 225 210 195 180 165 150

Number of Cycle 75 75 75 75 75 75 75 75
RPM (rpm) 3000 2400 2000 1800 1600 1400 1200 1000

Turbocharger (rpm) 90,000 86,000 80,000 82,000 77,000 69,000 60,000 52,000

2.2. ORC System Modelling

The indirect integration study approach will be adopted in this study. This is where
the engine is simulated separately from the WHR model. Firstly, the heavy-duty diesel
engine model is simulated, and the results are stored in a database alongside boundary
conditions. After this, the relevant data are inserted into the separate WHR model and
simulated to obtain the power recovered by the system. The advantage of this approach
is the faster solution times achievable relative to the direct method where the engine and
WHR system are coupled together and solved simultaneously.

The ORC system model that was created for this project can be seen in Figure 6. This
model incorporates typical components of an ORC system but has the added benefit of
a recuperator to help further improve system efficiency. For this system, the working
fluid that was selected was R245fa. Working fluid selection was based on practicality
(availability of R245fa and cost). The point of the study was the comparison of three
systems on a common basis and not an extensive investigation of optimal working fluids.
In this model, the values for the exhaust gas mass flow rate can be specified by the user
in the case setup section. These values were obtained from the diesel engine simulations
that provided the indirect approach link between the engine and the WHR system as
described previously.
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After the ORC model is completed, the run setup needs to be defined. The time control
flag is set to continuous for this simulation. Periodic time control would only be used if
the WHR system was coupled with a GT-POWER engine. However, as discussed earlier,
the indirect approach was taken in this project. The final parameters defined in the case
setup for this simulation can be seen in Table 3. Note that only three cases are run in the
WHR simulations. The reason for this will be discussed later in the ‘Results and Discussion’
section of the report. In Table 3, ‘MFR’ stands for ‘Mass Flow Rate’ and ‘VFR’ for ‘Volume
Flow Rate’.

Table 3. Final chosen parameters for the ORC system model on GT-SUITE.

Parameter Case 1 Case 2 Case 3

Pump speed (rpm) 2000 2200 2400
Expander speed (rpm) 1350 1500 1650

Exhaust gas MFR (kg/s) 0.1369 0.3235 0.4770
Exhaust gas inlet temperature (K) 655.6 711.8 783.9
Condenser coolant VFR (L/min) 180 190 200
Coolant inlet temperature (◦C) 26.85 26.85 26.85

Refrigerant initial temperature (◦C) 26.85 26.85 26.85

2.3. sCO2 System Modelling

Figure 7 shows the sCO2 system model that was created in GT-SUITE for this project.
The design of the system was based on the recuperated closed-loop Brayton cycle design
that can be seen in the literature review. This system, as the ORC system designed, has the
added benefit of increasing overall system efficiency by using a recuperator. The working
fluid for this system is carbon dioxide (CO2) in a supercritical state. In this state, the
temperature and pressure of CO2 is higher than its critical point and so the liquid and
vapor phases are indistinguishable. This occurs when the temperature is higher than 31 ◦C
and pressure is higher than 83.8 bar.

Once the system is modelled, the case setup section can be defined. The final case
setup parameters can be seen in Table 4 below. One important parameter is the refrigerant
initial temperature. This is set to 31 ◦C to ensure that the CO2 is in a supercritical state
throughout the entire system. Additionally, in the fluid properties for the model, the option
to calculate properties above the supercritical pressure was chosen. The results of the
simulation can be seen in the ‘Results and Discussion’ section of this report.
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Table 4. Final chosen parameters for the sCO2 system model in GT-SUITE.

Parameter Case 1 Case 2 Case 3

Pump speed (rpm) 2000 2200 2400
Expander speed (rpm) 1350 1500 1650
ExhGas_MFR (kg/s) 0.13693 0.32345 0.47707

ExhGas inlet temperature (K) 655.5935 711.7872 783.91376
Condenser coolant VFR (L/min) 180 190 200
Coolant inlet temperature (◦C) 26.85 26.85 26.85

