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Abstract

Argument game-based proof theories provide procedural structures capable
of determining the status of an argument. Given an argumentation framework,
argument games identify the membership of an argument in a specific exten-
sion simulating a dispute between two opposing contenders. The semantics
intended to be captured dictate the rules of the played game, which serve to
describe how the players can achieve victory. Dialectical Classical logic Argu-
mentation (Dialectical Cl-Arg) is a recent approach that provides real-world
dialectical characterisations of Cl-Arg arguments by resource-bounded agents
while preserving the rational criteria established by the rationality postulates
and practical desiderata. This paper combines both subjects and introduces
argument games for Dialectical Cl-Arg, highlighting the properties and benefits
enjoyed by these games in comparison with the standard ones. The result will
be a proof theory better equipped to approximate real-world non-monotonic
single-agent reasoning processes.

1 Introduction
Since Aristotle’s Organon [1, 33] and its considerable influence on the history of
Western thought, rich scholarly literature has been investigating the intertwined
notions of arguments, reasoning, and logic. For example, Walton claimed that “logic
is the evaluation of reasoning in arguments” [35], whereas Mercier and Sperber
emphasised the argumentative characterisation of reasoning:

“Reasoning is generally seen as a means to improve knowledge and make
better decisions. However, much evidence shows that reasoning often

The author would like to thank Peter McBurney and Marcello D’Agostino for the invaluable help
and comments provided to previous drafts of the current paper.

Vol. 10 No. 3 2023
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications



IFCoLog and Gabbay

leads to epistemic distortions and poor decisions. This suggests that the
function of reasoning should be rethought. Our hypothesis is that the
function of reasoning is argumentative. It is to devise and evaluate ar-
guments intended to persuade.” [23]

Trying to consolidate possessed information by formulating reasons (via arguments)
that challenge or defend them is an ordinary procedure in which humans engage.
This process is not only common but even necessary: how could it be possible, oth-
erwise, to decide what to believe or trust without being misled by a non-reliable
source of information? This ‘scaffolding’ (as defined in [24]) role of dialogues and
arguments can be seen in social and lone thinking practices where the reasoner(s)
evaluates the possessed information by constructing counter-arguments that assess
their acceptability. Thanks to its important role, argumentation has been devel-
oped as a rich, interdisciplinary area of research spanning Philosophy, Linguistics,
Psychology and Artificial Intelligence. Able to characterize a promising paradigm
for modelling reasoning in the presence of conflict and uncertainty, formal-logical
accounts of the argumentation theory have come to be increasingly central as a core
study within Artificial Intelligence. According to such a theory, in order to deter-
mine if a piece of information is acceptable, it will suffice to prove that the argument
(in which the considered information is embedded) is justified under specific seman-
tics. A way of doing this is to show the membership of the argument in a winning
strategy of an argument game (as described, for example, in [25, 34] and [9]). In-
deed, argument game-based proof theories provide procedural structures capable of
determining the status of an argument according to the semantics intended to be
captured.

Dung’s abstract argumentation framework (AF) [17] has been considered the
formalism from which stemmed most of the subsequent studies in this fruitful re-
search field. Nevertheless, although a plethora of works has successfully shown
various additions and instantiations of Dung’s abstract AF and achieved different
goals, none of these approaches managed to provide a full rational account for real-
world resource-bounded agents. Undoubtedly, the introduction of the rationality
postulates [6, 7], as well as desiderata for practical applications [20], have allowed
eschewing the arising of counter-intuitive results in AFs instantiations. However,
such requirements demand a consumption of resources that typically far exceed the
availability of real-world agents.

1.1 Contribution

The main contribution of this research paper is the development of argument games
for Dialectical Classical Logic Argumentation (Dialectical Cl-Arg [15]), a recent
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approach that provides real-world dialectical characterisations of AFs by resource-
bounded agents. This approach satisfies the practical desiderata and the rationality
postulates (under minimal requirements) and revolves around the core notion of
dialectical defeats. Such defeats enable argumentative interactions more aligned
with the dialectical reasoning of real-world resource-bounded agents. Thus, their
presence requires the implementation of dialectical argument game proof theories
capable of conveying the same idea as single-agent reasoning processes.

1.2 Paper Overview

The paper is organized as follows. Section 2 outlines an overview of the main def-
initions of Dung’s argumentation framework, the standard argument games and
Dialectical Cl-Arg. Section 3 provides the first contributions by establishing the
general formal background that characterises the dialectical argument games. The
other contributions occur in Sections 4 and 5, where (a) the protocol of the dialec-
tical admissible game (which also yields the credulous preferred game) and (b) the
protocol of the dialectical grounded game are given along with (c) their respective
soundness and completeness results. The specific properties enjoyed by dialectical
games in comparison with the standard ones are illustrated in Section 6, whereas
Section 7 introduces potential efficiency improvements that may be embedded in
the developed protocols. Section 8 presents the related works and some promising
research paths that might be investigated in the future. Finally, Section 9 draws the
conclusions and summarizes the paper findings.

2 Background

Argumentation has been developed as a theory able to characterize the essence of
non-monotonic reasoning via the dialectical interplay of arguments. According to
Dung’s seminal paper [17], an Argumentation Framework (AF) is composed of a
set of arguments ‘AR’ and a binary relation called ‘attacks’, which denotes conflicts
existing between arguments in AR, i.e., AF = ⟨AR, attacks⟩. Various semantics
have also been presented and each of them specifies the status of (sceptically or
credulously) justified (i.e., acceptable) arguments. Several works stemmed from [17],
some of which introduced different ways of structuring arguments and instantiating
Dung’s abstract AF [18, 31, 27]. For example, Classical Logic Argumentation (Cl-
arg) [21, 2] is one such instantiation that builds AFs using classical logic as its
underlying language.

3



IFCoLog and Gabbay

2.1 Dialectical Classical Logic Argumentation

Unlike the standard formalisation of Cl-Arg, real-world agents behave pragmatically
and do not need to: (i) always construct every argument defined by a base, (ii) en-
force consistency and subset minimality checks on their arguments (nor do they have
enough computational power to do these checks, given their limited resources). Di-
alectical Cl-Arg provides a formalisation of real-world modes of dialectical reasoning
from resource-bounded agents whilst satisfying both the rationality postulates [6, 7]
and practical desiderata [20].

Definition 1. [Dialectical Arguments] [15] X = (∆,Γ, α) is a dialectical argu-
ment defined by a base B of classical wff, if (∆ ∪ Γ) ⊆ B, ∆ ∩ Γ = ∅, and ∆ ∪ Γ
⊢c α. If α = ⋏ then X is said to be a falsum argument. If Γ = ∅ then X is said
to be unconditional; else X is conditional. Finally, if ∆ = ∅ then X is said to be
unassailable.

∆, Γ and α are respectively referred to as the premises (Prem(X)), suppositions
(Supp(X)) and conclusion (Con(X)) of X = (∆,Γ, α). Also, the union of premises
and suppositions of X can be referred to as the assumptions (Assumptions(X)) of
the argument.

Attacks and defeats for Dialectical Cl-Arg work differently than their respective
counterparts for Classical Logic Argumentation (Cl-Arg). The reason is the presence
of suppositions embedded in the internal structure of the arguments. Intuitively, it
is common practice for interlocutors in dialogues to differentiate between their own
arguments’ premises, regarded as true, and their opponents’ premises that they
want to challenge: “by considering what I deem to be valid and supposing what
you have committed to, I can show your premises inconsistency”. This motivates
such an epistemic distinction between information considered true (i.e., Prem(X),
the premises of an argument X) and opponents’ information supposed true (i.e.,
Supp(X), the supposition of an argument X) which proves useful also in solving the
so-called ‘foreign commitment problem’1.

Definition 2. [Attacks and Defeats][15] Let AR be a set of dialectical arguments
defined by a base B. The attack relation ‘attacks’ ⊆ AR×AR is defined as follows.
For any X = (∆,Γ, α), Y = (Π,Σ, β) ∈ AR: attacks(X,Y ) iff:

• if α ̸= ⋏ then α ∈ Π (X attacks Y on α, equivalently on Y ′ = ({α}, ∅, α));

1As extensively explained in [8], the foreign commitment problem is the issue that arises in
dialogical applications when agents are forced to commit to the premises of their interlocutors in
order to challenge their arguments.
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• if α = ⋏ (X attacks Y on any ϕ ∈ Γ∩Π, equivalently on any Y ′ = ({ϕ}, ∅, ϕ)).

Let ≺ be a strict partial ordering over AR. Then, for every X, Y such that
attacks(X,Y ), defeats(X,Y ) iff exactly one of the following holds:

• either X is an argument of the form (∅,Γ,⋏);

• else, ∃ψ ∈ Prem(Y ) such that attacks(X,Y ) on ψ, and X ⊀ ({ψ}, ∅, ψ).

X ⇒ Y will stand for “defeats(X,Y )”, and X ⇏ Y will stand for “¬defeats(X,Y )”.

The description of Dialectical Cl-Arg formalism provided in [15] accounts only
for undermine attacks and the ensuing defeats based upon this type of conflict. Un-
dermines are those kinds of attacks that occur when the conclusion of the attacking
argument targets the premises of the challenged argument. Nevertheless, the lit-
erature (e.g., [29, 32]) presents undercuts and rebuttals as additional categories of
conflicts. The first denotes arguments arguing against the defeasible inference rule
used to derive the attackee’s conclusion, whereas the second depicts a disagreement
towards the attackee’s defeasible conclusion. However, none of these conflicts can
be transposed in Dialectical Cl-Arg since no defeasible rules (but only the classical
entailment ⊢c) are employed in the construction of the arguments.

The strict partial ordering of Definition 2 refers to the Elitist Preference Order-
ing. In addition, the authors of [15] show that such preference is also ‘redundance-
coherent’ in the sense that arguments are not strengthened when redundantly weak-
ening with syntactically disjoint assumptions2. This is an important property that
ensures the satisfaction of the non-contamination (i.e., Non-Interference and Crash
Resistance) rationality postulates for Dialectical Cl-Arg.

