
R E S E A R CH AR T I C L E

A three-dimensional asymmetric power HEAVY model

Stavroula Yfanti1 | Georgios Chortareas2 | Menelaos Karanasos3 |

Emmanouil Noikokyris4

1School of Business and Economics,
Loughborough University,
Loughborough, UK
2King's Business School, King's College
London, London, UK
3Department of Economics and Finance,
Brunel University London, Uxbridge, UK
4School of Economics and Finance, Queen
Mary University of London, London, UK

Correspondence
Stavroula Yfanti, School of Business and
Economics, Loughborough University,
Epinal Way, Loughborough LE11 3TU,
UK.
Email: stavyfan@gmail.com

Abstract

This article proposes the three-dimensional HEAVY system of daily, intra-

daily, and range-based volatility equations. We augment the bivariate model

with a third volatility metric, the Garman–Klass estimator, and enrich the

trivariate system with power transformations and asymmetries. Most impor-

tantly, we derive the theoretical properties of the multivariate asymmetric

power model and explore its finite-sample performance through a simulation

experiment on the size and power properties of the diagnostic tests employed.

Our empirical application shows that all three power transformed conditional

variances are found to be significantly affected by the powers of squared

returns, realized measure, and range-based volatility as well. We demonstrate

that the augmentation of the HEAVY framework with the range-based volatil-

ity estimator, leverage and power effects improves remarkably its forecasting

accuracy. Finally, our results reveal interesting insights for investments, mar-

ket risk measurement, and policymaking.
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1 | INTRODUCTION

Financial volatility lies at the core of empirical finance
research, with direct employment in investments, risk
management practices, and financial stability oversight.
Reliable modelling and accurate forecasting of the volatil-
ity pattern has been the main objective of financial appli-
cations for business operations, given that volatility is
considered as one of the fundamental input variables in
estimations and decision processes of any corporation on
derivatives pricing, portfolio immunization, investment

diversification, firm valuation, and funding choices.
Financial volatility is also closely inspected by
policymakers since it entails critical destabilizing threats
for the financial system.

We develop a three-dimensional HEAVY1 model by
augmenting the bivariate system of Shephard and
Sheppard (2010) with a third variable, namely, the range-
based Garman–Klass volatility. Another contribution is
the enrichment of the trivariate model with asymmetries
and power transformations through the APARCH struc-
ture of Ding, Granger, and Engle (1993). Motivated by
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the established merits of this framework, which consider-
ably improves Bollerslev's (1986) GARCH process by
adding leverage and power effects (see, for example,
Brooks, Faff, McKenzie, & Mitchell, 2000, Karanasos &
Kim, 2006), we similarly extend the trivariate system with
these two features to explore its superiority over the
benchmark specification. Most importantly, we derive
the theoretical time series properties (optimal predictors
and second moment structure) of the multivariate asym-
metric power system and explore its finite-sample perfor-
mance through a simulation experiment. We further
proceed with an empirical application of the proposed
model, to examine the various nested specifications in
depth by investigating their performance over five stock
indices. One of our key findings is that each of the three
powered conditional variances is significantly affected by
the first lags of all three power transformed variables,
that is, squared negative returns, realized variance, and
Garman–Klass volatility.

Following the burst of the 2008 crisis, when volatil-
ities rose sharply and persistently with crucial systemic
risk externalities, we witnessed a resurgence of regula-
tors' and academics' interest in meaningful volatility esti-
mates, while at the same time, practitioners remained
alert to improving the relevant volatility frameworks on a
day-to-day basis. Financial economics scholars focused
on volatility as a potent catalyst of systemic risk build-up,
which policymakers tried to limit. We demarcate this
study from the extant finance bibliography by extending
the benchmark HEAVY model with asymmetries, power
transformations, and Garman–Klass volatility providing a
well-defined framework that adequately fits the volatility
process. We further examine the theoretical properties of
the proposed model and demonstrate its forecasting supe-
riority over the benchmark specification using a rolling
window out-of-sample forecasting procedure. The three-
dimensional system of volatility equations, we establish,
is ready-to-use, not only on stock market returns but also
on further asset classes or financial instruments
(exchange rate, cryptocurrency, commodity, real estate,
and bond returns) and multiple financial economics
applications of business operations, such as bonds
investing, foreign exchange trading and commodities
hedging, core daily functions in the treasuries of most
financial and non-financial corporations.

