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Abstract: Simulating financial time series (FTS) data consistent with non-stationary, empirical market
behaviour is difficult, but it has valuable applications for financial risk management. A better risk
estimation can improve returns on capital and capital efficiency in investment decision making. Chal-
lenges to modelling financial risk in market crisis environments are anomalous asset price behaviour
and a lack of historical data to learn from. This paper proposes a novel semi-supervised approach for
generating regime-specific ‘deep fakes’ of FTS data using generative adversarial networks (GANs).
The proposed architecture, a regime-specific Quant GAN (RSQGAN), is a conditional GAN (cGAN)
that generates class-conditional synthetic asset return data. Conditional class labels correspond to
distinct market regimes that have been detected using a structural breakpoint algorithm to segment
FTS into regime classes for simulation. Our RSQGAN approach accurately simulated univariate time
series behaviour consistent with specific empirical regimes, outperforming equivalently configured
unconditional GANs trained only on crisis regime data. To evaluate the RSQGAN performance for
simulating asset return behaviour during crisis environments, we also propose four test metrics
that are sensitive to path-dependent behaviour and are also actionable during a crisis environment.
Our RSQGAN model design borrows from innovation in the image GAN domain by enabling a
user-controlled hyperparameter for adjusting the fit of synthetic data fidelity to real-world data;
however, this is at the cost of synthetic data variety. These model features suggest that RSQGAN
could be a useful new tool for understanding risk and making investment decisions during a time of
market crisis.

Keywords: synthetic FTS data; GANs; conditional GANs; temporal convolutional networks; Quant
GAN; greedy Gaussian segmentation; skip-z layers; z-clipping; stylised facts

1. Introduction

Employing machine learning tasks to successfully model financial time series (FTS)
data (e.g., stock prices, FX rates) is a challenging but valuable exercise [1]. For example,
a supervised learning model for predicting future asset returns may be used to make
directional investment decisions (i.e., a bet on the future direction of an asset’s price, or
to prioritise and weight trades). However, there are difficulties in the FTS data domain
that make supervised learning tasks more challenging than other domains: (1) a lack
of training data versus other data domains, e.g., images, video, text, audio, etc., which
results in higher model estimation and generalisation errors, thus degrading performance,
and (2) persistently low signal-to-noise ratios, as market efficiency dampens detectable
signals [2].

Another valuable machine learning task for aiding investment decision making is to
learn the data distribution of the underlying data generation process (DGP) [3]. Generative
models could be used to simulate the evolution of FTS data and help investment and risk
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professionals make better risk-based investment decisions (i.e., approaches to hedging or
assessing risk–reward trade-offs) and improve capital efficiency.

Generative modelling approaches, such as variational auto-encoders (VAEs) [4,5] and
generative adversarial networks (GANs) [6], have been used for DGP simulation tasks in
other domains. In the image domain, GANs are known to be more successful than VAEs in
generating ‘sharper’ synthetic data when compared to VAE-based approaches [7,8].

In the FTS domain, GANs have only recently been explored for simulating FTS
data [9–17].

A key issue when training predictive or generative FTS models in real-world settings
is the non-stationary behaviour of the FTS data domain. Non-stationarity in asset return
behaviours is a feature of complex market systems, driven by exogenous factors (e.g., gov-
ernment policies, interventions, regulations, industry structural changes) and endogenous
factors (e.g., market expectations, participant behaviour, feedback loops, and dynamic
algorithms). Market participants often describe a contiguous period of persistent market
behaviours (e.g., directions, volatilities, correlations) as a market ‘regime’. A regime change
is a significant DGP feature that contributes to the non-stationarity of observed FTS data.

The performance of predictive or generative FTS models significantly depends on
whether future data will be drawn from the same DGP as the training period. However,
regime class imbalance has often been overlooked in FTS model training. Failure to
account for this feature could lead to ‘unconditional’ models being trained in ‘mixed-
regime’ environments and not be reflective of the modeller’s explicit expectations for
current or future regimes.

This paper proposes a novel approach to the generative modelling of regime-specific
FTS data by using conditional generative adversarial networks (cGANs) [18]. The applica-
tion of cGANs to the FTS domain enables the class-conditional simulation of asset price
behaviour that may be characteristic of historic market regime environments, such as past
financial crises. The key benefits are that (1) users would have the flexibility to simulate
market behaviours not dependent on recent regime conditions if conditions have changed
or are changing and (2) it gives users the flexibility to explicitly simulate mixture models
by generating class-conditional synthetic data and weighting their prevalence with regime
class priors.

Few papers in the FTS GAN literature have applied a cGAN to modelling FTS data.
Each of these studies demonstrated a range of conditioning approaches. Fu et al. [15]
used categorical, ordinal, or continuous conditioning representations to learn toy Gaussian
mixtures and vector autoregression (VAR) processes. Koshiyama et al. [13] conditioned on
a time series of recent returns, and de Meer Pardo [14] conditioned on current VIX levels
and also on a time series of a ‘principal’ asset returns for generating multivariate FTS data
for multiple assets.

However, none of these approaches directly address the empirical issue of regime
imbalance in the training data. Fu et al. [15] partially addressed this by selecting a balanced
time period between 2007 and 2011 based on heuristical domain knowledge but did not
utilise a larger volume of data available for learning. Koshiyama et al. [13] conditioned on
the most recent 252 trading days (1 year) of recent historical returns using training data
between 2001 and 2013 to generate 1260 days (5 years) of data to assess the training strategy
performance. de Meer Pardo [14] used 100 days of historical S&P500 data as a conditioning
variable between 2004 and 2015 to generate joint S&P500 and VIX data.

To address regime imbalance and learning a generative model specific to a particular
historical regime, we propose a novel approach called a regime-specific Quant GAN
(RSQGAN). RSQGAN is a conditional GAN [18] for FTS that extends the Quant GAN
(QGAN) model [12] demonstrated for modelling unconditional FTS data.

In addition, the aforementioned cGAN studies for FTS data used GAN quality evalua-
tion measures tailored for specific commercial applications: (1) the fine-tuning of trading
strategies and/or data augmentation for training trading strategies to maximise risk-
adjusted returns [13]; (2) value at risk and expected shortfall estimation [15]; and (3) implicit
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evidence that cGAN-generated synthetic data augments training data sets and improves
the out-of-sample discriminator performance [14,19].

To directly assess synthetic data quality, particularly for ‘crisis’ regimes, a number of
key evaluation criteria are proposed to assess the improvement in the quality of capturing
path-dependent time series behaviour in these regimes so they might be acted on in real-
world risk management contexts.

The contributions of this paper to existing FTS GAN approaches are threefold:

1. The use of a structural breakpoint algorithm, greedy Gaussian segmentation [20], to
learn time-dependent class categories (‘regimes’) to be used as embedding conditions
and cluster time series data in pre-processing to train the conditional RSQGAN;

2. A user-controlled hyper-parameter method in RSQGAN topological design (‘z-clipping’)
as originally proposed by Brock et al. [21] in BigGAN, which enables users to directly
control the variability of synthetic data outputs; and

3. An empirical evaluation of the selection of GAN performance metrics for specifically
evaluating synthetic FTS data quality for rarer crisis regimes.

This paper demonstrates that RSQGAN is able to achieve improvements across multi-
ple quality evaluation metrics for synthetic crisis regime data, relative to an unconditional
QGAN [12] model using the same topology but exclusively trained on crisis regime data.
This suggests that the RSQGAN model can learn a useful crisis regime embedding repre-
sentation and benefits from parameter sharing by learning useful time series features from
the behaviour of majority (non-crisis) regime classes.

The rest of this paper is structured as follows. In Section 2, we give a high-level
overview of GANs and key issues encountered in training. In Section 3, highlights are (i) an
overview of the GAN research literature and (ii) innovations in image GAN architecture
relevant to developing the RSQGAN architecture. In Section 4, an overview is provided of
research papers demonstrating the application of GANs to the FTS data domain.

In Section 5, the structural breakpoint algorithm, greedy Gaussian segmentation
(GGS) [20], for segmenting time series into regimes for class encoding is briefly described.
A description of the RSQGAN model, which evolved from the QGAN model [12] and
its training procedure, is described. The section concludes with an outline of data and
experimental methodologies.

In Sections 6 and 7, interpretations of experimental results are provided, along with
other explanatory observations. In Sections 8 and 9, proposed future work is suggested to
address current methodological limitations, and key insights are summarised. Appendix A
includes further technical details drawn from key papers.

2. Background
Generative Adversarial Networks (GANs)

Within the family of generative modelling approaches, generative adversarial net-
works (GANs) [6] are referred to as an example of a likelihood-free inference approach [22]
to generative modelling. The learned density of the real DGP X ∼Pr(x) is implicitly known
if samples can be generated that are consistent with empirical densities. In contrast, explicit
approaches aim to learn parameters of latent variable densities. However, due to their
intractability, approximations are needed, which can negatively impact performance [23].

Since the introduction of GANs in 2014 as a novel approach to creating synthetic
images, rapid progress has been made in the image domain [21,24,25] and has proliferated
across data domains such as audio [26], text [27,28], medical data [19,29], and, more recently,
videos [30,31].

The idea behind the original ‘vanilla’ GAN algorithm [6] is the adversarial training of
a generator network G : (z; θg) 7→ x̃ against a discriminator network D : (x; θd) 7→ [0, 1]
that aims to correctly discriminate between generated samples x̃ and real instances x. z is
drawn from a random noise prior distribution pZ(z), e.g., multinomial standard Gaussian
Z ∼ N (µ = 0, Σ = I).
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Adversarial training is viewed as a minimax game between G and D, intuitively, when
the joint minimax loss function in Equation (1) converges:

min
G

max
D

Ex∼Pr(x)[log D(x)] +Ez∼pZ(z)[log(1− D(G(z)))]. (1)

It was shown by Goodfellow et al. [6] that a unique solution at Pr = Pg exists when
D∗(x) = 1

2 , as optimising Equation (1) under the optimal generator D∗(x) is equivalent to
minimising the cost function:

− log 4 + 2 · JSD(Pr‖Pg) (2)

where JSD(Pr‖Pg) is the Jensen–Shannon divergence (JSD ) between Pr and Pg:

JSD(Pr‖Pg) = KL(Pr‖
Pr + Pg

2
) + KL(Pg‖

Pr + Pg

2
) (3)

and KL(PX‖PY) is the Kullback–Leibler (KL) divergence between PX and PY given by

KL(PX‖PY) =
∫
X

PX(x) log
PX(x)
PY(x)

dx (4)

over the joint support for PX,Y denoted by X .
However, the training of vanilla GANs has been problematic in practice. Issues include:

(1) a lack of variation in simulated outputs (‘mode collapse’), (2) non-convergence during
training, and (3) training losses being a poor metric to evaluate GAN output quality.