Definition 3. [Elitist Preference Ordering]
Let X,Y be dialectical classical logic arguments defined by a base B, and ≤ a

partial preordering over B. Then:

(i) X ≺ Y iff ∃α ∈ Assumptions(X) such that ∀β ∈ Assumptions(Y ), α < β.

(ii) ≺ is redundance-coherent iff: ∀X,X ′, Y such that X = (Γ, ∅, α), X ′ = (∆ ∪
Γ, ∅, α), and ∆ ∥ Γ ∪ {α}: if X ≺ Y then X ′ ≺ Y .

2Here ‘weakening’ denotes that a logical entailment from, say, ∆ continues to be valid when
adding some Γ to ∆. Also, we consider ‘syntactically disjoint’ (denoted by using ‘∥’) two sets of
formulae that do not have symbols in common.
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Cl-Arg assumes instantiation of an AF by all arguments defined by a base B of
classical wff, a task that proves to be unfeasible for agents with limited resources. As
such, dialectical arguments (Definition 1) along with the described defeat relation
(Definition 2) allow us to introduce a dialectical AF as an argumentation framework
⟨AR, defeats⟩ where AR is any subset of the dialectical arguments defined by a base
B.

A1 = ({a}, ∅, a) B1 = ({b}, ∅, b)
F1 = ({b,¬a ∨ ¬b}, ∅,¬a) G1 = ({a,¬a ∨ ¬b}, ∅,¬b)
F2 = ({b}, {¬a ∨ ¬b},¬a) G2 = ({a}, {¬a ∨ ¬b},¬b)
F3 = ({¬a ∨ ¬b}, {b},¬a) G3 = ({¬a ∨ ¬b}, {a},¬b)
N1 = ({a ⊃ b}, {¬b},¬a) N2 = ({a ⊃ b,¬b}, ∅,¬a)
N3 = ({a ⊃ b, a}, ∅, b) O1 = ({¬(a ⊃ b)}, ∅,¬(a ⊃ b))
L1 = ({¬b}, ∅,¬b) X3 = ({b}, {¬b},⋏)
C1 = ({¬a ∨ ¬b}, ∅,¬a ∨ ¬b) H1 = ({a, b}, ∅,¬(¬a ∨ ¬b))
X1 = (∅, {a, b,¬a ∨ ¬b},⋏) X2 = ({a, b,¬a ∨ ¬b}, ∅,⋏)

Table 1: Example of dialectical arguments defined by a base B = {a, b, ¬a ∨ ¬b, ¬b, a ⊃ b,
¬(a ⊃ b)}.

Defeats and dialectical defeats for dialectical AFs present an important difference:
the reference to a set S of arguments. The general idea is that, when challenging
the acceptability of an argument with respect to a set S, the defeating argument
can also suppose premises from all the arguments in S. Whereas, the argument that
defends S can only suppose the premises of the defeating argument. This new kind
of defeat compelled the authors of [15] to adjust the standard semantics accordingly.

Definition 4. [Dialectical defeats and semantics for dialectical AFs][15]
Let ⟨AR, defeats⟩ be a dialectical AF, S ⊆ AR and X, Y ∈ AR. Then:

1) X dialectically defeats Y with respect to S, denoted X ⇒S Y , if defeats(X,Y )
and Supp(X) ⊆ Prem(S ∪{Y }).

2) S is conflict-free if ∀Z, Y ∈ S, Z ⇏S Y .

3) Y is acceptable with respect to S if ∀X such that X ⇒S Y , ∃Z ∈ S such that
Z ⇒{X} X.

4) Let S be conflict-free. Then S is: an admissible extension iff X ∈ S implies
X is acceptable with respect to S; a complete extension iff S is admissible and
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if X is acceptable with respect to S then X ∈ S; a preferred extension iff it
is a set inclusion maximal complete extension; the grounded extension iff it is
the set inclusion minimal complete extension.

The following example depicts a scenario that clarifies the role of dialectical
defeats while also providing a comparison between Dialectical Cl-Arg and Cl-Arg
arguments. Since rigorous Cl-Arg formal definitions can be found in [2, 21, 15], for
simplicity, Example 1 will consider such arguments as being identical to Dialectical
Cl-Arg arguments devoided of suppositions.

Example 1. Consider Figure 1. Let A1, B1 ∈ S be the dialectical arguments in-
troduced in Table 1, and let Z1 = ({a ⊃ ¬b}, {a},¬b) be a dialectical argument that
defeats B1 with respect to S, i.e., Z1 ⇒S B1. Notice that such defeat occurs only
due to the presence of the formula a ∈ Prem(A1). The supposition of the formula a
by the dialectical argument Z1 (i.e., Supp(Z1) ⊆ Prem(S ∪{B1}) allows concluding
¬b, hence defeating argument B1. However, Z0 = ({a ⊃ ¬b}, a ⊃ ¬b), the Cl-Arg
argument that has the same premises as Z1, is not capable of moving the same de-
feat to B1. Indeed, the absence of the formula a among the premises prevents Z0
from classically entailing the conclusion ¬b, hence precluding the defeat of argument
B1. This example shows how, by supposing formulae (from single arguments or
sets), additional attacks and defeats may arise for Dialectical Cl-Arg arguments in
comparison with Cl-Arg arguments.

Figure 1: An example of differences between Cl-Arg and Dialectical Cl-Arg.

The conclusions of an extension in Dialectical Cl-Arg may derive from conditional
arguments that only suppose the truth of the premises without any commitment. As
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such, we should account for a more restrictive definition of conclusions. That is to
say, once the extensions are defined, we detach only the conclusions of unconditional
arguments all of whose assumptions are premises presumed true.

Definition 5. [Conclusions of an Extension in Dialectical Cl-Arg] Let E be
an extension of a dialectical AF. Then C(E) = {ϕ | (∆, ∅, ϕ) ∈ E}.

Dialectical AFs enjoy some specific properties, as explained in [15]. Here we are
going to outline five of them (P1, P2, P3, P4, P4′), which will be used later in the
next sections.

Proposition 1. Given a dialectical AF = ⟨AR, defeats⟩:

(P1) ∀X ∈ AR: α ∈ Prem(X) implies that ({α}, ∅, α) ∈ AR (where ({α}, ∅, α) is
denoted as the ‘elementary argument’ of X defined by α);

(P2) ∀X ∈ AR: if X ′ ∈ [X], that is to say, if X ′ is the logically equivalent argument
of X (i.e., the only difference between X and X ′ is the different distribution
of premises and supposition), then X ′ ∈ AR;

(P3) If (∆, ∅, α) ∈ AR and (Γ, ∅, α) ∈ AR, then either (∆, ∅,⋏) ∈ AR or (Γ, ∅,⋏) ∈
AR or (∆ ∪ Γ, ∅,⋏) ∈ AR;

(P4) If (Γ, ∅, α) ∈ AR, ∆ ⊆ Γ, ∆ ̸= ∅ and ∆ ∥ Γ \∆ ∪ {α}, then either (∆, ∅,⋏) ∈
AR or (Γ \∆, ∅, α) ∈ AR;

(P4′) If (Γ, ∅, α) ∈ AR, ∆ ⊆ Γ, ∆ ̸= ∅ and ∆ ∥ Γ \∆ ∪ {α}, then (∆, ∅,⋏) ∈ AR.

We can now refer to ⟨AR, defeats⟩ as a partially instantiated dialectical AF
(pdAF) if AR corresponds to any subset of the dialectical arguments defined by
a base B such that AR satisfies P1, P2, P3 and P4.

A non-redundant pdAF is, instead, a pdAF such that AR satisfies P1, P2, P3,
P4′ and there are no redundantly contaminated arguments3.

3A redundantly contaminated argument is an argument that employs redundant assumptions,
that is to say, a subset of the assumptions is unnecessary for drawing the argument conclusion. This
may occur due to the fact that Dialectical Cl-Arg drops subset minimality checks. To avoid viola-
tion of the non-contamination postulates, the adopted preference relation has to be ‘redundance-
coherent’. Indeed, this is the case of the Elitist preference of Definition 3.
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2.1.1 Rationality Postulates for Dialectical Cl-Arg

The rationality postulates are specific properties whose satisfaction ensures that any
concrete instantiations of an argumentation framework fulfil some rational criteria.
Dialectical Cl-arg satisfies the rationality postulates and does so by requiring that the
AF enjoys P1-P4. This would impose minimally restrictive assumptions4 as to the
arguments that agents should be able to construct, thus providing a rational account
of arguments more suited for the limited availability of resources that characterises
real-world agents. A detailed report of the postulates, along with lemmas, theorems
and respective proofs of their validity, is given in [15].

Theorem 1. [Sub-argument Closure] Let E be a complete extension of a dialecti-
cal AF = ⟨AR, defeats⟩ such that AR satisfies P1. Let X ∈ E. Then if α ∈ Prem(X)
then ({α}, ∅, α) ∈ E. That is to say, all the elementary arguments associated with
Prem(X) are in E.

Theorem 2. [Direct Consistency] Let E be an admissible extension of a dialec-
tical AF = ⟨AR, defeats⟩. If AR satisfies P1, P2 and P3, then ∀α, β ∈ C(E), α ̸=
⋏ and β ̸= α. That is to say, no conflicting or unconditional falsum arguments are
in E.

Theorem 3. [Premise Consistency] Let ⟨AR, defeats⟩ be a dialectical AF such
that AR satisfies P2. If for some ∆ ⊆ Prem(E): (∆, ∅,⋏) ∈ AR, then E cannot be
an admissible extension of ⟨AR, defeats⟩.

Closure under Strict Rules for Dialectical Cl-Arg slightly differs from its standard
version. That is caused by the limited availability of resources that characterises
real-world agents. Indeed, although it may be the case that C(E) ⊢c α, it may not
be that there exists an X ∈ E such that X concludes α, given that agents are not
logically omniscient and do not construct all arguments from a base. Hence, the
following version of the postulate:

Theorem 4. [Closure under Strict Rules] Let E be a complete extension of a
dialectical AF = ⟨AR, defeats⟩, where AR satisfies P1. Let E′ ⊆ E and C(E′) ⊢c α.
If there exists an X = (∆, ∅, α) ∈ AR such that ∆ = Prem(E′), then X ∈ E.