Refrigerant initial temperature (◦C) 31 31 31

2.4. TEG System Modelling

The final system being tested in this project is the TEG system that can be seen in
Figure 8. A close up of the thermoelectric modules (TEM) can be seen in Figure 9. In this
model, 10 TEM elements are sandwiched between a hot and a cold pipe. Each TEM connects
thermally to the pipe walls such that a temperature difference exists across each TEM. The
temperature difference produces a voltage within the TEM and therefore a current through
the attached external electric circuit. The exhaust gas inlet properties (exhaust mass flow
rate and temperature) are defined by the user in the case setup, alongside the pressure of
the exhaust at the outlet.
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Each pipe is modelled as a ‘flat plate’ that would be found in a typical plate-style heat
exchanger. The pipes are modelled using thermal pipes connected to masses to represent
the pipe walls (and fins for the inner pipe). Furthermore, the TEM template used in the
model accounts for all three thermoelectric effects (Seebeck, Peltier, and Thomson) to
generate an electric potential in response to a temperature difference across it. The same
process is repeated for all 10 TEMs to obtain the complete model. To analyze the amount of
power produced by the whole TEG system, an RLT creator part was made, which sums up
all of the power outputs from each TEM. The final parameters in the case setup can be seen
in Table 5 below.
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Table 5. Final chosen parameters for TEG model in GT-SUITE.

Parameter Case 1 Case 2 Case 3

Coolant mass flow rate (kg/s) 0.1 0.4 0.8
Exhaust mass flow (kg/s) 0.13693 0.32345 0.47707

Coolant outlet pressure (bar) 1 1 1
Exhaust outlet pressure (bar) 1.009656 1.0482228 1.0881422
coolant inlet temperature (◦C) 25 25 25
Exhaust inlet temperature (K) 655.5935 711.7872 783.91376

3. Results and Discussion

After modelling the diesel engine and waste heat recovery systems, the results are
analyzed and discussed in this section. In the first part, diesel engine modelling results are
presented, and then waste heat recovery modelling is discussed.

3.1. Heavy-Duty Diesel Engine Model Results

Figure 10 shows the brake power produced by the heavy-duty diesel engine model
from 1000 rpm to 3000 rpm. It can be seen that the maximum brake power produced by
the engine is around 305 kW at 1800 rpm. This type of power is representative of current
heavy-duty diesel engines. Moreover, the actual shape of the power curve and the rev
range that it is produced at further increases confidence in the model. Similarly, in Figure 11
the brake torque produced by the engine in the same rpm range can be seen. We can see
that the maximum brake torque produced is approximately 1540 N·m at 1400 rpm. Again,
this figure at this power range is representative of current production heavy-duty diesel
engines, thereby further increasing confidence in the model.

After obtaining the power and torque curves from the engine, it is important to select
a few important points of operation in order to study how much power WHR systems
can recover during typical driving scenarios. In this project, three points of operation
were selected:

• Case 1. Point of low power and torque (90 kW brake power)—1000 rpm was selected
as another point of interest;

• Case 2. Point of maximum torque (225 kW brake power)—1540 N·m was produced at
1400 rpm;

• Case 3. Point of maximum power (305 kW brake power)—305 kW was produced at
1800 rpm from the model.
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Figure 12 shows the exhaust mass flow rate for the 1000 rpm to 3000 rpm range.
However, not all the points are of interest in this study as discussed above. Figure 13
shows the exhaust mass flow rates at the selected points of interest (1000 rpm, 1400 rpm,
and 1800 rpm). This, alongside the exhaust temperature values at the points of interest
in Figure 14, were entered into the WHR models as the exhaust input values. This is the
reason why three cases are being run in the WHR models, as each case represents one point
of interest. By obtaining these exhaust values, the indirect approach was taken as discussed
in the ‘Methodology’ section of the report.
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3.2. WHR Systems Results

Figure 15 shows the expander power obtained at the selected points of interest. Note
that in all of the WHR simulations, case number 1 represents the low power and torque
point, case number 2 represents the point of maximum torque, and case number 3 represents
the point of maximum power. We can see that at 1000 rpm, the ORC system was able to
produce 3.3 kW of power. Furthermore, at the point of maximum torque, the ORC system
was able to produce 7.9 kW of power. Lastly, at the point of maximum power, the ORC
system produced 14.7 kW of power. These results are similar to previous studies carried
out on similar engines, such as Teng et al.’s experiment on a Cummins ISX heavy-duty
diesel engine and Pesyridis et al.’s ORC simulation on a 10.3 L, 316 kW turbocharged
heavy-duty diesel engine (as discussed earlier in the literature review). Furthermore, these
results fall in the simulation range that Xu et al. mentioned when they carried out an
extensive study on all ORC WHR research undertaken so far. Therefore, we can be fairly
confident in the results from the ORC model made on GT-SUITE as it is supported heavily
by previous literature and a good working model. The efficiency of the ORC system is
highly dependent on the working fluid selected. In this study, the working fluid that was
chosen was R245fa. This is because R245fa is a well-established working fluid for ORC
application with many desirable properties for ORC applications. For example, it has no
ozone impact, low global warming potential, it is non-flammable, and it has the appropriate
thermodynamic properties for WHR applications.