1. Mode collapse. The true data distribution Pr(x) is likely to be high-dimensional and
multi-modal. Mode collapse can occur if, during training, the discriminator network
overfits in its ability to identify generated fakes. The generator network then responds
by restricting fake samples to modes that are less likely to be classified as fakes. The
progressive overfitting of the discriminator within this subset causes the density
of generated samples to concentrate into a shrinking support space. Despite this,
observed generator and discriminator losses continue to shrink but generated samples
become invariant. Conversely, another cause of mode collapse could be from vanishing
discriminator gradients, which result in stalled learning for the generator network.
Methods for dealing with discriminator overfitting include weight regularisation [32],
regularisation by discriminator learning from stochastically corrupted inputs [33],
using alternative loss functions such as Wasserstein loss (WGAN) [34] and applying
gradient penalties in the discriminator learning process (WGAN-GP) [35].

2. Training non-convergence. Though convergence may not indicate training success if
mode collapse occurs, non-convergence in the adversarial training of vanilla GANs
may also indicate failure. The nature of adversarial training and non-convex joint
loss functions can lead to oscillatory behaviour. The oscillatory non-convergence of
losses may not produce desirable or stable results for the learned DGP. Therefore,
increasingly unstable representations of the DGP could be learned. Non-convergence
can also be caused by an underfitting discriminator or vanishing discriminator gra-
dient that results in a generator’s failure to learn. Interested readers are referred to
GAN meta-studies that examine the effectiveness of discriminator regularisation and
loss functions to manage the non-convergence [36] and critical analysis of theoret-
ical supports for reducing mode collapse and non-convergence in the image data
domain [23].

3. Quality evaluation. As the above discussion argues that the overall GAN performance
cannot be reliably judged by observing training losses, other evaluation metrics would
be needed. Evaluation metrics would need to consider variability across modes and
output quality for each mode. Subjective human evaluation could apply for data
domains such as images or sound, though these are not robust measures for model
benchmarking. It was argued by Theis et al. [37] that GANs could be used for a number
of purposes (e.g., unsupervised feature learning, density estimation, in-filling, etc.),
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the quality of a GAN should be evaluated based on its originally intended purpose.
However, quantitative evaluation metrics and subjective human assessment measures
do not necessarily correlate to the performance of the GAN’s objective. For image
GANs, quantitative evaluation methods such as inception score [38] and Fréchet
inception distance [39] metrics were developed to correlate with performance for
image synthesis tasks. For conditional image GANs, the Fréchet joint distance was
proposed by DeVries et al. [40] to explicitly metricate inter-mode variability and intra-
mode quality over a joint Gaussian distribution in embedded image and conditioning
spaces. By contrast, in the FTS data domain, the GAN output quality cannot easily
be subjectively judged by visual inspection. Instead, simulated FTS data are judged
with reference to a set of market heuristics called stylised facts [41–43] as outlined in
Section 5.4 below.

3. Related Work

GANs are a highly active research field. Key research directions include:

1. Stability improvements, which deal with issues such as mode collapse and non-convergence;
2. Evaluation improvements, which derive numerical measures to evaluate GAN output

quality; and
3. Architectural improvements, which aim to improve GAN output quality, applied

across domains.

Provided below is a brief overview of key GAN research literature.

3.1. Stability Improvements

Theory into the causes of GAN non-convergence and mode collapse was explored
by Arjovsky and Bottou [33]. The authors demonstrate that non-convergence occurs by
proving that when the distributions Pr and Pg are on low-dimensional manifolds and not
perfectly aligned, then there exists a perfect discriminator D∗(x; θd). They show that as the
discriminator D converges toward the perfect discriminator D∗, generator gradient norms
converge to zero, which leads to non-convergence in training. They also demonstrate that
mode collapse is caused by large regions of discontinuity or zero values of Pg in the joint
support of

(
Pr,Pg

)
. The authors prove that this assigns a high cost to generating poor fakes

and a low cost to mode dropping. Arjovsky et al. [34] thus propose a critic WGAN loss
function, derived from the Wasserstein-1 (or earth mover distance) [44], with convergence
properties that correlate with an improvement in generator sample quality:

min
G

max
D∈D1

Ex∼Pr [D(x; θd)]−Ez∼pZ(z)

[
D
(

Gθg(z)
)]

(5)

for a discriminator function D, with sufficient capacity that satisfies the 1-Lipschitz condi-
tion denoted by D ∈ D1.

Arjovsky et al. [34] further observe that, as the critic weights of D ∈ D1 need to have
support in compact metric space, they initially propose weights to be clipped to a chosen
hyperparameter region W : W ⊂ Rdim(θd) during training.

Gulrajani et al. [35] observe that the effect of weight clipping in the WGAN formula-
tion [34] results in failure to recognise the WGAN value surface for a fixed generator. Critic
gradients are observed to explode or vanish in training. Gulrajani et al. [35] derive the
WGAN-GP loss function in Equation (6) below, following proof of gradient properties for
some optimal critic D∗, and conclude that a gradient penalty controlled by hyperparameter
λGP should be added to the WGAN value function:

min
G

max
D∈D1

Ex∼Pr [D(x; θd)]−Ez∼pZ(z)

[
D
(

Gθg(z)
)]

+ λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1))2

]
(6)
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3.2. Evaluation Improvements

The development of automated approaches for evaluating GAN output quality is well
established in the image data domain. An overview of GAN evaluation methods in the FTS
data domain is covered in Section 4. In principle, evaluation scores should reward both the
generation of high intra-mode variability and also high inter-mode separation ‘class label
certainty’. The earliest image GAN evaluation metric, inception score [38], measured high
intra-mode variability by the high unconditional label entropy of p(C) =

∫
p(C|x̃)dx̃ and

high inter-mode separation by the low class-conditional label entropy of p(C|x̃) determined
by feeding generated samples into a pretrained inception model [45]. Heusel et al. [39]
argued that, as the inception score approach did not measure scores for synthetic data
versus scores for real-world data, a proposed measure of synthetic data quality, the Fréchet
inception distance (FID), could examine the Wasserstein-2 [44] distance between high layer
feature abstractions of real samples Pr and synthetic samples Pg. FID scores were shown to
correlate with various forms of induced image noise. This approach was extended to the
conditional GAN case by DeVries et al. [40]. The authors observed that though mode class
variability is implicitly desired for unconditional GANs, it is explicitly desired for conditional
GANs. The proposed Fréchet joint distance (FJD) measures intra-class conditional quality
and consistency as well as inter-class conditional diversity. This is measured also using the
Wasserstein-2 distance [44] between joint data and class distributions (x(i), C(i)), (x̃(i), C(i)).

3.3. Architectural Improvements

Improvements in the GAN research literature that are relevant for designing features
of the RSQGAN model include:

1. Temporal convolutional networks (TCNs) [12,46]— an improvement in neural archi-
tecture for learning time series representations;

2. Conditional GANs (cGANs) [18]—an improvement to ensure deliberate generation
from distinct class modes;

3. ‘z-skipping’ and ‘z-clipping’ [21]—improvements to class conditional synthetic quality,
while giving user control to synthetic data size and the ability to explicitly trade off
synthetic fidelity to real training data against synthetic variety, respectively.

Temporal convolutional networks (TCNs) [46] are effective in modelling long-range
dependencies in sequential data compared to other recurrent network architectures.

Design features of the TCN include dilated causal convolutions, which allow the network
to learn time-lag-dependent features at different dilation frequencies, but only caused
from prior inputs in the sequence; layered embeddings, which allow representations to be
learned at different levels of time scale resolution (i.e., larger receptive fields); and residual
connections [47], which improve convergence for deep layered TCN networks. See Figure 1.

The first known use of TCNs to generate synthetic FTS data was the Quant GAN archi-
tecture [12] as described in Section 4 below and in more detail in Appendices A.2 and A.3.

Conditional GANs [18] aim to explicitly address the issue of mode collapse by directly
inducing the generation of class-conditional data. Rather than unconditional generations
of G(z; θg) from adversarial training against an unconditional discriminator/critic network
D(x; θd), both generator and discriminator/critic networks can be conditioned against
classes Cj to learn G(z|Cj; θg) and D(x|Cj; θd).

The conditional vanilla GAN minimax discriminator loss can thus be expressed as:

min
G

max
D

Ex∼Pr(x)[log D(x|Cj)] +Ez∼pZ(z)[log(1− D(G(z|Cj)))]. (7)

The training procedure shown below accepts conditional class Cj as an additional
input tensor in training the cGAN network. Another advantage of this approach is that the
user can specify the form of the conditions Cj in semi-supervised data generation or apply
representations of Cj from an unsupervised learning process.
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Figure 1. Architecture of a TCN. Image and caption credit: Bai et al. [46]. Reproduced with the
authors’ permission. (a) A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size
k = 3. The receptive field is able to cover all values from the input sequence. (b) A TCN residual
block. A 1 × 1 convolution is added with residual input and output having different dimensions.
(c) An example of residual connection in a TCN. The blue lines are filters in the residual function and
the green lines are identity mappings.

‘skip-z layers’ and ‘z-clipping’ are two methods applicable to cGANs as described
in the single paper by Brock et al. [21]. It explored the effect of larger minibatch sizes
in training larger-image cGAN models. Rather than concatenating an encoding of the
conditional vector Cj to a noise prior z at the input layer of a network (as seen in Figure 2
above), the noise and class encoding (‘skip-z layers’) are instead introduced at multiple
hidden layers. In this way, the network can learn class-conditional feature representations
at different receptive field sizes. In addition, this innovation allows for an arbitrarily large
noise prior z to be used for the generator input layer, as this no longer requires the topology
of the joint noise and class embedding layer to be defined in advance.

Figure 2. Conditional GAN training architecture. Image credit: Mirza and Osindero [18]. Reproduced
with the authors’ permission.

Further, Brock et al. [21] test a variety of noise prior distributions other than the stan-
dard multinomial uniform and Gaussian distributions. The authors discover that sampling
from a truncated normal distribution, i.e., re-sampling the noise prior z if |z| ≥ zclip for
some clipping hyperparameter zclip ≥ 0, would allow users control, indirectly trading off
improved fidelity to the density of the training data PX|Cj

at the cost of intra-mode variety,

which could be measured by the lower-class conditional entropy of X̃|Cj. The authors
explain that ‘z-clipping’, which results in a truncated prior distribution, can degrade syn-
thetic quality by causing layer-wise distribution shifts in the network. To solve this, the
authors apply an orthogonal regularisation [48] of the generator network to ensure that
the truncated distribution smoothly maps to the real training data domain. Readers are
encouraged to view the original paper for relevant details.
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4. Related Work: Generative FTS Models

The application of generative approaches to modelling FTS data is a more recent
development. Most research papers so far have tended toward an applied experimental
approach for generating synthetic stock returns or foreign exchange (FX) rate data.

The papers experimented with training generative models for different tasks, including:

1. ‘In-filling’ data out of sample (i.e., prediction tasks). Zhou et al. [9], Zhang et al. [10]
trained GANs to make short-term stock price predictions for univariate FTS.

2. Density estimation. Though GANs implicitly learn latent data densities, Kondratyev
and Schwarz [17] demonstrate that a restricted Boltzmann machine (RBM) with
stochastic Bernoulli activations [49] could estimate joint densities and higher mo-
ments of the DGP for multivariate FX log-return data, as well as reproduce desired
autocorrelation and non-stationary behaviours via a controlled early stopping ‘ther-
malisation’ parameter.