Non-contamination postulates provide means for eschewing different kinds of
contaminations that may negatively affect the dialectical AFs. In particular, the
satisfaction of Non-Interference ensures that no syntactically disjoint bases B (i.e.,
bases that do not share predicate or function symbols) influence each other’s ar-
gumentation defined inferences. On the other hand, Crash Resistance guarantees

4Especially the satisfaction of P 1-P 3.
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that no set of formulae yields the same outcome when merged with a syntactically
disjoint set of formulae.

Theorem 5. [Non-Interference] Non-interference is satisfied by (non-redundant)
pdAFs.

Theorem 6. [Crash Resistance] Crash Resistance is satisfied if there does not
exist a contaminating base B for pdAFs and non-redundant pdAFs.

2.1.2 Dung’s Fundamental Lemma and Monotonicity of the Character-
istic Function for Dialectical Cl-Arg

Among the most important key results of Dung’s seminal paper [17] are the fun-
damental lemma and the monotonicity of the AF’s characteristic function FAF

(that yields the constructive definition of the grounded extension via its iterations).
However, unlike Dung’s standard AFs, these properties cannot be straightforwardly
shown, since when determining the acceptability of X w.r.t. E, the defeats on X are
not independent of the set E under consideration. For dialectical AFs, the defeats
on X w.r.t. E may be a subset of the defeats on X w.r.t. E′ ⊃ E (due to the
additional premises committed to in E′). To avoid this issue, the authors of [15]
have devised specific ‘epistemically maximal’ sets of arguments by means of whose
it is possible to show the desired properties.

Definition 6. [Epistemically maximal sets] Let ⟨AR, defeats⟩ be a dialectical
AF. Then E ⊆ AR is epistemically maximal (em) iff:

If X = (∆,Γ, α) ∈ E, Γ′ ⊆ (Γ ∩ Prem(E)), then X ′ = (∆ ∪ Γ′,Γ \ Γ′, α) ∈ E (•)

The function Clem : 2AR → 2AR maps any E to its epistemically maximal set. As
such, Clem(E) denotes the smallest superset of E that is closed under condition (•).

Notice that adding all arguments up to some i to a set E, and then closing,
yields the same result as adding each argument one by one and closing prior to each
subsequent addition [15]. It is now possible to prove a variant of the fundamental
lemma that involves em sets:

Lemma 1. [Fundamental Lemma for Dialectical Cl-Arg][15] Let X,X ′ be
acceptable w.r.t. an admissible extension E of a dialectical AF = ⟨AR, defeats⟩.
Then:

(1) Clem(E ∪ {X}) is admissible, and

(2) X ′ is acceptable w.r.t. Clem(E ∪ {X})
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Lemma 1 entails:

Proposition 2. Every admissible extension of a dialectical AF is a subset of a
preferred extension.

Proposition 2 guarantees that it suffices to show that an argument X is in an
admissible extension, in order to prove that X is credulously justified under the
preferred semantics (exactly as Dung’s standard AFs).

Finally, by employing a variant of the framework characteristic function, i.e.,
Fp, whose domain is composed of sets E that are em admissible and that returns
Clem(F(E)), we can also show the constructive definition of the grounded extension.
Indeed, starting with the empty set and iteratively applying Fp, the monotonically
increasing sequence approximates, and in the case of a finitary dialectical AF, it
constructs, the least fixed point of Fp, i.e., the grounded extension:

Proposition 3. [15] Let ⟨AR, defeats⟩ be a dialectical AF, and F 0 = ∅, F i+1 =
Fp(F i). Let E be the grounded extension of ⟨AR, defeats⟩. Then:

1. E ⊆ ⋃∞
i=0(F i).

2. If ⟨AR, defeats⟩ is finitary, i.e., ∀X ∈ AR, the set {Y | defeats(Y,X)} is finite,
then E = ⋃∞

i=0(F i).

In the remainder of the paper, we are going to see how harnessing the properties and
formalism thus far introduced will shape the dialectical characterisation of standard
argument games.

2.2 Standard Argument Games

Before moving forward, let us now review the fundamental notions of the standard
argument games as described in [25]. Notice that these definitions have been mod-
ified to accommodate dialectical AFs (which is a fair straightforward adaptation).
However, recall that the main contributions of this paper concern the development
of argument games for Dialectical Cl-Arg that involves dialectical defeats (Definition
4): this entails a non-trivial modification of the standard games.

In a nutshell, an argument game is played by two players, PRO (for proponent)
and OPP (for opponent), each of which is referred to as the other’s ‘counterpart’.
PRO starts the game by moving an initial argument X that it wants to test. Af-
ter that, both players take turns in moving arguments against their counterpart’s
moves. This generates disputes:
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Definition 7. [Dispute] A sequence of moves in which each player moves against
its counterpart’s argument is referred to as a dispute. Formally, d = X—Y—
Z— · · · is a dispute, and X—Y denotes a player moving argument Y against an
argument X played by its counterpart (similarly, Y—Z). A sub-dispute d′ of a
dispute d is any sub-sequence of d that starts with the same initial argument. For
example, if d = X—Y—Z, then d′ = X—Y would be a sub-dispute of d.

Notice that, to avoid ambiguity, each argument of a dispute will be labelled with
either P or O (that stands for either one of the two players, PRO or OPP). Hence,
d = (P)X—(O)Y—(P)Z is a dispute where PRO moves the argument X, followed
by Y played by OPP and countered by another move from PRO, Z.

We can now introduce the notion of the (unique) dispute tree, which represents
the ‘playing field’ of the standard argument games. In other words, the dispute tree
is the data structure that contains all the potential moves (and sequences of moves)
available to the players.

Definition 8. [Dispute Tree] Let AF = ⟨AR, defeats⟩ be a finite dialectical argu-
mentation framework, and let A ∈ AR. The dispute tree induced by A in the AF is
the (upside-down) tree T of arguments, such that T ’s root node is A, every branch
of the tree (from root to leaf) is a different dispute, and ∀X, Y ∈ AR: X is a child
of Y in T iff defeats(X,Y ).

From here on, we are going to write PRO(∗) and OPP(∗) to denote the sets of all
PRO and OPP arguments in ∗, where ∗ can be replaced with d, T or any other tree
that will be introduced in the remainder of the paper. Also, LAST(d) will identify
the last argument played in a dispute d.

An argument game is said to be won by the proponent only if it has a winning
strategy. That is to say, only if it can successfully defend the argument it wants to
test (i.e., the root of T ) against any possible arguments moved by the opponent.
PRO loses otherwise. In other words, this may be interpreted as a formalisation of
the simple principle already emphasised by Dung: "The one who has the last word
laughs best" [17].

Definition 9. [Winning Strategy] Let T be the dispute tree induced by A in a
finite dialectical AF = ⟨AR, defeats⟩. Let also d be a dispute in T . Then, a winning
strategy T ′ for A is the dispute tree T pruned in a way such that:

(9.1) The set T ′
D of disputes in T ′ is a non-empty finite set such that each dispute

d ∈ T ′
D is finite and is won by PRO (i.e., LAST(d) ∈ PRO(T ));
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(9.2) ∀d ∈ T ′
D, ∀d′ such that d′ is some sub-dispute of d, LAST(d′) = X and X ∈

PRO(T ), then ∀Y ∈ OPP(T ) such that Y ⇒ X, there is a d′′ ∈ T ′
D such that

d′— Y is a sub-dispute of d′′.

Informally, the previous definition states that a winning strategy is the dispute
tree T pruned in a way such that (9.1) T ′

D is a non-empty finite set, its disputes are
finite, end with a PRO argument and (9.2) are such that OPP has moved exhaus-
tively (i.e., all the moves that OPP could have played, had been played) and also
PRO has countered every defeating argument moved by OPP.

3 Developing Dialectical Argument Games
In the following sections, we are going to develop argument games for Dialectical
Cl-Arg that accommodate the dialectical defeats and semantics introduced in Def-
inition 4. The resulting proof theory will present some specific features that will
distinguish it from the standard argument games, although the general structure
remains similar. Intuitively, winning a dialectical game for an argument A means
having a ‘dialectical procedure’ (depending on the semantics that the proof theory
is meant to capture) for defending the information contained in A, hence showing
the admissibility of the encoded data.

The main difference between a dispute tree T and a dialectical dispute tree D can
be identified with the additional reference to a subset S ⊆ PRO(T ). That is to say,
S represents a candidate admissible set of PRO arguments such that PRO commits
to their premises. Recall once again that, when challenging the acceptability of an
argument with respect to a set S, the defeating argument can suppose premises from
all the arguments in S. Whereas, the argument that defends S can only suppose the
premises of the defeating argument. Another important difference between standard
and dialectical games is that the latter handles partially instantiated dialectical AFs
(pdAFs)5. As a consequence, each dialectical game enjoys specific properties that
encapsulate the dialectical uses of arguments by real-world resource-bounded agents,
thus succeeding in better approximating a process capable of bridging formal (proof-
theoretical) and informal (real-world exchange of arguments) single-agent reasoning.

We can now formally introduce the (unique) dialectical dispute tree induced
by A wrt a set S:

Definition 10. [Dialectical Dispute Tree] Let T be the dispute tree induced by
A in a finite pdAF = ⟨AR, defeats⟩. Let also S ⊆ PRO(T ). Then, the dialectical

5Refer to Proposition 1.
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dispute tree D induced by A with respect to S is the dispute tree T pruned in a way
such that ∀X, Y ∈ AR: X is a child of Y in D iff defeats(X,Y ) and:

1. If X ∈ PRO(D) and Y ∈ OPP(D), then X ⇒{Y } Y , i.e. X defeats Y and
Supp(X) ⊆ Prem(Y );

2. If X ∈ OPP(D) and Y ∈ PRO(D), then X ⇒S Y , i.e. X defeats Y with
respect to S and Supp(X) ⊆ Prem(S ∪ {Y }).

Figure 2: The (incomplete) dispute tree T (on the left) induced by A1 in a finite pdAF =
⟨AR, defeats⟩ and the corresponding (incomplete) dialectical dispute tree D (on the right) induced
by A1 wrt S = {A1, G2, O1} in the same pdAF = ⟨AR, defeats⟩.