Overall, our proposed volatility modelling framework
improves the HEAVY model, with important implica-
tions for market practitioners and policymakers on fore-
casting the trajectory of the financial returns' second
moment. Volatility modelling and forecasting are essen-
tial for asset allocation, pricing, and risk hedging strate-
gies. A reliable volatility forecast, exploiting in full the
high-frequency domain, is the input variable of

paramount importance for the processes of derivatives
pricing, effective cross-hedging, Value-at-Risk (VaR)
measurement, investment allocation, and portfolio opti-
mization with different asset classes and financial instru-
ments. Moreover, the robust volatility modelling
approach we introduce provides a useful tool not only for
market players but also for policymakers. Policymaking
includes continuous oversight duties and prudential reg-
ulation practices. In this vein, it is imperative for the
authorities to account for the volatility of financial mar-
kets across every aspect of the financial system's policy
responses, both post-crisis through stabilization policy
reactions and pre-crisis through proactive assessment of
financial risks. The asymmetric power HEAVY frame-
work we propose here has been shown to perform signifi-
cantly better than the benchmark specification both in
the short- and long-term forecasting horizons. Trading
and risk management processes mostly use 1- to 10-day
forecasts while policymakers are involved in longer-term
predictions of financial volatility. Hence, we illustrate our
model's forecasting superiority with a VaR example that
provides both risk management and policy implications.

The remainder of the article is structured as follows.
In Section 2, we detail the three-dimensional HEAVY for-
mulation and our extension, which allows for
asymmetries and power transformations. Section 3 intro-
duces the theoretical properties of the multivariate asym-
metric power HEAVY model and contains a simulation
experiment on the finite-sample properties of the diag-
nostic tests employed. Section 4 describes the data and
presents the results of the empirical application of the
asymmetric power specification. In Section 5, we
calculate multiple-step-ahead forecasts to measure the
out-of-sample performance of the proposed specifica-
tions. Finally, Section 6 concludes the analysis.

2 | THE HEAVY FRAMEWORK

There are several studies introducing non-parametric
estimators of realized volatility using high-frequency
market data. Andersen and Bollerslev (1998), Andersen,
Bollerslev, Diebold, and Labys (2001), and Barndorff-
Nielsen and Shephard (2002) were the first that
econometrically formalized the realized variance with
quadratic variation-like measures, while Barndorff-Niel-
sen, Hansen, Lunde, and Shephard (2008, 2009) focused
on the realized kernel estimation as a realized measure
which is more robust to noise.

A large body of empirical research focuses on model-
ling and forecasting the realized volatility. Various stud-
ies combine it with the conditional variance of returns.
Engle (2002b) proposed the GARCH-X process, where
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the former is included as an exogenous variable in the
equation of the latter. Corsi, Mittnik, Pigorsch, and
Pigorsch (2008) suggested the HAR-GARCH formulation
for modelling the volatility of realized volatility. Hansen,
Huang, and Shek (2012) introduced the Realized GARCH
model that corresponds more closely to the HEAVY
framework of Shephard and Sheppard (2010), which
jointly estimates conditional variances based on both
daily (squared returns) and intra-daily (it uses the real-
ized measure—kernel and variance—as a measure of ex-
post volatility) data, so that the system of equations
adopts to information arrival more rapidly than the clas-
sic daily GARCH process. One of its advantages is the
robustness to certain forms of structural breaks, espe-
cially during the crisis periods, since the mean reversion
and short-run momentum effects result in higher quality
performance in volatility level shifts and more reliable
forecasts. Borovkova and Mahakena (2015) employed a
HEAVY specification with a skewed-t error distribution,
while Huang, Liu, and Wang (2016) incorporated the
HAR structure of the realized measure in the GARCH
conditional variance specification in order to capture the
long memory of the volatility dynamics.