3. Generating synthetic data. Other approaches explored for generative FTS modelling
included denoising autoencoders and style transfer for FX data [50] and multivariate
Gaussian sequence mixtures [51]. FTS GAN models in the literature used various net-
work topologies for generator and discriminator networks. Takahashi et al. [11] devel-
oped FIN-GAN, which used an ensemble product of CNN and MLP outputs to model
US equities. Wiese et al. [12] developed Quant GAN, which used a TCN with skip
layers to jointly learn generative models for drift and volatility stochastic processes
akin to GARCH model classes for the S&P500. Only a few papers [13–15] applied
cGANs for FTS generative modelling. Koshiyama et al. [13] used single-hidden-layer
MLP networks to train cGANs conditioned on 1 year (252 days) of historical returns to
generate 5 years of synthetic data (1260 days) for 573 different assets spanning equities,
fixed income, and FX. de Meer Pardo [14] used deep CNNs with combinations of
WGAN-GP [35] and relativistic average critic losses (RaGAN) [52] and conditioning
on the previous 100 days of S&P500 returns to jointly simulate 100 days of S&P500 and
VIX synthetic data. Fu et al. [15] used a three-layer MLP architecture with WGAN [33]
critic loss and conditioning on regime category (normal versus crisis) to generate
next-day synthetic data for two US financial stocks. More recently, Marti [16] explored
the generative modelling of very-high-dimensional FTS correlation matrices using a
deep convolutional GAN (DCGAN) [24]. As of the time of writing, it is the only study
known to us that has evaluated GAN performance based on its ability to simulate
characteristics of empirically studied multivariate FTS behaviour.

There are unique challenges to evaluating the quality and variety of synthetic data. Design-
ing an automated approach to evaluate the FTS GAN output still remains elusive. In the image
domain, methods such as inception score [38] that rely on the existence of a deep, pre-trained
classification model such as the ImageNet domain do not exist for the FTS domain. As such, no
single measure yet exists to describe the quality of synthetic FTS data. To evaluate the perfor-
mance of generative FTS models, three general approaches were observed among the studies
mentioned above. One common approach, stylised facts [41–43], describe well-studied and
accepted heuristics for the time series behaviour of financial asset returns. Many other contribu-
tions to stylised fact research from the field of empirical finance [53–59] are discussed further
below in Section 5.4. This evaluation approach was taken by Takahashi et al. [11] and Wiese
et al. [12] and, in the multivariate case, by Marti [16]. Another common evaluation approach
is to compare it to the performance of structural time series modelling benchmarks such as
autoregressive integrated moving average (ARIMA) [60], generalised autoregressive conditional
heteroscedasticity (GARCH) [61] and vector autoregressive (VAR) and vector error correction
models (VECM) for multivariate data [62]. These evaluation approaches were explored by Taka-
hashi et al. [11], Wiese et al. [12], Koshiyama et al. [13], de Meer Pardo [14], Fu et al. [15], Da Silva
and Shi [50], Franco-Pedroso et al. [51]. A less common approach in the FTS GAN domain is
known as the ‘train on real, test on synthetic’ cross-validation approach demonstrated by
de Meer Pardo [14] and originally applied by Esteban et al. [19] in the medical data domain.
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A generative model is trained on a portion of training data to produce synthetic data to
augment a validation set. Next, two separate classifiers are trained, one on the original
validation set and another on an augmented validation set. If the classifier performance
improves due to augmentation, the model is considered to generate data Pg of the same
distribution as Pr.

As noted in Section 1, none of the above studies explicitly considered regime switch-
ing and regime imbalance in conditional generative modelling. Failure to account for
this characteristic of complex financial market behaviour leads to ‘unconditional’ mod-
els being trained in ‘mixed-regime environments’ and may not be reflective of current
or future regime conditions. Though some cGAN studies attempt to account for regime
imbalance [15] by selecting a balanced period, date period selection was based on heuristics
rather than an unsupervised breakpoint detection algorithm. Though Fu et al. [15] explores
the performance of cGANs to interpolate and extrapolate synthetic data generation for
low-dimensional ordinal and conditional variables on toy data, the high-dimensional condi-
tioning variables from other cGAN studies [13,14] that may be considered representations
of regime conditions are in very high temporal dimensions, i.e., 252 days and 100 days,
respectively. It is indeterminate if a better lower-dimensional manifold representation
for the conditioning variable might improve performance, particularly if interpolated or
extrapolated conditional variables are provided to the model.

5. Methodologies

This section outlines our methodology for the development and testing of the RSQ-
GAN model. Section 5.1 describes components of the RSQGAN model and Section 5.2
describes the collection and preprocessing of data. The approach to the experimental design
and evaluating the performance of RSQGAN is provided in Sections 5.3 and 5.4.

5.1. Models

An introduction to TCNs, the network topology for the RSQGAN discriminator
and generator networks is briefly described in Section 5.1.1 below. For completeness,
Appendices A.1 and A.2 contain detailed descriptions of the TCN and the Quant GAN
model from the paper by Wiese et al. [12]. Next, a brief introduction to the RSQGAN model
and the greedy Gaussian segmentation (GGS) algorithm by Hallac et al. [20] for detecting
regime change breakpoints is provided in Section 5.1.3. For completeness, Appendix A.4
provides key details of the GGS algorithm from that paper.

5.1.1. Temporal Convolutional Networks

Temporal convolutional networks (TCNs) are deep convolutional networks that use
‘dilated’ kernels (i.e., kernels that skip nodes in input or hidden layer tensors) in their
convolution operations. A dilated kernel of dilation D and kernel size K inserts ‘gaps’ [63]
of size D− 1 between each of the K kernel nodes for convolution. Figure 3 below shows
two examples of dilated convolutional operations. Both are dilated kernels of kernel size
K = 2 and convolved with stride s = 1. The left shows a kernel of dilation D = 1 over an
input time series of size T ∈ N reducing the layer output to size T − 1. The right shows
a kernel of dilation D = 2, reducing the layer output to size T − 2. Dilated convolution
operations are autoregressive.

A TCN f (X ∈ RN0×T0 ; L, K, D, θ), parameterised by θ, consists of L hidden layers
referred to as temporal blocks, which are composites of element-wise activation functions φ
and dilated convolution operations of dilation D and kernel size K. The input datum X is
an N0-variate tensor of time sequence length T0. At layer l ∈ L in the TCN, the input and
output dimensions will be denoted Xl−1 ∈ RNl−1×Tl−1 and Xl ∈ RNl×Tl , respectively.

Each temporal block for layer l, ψl contains an element-wise activation function φ
applied after a dilated convolution operation. The basic temporal block contains an affine
operation that convolves some kernel W(l)

∗D of size K and dilation factor D striding over
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the input nodes Xl−1. This is said to be a dilated convolution of factor D. Kernel strides are
convolved along the discrete-time dimension t ∈ T, T ∈ N.

Figure 4 below demonstrates the application of the dilated convolution operation on
input matrix X ∈ RNl−1×Tl−1 for K = 2, D = 2, and unit stride. This produces an activation
tensor A ∈ RNl×Tl where the time dimension Tl = Tl−1 − D(K− 1) before element-wise
activation function φ is applied.

Figure 3. Dilated convolutional layers. Left: k = 2, s = 1, D = 1. Right: k = 2, s = 1, D = 2.

Figure 4. A dilated convolutional layer applied to a matrix X of data dimension 1. A dilated
convolution operation is applied followed by an activation φ.

Figure 5 shows that temporal blocks may also contain stacks of ‘inner blocks’, each
consisting of dilated convolution layers and activations.

Indeed, time series index t ∈ N of the output from a dilated convolution operation
only incorporates the input from the receptive field of past time series indices (t− s), s ≥ 0,
s ≤ t, s ∈ N. This yields a receptive field size (RFS) of s + 1, inclusive of endpoints. Thus,
only past information is propagated through the TCN network to learn time-lagged feature
representations at different scale resolutions.

In the special case where the kernel size is constant for all TCN layers, l, and the
dilation factor D ≥ 2 at layer l is given by Dl = Dl, then the TCN is said to be a vanilla TCN.
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Figure 5. An example of temporal block ψl with two inner blocks of dilated convolutional layers with
k = 2, D = 2. An example of topology implemented by Wiese et al. [12] that also included a batch
normalisation [64] applied to the output of each activation layer.

Finally, the TCN network can include skip layers such as those used in the ResNet [47]
architecture to mitigate vanishing gradient problems in learning through deep neural
architectures. Figure 6 below explains the topology.

Figure 6. An example of deep temporal convolutional network such as that implemented by
Wiese et al. [12]. The topology is L layers of temporal blocks, each with two inner blocks. Weight
normalisation [65] is applied to all dilated convolutional operations. Skip connections [47] mitigate
vanishing gradient problems for deep networks and enable gradient learning for each latent layer.

The skip temporal block layer ηl transforms the input Xl−1 to an output Hl that is
accumulated to the final layer L such that:

Y = f (X; N0, NL+1, K, B, D, θ) =
L

∑
l=1

Hl =
L

∑
l=1

ηl(Xl−1) (8)

where parameters for the skip layers θηl , l = {L, L− 1, . . . 1} are found through recursion.

5.1.2. From TCN to Quant GAN

Quant GAN [12] is a generator TCN trained against a discriminator TCN. Detailed
descriptions of the TCN, the Quant GAN model, and its training algorithm are provided in
Appendices A.1–A.3.
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5.1.3. RSQGAN

RSQGAN is a conditional Quant GAN where conditional class labels correspond
to ‘regimes’ of contiguous, non-overlapping time periods. Prior to training RSQGAN,
regimes with defined structural breakpoints need to be identified and onehot encoded
in preprocessing.

An approach to discovering the time indices {τj}J
j=1 to partition the input data is

greedy Gaussian segmentation (GGS) [20]. This approach was chosen for preprocessing
because it has a low time complexity and scales well with increasing dimensions NX and T.

Let X ∈ RNX×T , NX , T ∈ N be NX-variate daily log-return time series data. Then, let
{Xt}T

t=0 be the t-indexed returns. Then, let {τj}J
j=0, J ∈ N be structural breakpoints that

partition the time series {Xt}T
t=0 into J ∈ N contiguous time periods of class label Cj such

that Cj refers to {Xt}
τj
t=τj−1

, τ0 = 0, τJ = T.
The J regimes can be used for cGAN training.

5.1.4. RSQGAN Model

RSQGAN is a cGAN learned by training a conditional generator TCN against a
conditional discriminator TCN.

Let J ∈ N be the number of conditional class regimes for generation, oj ∈ RJ be the
onehot encoding vector for classes j = 1, . . . , J, and let θEd and θEg be learnable parameters
for embedding weight tensors Ed, Eg.

Embedding weight tensors Ed, Eg map onehot encodings oj to class embedding vectors
ed,∈ RNed , eg ∈ RNeg as learnable class embeddings for the conditional discriminator and
generator TCNs:

Ed : RJ → RNEd ; Ed(oj; θEd) 7→ ed (9)

Eg : RJ → RNEg ; Eg(oj; θEg) 7→ eg (10)

cD and cG are conditional discriminator and generator networks defined as follows:

cD : RNX×TRFS(cD)×J → R; cD(X|Cj) = cD(X|oj, θEd , θd) 7→ [0, 1] (11)

cG : RNZ×T(RFS(cG)+RFS(cD)−1)×J → RNX×TRFS(cD)×J ; cG(Z|Cj) = cG(Z|oj, θEg , θg) 7→ X̃|Cj (12)

where NX, NZ are the dimensions of the input data and noise prior distributions; the
input data distribution is an NX-variate time series of RFS length TRFS(cD); the noise prior
distribution is an NZ-variate time series of RFS length T(RFS(cG)+RFS(cD)−1); the receptive
field sizes of the conditional discriminator and generator are TRFS(cD) and TRFS(cG).