The ‘playing field’ of the dialectical argument games (i.e., the data structure
on the basis of which the games are played) is still depicted by the dispute tree
T . Indeed, the relationship existing between the dispute tree T induced by A in
a finite pdAF and the dialectical dispute tree D induced by A wrt S is such that
D is ‘contained’ in T (since D is a pruned version of T ), as shown in the following
example.

Example 2. Figure 2 presents the (incomplete) dispute tree T induced by A1 in a
finite pdAF = ⟨AR, defeats⟩ and the corresponding (incomplete) dialectical dispute
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tree D induced by A1 wrt S = {A1, G2, O1} in the same pdAF. Both trees are in-
complete since the purpose of the example is just to show the relationship existing
between them. For the same reason, we also avoid listing all the arguments of the
pdAF.

Observe that, unlike T , where no set is taken into consideration, the defeats in
D are parametrized to the set S. This implies that, when defeating PRO’s argu-
ments, OPP can only suppose the premises of the arguments in the set S (besides
the premises of the targeted argument). No such restrictions exist for T . Notice
that, even if we keep extending both trees, dispute d = (P)A1—(O)F2—(P)G2 will
never be part of D. This is because, according to Definition 10 (which also empha-
sizes how dialectical defeats work), PRO can move G2 only if Supp(G2) ⊆ Prem(F2).
However, this is never going to be the case since the formula ¬a ∨ ¬b /∈ Prem(F2).
Therefore, even if the two trees were identical in every other branch, the absence of
dispute d will still make D ‘contained’ in T .

Dialectical argument games share with the standard argument games the notion
of a winning strategy: in order to win the game for an argument A, PRO must have
a winning strategy for it. It will lose otherwise. However, the two definitions slightly
differ since a dialectical winning strategy has to take into account the set S targeted
by the dialectical defeats:

Definition 11. [Dialectical Winning strategy] Let D be the dialectical dispute
tree induced by A wrt S in a finite pdAF = ⟨AR, defeats⟩ and let d be a dispute in D.
Then, a dialectical winning strategy W for A corresponds to the dialectical dispute
tree D pruned in a way such that:

(11.1) The set WD of disputes in D is a non-empty finite set such that each dispute
d ∈ WD is finite and is won by PRO (i.e., LAST(d) ∈ PRO(D));

(11.2) ∀d ∈ WD, ∀d′ such that d′ is some sub-dispute of d, LAST(d′) = X and X ∈
PRO(D), then ∀Y ∈ OPP(D) such that Y ⇒S X, there is a d′′ ∈ WD such
that d′— Y is a sub-dispute of d′′.

Similarly to Definition 9, the previous definition states that a dialectical win-
ning strategy corresponds to the dialectical dispute tree D pruned in a way such
that (11.1) WD is a non-empty finite set, its disputes are finite, end with a PRO
argument and are such that (11.2) OPP has moved exhaustively and also PRO has
countered each defeating argument moved by OPP. The difference is in the dialec-
tical defeats: the nodes are no more connected by means of the defeats relations
among arguments, but through dialectical defeats among arguments that target the
set S.

15
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We now have all the elements needed to formally introduce the protocol of the
dialectical admissible/preferred game. Similar to a list of instructions, this protocol
determines the legal moves that can be performed by the players. The game unfolds
as a result of the legal arguments played and terminates when there are no more
valid moves available. When this happens, the status of the root of the tree is eval-
uated. The presence of a winning strategy for such an argument assigns the victory
to PRO. Strictly speaking, OPP never wins: its purpose is to counter each argu-
ment moved by the proponent in order to assist it in testing the admissibility of the
root argument (indeed, argument games are formalisations of single-agent reasoning
processes). Nevertheless, OPP can still prevent PRO’s victory by invalidating its
winning strategy.

3.1 Progressively Constructing Dialectical Dispute Trees

When we play a Φ-dialectical game we are increasingly building, starting from the
root A and following the legal moves licensed by the protocol Φ, a dialectical dis-
pute tree denoted as Φ-Dn . Each node of such a tree corresponds to an argument
progressively played by either PRO or OPP that is labelled with a positive integer
i (with 1 ≤ i ≤ n). These additional labels allow identifying the order in which
the arguments have been played, hence, also determining the current stage (i.e., the
nth-stage) of the Φ-dialectical game. Recall that the dispute tree T induced by A
represents the playing field of the games, and every Φ-dialectical game for A is con-
tained within its data structure (i.e., Φ-Dn is a ‘pruned-version’ of T ). Moreover,
being a dialectical dispute tree, even Φ-Dn is constructed wrt a set S ⊆ PRO(T ),
however, such S can gradually increase with each new move made by PRO during
the game. Indeed, S is composed of the same arguments moved by PRO in Φ-Wn
(i.e., a dialectical winning strategy for A of Φ-Dn), which can be extended while the
game proceeds6. As it will be shown, observe also that S is still a different set than
PRO(Φ-Wn), meaning that it will modify its members according to the changes in
PRO(Φ-Wn), but it will never be empty even if there is no winning strategy Φ-Wn .

In order to formally describe a Φ-dialectical game, we first need to define a
partial dialectical dispute tree Dn which will stand as a potential ‘game template’
deprived of a protocol:
Definition 12. [Partial dialectical dispute tree] A partial dialectical dispute tree

6Although the set S can increase the number of its members while the game goes on, it can never
exceed the size of PRO(T ). Indeed, keep in mind that every Φ-dialectical game for A is contained
in the dispute tree T induced by A (since T corresponds to the playing field of the game).
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Dn induced by A wrt S ⊆ PRO(T ) (with S ≠ ∅) in a finite pdAF = ⟨AR, defeats⟩
is the (upside-down) tree that starts from the argument A, and it is progressively
built up to the nth-move by one of the two players, such that each node of the tree is
labelled with a positive integer i (for 1 ≤ i ≤ n). Moreover, every branch of the tree
(from root to leaf) constitutes a different dispute. Also ∀X, Y ∈ AR: X is a child
of Y in Dn iff defeats(X,Y ) and:

1. If X ∈ PRO(Dn) and Y ∈ OPP(Dn), then X ⇒{Y } Y , i.e. X defeats Y and
Supp(X) ⊆ Prem(Y );

2. If X ∈ OPP(Dn) and Y ∈ PRO(Dn), then X ⇒S Y , i.e. X defeats Y with
respect to a set S and Supp(X) ⊆ Prem(S ∪ {Y }).

Finally, Wn will denote a dialectical winning strategy for A of Dn as per Definition
11 (substituting D with Dn).

Every stage of a Φ-dialectical game can then be identified with a specific dialec-
tical dispute tree Φ-Dn , i.e., a partial dialectical dispute tree of Definition 12 where
each of its nodes also fulfils the legal move requirements according to the protocol
Φ. Consider that every such stage of the game is not unique: playing the same
game multiple times does not necessarily hold the same Φ-Dn at identical stages
n. They can indeed differ depending on the way in which the legal arguments have
been deployed by the players. As we are going to see, this notion is essential for a
proper account of the dialectical defeats in the game protocol7.

3.2 Disqualified Defeats

It is interesting to notice that, during a Φ-dialectical game, a dialectical defeat that
occurred in an early stage of the game might not take place in a more advanced
phase of the same game. This can be caused by an update of the current S, the set
parametrized by OPP for performing dialectical defeats. We denote this anomaly
as ‘disqualified defeats’.

Definition 13. [Disqualified dialectical defeats] Let Φ-Dn be the dialectical
dispute tree of a Φ-dialectical game built up to the nth-move where X and Y denote

7Observe that it is possible for one (or more, depending on the protocol) dialectical winning
strategy Φ-Wn for A of Φ-Dn to exist, although there is no dialectical winning strategy W for A
of D. This can happen, for example, when D is composed only by infinite disputes (recall that
we need finite disputes to have winning strategies, as stated by Definition 11.1), whilst Φ-Dn is
composed by finite disputes, due to the restrictions imposed by the protocol Φ. In this situation, it
is possible to identify in Φ-Dn a winning strategy Φ-Wn . Such an example is illustrated in Figure
3(b).

17



IFCoLog and Gabbay

arguments played respectively by OPP and PRO in Φ-Dn. Let also X ⇒S Y by
supposing α ∈ Prem(S). If, after the game goes on, we will reach a stage Φ-Dn+k
(for k > 0) where α /∈ Prem(S), then the defeat moved by X against Y will be
invalidated and will be denoted as ‘disqualified’. As such, X and all the arguments
following it in the same dispute will be (temporarily) pruned from the tree.

Consider indeed that the status of disqualified defeats might be temporary and
be updated again in a further stage of the game (when these defeats will become
valid once more). Definition 13 entails the following proposition:

Proposition 4. Let Φ-Dn be the dialectical dispute tree of a Φ-dialectical game built
up to the nth-move:

(I) If the nth-move is an argument X played by OPP, then moving X cannot
disqualify the dialectical defeat that X performs against a PRO argument.

(II) The presence of OPP arguments whose defeats have been disqualified will not
affect the dialectical winning strategy.

Proof.

(I) Since X is the last argument (legally) played in Φ-Dn , it trivially does not
comply with Definition 13.

(II) Even if the dialectical defeats moved by OPP arguments have been disqualified
(hence are no more a threat for PRO), the requirements of the dialectical
winning strategy have not changed. That is to say, every dispute of Φ-Wn
must terminate with a PRO argument (Definition (11.1)).

Notice that every dialectical game protocol Φ takes into account disqualified
defeats, which are then also contemplated by the dialectical dispute tree Φ-Dn (and
dialectical winning strategy Φ-Wn).