Energies 2023, 16, 4339 15 of 23 
 

 

represents the point of maximum power. We can see that at 1000 rpm, the ORC system 
was able to produce 3.3 kW of power. Furthermore, at the point of maximum torque, the 
ORC system was able to produce 7.9 kW of power. Lastly, at the point of maximum power, 
the ORC system produced 14.7 kW of power. These results are similar to previous studies 
carried out on similar engines, such as Teng et al.’s experiment on a Cummins ISX heavy-
duty diesel engine and Pesyridis et al.’s ORC simulation on a 10.3 L, 316 kW turbocharged 
heavy-duty diesel engine (as discussed earlier in the literature review). Furthermore, these 
results fall in the simulation range that Xu et al. mentioned when they carried out an ex-
tensive study on all ORC WHR research undertaken so far. Therefore, we can be fairly 
confident in the results from the ORC model made on GT-SUITE as it is supported heavily 
by previous literature and a good working model. The efficiency of the ORC system is 
highly dependent on the working fluid selected. In this study, the working fluid that was 
chosen was R245fa. This is because R245fa is a well-established working fluid for ORC 
application with many desirable properties for ORC applications. For example, it has no 
ozone impact, low global warming potential, it is non-flammable, and it has the appropri-
ate thermodynamic properties for WHR applications.  

 
Figure 15. ORC expander power output (kW) vs. case number. 

Figure 16 shows the expander power output for the sCO2 system at the selected 
points of interest. At the point of low power and torque (1000 rpm), the sCO2 system pro-
duced 4.1 kW of power. At 1400 rpm (maximum torque), the system produced 10.1 kW of 
power. Lastly, at the point of maximum power (1800 rpm), the system produced 19.5 kW. 
In comparison to the ORC system results, we can see that at each point of interest, the 
sCO2 system produced more power. This is because sCO2 systems have higher efficiency 
than ORC systems, which is apparent in the results of this simulation. 

 
Figure 16. sCO2 expander power output (kW) vs. case number. 

Figure 15. ORC expander power output (kW) vs. case number.

Figure 16 shows the expander power output for the sCO2 system at the selected
points of interest. At the point of low power and torque (1000 rpm), the sCO2 system
produced 4.1 kW of power. At 1400 rpm (maximum torque), the system produced 10.1 kW
of power. Lastly, at the point of maximum power (1800 rpm), the system produced 19.5 kW.
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In comparison to the ORC system results, we can see that at each point of interest, the sCO2
system produced more power. This is because sCO2 systems have higher efficiency than
ORC systems, which is apparent in the results of this simulation.
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The final WHR system investigated in this project is the TEG system. In Figure 17,
we can see the total power output from all 10 TEMs. At 1000 rpm, the system produced
7 W of power. At 1400 rpm, the system produced 126 W of power. Lastly, at 1800 rpm the
system produced 533 W of power. In comparison to both the ORC and the sCO2 systems,
the total power produced by the TEG system is significantly less. This is because TEGs
have very low efficiency. In terms of the model, we can be confident that the model created
on GT-SUITE is representative of current TEG technology as the results from the simulation
are very similar to the literature in the field.
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Overall, from the results of all three WHR systems, in the Figure 18, it can be seen
that the most likely systems to be successful for exhaust waste heat recovery applications
for heavy-duty diesel engines are the ORC and sCO2 systems. These two systems have
significantly higher efficiencies than TEGs and therefore recover much more power from
the exhaust gases. Furthermore, sCO2 systems have the added benefit of being more
compact due to the higher working pressures of the system. However, the main challenges
facing both ORC and sCO2 systems are designing high efficiency turbines that are reliable
at elevated pressures and temperatures. If these challenges can be overcome though, there
is a significant opportunity for these systems to be adopted for WHR applications on a
mass scale.
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Overall, this is the only study to consider all three main heat recovery systems for
mobile application. Previous studies discussed from the literature (refer to [34]) stop short
of implementing sCO2. Therefore, the value of this study lies in the concurrent assessment
of these three principal options for waste heat recovery in a single study and carried out
against a common comparative basis.