The required time dimension of the noise prior used as an input into cG is
T(RFS(cG)+RFS(cD)−1) so that the output of synthetic data X̃|Cj is of time dimensionality
TRFS(cD) for discriminator evaluation.

The aim is to determine conditional generator θg and class embedding θEg parameters
such that Pg|Cj = Pr|Cj, ∀j = 1, . . . , J, i.e., X̃|Cj ∼ Pg|Cj, X|Cj ∼ Pr|Cj, and that

cG
(

Z|Cj; pZ(z), θEg , θg

)
= pX|Cj

(x, oj) = Pr|Cj (13)

Parameters for θg, θEg can be learned through an alternating optimisation of generator
and discriminator loss functions:

min
θg ,θEg

EjE
[
log
(

1− Dθ̂d ,θ̂Ed

(
Gθg ,θEg

(Z|Cj)
))]

(14)

max
θd ,θEd

EjE
[
log Dθd ,θEd

(
X|Cj

)]
+E

[
log
(

1− Dθd ,θEd

(
Gθ̂g ,θ̂Eg

(Z|Cj)

))]
(15)
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This is equivalent to optimising the conditional vanilla GAN adversarial loss analogous
to an unconditional vanilla GAN [6]:

min
θg ,θEg

max
θd ,θEd

EjE
[
log Dθd ,θEd

(
X|Cj

)]
+EjE

[
log
(

1− Dθd ,θEd

(
Gθg ,θEg

(Z|Cj)
))]

(16)

Expectations are estimated by sampling a minibatch of size M ∈ N for all classes
j ∈ j = 1, . . . , J.

5.1.5. RSQGAN Training Procedure

The RSQGAN training procedure (Algorithm 1) extends the QGAN training procedure
(see Appendix A.3) to the conditional case, as shown in Figure 7 below. This only involves
minibatch sampling over all regime classes J and updating the class embedding parameters
θEg , θEd .

The base RSQGAN implementation applies the class-conditional encoding oj for class
Cj into the conditional TCN by a learnable embedding representation ej as an input into
the second temporal block. This is a simplification to the ‘z-skip layer’ technique by
Brock et al. [21], which suggested a joint noise and class encoding input at each hidden
layer of the network. The effect of simplification is to allow for arbitrary size. Testing the
efficacy of ‘z-skip layers’ at different time resolutions is expected to further improve the
RSQGAN performance and is an area of future work.

Finally, during training experiments, cosine annealing of the learning rate [66] with a
periodicity of eight epochs was implemented using the learning rate scheduler in pytorch.

Figure 7. The training procedure for RSQGAN. Class regimes Cj, j ∈ J are input as onehot encoded
vectors oj. Embeddings θEg , θEd and network parameters θg, θd are learned through training. The
RSQGAN implementation concatenates the embedded representations ed, eg with inputs in the first
hidden layer and a fully connected network before forward propagation. This is a similar approach
to Brock et al. [21] in the BigGAN architecture to allow for the generation of synthetic data of
arbitrary size in the image domain. Adversarial training between cD(X; θd, θEd ) and cG(Z; θg, θEg )

continues until maximum epochs or stops early if synthetic data X̃|Cj meet required synthetic
standards in training for all classes j ∈ J, e.g., when minibatch average test error metrics fall below
certain thresholds.
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Algorithm 1: RSQGAN training

Inputs: Real data X ∈ RNX×T , J conditional class regimes {Cj}J
j=1, onehot

encodings {oj}, regimes {XCj}J
j=1, XCj ∈ RNX×(τj−τj−1+1)

minibatch size M ∈ N, max epochs E ∈ N
TCN hyperparameters: # of temporal blocks L, inner blocks per temporal

block B, kernel size K, dilation factor D, skip layer dim Nskip, temporal block dims
L = {N1, . . . , NL}, inner block dims B = {Nli}

B
i=1, ∀l = {1, . . . , L}

Topology: Conditional Discriminator TCN:
cD(X|Cj ∈ RNX×TRFS(D)×J ; θd, θEd ,L,B, Nskip, K, D, φ) 7→ [0, 1]
Conditional Generator TCN:

cG(Z|Cj ∈ RNZ×(TRFS(D)+TRFS(G)−1)×J ; θg, θEg ,L,B, Nskip, K, D, φ)) 7→ RNX×TRFS(D)

cD learning rate αd, cG learning rate αg
Outputs: Optimal TCN parameters: θ∗g , θ∗d

Class embedding parameters: θEg , θEd

Conditional Synthetic Data: {X̃|Cj}J
j=1, X̃|Cj ∈ RNX×(τj−τj−1+1)

1 init params θg, θd, θEg , θEd given topology L, B, K, D, Nskip,L,B
2 for e = 1 to E: do
3 {Xi|Cj}M

i=1, ∀j ∈ {1, .., J} /* sample real minibatches M, ∀j */

4 {Zi}M
i=1 /* draw minibatch of noise prior */

5 Simulate {X̃i|Cj}M
i=1, ∀j ∈ {1, . . . , J}; X̃i|Cj = cG(Z, oj; θ̂g, θ̂Eg)

// stop if properties of X̃ or cG, cD loss conditions met

6 if stopping condition(s) met: then
7 break

8 else
// Train generator: Estimate G minibatch gradient

9 ∆θg ← ∇θg
1
J ∑J

j=1

[
1
M ∑M

i=1 log
(

1− cDθ̂d ,θ̂Ed

(
Gθg ,θEg

(Zi|Cj)
))]

∆θEg
← ∇θEg

1
J ∑J

j=1

[
1
M ∑M

i=1 log
(

1− cDθ̂d ,θ̂Ed

(
Gθg ,θEg

(Zi|Cj)
))]

// Descend generator and embedding tensor gradient

10 θg ← θg − αg · ∆θg , θEg ← θEg − αg · ∆θEg

// Train discriminator: Estimate D minibatch gradient

11 ∆θd ← ∇θd
1
J ∑J

j=1

[
1
M ∑M

i=1 log Dθd ,θEd

(
Xi|Cj

)
+ log

(
1− Dθd ,θEd

(X̃i|Cj)
)]

12 ∆θEd
← ∇θEd

1
J ∑J

j=1

[
1
M ∑M

i=1 log Dθd ,θEd

(
Xi|Cj

)
+ log

(
1− Dθd ,θEd

(X̃i|Cj)
)]

// Ascend discriminator and embedding tensor gradient

13 θd ← θd + αd · ∆θd , θEd ← θEd + αd · ∆θEd

// Generate synthetic paths

14 X̃|Cj = cGθ∗g ,θ∗Eg
(Z, oj), ∀j ∈ {j = 1, . . . , J}

15 return θ∗g , θ∗Eg
, θ∗d , θ∗Ed

, {X̃|Cj}J
j=1

5.2. Data

Data were collected using a Bloomberg Professional service and data license. Special
permission was granted to store data locally for the purposes of this research paper.

At the latest time of data retrieval on 1 July 2020, the maximum daily time series
history available for relevant Australian listed stocks was between 4 January 2000 and
30 June 2020 (5346 trading days). Price data were requested, preprocessed, and retrieved
using BQL (Bloomberg Query Language) via MS Excel API.

Relevant Australian listed stocks were any stocks that ever attained membership in the
top 50% of the market capitalisation of the MSCI Australia market capitalisation weighted
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index. This represented 19 constituents. There were five stocks that were not continuously
listed over this period. These five delisted companies {BXB, FOX, FOXLV, SCG, WFD} were
not included. This resulted in a sample universe of 14 Australian stocks {AMP, ANZ, BHP,
CBA, CSL, MQG, NAB, QBE, RIO, TLS, WBC, WES, WOW, WPL}.

Stock prices were adjusted for corporate actions (splits and dividends). Stock prices
were as at local market close. Where daily data were missing due to public holidays or
trading halts, the last available daily closing price was used. All daily stock price time
series were then converted to daily log-returns in preprocessing.

5.3. Experimental Design

To select stocks and time periods for designing experimental studies of the RSQGAN
versus Quant GAN (QGAN) performance, sub baskets of stocks and time periods were
chosen to highlight similarities and differences across the subgroup performance.

To select stocks for training and validation, cross-sectional hierarchical clustering was
used to identify stocks from distinct clusters (high intercluster distance) but with near
neighbours (close intracluster distance) using the scipy library. Clusters were determined
using the complete linkage function under a correlation distance measure.

As expected, the cross-sectional hierarchical clustering of stocks over long time periods
clustered into four easily identifiable subgroups: (1) Financials {CBA, WBC, ANZ, NAB,
MQG, AMP}, (2) Resources {BHP, RIO, WPL}, (3) Acylicals {WOW, WES, TLS, CSL}, and
(4) Globally exposed {QBE}—more similar to Financials and Commodities but less similar
to Acyclicals.

Within three clusters with more than one member, the most closely related stocks were
{WOW, WES}, {BHP, RIO} and {WBC, ANZ}. The dendrogram in Figure 8 below shows that
the training set consists of stocks across each of these clusters: {WOW, BHP, WBC}. The
validation set consists of their closest intra-cluster neighbours: {WES, RIO, ANZ}.

Figure 8. Cross-sectional hierarchical stock clusters by log-return correlation of selected Australian
Equity stocks in the largest 50% of market cap and complete histories between 4 January 2000 and
30 June 2020. Training set: WOW, BHP, WBC. Corresponding validation set: WES, RIO, ANZ.

To identify time periods that could maximise contrast in generated data between
normal and crisis environments, the full-time period was optimally segmented using the
GGS algorithm [20].

The GGS algorithm found structural breakpoints that maximise the likelihood that
the multivariate daily long returns data across all 14 Australian stocks can be explained
by different i.i.d multivariate Gaussian distributions marked by these breakpoints. Key
hyperparameters such as the optimal number of breakpoints to use and a regularisation
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hyperparameter λ were found by grid search in 10-fold cross-validation. The open-source
Python library ggs [20] was adapted for use for this project.

When GGS was applied ‘globally’ over the full-time period, this resulted in nine
distinct regimes. The left chart in Figure 9 shows regime separation by vertical blue
lines. The right chart shows the hierarchical clustering of regime similarity using pairwise
Wasserstein-2 distances.

As expected, crisis regimes were discovered, such as the ‘GFC crisis regime’ (between
8 November 2007 and 26 August 2009) and the ‘COVID-19 crisis regime’ (from 28 February
2020 to 30 June 2020). These crisis regimes were more similar to each other but most
dissimilar to all other regimes. Pre-2003 regimes (5 January 2000–4 September 2003) were
notably dissimilar to everything that has been seen since. Five distinct regimes {2, 4, 5, 6, 7}
were remarkably similar to each other in the post-2003 pre-COVID era but dissimilar to
other regimes.