4 Dialectical Admissible/Preferred Games

We can now formally introduce the protocol for the dialectical admissible/preferred
game. As already stated, during each dialectical argument game, the players have
to comply with a protocol Φ that identifies the legal moves allowed.
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Definition 14. [Dialectical Admissible Game legal moves] Let Dn and Wn
be defined as in Definition 12, let d be a dispute of Dn and d′ be a sub-dispute of
d. Let also (PLn)X (for n > 0) denote the argument X played by either one of the
two players (P or O) as the (last) nth-move. Then ΦP identifies legal moves in the
following way:

(14.0) PRO moves the first argument.

(14.1) If (PLn)X and n = 2k (for k > 0), then the next move n+1, say Y, is by PRO
and it is such that:
(a) Y ⇒{Z} Z, where Z ∈ OPP(Dn);

(b) There exists a Wn+1 for A of Dn+1.

(14.2) If (PLn)X and n = 2k + 1 (for k ≥ 0), then the next move n+1, say Y, is by
OPP and it is such that:
(a) Y ⇒S Z, where Z ∈ S and S := PRO(Wn)8;
(b) If d = d′—Z, then Y /∈ OPP(d′);
(c) For each d = d′—J—· · · , where J ∈ OPP(Dn) and its defeat has been

disqualified, then LAST(d) = LAST(d′) until next OPP’s turn.

A ΦP -dialectical game is said to be terminated when, during its turn, the corre-
sponding player runs out of the legal moves identified by (14.1(a-b)) or (14.2(a-b))
of the protocol ΦP . PRO wins only if it has a winning strategy once the game
terminates. It loses otherwise.

The previous protocol can be informally summarised as follows. PRO starts
the game by playing the first argument [(14.0)] and, after that, OPP will make its
move. Then, the two players alternate in playing only one argument at a time to
reply to one of their counterpart’s arguments. Observe that when S is initialized in
the game and, subsequently, every time its arguments are updated by the changes
in PRO(Wn) [(14.2(a))], it is always the beginning of OPP’s turn. This means that
the condition for which S ≠ ∅ is continuously respected9.

8The symbol ‘:=’ denotes a variable initialization rather than an equivalence relation. That is
to say, at the beginning of each OPP’s turn, the content of S is initialized to the current PRO(Wn),
i.e, the arguments member of S are the same as PRO(Wn). This operation overwrites the previous
contents of S.

9That is because a situation in which S = PRO(Wn) = ∅ never occurs at the beginning of
OPP’s turn.
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Notice that the established protocol allows backtracking to other arguments.
That is to say, when PRO moves it can either target the last argument played by
OPP or another argument moved by OPP in the dialectical dispute tree generated
thus far (i.e., an argument member of the set OPP(Dn)) [(14.1(a))]. Similarly, when
OPP moves it can either target the last argument played by PRO or another argu-
ment moved by PRO in the current dialectical winning strategy (i.e., an argument
member of the set PRO(Wn)) [(14.2(a))]. The relevance conditions [(14.1(b)) for
PRO; (14.2(a)) for OPP] ensure that: after PRO has made its move, there will be a
winning strategyWn+1 , hence providing the victory to PRO; after OPP has moved,
instead, the previous winning strategy will cease to exist, thus preventing PRO from
winning. That is to say, PRO will be forced to generate a dialectical winning strategy
during each of its turns, while OPP will have to invalidate such a winning strategy
during every one of its turns. Backtracking and relevance conditions are strictly
connected. Although it is possible for a player to defeat an argument other than
the one previously posited by its counterpart, such a move needs to comply with
the protocol relevance conditions. This combination ensures that both participants
exhaustively account for every option available, otherwise restricted around the last
argument played (which may be unassailable, hence preventing further move against
it). Indeed, given the goal of changing the winning status at the end of their respec-
tive turns, PRO and OPP may choose which argument to defeat, thus leaving for a
later moment the other (if still available) alternatives.

The restriction (14.2(b)) on the moves played by OPP is necessary (as also shown
in the standard games of [25, 34] and [9]). Indeed, allowing OPP to repeat its ar-
guments, since OPP is required to move exhaustively, could imply the generation of
infinite disputes. To see why let us suppose that (PLn)X (for n > 1) identifies an
argument X played by either one of the two players (denoted as P or O) as its nth
move in a Φ-dialectical game. Then, there could be an infinite dispute d like the
following:

d = (P1)A— · · ·—(On)Y—(Pn+1)Z—(On+2)Y—(Pn+3)Z—(On+4)Y— · · ·

Intuitively, since Z is capable of defending itself by defeating Y , there is no need
to further extend the dispute by repeating the same arguments: this is because Z
has already shown its acceptability wrt PRO(Wn+1 ). Therefore, the only way for
avoiding infinite disputes (and infinite dialectical admissible/preferred games) is to
prevent OPP from repeating its arguments in the same disputes.

Finally, (14.2(c)) ensures that the disqualified defeats (Definition 13) are taken
into account throughout the game. That is to say, whenever a dialectical defeat
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moved by an argument J is disqualified, the protocol guarantees the pruning of J
and all the arguments that follow in the same dispute, until the next turn of OPP,
when a new check for disqualified defeats will occur.
Remark 1. Similarly to the standard argument games presented in [25], the protocol
of the dialectical admissible games is identical to the protocol of the dialectical cred-
ulous preferred games. Indeed, it suffices to show the membership of an argument A
in an admissible extension to show also that A is credulously justified under the pre-
ferred semantics as well. That is because every admissible extension of a dialectical
AF is a subset of a preferred extension. This is a consequence of the Fundamental
Lemma (Lemma 1) and its entailed property (Proposition 2).

4.1 Soundness and Completeness

As it has been defined, the admissible/preferred game satisfies the properties of
soundness and completeness. This proves the equivalence existing between the vic-
tory of the ΦP -dialectical game for an argument A and the membership of the same
A to an admissible/preferred extension of the corresponding finite pdAF.
Theorem 7. Let ΦP -Dn identifies a terminated ΦP -dialectical game for A.
Then, there exists a dialectical winning strategy ΦP -Wn for A, such that the set
PRO(ΦP -Wn) of arguments moved by PRO in ΦP -Wn is conflict-free, iff A is
included in an admissible extension Adm of the pdAF.

Proof.

Soundness. We have to prove that if A is a member of the conflict-free set
PRO(ΦP -Wn), then A ∈ Adm. To simplify the notation, let E = PRO(ΦP -Wn).
Assume that A is a member of the conflict-free set E, then:

– By Definition 11.2, the existence of the winning strategy implies that:
each argument played by OPP against arguments moved by PRO in the
winning strategy has been successfully countered by PRO. That is to
say, ∀X ∈ E, if ∃Y ∈ AR such that Y ⇒E X, then ∃Z ∈ E, such that
Z ⇒{Y } Y , ensuring in this way that X is acceptable wrt E.

– Recall that the set of disputes of ΦP -Wn is finite and composed of finite
disputes (by Definition 11.1). As such, E is composed of a finite number
of arguments.

We have thus shown that E is a finite, conflict-free set and every argument in
E is acceptable wrt it. Therefore, E corresponds to an admissible extension,
hence, if A is a member of the conflict-free set PRO(ΦP -Wn), then A ∈ Adm.
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Completeness. We show that if A ∈ Adm, then A is a member of the conflict-
free set PRO(ΦP -Wn). We are going to do this by constructing a dialectical
winning strategy ΦP -Wn for A.

– Assume that A ∈ Adm. Since the pdAF is finite, then it is also finitary,
meaning that every argument in Adm has a finite number of defeaters.
Then we can build a dialectical winning strategy ΦP -Wn for A if PRO
starts the game with A and, for each argument Y dialectically defeating
A and moved by OPP, PRO chooses one argument X from Adm (even A
itself) such that X⇒{Y }Y. Notice that the generation of infinite disputes is
prevented by the admissible/preferred protocol (Definition 14.2(b)). This
procedure can be repeated for every argument Z dialectically defeating
X, and so on, until OPP runs out of legal moves according to the protocol
ΦP (which will happen for sure since A is a member of an admissible set).

The result will be a dialectical winning strategy ΦP -Wn for A, hence, A is a
member of the conflict-free set PRO(ΦP -Wn). We have thus shown that, if
A ∈ Adm, then A is a member of the conflict-free set PRO(ΦP -Wn).

5 Dialectical Grounded Games
The dialectical grounded game protocol ΦG enjoys the same notations and defini-
tions introduced thus far, but presents also important differences compared to the
dialectical admissible/preferred game. Indeed, the protocol should be designed such
that, when the game terminates and PRO is the winner, the set PRO(ΦG-Wn) of
arguments moved by PRO in a dialectical winning strategy ΦG-Wn is a subset of
the grounded extension Grd of the pdAF. In this way, by iterating the framework
characteristic function F from PRO(ΦG-Wn), we are able to obtain the grounded
extension Grd. However, recall that it is the monotonicity of the function, in the
case of a finitary pdAF10, that ensures the construction of the least fixed point of
F which corresponds to the grounded extension.

In Dialectical Cl-Arg [15] the monotonicity of F holds only under the domain
of epistemically maximal (em) admissible sets of arguments (described in Defini-
tion 6). Then, to get the grounded extension via the iteration of F from the set
PRO(ΦG-Wn), we will need PRO(ΦG-Wn) to be em. Otherwise, we might have
to face a situation in which argument A, whose membership in Grd we wanted to

10Being finitary, it can be shown that F is also ω−continuous (as explained in [17] for standard
AFs and in [15] for pdAFs).
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test via the dialectical grounded game, is not acceptable wrt Grd, although A ∈
PRO(ΦG-Wn). To address this issue, we are going to adapt the protocol ΦG ac-
cordingly.

Definition 15. [Dialectical Grounded Game legal moves] Let Dn and Wn be
characterized as in Definition 12, let d be a dispute of Dn and d′ be a sub-dispute of
d. Let also (PLn)X (for n > 0) denote the argument X played by either one of the
two players (P or O) as the (last) nth-move. Then ΦG identifies legal moves in the
following way:

(15.0) PRO moves the first argument.