The benchmark HEAVY model of Shephard and
Sheppard (2010) can be extended in many directions. We
allow for power transformations and leverage effects in the
conditional variance process to improve volatility modelling
and forecasting further (see also Data S1 on the enrichment
of the trivariate asymmetric power specification with long
memory features and structural breaks).

2.1 | Benchmark model

The HEAVY model uses two variables: the close-to-close
stock returns (rt) and the realized measure of variation
based on high-frequency data, RMt. We first form the
signed square rooted (SSR) realized measure as follows:
~RMt = sign rtð Þ ffiffiffiffiffiffiffiffiffi

RMt
p

, where sign(rt) = 1, if rt⩾ 0 and sign
(rt) = − 1, if rt<0.

In this article, we test the inclusion of an alternative
measure of volatility to the HEAVY framework, that is
we employ the classic range-based estimator of Garman
and Klass (1980), hereafter GK. We further form the SSR
GK volatility ( ~GKt = sign rtð Þ ffiffiffiffiffiffiffiffiffi

GKt
p

).
We assume that the returns, the SSR realized measure

and GK volatility are characterized by the following relations:

rt = ertσrt, ~RMt = eRtσRt, ~GKt = egtσgt, ð1Þ

where the stochastic term eit is independent and identi-
cally distributed (i.i.d), i = r, R, g; σit is positive with

probability one for all t and it is a measurable function of
ℱ XFð Þ

t−1 , that is the filtration generated by all available
information through time t− 1. We will use ℱ HFð Þ

t−1

(X = H) for the high-frequency past data, that is, for the
case of the realized measure, or ℱ LoFð Þ

t−1 (X = Lo) for the
low-frequency past data, that is, for the case of the close-
to-close returns. Hereafter, for notational convenience,
we will drop the superscript XF.

In the HEAVY/GARCH model eit has zero mean and
unit variance. Therefore, the three series have zero condi-
tional means, and their conditional variances are
given by:

 r2t F t−1j� �
= σ2rt, ~RMt

2
ℱt−1j

� �
= RMt ℱt−1jð Þ

= σ2Rt ,and ~GK
2
t ℱt−1j

� �
= GKt ℱt−1jð Þ= σ2gt, ð2Þ

where  �ð Þ denotes the expectation operator. The three
equations are called HEAVY-i, i = r, R, g for the returns,
the realized measure, and Garman–Klass volatility,
respectively.

2.2 | Asymmetric power formulation

The asymmetric power (AP) specification for the three-
dimensional (3D) HEAVY(1, 1) consists of the following
equations (in what follows for notational simplicity, we
will drop the order of the model if it is (1, 1)):

1−βiLð Þ σ2it
� �δi

2 =ωi + αir + γirst−1ð ÞL r2t
� �δr

2

+ αiR + γiRst−1ð ÞL RMtð Þ
δR
2

+ αig + γigst−1

� �
L GKtð Þ

δg
2 ,

ð3Þ

where L is the lag operator, δi �ℝ>0 (the set of the posi-
tive real numbers) are the power parameters, for i = r, R,
g, and st = 0.5[1 − sign(rt)], that is, st = 1 if rt < 0 and 0
otherwise; γii, γij (i ≠ j) are the own and cross leverage
parameters, respectively2; positive γii, γij means larger
contribution of negative ‘shocks’ in the volatility process
(in our long memory AP specification we will replace
αii + γiist − 1 by αii(1 + γiist − 1); see Data S1). In this speci-
fication the powered conditional variance, σ2it

� �δi=2 , is a
linear function of the lagged values of the power trans-
formed squared returns, realized measure and GK
volatility.