4. Conclusions

The aim of this study was to investigate the potential of ORC, sCO2, and TEG systems
for use in heavy-duty diesel engine exhaust WHR. There was a number of simulations
and experimental studies carried out on these systems for a wide variety of applications;
however, they are yet to be adopted on a mass scale in transportation.

The results of the simulations showed that sCO2 systems are capable of recovering
the most power from exhaust gases, followed closely by ORC systems. The sCO2 system
recovered 19.5 kW at the point of maximum brake power and 10.1 kW at the point of maxi-
mum torque. Similarly, the ORC system recovered 14.7 kW at the point of maximum brake
power and 7.9 kW at the point of maximum torque. Furthermore, at a point of low power
and torque, the sCO2 system recovered 4.2 kW of power and the ORC system recovered
3.3 kW. The TEG system produced significantly less power (533 W at maximum brake
power, 126 W at maximum torque, and 7 W at low power and torque) at all three points of
interest due to the low system efficiency in comparison to sCO2 and ORC systems. Based
on these results, we can be confident in proposing the theoretical viability of sCO2 and
ORC systems as the most likely systems to be adopted for diesel engine WHR applications.
The sCO2 systems have the highest efficiency of the three WHR systems and also have
the benefit of being more compact due to the higher working pressures. Furthermore,
the cost per kW of power produced by sCO2 systems is also significantly less than both
ORC and TEG systems. Of course, the applicability of such systems is still a matter of
debate in the context of the electrification of transportation, but the increasing introduction
of alternative fuels and of hydrogen options means that such systems can be considered
with renewed vigor. Obviously, there are still some challenges to be overcome in terms of
component design and affordability of the systems for mass-scale production. However,
if this is achieved, in the near term, the potential of these systems can be exploited. The
energy recovered by these systems can be used to power auxiliary components, such as
the air conditioning or lights, therefore reducing the fuel consumption of the vehicle. With
growing pressure on automotive manufacturers to reduce emissions from their vehicles,
these WHR systems could prove to be an attractive prospect. While in industrial use,
SCO2 and ORC systems would require increased maintenance requirements compared to
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TEG systems; in the transportation context, these requirements are likely to be minimal by
design, but their evaluation was, in fact, out of the scope of this investigation.
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Nomenclature

Abbreviation Description
sCO2 Supercritical carbon dioxide
TEG Thermoelectric generator
TEM Thermoelectric modules
WHR Waste heat recovery
RPM Revolution per minute
ORC Organic Rankine cycle
GHG Greenhouse gas
GWP Global warming potential
ODP Ozone-depleting potential
Ref. In Temp. Refrigerant initial temperature
ExhGas_MFR Exhausr gas mass flow rate
ExhGas In Temp. Exhaust gas inlet temperature
Cool_MFR Coolant mass flow rate
Cool_Out_P Coolant outlet pressure
Exh_Out_P Exhaust outlet pressure

Appendix A

Heavy-Duty Diesel Engine Model Design Parameters on GT-SUITE.

Table A1. Engine cylinder heat transfer properties.

Parameter Value

Heat transfer model WoschniGT
Overall convection multiplier 1

Head/bore area ratio 1
Piston/bore area ratio 1.3
Radiation multiplier 1

Table A2. DI Wiebe combustion model properties.

Parameter Value

Premixed fraction 0.017
Ignition delay 2
Tail fraction 0.05

Premixed duration 2
Main duration 33
Tail duration 45

Premixed exponent 0.7
Main exponent 1.1
Tail exponent 1.3



Energies 2023, 16, 4339 17 of 21

Table A3. Compressor calibration data.