(15.1) If (PLn)X and n = 2k (for k > 0), then the next move n+1, say Y, is by PRO
and it is such that:
(a) Y ⇒{Z} Z, where Z ∈ OPP(Dn);

(b) There exists a Wn+1 for A of Dn+1;
(c) If d = d′—Z, then Y /∈ PRO(d′).

(15.2) If (PLn)X and n = 2k + 1 (for k ≥ 0), then the next move n+1, say Y, is by
OPP and it is such that:
(a) Y ⇒S Z, where Z ∈ S and S := PRO(Wn).
(b) For each d = d′—J—· · · , where J ∈ OPP(Dn) and its defeat has been

disqualified, then LAST(d) = LAST(d′) until next OPP’s turn.

(15.3) If, at the beginning of its turn, OPP cannot perform the move described by
(15.2(a)), then apply function Clem (Definition 6) on PRO(Wn).

Notice that a ΦG-dialectical game is said to be terminated when, during its turn,
at least one player runs out of the legal moves identified by (15.1(a-c)) or (15.2(a))
of the protocol ΦG. PRO wins only if it has a winning strategy once the game
terminates. It loses otherwise.

As per Definition 14, the previous protocol can be informally summarised as
follows. PRO starts the game by playing the first argument [(15.0)] and after that
OPP will make its move. Then, the two players alternate in playing only one argu-
ment at a time to reply to one of their counterpart’s arguments. Observe that when
S is initialized in the game and, subsequently, every time its arguments are updated
by the changes in PRO(Wn) [(15.2(a))], it is always the beginning of OPP’s turn.
This means that the condition for which S ≠ ∅ is continuously respected.

23



IFCoLog and Gabbay

Notice also that the established protocol allows backtracking to other arguments.
That is to say, when PRO moves it can either target the last argument played by
OPP or another argument moved by OPP in the dialectical dispute tree generated
thus far (i.e., an argument member of the set OPP(Dn)) [(15.1(a))]. Similarly, when
OPP moves it can either target the last argument played by PRO or another argu-
ment moved by PRO in the current dialectical winning strategy (i.e., an argument
member of the set PRO(Wn)) [(15.2(a))]. The relevance conditions [(15.1(b)) for
PRO; (15.2(a)) for OPP] ensure that: after PRO has made its move, there will
be a winning strategy Wn+1 , hence providing the victory to PRO; after OPP has
moved, instead, the previous winning strategy will cease to exist, thus preventing
PRO from winning. That is to say, PRO will be forced to generate a dialectical
winning strategy during each of its turns, while OPP will have to invalidate such a
winning strategy during every one of its turns. Observe also that backtracking and
relevance conditions are strictly correlated (similarly to Definition 14).

The restriction (15.1(c)) emphasises the additional burden of proof entailed by
the membership to the grounded extension. This is intuitively captured by the idea
that in defending an argument X’s membership to the grounded extension Grd, PRO
must ‘appeal to’ some argument other than X itself. This is reflected in the game by
the fact that PRO cannot repeat the arguments it has already moved in the same
disputes.

Moreover, (15.2(b)) ensures that the disqualified defeats (Definition 13) are taken
into account throughout the game. That is to say, whenever a dialectical defeat
moved by an argument J is disqualified, the protocol guarantees the pruning of J
and all the arguments that follow in the same dispute, until the next turn of OPP,
when a new check for disqualified defeats will occur.

Finally, in light of the previously underlined epistemically maximal requirement,
an additional one-time move has been included. Recall that adding all arguments
up to some i to a set E, and then em closing, yields the same result as adding each
argument one by one and closing prior to each subsequent addition. As such, once
the game is terminated in favour of PRO and immediately before PRO is declared
the winner, it suffices to apply function Clem (Definition 6) over the resulting set
PRO(Wn) rendering it em, therefore, a subset of the grounded extension of the
pdAF.
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Figure 3: Figure a) illustrates a pdAF with a list of its arguments and the set S that is
parametrized by the dialectical defeats. Consider also that X2 is defeated by all the arguments
of the pdAF, except A1, B1, and C1 (the arrows that should have highlighted such defeats have
been omitted to avoid unnecessary graphical confusion). Figure b) displays the dialectical dispute
tree D induced by A1 wrt S in the pdAF of Figure a). Notice that D is composed of infinite
disputes (the vertical dots represent the endless continuation of the disputes), as such, it does not
have a winning strategy. A dialectical dispute tree Φ-Dn , with n = 4, is depicted in Figure c) and
corresponds to a Φ-dialectical game played up to the nth-move. Observe that the number of each
move (next to the label P or O) represents the order in which the arguments have been played in
the game. In this example, we are assuming a protocol Φ that licenses legal moves where PRO can
play more than one argument per turn, therefore, Φ-Dn has two winning strategies (both of which
are encircled in the figure).
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5.1 Soundness and Completeness

In the following proofs, we are going to employ the framework characteristic function
Fp, which iterates over admissible epistemically maximal extensions:

Definition 16. Let ⟨AR, defeats⟩ be a pdAF and ARp the set of all the em admissible
subsets of AR. Then Fp : ARp 7→ ARp, where Fp(E) = Clem(F(E)).

We can now show that the dialectical grounded game satisfies the properties of
soundness and completeness.

Theorem 8. Let ΦG-Dn identifies a terminated ΦG-dialectical game for A.
Then, there exists a dialectical winning strategy ΦG-Wn for A, such that the em
closure Clem(PRO(ΦG-Wn)) of the set of arguments moved by PRO in ΦG-Wn is
conflict-free, iff A is included in the grounded extension Grd of the pdAF.

To simplify the notation, let us abbreviate Clem(PRO(ΦG-Wn)) in Clem.

Proof.

Soundness. We have to prove that if A is a member of the conflict-free set
Clem, then A ∈ Grd. Hence, assuming that A is a member of the conflict-free
set Clem:

– Clearly, all of ΦG-Wn leaves, say Xi, are in Fp(E0) since they have no
defeaters and are then acceptable wrt ∅. Now, consider that in every
branch of ΦG-Wn , the arguments defended11 by each Xi are acceptable
with respect to Fp(E0) and so are in Fp(E1). This process can be repeated
until, say, Fp(Ei) when the root A of ΦG-Wn is reached. Since Clem ⊆
Fp(Ei), and further iterations of Fp(Ei) will yield the generation of the
least fixed point Grd, then A will be a member of Grd.

This suffices to show that if A is a member of the conflict-free set Clem, then
A ∈ Grd.

Completeness. We have to prove that if A ∈ Grd, then A is a member of
the conflict-free set Clem. Employing the acceptable arguments in the char-
acteristic function Fp we are going to show that we can build a ΦG-winning
strategy for A.

11Recall that an argument X defends an argument Z iff: when ∃Y ∈ AR such that Y defeats Z,
then X defeats Y.
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– Assume that A ∈ Grd. Since the pdAF is finite, it is also finitary, hence
we know that there is a least number i such that A ∈ Fp(Ei). Then
we will have a dialectical winning strategy ΦG-Wn for A if PRO starts
the game with A and: for each argument Y dialectically defeating A and
moved by OPP, PRO chooses one argument X from Fp(Ei−1) such that
X⇒{Y }Y. This procedure can be iterated for every argument Z dialecti-
cally defeating X, and so on, until PRO can choose an argument from
Fp(E0). Fp(E0) has no defeaters and, as such, OPP cannot play any le-
gal move (licensed by the protocol ΦG) against it. Finally, the grounded
game protocol will also ensure the epistemically maximality of the set of
arguments moved by PRO in ΦG-Wn (15.3).

The result yields a dialectical winning strategy ΦG-Wn for A, such that A is
a member of the conflict-free set Clem. We have thus shown that, if A ∈ Grd,
then A is a member of the conflict-free set Clem.

6 Main Features of Dialectical Argument Games
Dialectical argument games hold specific features that differentiate them from the
standard argument games of [25, 9, 34] and depend upon their protocols and the
properties possessed by each pdAF (especially P1, P2 and P3). Although, for con-
venience, we are going to outline these features using the dialectical admissible/pre-
ferred game (Definition 14), notice that the choice of the protocol is irrelevant.

6.1 Feature 1 (F1)

(F1) The set of all the arguments moved by PRO in a dialectical winning strategy
(i.e., PRO(ΦP -Wn)), is always conflict-free.

Every pdAF = ⟨AR, defeats⟩ prevents any conflicts existing between arguments in
a set E ⊆ AR if each argument in E is acceptable with respect to it. Since this has
already been formally proven and shown12, here we will try to explain it through an
example. Notice also the rationale underpinning F1 : due to their limited resources,
it would be unrealistic to demand that real-world agents actually perform conflict-
free checks on every set E of arguments.

12Lemma 17 of [15] states that: Let E ⊆ AR such that every argument in E is acceptable w.r.t.
E, and AR satisfies P 1, P 2 and P 3. Then E is conflict-free.
The proof can be found in the same paper.
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Example 3. Consider a pdAF that includes the arguments listed in Table 1 and
such that all the arguments composing the set PRO(ΦP -Wn) are acceptable wrt it.
To simplify the notation, let E = PRO(ΦP -Wn).
Among the arguments of E, suppose that there are two conflicting arguments as
G2 = ({a}, {¬a ∨ ¬b},¬b) and F1 = ({b,¬a ∨ ¬b}, ∅,¬a): we are going to show
how this will lead to a contradiction. Due to property P1, A1 = ({a}, ∅, a) ∈ AR.
Hence, by property P3, X2 = ({a, b,¬a∨¬b}, ∅,⋏) ∈ AR and by property P2, X1 =
(∅, {a, b,¬a∨¬b},⋏) ∈ AR. However, if this is the case, X1 ⇒E G2 (and, similarly,
X1 ⇒E F1). Since X1 is unassailable, ∄Z ∈ E such that Z ⇒{X1} X1 and this will
contradict the assumption that all the arguments members of E are acceptable wrt
to it. Therefore, since all the arguments that compose the set PRO(ΦP -Wn) are
acceptable wrt it, PRO(ΦP -Wn) must be conflict-free.