We will distinguish between three different asymmet-
ric cases: the double one (DA: γij ≠ 0 for all i and j) and
two more, own asymmetry (OA: γij = 0 for i ≠ j only)
and cross asymmetry (CA: γii = 0).

YFANTI ET AL. 2739
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The αiR and γiR are called the (six) Heavy parame-
ters (own when i = R and cross when i ≠ R). These
parameters capture the impact of the realized measure
on the three conditional variances. Similarly, the αir
and γir (six in total) are called the Arch parameters
(own when i = r and cross for i ≠ r). They depict the
influence of the squared returns on the three condi-
tional variances. Finally, the αig and γig are called the
(six) Garman parameters. These parameters capture the
effects of the GK volatility on the three conditional
variances.

The asymmetric power model is equivalent to a
trivariate AP-GARCH process for the returns, the
SSR realized measure, and GK volatility (see, for
example, Conrad & Karanasos, 2010). If all 12 Arch
and Garman parameters are zero, then we have the
AP version of the benchmark HEAVY specification
where the only unconditional regressor is the first
lag of the powered RMt. Finally, we should mention
that all the parameters in this trivariate system
should take non-negative values (see, for example,
Conrad & Karanasos, 2010).

To sum up, the bivariate benchmark model
(Equation (2)) of Shephard and Sheppard (2010)3 is
characterized by two conditional variance equations,
the GARCH(1,0)-X formulation for returns and the
GARCH (1,1) formulation for the SSR realized
measure:

HEAVY-r : 1−βrLð Þσ2rt =ωr + αrRL RMtð Þ,
HEAVY-R : 1−βRLð Þσ2Rt =ωR + αRRL RMtð Þ:

Equation (3) gives the general formulation of our
asymmetric power extension, which adds asymmetries,
power transformations, and the GK volatility to the
benchmark specification. We also use the existing Gauss-
ian quasi-maximum likelihood estimators (QMLE) and
multistep-ahead predictors already applied in the
APARCH framework (see, for example, He &
Teräsvirta, 1999; Karanasos & Kim, 2006; Laurent, 2004).
We will first estimate the three conditional variance
equations in the general form with all Heavy, Arch,
Garman, and Asymmetry parameters given by
Equation (3) and in case a parameter is insignificant, we
will exclude it and this will result in a reduced form that
is statistically preferred for each volatility process. Before
the empirical illustration of the proposed model on stock
index volatility, we first derive the time series properties
of the multivariate AP-HEAVY system and examine its
finite-sample performance through a simulation
experiment.

3 | THEORETICAL PROPERTIES
OF THE MULTIVARIATE AP-HEAVY
MODEL

3.1 | Notation

Throughout this section, we adhere to the following
conventions:

Notation 1 (ℤ>0) ℤ, and ℤ≥0 stand for the sets of (positive)
integers, and non-negative integers respectively. Similarly,
(ℝ>0)ℝ andℝ≥0 stands for the set of (positive) real num-
bers, and non-negative real numbers respectively.

Notation 2 We will use upper (lower) case boldface
symbols to refer to square matrices (vectors). That
is, y = [yi]i = 1,…,N is an N × 1 column vector,
Y = [yij]i,j = 1,…,N is a square matrix of order N.

IN is the N-dimensional identity matrix (hereafter, we
will drop the subscript for notational simplicity).

Notation 3 Using standard notation, Y
0
and Y−1 are the

transpose and the inverse of the square matrix Y.
Y^k = ykij

h i
is the element-wise exponentiation,

whereas y^x = yxii½ �, that is the element occupying the
ith entry of vector y is raised to the power of the ele-
ment occupying the ith entry of vector x. Yk = k

i=1Y
means that the matrix Y is raised to the power of k.

In addition, diag[y], and diag[Y] denote diagonal
matrices with elements yi and yii, respectively.

We will refer to the element-wise absolute value of Y as
jYj = [jyijj]. Finally, the inequality Y ≥ 0 means that
all elements of Y are non-negative real numbers.