A ‘study period’ was chosen from the beginning of regime 2 (4 September 2003) until
the end of regime 7 (28 February 2020). There was an insufficient length of training data
in regime 8 (1 March 2020–30 June 2020) to train a sufficiently high-capacity RSQGAN for
that regime.

Figure 9. Left: GGS is used to segment multivariate daily log-returns optimally into 9 regimes. Right:
Wasserstein-2 distance is used to determine a hierarchy of similarity between disjoint contiguous
market regimes. Regimes 3, 8 are identified as ‘crisis’ regimes. ‘Non-crisis’ regimes 2, 4, 5, 6, 7 are
remarkably similar to each other but dissimilar to pre-2003 and crisis regimes.

Figure 10 below shows that long-term average correlation behaviour does not hold
specifically for the given regimes. This suggests that not conditionally accounting for
distinct regime modes may degrade the performance of unconditional models.

Figure 10. Left: Long-term log-return correlation distances. Right: Correlation heatmap for each of
the 9 regimes. GFC regime—2nd row, 1st column; COVID-19 regime—3rd row, 3rd column.
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Multivariate daily log-returns for the training set {WOW, BHP, WBC} in the study
period were then ‘locally’ segmented by forcing two breakpoints (three regimes) using
the GGS algorithm again. This is shown in Figure 11 below. Forcing two breakpoints to
be discovered led to dates being recalibrated for the three distinct regimes: (1) a ‘normal’
pre-GFC regime (4 September 2003—9 January 2008); (2) a ‘crisis’ GFC regime (9 January
2008—9 June 2009); and (3) a ‘normal’ post-GFC, pre-COVID regime (9 June 2009–28
February 2020).

Figure 11. GGS is applied again locally to segment multivariate daily log-returns for only the study
stocks WOW, BHP, and WBC. To form the study, the crisis regime was separated from normal regimes
by forcing two breakpoints. Blue lines mark dates where structural breakpoints were optimally set.
Left: historical stock prices for study stocks. Right: daily log-return scatter plots for study stocks.

The separate validation stock set {WES, RIO, ANZ} was not locally segmented using
the GGS algorithm [20] as breakpoint dates found through GGS may not be identical to
the study set. For validation stocks, the same breakpoints discovered through GGS on the
training set were enforced, as the timing for regimes should be consistent across the market.
The local application of GGS to discover breakpoints did not include validation stocks, so
that information leakage from the behaviour of validation stocks would not influence the
position of training set breakpoints.

5.4. Evaluation by Stylised Facts

For this report, the performance of the proposed conditional RSQGAN is compared to
the unconditional QGAN performance, keeping the topology and training hyperparame-
ters constant.

Denote ri,t as the log-return for asset i over time period (t − 1, t) given by
ri,t := log Si,t − log Si,t−1, where Si,t is the price of asset i = {1, . . . , N} at time t = {0, . . . , T}.

Table 1 summarises common univariate stylised facts (SFs) used and cited
by Takahashi et al. [11], Wiese et al. [12]. The original source papers for these SFs are
in the right column. Loss metrics used to evaluate the RSQGAN and QGAN performance
are based on the mean absolute difference of synthetic data versus the real data for various
SF metrics.

A summary of properties of SFs 1–6 was provided by Takahashi et al. [11].

1. Linear unpredictability [43] refers to the rapid decay of return autocorrelations even
over small time lags, which reflects some evidence of market efficiency. This is captured
by examining the autocorrelation function (ACF) of returns up to some maximum
time lag.

2. Heavy-tailed return distribution [43,53] refers to the phenomenon where the return
distribution density fits a power, rather than exponential, law function. There is a
tendency for very large positive returns for some stocks, which manifest as excess
return kurtosis relative to a Gaussian distribution.

3. Volatility clustering [42] refers to the phenomenon where periods of high volatility
(temporal standard deviation of returns) tend to be autocorrelated with periods of
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high volatility. This can be observed by fitting the ACF of absolute log-returns to a
power-law function with low decay parameter β.

4. Leverage effect [54,55] refers to the observation that past price returns are negatively
correlated with future volatility. It could be observed that the numerator of the lead-lag
correlation expression L(k), given by E

[
rt|rt+k|2 − rt|rt|2

]
, is negative if, for rt < 0,

|rt+k|2− |rt|2 > 0, i.e., negative returns predict higher future volatility (and, vice-versa,
that positive returns predict lower future volatility).

5. Coarse–fine volatility correlation [56–58] is a measure of the correlation of the volatil-
ity structure observed over a historical period τ when looking at two different time
resolutions. The lower-resolution volatility, coarse volatility, given by |∑τ

i=1 rt−i|, mea-
sures the absolute historical returns between time (t− τ, t). The fine volatility, mea-
sured by ∑τ

i=1 |rt−i|, is a measure of the absolute daily return variations between time
(t− τ, t). The coarse–fine volatility with lag k, ρτ

c f (k) = Corr(|∑τ
i=1 rt+k−i|, ∑τ

i=1 |rt−i|),
measures the time dependency between fine and k-lagged coarse volatility. The lead
lag correlation given by ∆ρτ

c f (k) = ρτ
c f (k)− ρτ

c f (−k) would indicate if a higher histori-
cal lead-lag correlation is predictive of a lower lead-lag correlation in the future—a
kind of regime-switching behaviour as measured by coarse and fine volatility at total
lag 2k.

6. Gain/loss asymmetry [59] is the phenomenon where positive total returns take a
longer time to accrue than negative absolute returns. In other words, the speed at
which return drawdowns occur tends to be faster than the speed at which return
accumulation occurs. This is measured by observing the empirical distribution of wait
time random variable Tt

wait(θ) for upper and lower return threshold (barriers) ±θ to
be struck.

Table 1. Description of stylised facts.

Stylised Fact (SF) Evaluation Metric

1. Linear unpredictability Corr(rt, rt+k) =
E[(rt−µr)(rt+k−µr)]

σ̂2
r

Corr(rt, rt+k) ≈ 0, k ≥ 1
2. Heavy-tailed distribution fR(r) ∝ r−α

fR(r) is the p.d.f of R, α ∈ [3, 5]

3. Volatility clustering Corr(|rt|, |rt+k|) ∝ k−β

up to large k, small β

4. Leverage effect L(k) =
E[rt |rt+k |2−rt |rt |2]

E[|r2
t |]

2

L(k) < 0 for k ∈ [1, 10]

5. Coarse–fine vol correlation
∆ρτ

c f (k) = ρτ
c f (k)− ρτ

c f (−k)
ρτ

c f (k) = Corr(|∑τ
i=1 rt+k−i|, ∑τ

i=1 |rt−i|)
for some k > 0 ∆ρτ

c f (k) < 0

6. Gain/loss asymmetry Tt
wait(θ) =

{
inft′ rt+t′ ≥ θ, θ > 0
inft′ rt+t′ ≤ θ, θ < 0

5.5. Hardware and Software

Only limited local resources were required to carry out this research due to the rela-
tively low dimensionality of FTS data compared to other data domains (e.g., text, images,
video). Further, the use of dilated kernels in QGAN and RSQGAN TCN architectures is
efficient in terms of the number of parameters needed to cover a large effective receptive
field size [63], enabling training to take place on a local GPU within a reasonable length
of time.

The local hardware resources used were: i7-8750H @ 2.20 GHz, 16 Gb RAM, NVIDIA
GTX 1060 GPU.

The key packages used were Python 3.7.7, Pytorch 1.4.0, Plotly 4.9.0,
ggs [20], and stylefact [11].



Appl. Sci. 2023, 13, 10639 19 of 37

6. Results

The performance was compared between a single RSQGAN model and multiple
QGANs each trained on data from a single regime. This is a stringent benchmark test
for RSQGAN as it competes against multiple QGAN models. The topology and training
hyperparameters were varied but held constant between the two models, so the effect
of regime conditional embedding and z-clipping hyperparameters could be observed
in isolation.

The results suggest that RSQGAN could generate crisis regime synthetic data better
than a QGAN trained only on crisis regime data. RSQGAN appears to benefit from both
categorical class encoding and parameter sharing across a single network to benefit the
minority ‘crisis’ regime (at the expense of a poorer performance in the majority ‘non-
crisis’ regime).

6.1. Evaluation Metrics

The open-source stylefact library implemented by Takahashi et al. [11] was used
and adapted to compare and evaluate the performance of RSQGAN versus QGAN.

Definitions for SF test metrics used to evaluate and compare the QGAN and RSQGAN
performance are shown in Table 2 below.

The model performance is measured for each SF loss metric. An SF loss metric is the
mean absolute deviation between the SF metric for real and synthetic data, which are then
mean averaged against overall stocks in the training or validation set. SF loss metrics can
be used to compare the model performance for each regime but can also be averaged over
all regimes to evaluate the general performance. The results are shown for training and
validation stock sets.

Table 2. Stylised fact (SF) test losses.

SF Test Losses Interpretation and Sources Expression

acf
ST unpredictability
Chakraborti et al. [43]

∑k |γ̂R(k)− 1
M ∑M

i=1 γ̂Gi (k)|
γ(k) = ρ(rt, rt+k), k ∈ N

pdf
Return density
Chakraborti et al. [43]
Liu et al. [53]

∫
‖ f̂R(r)− 1

M ∑M
i=1 f̂Gi (r)‖dr

vc_acf*
Volatility clustering
Cont [42]

∑k |ν̂R(k)− 1
M ∑M

i=1 ν̂Gi (k)|
ν(k) = ρ(|rt|, |rt+k|), k ∈ N

vc_pdf
Abs. return density
Cont [42]

∫
‖ f̂R(r)− 1

M ∑M
i=1 f̂Gi (r)‖dr

leveff*
Loss future vol lag
Bouchaud et al. [54]
Qiu et al. [55]

∑k |L̂R(k)− 1
M ∑M

i=1 L̂Gi (k)|
L(k) = E

[
rt|rt+k|2 − rt|rt|2

]
/E
[
|r2

t |
]2

cfvol*

Coarse–fine vol lag
Müller et al. [56]
Rydberg [57]
Gavrishchaka and Ganguli [58]

∑k |ρ̂τ
R(k))−

1
M ∑M

i=1 ρ̂τ
Gi
(k)|

ρτ(k) = ρ(|∑τ
i=1 rt+k−i|, ∑τ

i=1 |rt−i|)

cfvol_diff

Coarse–fine vol skew
Müller et al. [56]
Rydberg [57]
Gavrishchaka and Ganguli [58]

∑k |∆̂τ
R(k))−

1
M ∑M

i=1 ∆̂τ
Gi
(k)|

∆τ(k) = ρτ(k)− ρτ(−k)

gain_cdf_θ
Gain stoptime CDF
Jensen et al. [59]

∑t |F̂Tgain
R

(t)− 1
M ∑M

i=1 F̂Tgain
Gi

(t)|

Tt
gain(t; θ) = inft′ rt+t′ ≥ θ, θ > 0

loss_cdf_θ*
Loss stoptime CDF
Jensen et al. [59]

∑t |F̂Tloss
R

(t)− 1
M ∑M

i=1 F̂Tloss
Gi

(t)|
Tt

loss(t; θ) = inft′ rt+t′ ≤ θ, θ < 0

For crisis risk management applications, the focus should be placed on four SF test
metrics marked with asterisks in Table 2: {vc_acf, leveff, cfvol, loss_cdf_θ}. This is because
each of these ‘crisis-sensitive’ SF metrics is some measure of time or path-dependent (rather
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than distributional) behaviour and might be actionable in a real-world crisis scenario. The
first three represent the ACF of returns and/or volatility given observations about recent
returns and/or volatility. The fourth, loss_cdf_θ, is the cumulative distribution function
of stoptimes needed to reach a cumulative loss of −θ for some θ > 0. Knowledge of
this distribution could help risk managers determine a time-duration-sensitive portfolio
management strategy.