6.2 Feature 2 (F2)

(F2) The relevance conditions, i.e., the conditions of the protocol that compel both
players to change the outcome of the game at the end of every turn, are essen-
tial to the unfolding of the dialectical argument games. This also justifies why
the set S cannot be initialized with any set other than PRO(ΦP -Wn).

The relevance conditions (14.1(b) and 14.2(a) of Definition 14) can be sum-
marised as the conditions that force the two players to change the outcome of the
game at the end of every turn13. These requirements are fundamental for real-world
agents that reason with limited availability of resources. Indeed, it would be illogi-
cal to allow such players to move arguments useless for the result of the game: this
would simply mean wasting valuable resources14. Moreover, the relevance conditions
clarify why the set S, referenced in the admissible/preferred protocol, corresponds
to the current set of arguments moved by PRO in ΦP -Wn , that is to say, PRO(ΦP -
Wn). This, in turn, allows avoiding a specific issue that could permanently prevent
the victory of PRO, as the following example will show.

Example 4. The examples of Figures 4, 5 and 6 depict a dialectical admissible game
played using the arguments of Table 1, where F1 ⊀ ({a}, ∅, a), ∀T ∈ {G1, L1}, T ⊀
({b}, ∅, b), ∀V ∈ {N3, X3}, V ⊀ ({¬b}, ∅, ¬b), while H1 ⊀ ({¬a ∨ ¬b}, ∅, ¬a ∨

13The research presented in [28] introduces a series of relevant properties for dialogue protocols.
Property R1 seems quite similar to our relevance conditions, although our study concerns argument
game proof theories rather than dialogues.

14Notice that we are dealing with pdAFs, and so, small subsets of the respective overall set of
arguments of the considered framework. As such, positing only relevant arguments is not going to
be particularly expensive for agents’ resources.
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Figure 4: The Figure illustrates a dialectical dispute tree ΦP -Dn, hence generated following the
protocol for the dialectical admissible/preferred games. Notice that the arrows indicate the defeats
between the arguments. Starting with the root argument A1, the other arguments are played
according to the order highlighted by the numbers near their labels (P or O). The last player to move
is OPP, which moves G1. Since G1 ⇒S H1 (where S := PRO(ΦP -Wn-1 ), i.e., S = {A1, H1, X3})
and G1 ⊀ ({b}, ∅, b), this ensures OPP invalidates the winning strategy ΦP -Wn-1. Hence, there is
no winning strategy in ΦP -Dn.

¬b). Starting with the root A1, the order in which the arguments are played is out-
lined in the brackets, next to the labels PRO and OPP. The dialectical dispute tree
ΦP -Dn (Figure 4) has been generated following the protocol for the dialectical admis-
sible/preferred games, however, its extension into Φ-Dn+1 (Figure 5) does not take
into account PRO’s relevance condition (14.1(b) of Definition 14). This immediately
raises an issue: without the relevance condition, we could have to face a situation
in which PRO is still losing even after its turn has ended (Figure 5). In this cir-
cumstance, during the next turn of OPP, there will be no winning strategy, hence no
set of arguments moved by PRO in ΦP -Wn+1 (i.e., the set PRO(ΦP -Wn+1)), that
can be targeted as S. Suppose, for the sake of the example, that the protocol of the
game allows searching for another set S. What could then be the set S parametrised
by the dialectical defeats moved by OPP? Without PRO(ΦP -Wn+1) the only rea-
sonable alternative is to consider a different set S initialized in a way such that
S ⊆ PRO(ΦP -Dn+1). Nevertheless, notice that if OPP is allowed to suppose the
premises of arguments in a non-conflict-free set S, then OPP would have enough re-
sources for playing an unassailable argument (as X1). As shown in Figure 6, H1, G1
∈ S, and B1 ∈ AR by property P1 of the pdAF. By P3, X2 ∈ AR, while by property
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Figure 5: The Figure illustrates the extension of the dialectical dispute tree ΦP -Dn into ΦP -Dn+1

due to argument N3 played by PRO. As we can see, if PRO’s relevance condition is dropped, then
PRO is free to move any argument and not only the ones that will reinstate the winning strategy.
N3 ⇒{L1} L1 and N3 ⊀ ({¬b}, ∅,¬b). However, this implies that, even after PRO moves, there
is no winning strategy in ΦP -Dn+1 (because the argument G1 played by OPP has not yet been
defeated).

P2, also X1 ∈ AR (since X1 is the logically equivalent argument of X2). Argument
X1 constitutes the problem: it defeats A1 and has empty premises, which implies it
cannot be defeated. This means that, by playing X1, OPP will change the final out-
come of the game invalidating any other possible attempt from PRO of reinstating
the winning strategy. However, this happened in the example because there was no
set PRO(ΦP -Wn+1) and OPP had to suppose the premises of the arguments mem-
bers of a different set S ⊆ PRO(ΦP -Dn+1) which was not conflict-free. In other
words, unassailable arguments as X1 can be moved only when (i) arguments that
defeat each other or (ii) unconditional arguments with conflicting conclusions are in
S. Moving such arguments will immediately trigger property P3 of the pdAF, which
will highlight the inconsistency of their premises, while property P2 will ensure the
generation of the corresponding unassailable argument.
Nevertheless, without requiring a resource-consuming conflict-free check on every
S ⊆ PRO(ΦP -Dn+1), how would it be possible to ensure the conflict-freeness of
the set S? The only set of arguments moved by PRO which satisfies this condition
(without requiring a conflict-free check) in a dialectical argument admissible game is
the set PRO(ΦP -Wn+1), thanks to property F1. Therefore, S has to be initialized
to PRO(ΦP -Wn+1).
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Figure 6: The Figure illustrates the extension of the dialectical dispute tree ΦP -Dn+1 into
ΦP -Dn+2 due to argument X1 played by OPP. It is possible to move X1 because there is no
winning strategy in ΦP -Wn+1, hence there is no set PRO(ΦP -Wn+1): this forces OPP to target
the premises of a different set S, initialized in a way such that S ⊆ PRO(ΦP -Dn+1) (in the case of
the example, S := PRO(ΦP -Dn+1), i.e., S = {A1, H1, G1, X3, N3}). The danger of arguments such
as X1 lies in their unassailability and the fact that they always succeed as defeats (underlined by the
dashed arrow in the picture and explained in Definition 2). That is to say, the final outcome of the
game can then be changed if S ̸= PRO(ΦP -Wn+1) because it can allow OPP to move arguments
as X1 against the root of the tree (preventing PRO from reinstating any other possible winning
strategy).

The implication of what has been shown in Example 4 is that the relevance
conditions need to be part of the protocols of any dialectical argument game. Indeed,
if this is not the case, we could have to face a situation in which PRO is still losing
even after its turn has ended. In this circumstance, during the next turn of OPP,
there will be no set PRO(ΦP -Wn) that can be used to initialise S. Hence, once
again, the issue outlined in Example 4 could arise and change the final outcome of
the game by permanently invalidating PRO’s winning strategy. This then means
that S := PRO(ΦP -Wn) and cannot be otherwise.

6.3 Feature 3 (F3)

Before the introduction of the third feature (F3) enjoyed by the dialectical admis-
sible/preferred argument games, we need to formally define the uniqueness of the
dialectical winning strategy regardless of the employed protocol.

Definition 17. [Uniqueness of the dialectical winning strategy] Let Dn and
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let Wn be defined as in Definition 12. Then Wn is said to enjoy the uniqueness
property if there is no other dialectical winning strategy for A wrt S simultaneously
present in Dn.

Let us consider a dialectical dispute tree Dn identical (although without the
implementation of a specific game protocol) to the one in Figure 3(c). This tree
has two winning strategies, say Wn

1 and Wn
2 , each of which is composed of a single

dispute. That is to say: d1 = (P1)A1—(O2)F1—(P3)G1 and d2 = (P1)A1—(O2)F1—
(P4)G2, such that Wn

1 is composed of d1, while Wn
2 is composed of d2. Obviously,

Dn does not enjoy the uniqueness property. Indeed, both G1 and G2 defeat the same
argument F1, whereas only one of such defeats is actually needed. This implies that
it suffices that either Wn

1 or Wn
2 is present for PRO to win (at least temporarily)

the game. For the final outcome of the game, it is pointless to have both winning
strategies simultaneously. It is also resource-consuming, meaning that it does not
comply well with the Dialectical Cl-Arg purpose of capturing resource-bounded real-
world agents’ reasoning.

(F3) Any dialectical winning strategy ΦP -Wn enjoys the uniqueness property.

Uniqueness is a property enforced on a dialectical winning strategy ΦP -Wn by the
protocol of the dialectical admissible/preferred argument game. Uniqueness is cer-
tainly a desirable property since it allows for shorter and simpler games. This ensures
a quicker evaluation of the status of the dialectical dispute tree root.

The following Lemma shows that the protocol of the dialectical admissible/pre-
ferred game ensures the uniqueness of ΦP -Wn .

Lemma 2. Let ΦP -Dn identifies a ΦP -dialectical game for A. Then, there exists
only one dialectical winning strategy ΦP -Wn for A wrt S that is simultaneously
present in ΦP -Dn.

Proof. Since the protocol of the admissible/preferred game forces the players to move
only one argument per turn, the only other way to have multiple winning strategies
simultaneously is by having different arguments moved by PRO (in different turns)
that defeat the same argument played by OPP. We are going to show how this case
cannot occur under the ΦP protocol.

Let d1 be a dispute in ΦP -Wn and d′ a sub-dispute of d1. Let also d1 = d′—(On−i)Y
—(Pn−i+1)X, for n− i > 1. As usual, the index near the player labels denotes the
order in which the moves have been played. Suppose now that the last (nth) ar-
gument moved is an argument Z ̸= X from PRO that dialectically defeats Y and

32



Dialectical Argument Game

generates d2 = d′—(On−i)Y—(Pn)Z, which is another dispute in ΦP -Dn and d′ is
a sub-dispute of d2 as well, then it is easy to see that PRO has played against the
protocol ΦP . That is because:

• If PRO defeats an argument without affecting the existing game status it will
violate its relevance condition (Definition 14.1(b)).