Attribute Speed (RPM) Mass Flow Rate
(kg/s) Pressure Ratio Efficiency

(Fraction)

1 55,984 0.15 1.75 0.67
2 55,984 0.2113 1.703 0.737
3 55,984 0.3769 1.669 0.763
4 55,984 0.3333 1.608 0.735
5 55,984 0.3948 1.494 0.639
6 73,974 0.23 2.42 0.68
7 73,974 0.3119 2.382 0.74
8 73,974 0.3871 2.348 0.771
9 73,974 0.4586 2.225 0.745
10 73,974 0.5283 1.969 0.639
11 88,485 0.36 3.21 0.69
12 88,485 0.4388 3.191 0.746
13 88,485 0.4869 3.152 0.758
14 88,485 0.5468 2.963 0.731
15 88,485 0.5975 2.536 0.635
16 102,000 0.44 4.022 0.7
17 102,000 0.52 4.018 0.709
18 102,000 0.5455 3.967 0.712
19 102,000 0.58 3.785 0.7
20 102,000 0.63145 3.223 0.631

Table A4. Turbine calibration data.

Attribute Speed
(RPM)

Mass Flow Rate
(kg/s)

Pressure Ratio
(bar)

Efficiency
(fraction)

1 40,700 0.25 1.27 0.76
2 40,700 0.276 1.31 0.8
3 40,700 0.2888 1.349 0.831
4 40,700 0.294 1.38 0.81
5 49,700 0.295 1.46 0.79
6 49,700 0.32 1.53 0.83
7 49,700 0.3223 1.594 0.846
8 49,700 0.338 1.63 0.823
9 57,300 0.343 1.75 0.821
10 57,300 0.349 1.83 0.847
11 57,300 0.3553 1.882 0.856
12 64,000 0.3573 1.92 0.846
13 64,000 0.348 2.02 0.838
14 64,000 0.355 2.09 0.855
15 64,000 0.3629 2.161 0.863
16 70,000 0.366 2.23 0.849
17 70,000 0.353 2.31 0.825
18 70,000 0.357 2.36 0.842
19 70,000 0.3606 2.416 0.854
20 102,000 0.363 2.5 0.847

Appendix B

ORC and sCO2 System Model Design Parameters on GT-SUITE.

Table A5. Evaporator heat exchanger specifications.

Attribute Value

Tube length (mm) 850
Inlet connection diameter (master fluid) (mm) 12.7

Outlet connection diameter (master fluid) (mm) 117.0973
Number of tubes 100

Inlet tank volume (L) 0.03335
Outlet tank volume (L) 0.03335

Dry mass of heat exchanger material (kg) 10
Heat exchanger material properties object Stainless steel
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Table A6. Evaporator heat transfer calibration data.

Attribute

Master
Inlet

Temperature
(◦C)

Master
Inlet
Static

Pressure
(bar)

Master
Outlet
Static

Pressure
(bar)

Master
Mass
Flow
Rate

(kg/s)

Slave Inlet
Temperature

(◦C)

Slave
Inlet
Static

Pressure
(bar)

Slave
Outlet
Static

Pressure
(bar)

Slave
Mass
Flow
Rate

(kg/s)

Heat
Transfer

Rate
(kW)

1 45 20.0025 20 0.1 700 1.00074 1 0.05 28.8
2 45 20.0072 20 0.2 700 1.00232 1 0.08 47.1
3 45 20.0202 20 0.3 700 1.00747 1 0.14 82.8
4 45 20.0313 20 0.4 700 1.01074 1 0.17 98.8
5 45 20.0521 20 0.5 700 1.01973 1 0.23 130

Table A7. Expander calibration data.

Attribute
Turbine
Speed
(RPM)

Volumetric
Efficiency
(Fraction)

Suction
Pressure

(bar)

Suction
Temperature

(◦C)

Discharge
Pressure

(bar)

Discharge
Temperature

(◦C)

Total
Shaft
Power
Output

(kW)

1 1000 0.92 20 150 10 127.6 1.39
2 1000 0.94 20 150 7 122.13 2.12
3 1000 0.95 20 150 5 117.85 4.48
4 1000 0.95 20 150 2.5 109.47 3.41
5 2000 0.73 20 150 10 127.7 2.71
6 2000 0.75 20 150 7 121.62 3.89
7 2000 0.75 20 150 5 116.61 4.67
8 2000 0.76 20 150 2.5 112.13 5.31
9 3000 0.63 20 150 10 129.4 3.58

10 3000 0.64 20 150 7 123.02 4.74
11 3000 0.65 20 150 5 117.77 5.85
12 3000 0.65 20 150 2.5 116.52 5.61
13 4000 0.55 20 150 10 132.43 3.05
14 4000 0.56 20 150 7 125.67 4.55
15 4000 0.56 20 150 5 121.11 5.75
16 4000 0.56 20 150 2.5 121.11 4.84

Table A8. Recuperator heat exchanger specifications.