6.2. Key Results

The results indicate that RSQGAN learned a single joint representation of FTS be-
haviour over multiple regimes that is consistent with the performance of multiple QGAN
representations each trained on data only from a single regime. RSQGAN outperformed
QGAN for the minority ‘crisis’ regime class. Though RSQGAN SF test metrics in crisis
environments show some improvement compared to QGAN trained only on ‘crisis’ data,
it is not desirable to seek SF scores as close to zero as possible, which would indicate
mode collapse.

Tables 3 and 4 show the performance of RSQGAN versus QGAN across the range
of SF test losses averaged over training stocks {WOW, BHP, WBC} and validation stocks
{WES, RIO, ANZ}, respectively. In the first column, the SF test loss is bolded only if
RSQGAN outperformed QGAN (lower is better). The second column shows in bold the
outperforming model on that SF test loss. The third column shows the SF test loss averaged
over all regimes for information purposes only. SF test losses are bolded for the crisis
regime as the main class of interest.

The key results demonstrated shown in this section suggest a choice of topology and
training hyperparameters that may generalise well out of sample. Some other topological
and training hyperparameter choices experimented on resulted in an extremely strong
performance on the training stock set but relatively weaker results on the validation
stock set.

Table 3. Single RSQGAN vs. multiple QGANs trained on single regime data. Training set. Hidden
layer topology: 6 hidden layers and skip layers of 50 nodes each. Cosine annealing. zclip = 2.5 (train),
zclip = 2.3 (generation).

All Regimes Crisis Regime

acf rsqgan 2.135 2.757
qgan 2.030 3.197

pdf rsqgan 0.641 0.770
qgan 0.588 0.671

vc_acf* rsqgan 2.351 3.213
qgan 2.566 3.111

vc_pdf rsqgan 0.396 0.479
qgan 0.347 0.502

leveff* rsqgan 1924.233 1463.868
qgan 1607.904 1835.097

cfvol* rsqgan 4.749 6.202
qgan 5.199 6.327

cfvol_diff rsqgan 2.430 3.886
qgan 2.386 3.840

gain_cdf_12_5 rsqgan 21.826 19.622
qgan 23.052 19.119

loss_cdf_12_5* rsqgan 24.968 20.450
qgan 24.259 21.305



Appl. Sci. 2023, 13, 10639 21 of 37

However, some caution should be exercised when interpreting these results:

1. Minimising crisis regime SF test losses toward zero is not desired.
This outcome may be indicative of mode collapse. GANs are susceptible to mode
collapse for reasons described in Section 2. High intra-class entropy (variability) is
desirable and is a measure of GAN quality. The purpose of RSQGAN in risk manage-
ment applications is to provide a rich, non-degenerate synthetic density distribution.
Hence, hyperparameter choices should focus on the relative improvement over QGAN
without aiming to drive crisis regime SF test losses to zero. An equivalent metric for
Fréchet joint distance [40] in the image domain that balances fidelity versus variety
does not yet exist for the FTS domain. The investigation will be left for future work.

2. GAN training is notoriously unstable, leading to performance variations sensitive
to the number of training epochs.
SF test losses can be unstable due to the instability of learned generator representa-
tions during training. Potential approaches to dealing with this were discussed in
Section 3.1. Hence, the results shown in these tables do not include RSQGAN im-
provements that could be captured through the use of improved GAN objective loss
functions or research into the calibration of early stopping criteria. This has been left
for future work.

Table 4. Single RSQGAN vs. multiple QGANs trained on single regime data. Validation set. Hidden
layer topology: 6 hidden layers and skip layers of 50 nodes each. Cosine annealing. zclip = 2.5 (train),
zclip = 2.3 (generation).

All Regimes Crisis Regime

acf rsqgan 1.824 2.619
qgan 1.779 2.723

pdf rsqgan 0.826 0.953
qgan 0.712 0.838

vc_acf* rsqgan 2.548 3.619
qgan 2.794 3.685

vc_pdf rsqgan 0.393 0.582
qgan 0.375 0.503

leveff* rsqgan 2091.035 2718.220
qgan 1726.681 2139.719

cfvol* rsqgan 4.743 6.181
qgan 5.086 6.305

cfvol_diff rsqgan 2.310 3.743
qgan 2.311 3.735

gain_cdf_12_5 rsqgan 24.841 13.825
qgan 24.338 12.592

loss_cdf_12_5* rsqgan 31.333 15.159
qgan 32.698 16.431

Synthetic output samples for training and validation stocks are shown in
Figures 12 and 13 below.

Figures 14 and 15 show the quality of RSQGAN and QGAN fit to ‘crisis-sensitive’ SF
test metrics. Black, orange, and blue traces correspond to real, RSQGAN synthetic, and
QGAN synthetic SF test metrics, respectively.
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Figure 12. Real versus synthetic stock price paths generated by QGAN and RSQGAN by stock and
regime. Subplot rows: stocks WOW, BHP, and WBC, respectively. Subplot columns: regimes 0, 1, and
2, respectively. Regime ‘1’ is the crisis regime. Purple paths: 128 synthetic QGAN paths trained only
on single-regime class data. Orange paths: 128 synthetic RSQGAN paths generated for each regime
and a given stock from a single conditional GAN model. Black line: real stock price history.



Appl. Sci. 2023, 13, 10639 23 of 37

Figure 13. Real versus synthetic stock price paths generated by QGAN and RSQGAN by stock and
regime. Subplot rows: stocks WES, RIO, and ANZ, respectively. Subplot columns: regimes 0, 1, and
2, respectively. Regime ‘1’ is the crisis regime. Purple paths: 128 synthetic QGAN paths trained only
on single-regime class data. Orange paths: 128 synthetic RSQGAN paths generated for each regime
and a given stock from a single conditional GAN model. Black line: real stock price history.
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Figure 14. SF training losses by QGAN and RSQGAN by stock in crisis regime training over
256 epochs. In-sample stocks. Subplot order: WOW, BHP, and WBC. Top left panel: Volatility clus-
tering ACF. Top right panel: Leverage effect. Bottom left: Coarse–fine volatility. Blue dots/traces:
QGAN SF test metrics. Orange dots/traces: RSQGAN SF test metrics. Black dots/traces: Real
data. Bottom right: Cumulative loss stoptime for θ = 12.5. Darkbrown trace: Real stoptime CDF.
Gray traces: QGAN. Red traces: RSQGAN. Note that RSQGAN is simultaneously training on two
other regimes.

Figure 15. SF training losses by QGAN and RSQGAN by stock in crisis regime training over
256 epochs. Validation stocks. Subplot order: WES, RIO, and ANZ. Top left panel: Volatility clustering
ACF. Top right panel: Leverage effect. Bottom left: Coarse–fine volatility. Blue dots/traces: QGAN
SF test metrics. Orange dots/traces: RSQGAN SF test metrics. Black dots/traces: Real data. Bottom
right: Cumulative loss stoptime for θ = 12.5. Darkbrown trace: Real stoptime CDF. Gray traces:
QGAN. Red traces: RSQGAN. Note that RSQGAN is simultaneously training on two other regimes.

7. Discussion

Various experiments were designed to explore how variations in RSQGAN topology
and hyperparameter settings may impact its performance versus the QGAN benchmark.
The general observations that could be made from these experiments were:

1. The QGAN and RSQGAN performance can be highly variable between assets and
regimes for fixed topology and hyperparameter settings. The baseline settings used
were the same architectural and hyperparameter settings as the QGAN open-source
implementation by Wiese et al. [12]. Unsurprisingly, these settings resulted in a
mixed performance across all stocks and regimes. Baseline QGAN settings consisted
of six hidden layers and skip layer connections of 50 nodes each while using fixed
discriminator and generator learning rates of 0.0003 and 0.0001, respectively. On
the training stock set, RSQGAN outperformed QGAN on all four crisis-sensitive SF
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test metrics. However, on the validation stock set, RSQGAN only outperformed
on the loss CDF stoptime distribution. By construction, the conditional RSQGAN,
which is trained by learning from average class losses, performs similarly to the
average of multiple QGANs each trained on single-regime datasets. But due to regime
class imbalance, it outperforms the minority crisis regime class at the expense of
the performance on the ‘normal’ regime classes. However, as the performance was
observed to be highly variable across stock and regime conditions, this suggests that
additional model flexibility is required to deal with different regime lengths or stock-
specific behaviour. Choosing an appropriate receptive field size (and hence network
depth) is an important hyperparameter for simulating different regime lengths in
a single model. Selecting an RFS that is too short could lead to longer-term time
independence in simulations than is justifiable. Selecting an RFS that is too long
would reduce the effective training dataset while increasing learnable parameters.
The receptive field size should be consistent with the intended simulation horizon.
Despite selecting training and validation stock sets from the same long-term correlation
cluster, the mixed performance between stocks and regimes highlights that the same
RSQGAN topology was not sufficiently rich to learn stock-specific features that could
be applied from one stock (e.g., BHP) and to expect a similarly strong performance
in a highly correlated stock (e.g., RIO). Thus, a richer topology such as a joint drift
and volatility GAN, such as the stochastic volatility neural network (SVNN) model
by Wiese et al. [12], could be extended to the conditional case in the future. A single-
drift topology in isolation will underperform in simulating stocks that show strong
momentum characteristics (i.e., a negative leverage effect) where high returns predict
lower future volatility. An additional approach to potentially learning stock-specific
features and improving the RSQGAN performance is to jointly condition regime
categorical classes with continuous variables such as rolling volatility, correlation,
or recent historical time series such as that demonstrated by Koshiyama et al. [13],
de Meer Pardo [14], Fu et al. [15].

2. A higher-capacity topology appears to further improve the RSQGAN performance
relative to QGAN.
A larger-capacity RSQGAN/QGAN network with seven hidden layers and skip layer
connections of 60 nodes each led to RSQGAN outperforming in nine out of nine SF test
metrics for the training stock set. However, RSQGAN outperformed in only two out
of nine SF test metrics for the validation stock set. An examination of training losses
indicates that this was partially due to training instability, which could be rectified by
improved objective loss functions and early stopping criteria. This is left for future
investigation. A poor performance on the validation stock set could also be due to the
RSQGAN topology not being flexible enough to learn necessary stock-specific features
(see the point above).