Playing argument Z will then be prevented by PRO’s relevance condition, ensuring
in this way the uniqueness of the dialectical winning strategy ΦP -Wn .

7 Efficiency Improvements
The protocols thus far developed can benefit from a range of efficiency improvements.
They follow from the properties of the dialectical games and Dialectical Cl-Arg in
general, which means that they will preserve the already proven soundness and
completeness results. In particular, we can obtain shorter games thanks to (I1),
which allows us to avoid meaningless repetitions of defeated arguments from OPP.
Moreover, (I2) and (I3) show how, due to the features enjoyed by the dialectical
games and without additional restrictions on the legal moves available to the players
(unlike in [25]), it is possible to obtain other specific efficiency improvements. In
the next section, these enhancements will be examined and, when required, also
formalised and integrated into the protocols of the dialectical games.

7.1 List of Efficiency Improvements for Dialectical Games

In the admissible/preferred dialectical game, OPP is forbidden to repeat any argu-
ments (and not just in a dispute) which have already been defeated, and not defended
or indirectly defended by another argument, in the game.15

Let us assume that OPP’s argument Y has been defeated, and not defended, by
an argument X moved by PRO in a dispute d. If now OPP repeats Y in a different
dispute, then PRO can simply repeat X defeating Y once again.

Example 5. For instance, let ΦP -Dn be a dialectical dispute tree and let d be a
dispute in ΦP -Dn. Suppose also that X is an argument moved by PRO in d, while
Y is an argument played by OPP in d such that X ⇒{Y } Y . Then, if the game goes
on (up to n+ k moves, for k > 1), whenever Y will ‘appear’ in a different dispute,

15According to the recursive definition of indirect defence, an argument X indirectly defends an
argument A if: i) X defends A; ii) X defends Z, and Z indirectly defends A.
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PRO can simply play X again. As such, playing argument Y proves to be just a
waste of resources.

We can now formalise this idea by substituting condition (14.2(b)) from the
protocol ΦP (Definition 14) with the following constraint (I1). The purpose of
forbidding such moves is to avoid extending the game by adding useless sequences
of arguments to it:

Definition 18 (Improved legal move). The following additional constraint for OPP
(where OPP’s argument Y is the next move played in the game) substitutes (14.2(b))
from the protocol ΦP :

(I1) If ∃J ∈ OPP(Φ-Dn) such that J is defeated and not defended (neither directly
nor indirectly defended) by another argument, then Y ̸= J .

The soundness and completeness results of the dialectical games will not be affected
by restriction (I1), as the following lemma will prove:

Lemma 3. Let ΦP -Dn identifies a terminated ΦP -dialectical game for A. Then,
there exists a dialectical winning strategy ΦP -Wn

1 for A, iff there exists a dialectical
winning strategy ΦP -Wn

2 for A constructed using a protocol that employs (I1).

Proof.

[→] If there exists a dialectical winning strategy ΦP -Wn
2 , then there also triv-

ially exists a dialectical winning strategy ΦP -Wn
1 . Indeed, if OPP cannot

repeat its defeated (and not defended) arguments (I1), it cannot as well re-
peat its arguments in the same disputes ((14.2(b)) of Definition 14). That is
to say, ΦP -Wn

2 follows every requirement established by protocol ΦP .

[←] We are going to show that every dialectical winning strategy ΦP -Wn
1 can

be transformed into a dialectical winning strategy ΦP -Wn
2 . Suppose that there

is a dispute d in ΦP -Wn
1 in which it appears the sequence J—X of arguments

such that J is moved by OPP, X is moved by PRO and X ⇒{J} J . We also
know that J is not defended (or indirectly defended) because, being a dispute
in the winning strategy, d terminates with a PRO argument. Notice that,
since J is an OPP argument moved in a dispute, it must be preceded by a
PRO argument. Hence, if we now remove every other J—X—· · · sequence
(including whatever follows after X) from the dialectical winning strategy, we
will not affect PRO’s victory and we will generate a new dialectical winning
strategy, i.e., ΦP -Wn

2 .
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The following improvements are similar to the ones already introduced in [25], with
an important difference. Unlike the standard games, dialectical games do not need to
enforce specific restrictions on their protocols in order to benefit from these efficiency
enhancements: they are ensured by the properties enjoyed by any dialectical game.

(I2) PRO does not move self-defeating arguments (i.e., arguments which defeat
themselves).

Whenever a self-defeating argument, say X, is played by PRO, PRO violates
property F1. Indeed, even if X reinstates a dialectical winning strategy Φ-Wn ,
the same X will also conflict with an argument member of PRO(Φ-Wn), i.e.,
X itself.

(I3) PRO does not play an argument that defeats (or is defeated by) an argument
in PRO(Φ-Wn).

That is to say, PRO does not move arguments that conflict with the argu-
ments it has already moved in the winning strategy. Indeed, if PRO plays
an argument X defeated by (a member of) PRO(Φ-Wn) or that defeats an
argument member of PRO(Φ-Wn), the resulting winning strategy will not be
conflict-free. This will then violate property F1.

Example 6. Consider the dialectical dispute tree of Figure 4 and assume
that PRO decides to counter its opponent’s last move by playing argument
F1 = ({b,¬a∨¬b}, ∅,¬a) such that F1 ⇒{G1} G1 on ({a}, ∅, a). However, since
F1 defeats, hence conflicts, with H1 ∈ PRO(Φ-Wn) (F1 is also dialectically
defeated by H1) this move will violate property F1 (the situation will then be
similar to the one described in Example 3).

Remark 2. Notice that (I3) also subsumes the fact that PRO does not move an
argument X in a dispute d if such an argument has already been played by OPP in
d. Indeed, playing argument X will reinstate the dialectical winning strategy Φ-Wn.
However, at the same time, X is an argument moved by OPP (hence X complies
with OPP’s relevance condition). As such, playing X will imply defeating once again
an argument in PRO(Φ-Wn), violating property F116.

16It is interesting to observe that this is not generally the case if PRO repeats (i) an OPP
argument or (ii) an already defeated PRO argument, say X, in a different dispute of the dialectical
dispute tree. That is because it might be that the opponent cannot suppose anymore the same
premises that (ii) allowed it to defeat X the first time or (i) allowed it to defeat an argument in
PRO(Φ-Wn). For example, assume that an argument Y moved by OPP dialectically defeated X
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As shown, (I2) and (I3) follow directly from the property F1, which is enjoyed by
any dialectical game. As such, no modifications to the game protocols are needed,
meaning that the soundness and completeness results will be preserved.

8 Related and Future Work
Initially introduced in [14], the dialectical approach of Dialectical Cl-Arg has been
subsequently examined from different perspectives. For example, the investigation
concerning argumentative characterisations of Brewka’s Preferred Subtheories (PS)
[3] showed that, compared with the standard approach, the grounded semantics
applied to Dialectical Cl-Arg more closely approximates sceptical inference in PS
[16]. In addition, the research presented in [26] provides a full rational account of
structured (ASPIC+) arguments under resource bounds by adapting the approach
of Dialectical Cl-Arg.

Extending further the study commenced in [10] and continued in [11], we plan to
increase the range of dialectical argument game protocols investigating the stable [9],
semi-stable [4] and ideal semantics [19, 5]. Similarly to the work presented in [25], we
could also consider adapting the standard 3-values labelling approach (where each
label represents the IN, OUT, and UNDEC status of an argument with respect to
the examined semantics) and devise algorithmic procedures for the enumeration of
specific extensions. Starting from the preliminary study proposed in [12], the design
of fully-fledged algorithms would also help in additionally assessing the soundness
and completeness properties of the dialectical argument games. Finally, another
research direction that will be pursued involves generalising the developed dialec-
tical argument games to dialogues, following the guidelines of the already existing
literature in the field (mainly [22, 30, 13]). This would have the interesting conse-
quence of allowing to move from non-monotonic single-agent inference to distributed
non-monotonic reasoning.

9 Conclusion
The main aspects of the real-world uses of argumentation by resource-bounded
agents include: (i) showing the inconsistencies of an opponent’s argument by suppos-
ing the premises of its arguments; (ii) handling only finite subsets of the arguments
of the AFs; (iii) reducing the consumption of resources by employing dialectical

drawing its suppositions α from Prem(PRO(Φ-Wn)). However, after the game goes on, it might
be that α /∈ Prem(PRO(Φ-Wn+k )). Then Y cannot dialectically defeat X anymore (i.e., Y defeat
against X is disqualified), therefore X is now a perfectly viable move for PRO.
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means (while still satisfying the rationality postulates and practical desiderata) [15].
These features would constitute the hallmarks of an argument game based on Di-
alectical Cl-Arg, thus capable of better approximating non-monotonic single-agent
real-world reasoning processes than the standard argument games. In this paper,
we have achieved some important results. We have developed argument game proof
theories (denoted as dialectical argument games) for the admissible, preferred and
grounded semantics of Dialectical Cl-Arg. Incorporating dialectical defeats in the
standard structure of the argument games proved to be a non-trivial process which
yielded the discovery of interesting properties that differentiate dialectical games
from the standard ones. That is to say, dialectical games enjoy (a) specific rele-
vance conditions that characterise their protocols and yield (b) the uniqueness of
their winning strategies, whilst property F1 ensures (c) the conflict-freeness of the
set of arguments moved by the proponent in the winning strategy. The last is of
particular importance since it provides the games with a various range of efficiency
improvements. Without the need to perform any additional checks or to enforce ad-
ditional restrictions in the protocols (unlike in [25]), F1 allows each dialectical game
to prevent the proponent from: playing self-defeating arguments; playing arguments
already moved by the opponent (in the same dispute); and playing arguments that
defeat (or are defeated by) other arguments already moved by the proponent. Fi-
nally, another efficiency improvement can be obtained if the opponent is forbidden to
repeat arguments that have already been defeated in the dialectical admissible/pre-
ferred game, such that none of them has also been defended or indirectly defended
by other arguments.
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