Attribute Value

Tube length (mm) 600
Inlet connection diameter (master fluid) (mm) 12.7

Outlet connection diameter (master fluid) (mm) 12.7
Number of tubes 1

Inlet tank volume (L) 0.1
Outlet tank volume (L) 0.1

Dry mass of heat exchanger material (kg) 5
Heat exchanger material properties object Aluminum

Table A9. Recuperator heat transfer calibration data.

Attribute

Master
Inlet

Temperature
(◦C)

Master
Inlet
Static

Pressure
(bar)

Master
Outlet
Static

Pressure
(bar)

Master
Mass
Flow
Rate

(kg/s)

Slave Inlet
Temperature

(◦C)

Slave
Inlet
Static

Pressure
(bar)

Slave
Outlet
Static

Pressure
(bar)

Slave
Mass
Flow
Rate

(kg/s)

Heat
Transfer

Rate
(kW)

1 318 26 26 0.15 355 2.9 2.9 0.15 5.36585
2 318 26 26 0.2 355 2.9 2.9 0.2 7.07691
3 318 26 26 0.25 355 2.9 2.9 0.25 8.7795
4 318 26 26 0.3 355 2.9 2.9 0.3 10.4803
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Table A10. Condenser heat exchanger specifications.

Attribute Value

Plate length (mm) 200
Plate width (mm) 200

Connection diameter (master fluid) (mm) 75.2892
Connection diameter (slave fluid) (mm) 60

Number of channels (master fluid) 12
Number of channels (slave fluid) 11

Dry mass of heat exchanger material (kg) 3.8
Heat exchanger material properties object Aluminum

Table A11. Condenser heat transfer calibration data.

Attribute

Master
Inlet

Temperature
(◦C)

Master
Inlet
Static

Pressure
(bar)

Master
Outlet
Static

Pressure
(bar)

Master
Mass
Flow
Rate

(kg/s)

Slave Inlet
Temperature

(◦C)

Slave
Inlet
Static

Pressure
(bar)

Slave
Outlet
Static

Pressure
(bar)

Slave
Mass
Flow
Rate

(kg/s)

Heat
Transfer

Rate
(kW)

1 70 3.22 3.2 0.1 23 2.01856 2 40 20.6910
2 70 3.25 3.2 0.2 23 2.07423 2 80 41.3821
3 70 3.3 3.2 0.3 23 2.167 2 120 62.0732
4 70 3.35 3.2 0.4 23 2.29687 2 160 82.7643
5 70 3.41 3.2 0.5 23 2.46384 2 200 103.4554

Table A12. Pump calibration data.

Attribute Speed
(RPM)

Volumetric
Flow Rate

(m3/s)

Pressure Ratio
(bar)

Total Isentropic
Efficiency
(Fraction)

1 1000 8.25 × 10−5 29 0.48
2 1000 9.3 × 10−5 25 0.51
3 1000 9.76 × 10−5 23 0.53
4 1000 1.12 × 10−4 15 0.54
5 1000 1.15 × 10−4 13 0.55
6 1000 1.24 × 10−4 17 0.58
7 1500 1.2 × 10−4 29 0.52
8 1500 1.36 × 10−4 25 0.57
9 1500 1.41 × 10−4 23 0.61

10 1500 1.63 × 10−4 15 0.63
11 1500 1.67 × 10−4 13 0.64

Appendix C

TEG System Model Design Parameters on GT-SUITE.

Table A13. TEG model hot and cold pipe properties.

Parameter Hot Pipe Value Cold Pipe Value

The area at inlet end (mm2) 5.26 500
Wetted perimeter at inlet end

(mm) 12.1 210

The area at outlet end (mm2) 5.26 500
Wetted perimeter at outlet end

(mm) 12.1 210

Length (mm) 50 50
Discretization length (mm) 50 50
Number of identical pipes 80 1
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Table A14. TEG model hot and cold thermal block properties.

Parameter Hot Thermal Block Cold Thermal Block

Material properties object Aluminum Aluminum
Mass (g) 40 29

Height (mm) 2 2
Length (mm) 50 50
Width (mm) 100 100
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