3. The choice of early stopping criteria for training QGAN and RSQGAN is a signifi-
cant area for further improvement.
The original early stopping criteria in the open-source implementation by
Wiese et al. [12] was used. The early stopping of QGAN and RSQGAN training
occurred if the mean absolute deviation of the ACF of log-returns and the ACF of
absolute returns both fell below preset thresholds.
Figure 16 below shows that, during training for a given regime, none of the six
possible stopping criteria uniformly converge for any of the three training stocks. This
could be due to a number of causes—a topology without the sufficient capacity to
simultaneously learn all SF behaviours and/or unstable training. Further, it is not
necessarily desirable for convergence over all SF behaviours, as it may suggest mode
collapse. No experiments were conducted to explore if there were reliable heuristics
for setting early stopping conditions and understanding trade-offs between individual
SF test metrics. This remains an open problem and is left for future work.
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Figure 16. SF losses by QGAN and RSQGAN by stock for crisis regime training over 256 epochs.
Subplot rows: stocks WOW, BHP, and WBC, respectively. Subplot columns: SF training losses for
log-return pdf, kurtosis, skewness, ACF of log-returns, ACF of absolute log-returns, leverage effect.
Blue dots: QGAN SF training losses. Orange dots: RSQGAN SF training losses. Note that RSQGAN
is simultaneously training on two other regimes.

4. A modest z-clipping of noise prior to zclip = 2.5 in training and zclip = 2.3 in
generation appeared to improve the performance further.
Experiments with a ‘crude’ implementation of z-clipping and skip-z layers from the
BigGAN paper by Brock et al. [21] showed that modest z-clipping could produce
synthetic data with higher initial fidelity to real data.
The ‘crude’ RSQGAN implementation only applied skip-z layers to the first hidden
layer of the generator and discriminator networks rather than learnable embeddings at
all hidden layers. Further, it did not include the authors’ suggestion to implement an
orthogonal regularisation of the generator. Despite the crude implementation, modest
but mixed performance improvements were observed across SF test losses when a
modest z-clipping of zclip = 2.5 in training and zclip = 2.3 in generation were applied.
However, an experiment that used a more extreme clipping parameter zclip = 1.5 in
training and zclip = 1.25 in generation appeared to degrade the relative performance
of RSQGAN relative to QGAN. A full implementation of z-clipping and skip-z layers
and further experiments are left to future work.

5. RSQGAN produced synthetic data from crisis regimes with improved SF evalua-
tion measures.
It is reasonable to expect an RSQGAN outperformance for the minority crisis regime,
as the RSQGAN training procedure corrects for regime class imbalance and enables
shared parameter learning across all classes in a single model representation. This is a
useful property for crisis risk management applications where fewer historical crisis
data are observable.
Improving simulations for the expected decay of the ACF of absolute returns or
volatility could be useful for assessing the value of options instruments. By similar
arguments, an improved simulation of expected future volatility based on recent
returns or simulating multiperiod (coarse) or intraday (fine) volatility with a lag
given observed coarse or fine volatility could assist with risk decision making. Further
knowledge of the time distribution for different loss thresholds could assist with a trad-
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ing strategy. SF test metrics corresponding to these actionable concepts are volatility
clustering ACF, leverage effect, coarse–fine volatility lag, and loss stoptime CDF.

8. Future Work

Promising areas for future research to improve RSQGAN model and synthetic data
quality include: (1) a richer joint conditioning of regime classes and continuous variables
such as volatility or a short historical time series; (2) topological enhancements such as a
higher RSQGAN capacity, full implementation of skip-z and z-clipping [21], and joint drift
and volatility networks [12]; (3) training and stability improvements such as early stopping
experimentation, or using alternative loss functions such as WGAN [34], WGAN-GP [35],
or RaGAN [52]; and (4) investigating the relationship between satisfying multiple SFs as
indicators of synthetic quality and its potential correlation with a single measure of quality
analogous to the Fréchet joint distance [40] in the image domain.

9. Conclusions

For risk management applications, the task of modelling FTS behaviour and densities
in crisis regimes is of greater cost-sensitive importance than normal regimes. Though the
value at stake is considerably higher during crisis regimes, historical experiences of crisis
regimes are sparse.

RSQGAN is a new approach for generating regime-specific synthetic data by ex-
tending the unconditional Quant GAN [12]. RSQGAN is a conditional FTS GAN that
benefits from learning time-dependent features of minority ‘crisis’ regime classes through
class embedding and parameter sharing with majority ‘normal’ regime classes. Initial
experiments suggest that RSQGAN appears to perform well in learning crisis regime be-
havior, even when only using categorical class embedding by labels applied from GGS
preprocessing [20].

Though many measures of stylised facts are good for assessing the quality of an FTS
GAN, some have larger implications for decision making in a crisis environment because
path-dependent behaviour could be acted upon. Four particular evaluation SF test metrics
have been identified.

The further development of RSQGAN could provide additional input for making
more robust risk management decisions in a time of market crisis.
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Appendix A

Appendices A.1–A.3 provide essential details from the Quant GAN paper by Wiese et al. [12].
Appendix A.4 provides essential details from the greedy Gaussian segmentation paper
by Hallac et al. [20]. Readers are encouraged to review these additional papers for fur-
ther background.

Appendix A.1. Temporal Convolutional Networks

Temporal convolutional networks (TCNs) are deep convolutional networks that use
‘dilated’ kernels (i.e., kernels that skip nodes in input or hidden layer tensors) in their
convolution operations. A dilated kernel of dilation D and kernel size K inserts ‘gaps’ [63]
of size D− 1 between each of the K kernel nodes for convolution. See Figure A1 below.
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Figure A1. Dilated convolutional layers. Left: k = 2, s = 1, D = 1. Right: k = 2, s = 1, D = 2.

It is demonstrated below (see Equation (A10)) that kernel dilations increase effective
receptive field sizes, which allows TCNs to discover representations for longer-term time
dependencies using a relatively lower number of shared parameters.

Appendix A.1.1. Multilayer Perceptron

First, let f (N0, NL+1; θ) be a multilayer perceptron (MLP) that is a non-linear mapping
of RN0 → RNL+1 over L ∈ N hidden layers such that:

f (X; X ∈ RN0 , θ ∈ Θ) = aL+1 ◦ fL ◦ ... ◦ f1(X) (A1)

where ◦ are function compositions and the affine transformation al is given by

al : RNl−1 → RNl , al(Xl−1) = W(l)Xl−1 + b(l), ∀l ∈ L, Nl ∈ N (A2)

where each layer l is parameterised by θl =
(

W l , b(l)
)

and Xl−1 is the input to layer l.
Each hidden layer l is a non-linear mapping expressed as a composite activation and

affine operation:

fl : RNl−1 → RNl , fl = φ(al) (A3)

where φ : R→ R, φ(0) = 0 is a non-linear, Lipschitz continuous activation function applied
element-wise to al .

Thus, the learnable parameters of the MLP of L hidden layers are θ := (θ1, . . . , θL+1).

Appendix A.1.2. TCN Model Definition

Analogous to an MLP f (X ∈ RN0 ; L, θ), a TCN f (X ∈ RN0×T0 ; L, K, D, θ) consists of L
hidden layers referred to as temporal blocks, which are composites of element-wise activation
functions φ and dilated convolution operations as explained below. The input datum X is
an N0-variate tensor of time sequence length T0.

Each temporal block composite function ψl contains an element-wise activation func-
tion φ applied after a convolution operation. The basic temporal block contains an affine
operation that convolves some kernel W of size K and dilation factor D striding over the
input nodes Xl−1. This is said to be a dilated convolution of factor D. Kernel strides are
convolved along the discrete-time dimension t ∈ T, T ∈ N. Temporal blocks may also
contain stacks of inner blocks consisting of dilated convolution and activation operations
(see Figure A3 below).

The diagram below shows two examples of dilated convolutional operations. Both
are dilated kernels of kernel size K = 2 and convolved with stride s = 1. The left shows a
kernel of dilation D = 1 over an input time series of size T ∈ N reducing the layer output



Appl. Sci. 2023, 13, 10639 29 of 37

to size T− 1. The right shows a kernel of dilation D = 2, reducing the layer output to size
T − 2. Dilated convolution operations are autoregressive.

Let W(l)
∗D be a dilated kernel of size K and dilation factor D in some TCN layer l. Then,

the output of a dilated convolution operation ∗D [12] applied on X ∈ RNl−1 × Tl−1 across
input dimension index m = 1, . . . , Nl−1 yielded at time index t ≤ T is given by:

(
W(l)
∗DX

)
m,t

:=
K

∑
i=1

N(l−1)

∑
j=1

Wi,j,m · Xj,t−D(K−i) (A4)

Figure A2 below demonstrates the application of the dilated convolution operation of
kernel W∗D on input matrix X ∈ RNl−1×Tl−1 applied for K = 2, D = 2, and unit stride. This
produces an activation tensor A ∈ RNl×Tl where the time dimension Tl = Tl−1 − D(K− 1)
before element-wise activation function φ is applied.

Figure A2. A dilated convolutional layer applied to a matrix X of data dimension 1. A dilated
convolution operation is applied followed by an activation φ.

Indeed, time series index t ∈ N of the output from a dilated convolution operation
only incorporates the input from the receptive field of past time series indices (t− s), s ≥ 0,
s ≤ t, s ∈ N. This yields a receptive field size (RFS) of s + 1, inclusive of endpoints. Thus,
only past information is propagated through the TCN network to learn time-lagged feature
representations at different scale resolutions.

A temporal block may contain one or more ‘inner blocks’ of composite activation and
dilated convolution layers. Define a temporal block function for layer l, ψl with parameters
(Nl−1, Nl , Sl). It contains an arbitrary number of inner blocks i, i ∈ N and own parameters
(Nli−1

, Nli , Sli ) such that the temporal block is a mapping:

ψl : RNl−1×Tl−1 → RNl×Tl−1−Sl (A5)

and
I

∑
i=1

Sli = Sl (A6)

for some Sl ≥ 0. Parameters θl for the temporal block layer l are the kernel weight tensors
Wli and biases bli corresponding to all inner blocks i. After forward propagating an input
tensor of input dimension Nl−1 and time dimension Tl−1 through the temporal block, an
output dimension of Nl and output time dimension Tl = Tl−1 − Sl are yielded.
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Figure A3. An example of temporal block ψl with two inner blocks of dilated convolutional layers
with k = 2, D = 2. An example of topology implemented by Wiese et al. [12] that also includes a
batch normalisation [64] applied to the output of each activation layer.

A temporal convolution network f (X, θ) is a composite of L layers of temporal blocks
parameterised by θ := (θ1, . . . θL). Propagating an original input tensor X of time dimension
T0 through all temporal block layers l requires an output time dimension TL of an L-layered
TCN to be at least 1:

TL = T0 −
L

∑
l=1

Sl ; TL ≥ 1 (A7)

Finally, let f (X; N0, NL+1, K, D, θ) be a temporal convolution network, a non-linear
mapping through a network of temporal blocks ψl , l = {1, . . . , L}

f : RN0×T0 → RNL+1×TL , f (X, θ) = wL+1 ◦ ψL ◦ ... ◦ ψ1(X) (A8)

where wL+1 ∈ RNL×TL → RNL+1×TL+1 is a weight tensor used to apply a final 1 × 1 (i.e.,
K = 1, D = 1) convolution layer.

The receptive field size for the TCN is given by:

RFS( f (X; N0, NL+1, L, D, K)) = 1 + TL = 1 +
L

∑
l=1

Sl (A9)

In the special case where the kernel size for temporal block layer l, Kl is constant,
Kl = K, ∀l = 1, . . . , L, and the dilation factor D ≥ 2 at layer l is given by Dl = Dl , then the
TCN is said to be a vanilla TCN.

For a vanilla TCN with growing dilation factor Dl for temporal block l and constant B
inner blocks for each temporal block,

RFS( f (X; N0, NL+1, L, D, K)) = 1 + (K− 1) ·
(

B · (DL − 1)
D− 1

)
(A10)

Finally, the TCN network can include skip layers such as those used in the ResNet [47]
architecture to mitigate vanishing gradient problems in learning through deep neural
architectures. Figure A4 below explains the topology.
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Figure A4. An example of deep temporal convolutional network such as that implemented by
Wiese et al. [12]. The topology is L layers of temporal blocks, each with two inner blocks. Weight
normalisation [65] is applied to all dilated convolutional operations. Skip connections [47] mitigate
vanishing gradient problems for deep networks and enable gradient learning for each latent layer.

Let Nskip ∈ N be the number of neurons in a skip connection.
Define the joint mapping γl from the input of temporal block l to the output of

temporal block ψl and skip temporal block output ηl such that:

γl : RNl−1×Tl−1 → RNl×Tl ×RNskip×TL (A11)

γl(Xl−1) = (ψl(Xl−1), ηl(Xl−1)) = (Xl , Hl) (A12)

where Xl−1 are inputs to layer l, ψl is the temporal block for layer l such that Xl = ψl(Xl−1),
and Hl = ηl(Xl−1) is the skip connection for layer l accumulated to the final layer L
such that:

Y = f (X0; N0, NL+1, K, B, D, θ) =
L

∑
l=1

Hl =
L

∑
l=1

ηl(Xl−1) (A13)

Parameters for the skip layers θηl , l = {L, L− 1, . . . 1} are found through recursion.

Appendix A.2. Quant GAN

The QGAN model [12] uses a TCN for the discriminator and generator networks. This
section describes training for the unconditional QGAN model using notation and conventions
from the original paper where possible. The RSQGAN model in Sections 5.1.3 and 5.1.4 uses
the same notation for consistency.

Quant GAN Model

QGAN adversarially trains a generator TCN against a discriminator TCN:

D : RNX×TRFS(D) → R; D(X; θd) 7→ [0, 1] (A14)

G : RNZ×T(RFS(G)+RFS(D)−1) → RNX×TRFS(D) ; G(Z; θg) 7→ X̃ (A15)

where NX, NZ are the dimensions of the input data and noise prior distributions; the
input data distribution is an NX-variate time series of RFS length TRFS(D); the noise prior
distribution is an NZ-variate time series of RFS length T(RFS(G)+RFS(D)−1); the receptive
field sizes of the discriminator and generator are TRFS(D) and TRFS(G). The required time
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dimension of the noise prior used as the input into G is T(RFS(G)+RFS(D)−1), so that the
output of synthetic data X̃ is of time dimensionality TRFS(D) for discriminator evaluation.

The aim is to determine θg such that Pg = Pr, i.e., X̃ ∼ Pg, X ∼ Pr, and that

G
(
Z; pZ(z), θg

)
= pX(x) = Pr (A16)

Parameters for θg can be learned through an alternating optimisation of generator and
discriminator loss functions:

min
θg

E
[
log
(

1− Dθ̂d

(
Gθg(Z)

))]
(A17)

max
θd

E
[
log Dθd(X)

]
+E

[
log
(

1− Dθd

(
Gθ̂g

(Z)
))]

(A18)

This is equivalent to optimising the vanilla GAN adversarial loss as originally described
in Goodfellow et al. [6]:

min
θg

max
θd

E
[
log Dθd(X)

]
+E

[
log
(

1− Dθd

(
Gθ̂g

(Z)
))]

(A19)

Expectations are estimated by sampling a minibatch of size M ∈ N.

Appendix A.3. Quant GAN Training Procedure

The QGAN training pseudocode in Algorithm A1 below is based on open-source code
from Wiese et al. [12] retrieved on 8 August 2020 at https://www.techatbloomberg.com/
machine-learning-finance-workshop-2020/. Figure 6 shows the implemented topology.
Figure A5 and Algorithm A1 below demonstrate the QGAN training procedure.

Figure A5. The training procedure for QGAN as implemented by Wiese et al. [12]. Adversarial
training between D(X; θd) and G(Z; θg) continues until maximum epochs or stops early if synthetic
data X̃ meet synthetic standards in training, e.g., when minibatch average test error metrics fall below
certain thresholds.

It was noted that the open-source implementation in pytorch promotes training
convergence by using batch normalisation [64] to reduce the covariate shift in hidden
layers and spectral weight normalisation [65] to stabilise network training by rescaling
weight tensors by their spectral norms. The Adam optimisation algorithm [67] was used to
optimise the TCNs.

https://www.techatbloomberg.com/machine-learning-finance-workshop-2020/
https://www.techatbloomberg.com/machine-learning-finance-workshop-2020/
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Algorithm A1: Quant GAN training [12]

Inputs: Real data X ∈ RNX×T , minibatch size M ∈ N, max epochs E ∈ N
TCN hyperparameters: # of temporal blocks L, inner blocks per temporal

block B,
kernel size K, dilation factor D, skip layer dimensionality Nskip
temporal block dimensions L = {N1, . . . , NL},
inner block dimensions B = {Nli}

B
i=1∀l = {1, . . . , L}

Topology: Discriminator TCN:
D(X ∈ RNX×TRFS(D) ; θd,L,B, Nskip, K, D, φ) 7→ [0, 1]
Generator TCN:
G(Z ∈ RNZ×(TRFS(D)+TRFS(G)−1); θg,L,B, Nskip, K, D, φ)) 7→ RNX×TRFS(D)

D learning rate αd, G learning rate αg
Outputs: Optimal TCN parameters: θ∗g , θ∗d

Synthetic Data: X̃ ∈ RNX×T

1 init params θg, θd given topology L, B, K, D, Nskip,L,B
2 for e = 1 to E: do

// sample minibatch of real data

3 {Xi}M
i=1

// generate minibatch of fake data

4 Draw minibatch of noise prior {Zi}M
i=1

5 Simulate {X̃i}M
i=1, X̃i = G(Z; θ̂g) // current θg

// stopping condition(s): if properties of X̃ or G, D loss conditions met

6 if stopping condition(s) met: then
7 break

8 else
// Train generator: minθg E

[
log
(

1− Dθ̂d

(
Gθg (Z)

))]
// Estimate G minibatch gradient:

9 ∆θg ← ∇θg
1
M ∑M

i=1 log
(

1− Dθ̂d

(
Gθg(Zi)

))
// current θd

// Descend generator gradient

10 θg ← θg − αg · ∆θg

// Train discriminator: maxθd E
[
log Dθd (X)

]
+E

[
log
(
1− Dθd (X̃)

)]
// Estimate D minibatch gradient

11 ∆θd ← ∇θd
1
M ∑M

i=1 log Dθd(Xi) + log
(
1− Dθd(X̃i)

)
// Ascend discriminator gradient

12 θd ← θd + αd · ∆θd

// Generate synthetic paths

13 X̃ = Gθ∗g (Z)
14 return θ∗g , θ∗d , X̃

Appendix A.4. Greedy Gaussian Segmentation

Regime Classes—Greedy Gaussian Segmentation

GGS separates regimes by maximising the loglikelihood that cross-sectional samples Xt
indexed at time t are treated as independent samples and that samples from regimes before
and after a structural breakpoint τj are from different multivariate Gaussian distributions.
Estimated covariance parameters are estimated with regularisation. For derivations and
further details, please refer to the original paper by Hallac et al. [20].

The GGS algorithm aims to segment the NX-variate time series {Xt}T
t=0 into J optimal

segments marked by time-indexed breakpoints {τj}J
j=0, τ0 = 0, τJ = T. The key subroutine

for carrying this out is to insert a new breakpoint τ to optimally split an existing segment
Xτj−1 , Xτj into two segments.
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Algorithm A2: Split interval [20]

Inputs: Single regime {Xt}
τj
t=τj−1

, empirical regime mean and covariance µj, Σj,
regularisation parameter λ

Outputs: optimal breakpoint τ∗ in the interval
(
τj−1, τj

)
1 init µτ∗le f t

← 0, µτ∗right
← τj, Στ∗le f t

← λI, Στ∗right
← Σj + λI

2 for t = τj−1 + 1 to τj − 1: do
3 Update µtle f t , µtright , Σtle f t , Σtright

4 Calculate ξt = ξτj−1,t + ξt,τj

5 return τ∗ that maximises ξt

Algorithm A3: Greedy Gaussian Segmentation [20]

Inputs: Multivariate time series: {Xt}T
t=0, maximum number of breakpoints: Jmax

Outputs: optimal breakpoints τ1, . . . , τJ , τJ = T
1 init τ0 = 0, τ1 = T
2 for J = 1 to Jmax: do

// Add New Breakpoint:

// Check which regime Cj being split improves likelihood

3 for j = 1 to J: do
4

(
τ, ξ increase)← Split(τj−1, τj) // best new breakpoint τ∗ in regime j

5 Store τ∗ ← max τ corresponding to max ξ increase over loop

// there is at least J = 2 regimes but cannot improve likelihood

6 if max ξ increase < 0 and J ≥ 2 then
7 return τ1, . . . , τJ

// there is only 1 regime and cannot improve likelihood

8 else if max ξ increase < 0 and J = 1 then
9 return null breakpoint set

10 Insert new breakpoint τ∗ resulting in max ξ increase value
11 Relabel breakpoints 0 = τ0 < τ1 < . . . τJ−1 < τJ = T

// Adjust breakpoints:

12 while not stationary: do
13 for j = 1, . . . J − 1 do
14 (τ̂j, ξ̂ increase) = Split(τj−1, τj+1)

15 if τ̂j 6= τj then
// reassign breakpoint location for τj if moving optimal

16 τj ← τ̂j

17 return τ0, . . . , τJ

Let τ∗ ∈ N be the time index such that the expression:

ξ increase = ξ(τj−1, τ∗) + ξ(τ∗, τj)− ξ(τj−1, τj) (A20)

is maximised for τ∗ ∈
(
τj−1, τj

)
, where ξ(r, s) is a contributing term to the overall loglikeli-

hood for inserting J breakpoints in the time interval [0, T].
Hallac et al. [20] show that the expression for ξ(τj−1, τj) is given by:

ξ(τj−1, τj) = −
1
2

(τj − τj−1) log det

[
Sj +

λ

τj − τj−1
I
]
− λTr

[
Sj +

λ

τj − τj−1
I
]−1

 (A21)
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where λ is a regularisation hyperparameter, I is the identity matrix, and Sj is the empirical
covariance over the segment j marked by time indices

[
τj−1, τj

]
:

Sj =
1

τj − τj−1

τj−1

∑
t=τj−1

(Xt − µj)(Xt − µj)T (A22)

The GGS algorithm then returns, for any desired number of breakpoints
J, {J = 1, . . . , Jmax}, the optimal breakpoint locations {τj}J−1

j=1 that segment {Xt}T
t=1 into

J regimes.
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