Notation 4 The element-wise expectation operator is
denoted by  , that is,  Yð Þ=  yij

� �h i
(similarly,

 Y ℱt−1jð Þ denotes the element-wise, conditional
on time t− 1, expectation operator).

Notation 5 Let Y�2 = Y � Y, where � is the Kronecker
product of two matrices, and vec(Y) is a vector in
which the columns of the matrix Y are stacked one
underneath the other.

3.2 | Multivariate system

In this section, we will examine the theoretical properties
of the multivariate AP-HEAVY model. We will consider
the N-dimensional vector process, rt = [rit], i = 1, …, N,

2740 YFANTI ET AL.
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N ∈ ℤ≥1, t � ℤ. For example, for the trivariate case, r1t = rt,
r2t = ~RMt , and r3t = ~GKt . Similarly to Equation (1), we
assume that the vector rt is characterized by the relation:

rt =Ztσt, ð4Þ

where Zt = diag[et], et = [eit], and σt = [σit] is ℱt − 1 mea-
surable with ℱt − 1 = σ(rt − 1, rt − 2, …) with σt > 0 for all
t. That is, rt = [eitσit]. Analogously with the assumptions
in Section 2.1 the stochastic vector et = [eit] is indepen-
dent and identically distributed (i.i.d) with
 eitj jδi ejt

�� ��δj� �
�ℝ>0 for i, j = 1, …, N.

In the N-dimensional (constant conditional correla-
tion) multivariate GARCH model et has zero mean,
unit variance, and positive definite time invariant con-
ditional correlation matrix R = [ρij] with ρii = 1. The
conditional covariance matrix of rt is denoted by
Ht = rtr0t ℱt−1j� �

, and it is given by Ht =ΣtRΣt , where

Σt = diag σt½ �= diag H
1
2
t

h i
.

The N-dimensional AP-HEAVY(1, 1) model is given by:

I−BLð Þσ^δt =ω+LAt rtj j^δ, ð5Þ

where δ = [δi], is the vector with the power parameters

with δi � ℝ>0 for all i, σ^δt = σδiit
� 	

, and rtj j^δ = eitj jδiσδiit
h i

(we recall that rt and σt have been defined in Equa-
tion (4)). B= [βii] is a diagonal matrix (of order N); ω=
[ωi] is a vector that contains the drifts; At =A+Γt, where

A= [αij] and Γt = γijsjt
h i

, are N-dimensional full matrices.

Note that Γt can be written as Γt =Γdiag st½ � where

Γ= γij

h i
and st = [sit]. The cross diagonal elements of A

capture the shock (or unconditional) spillovers, whereas
those of Γt capture the asymmetric shock spillovers.

3.2.1 | Weak VARMA representation

In order to derive the optimal predictors, we need to obtain
the weak VARMA representation of themodel in Equation (5).
First, we will introduce the following definitions.

Definition 1 (i) Let Z δð Þ= Ztj j^δ
� �

be a diagonal
matrix with the element occupying the ith entry

denoted by zi = eitj jδi
� �

,

(ii) Define the serially uncorrelated vector with, under
(see below) Condition 1, zero mean as follows:

vt δð Þ= rtj j^δ− rtj j^δ ℱt−1j
� �

. In view of Equa-

tion (4), vt can be written as:

vt = rtj j^δ−Zσ^δt = Ztj j^δ−Z
� �

σ^δt ,

(to lighten the notation, in what follows we drop the
parenthesis δ; we recall that δ is given in Equation (5).

Proposition 1 The weak VARMA (1,1) representation of
the N-dimensional AP-HEAVY (1, 1) process is
given by:

I−LCt½ �σ^δt =ω+ LAtvt, ð6Þ

where,

Ct =B+AtZ,

(B and At have been defined in Equation (5); notice that
Ct depends on δ, but again in order to simplify the nota-
tion we will use Ct instead of Ct(δ)).

The proof is trivial: we add and subtract At−1Zσ^δt−1 in
the right-hand side of Equation (5).

Next, let us call:

Dt,k =
Yk−1

r=0

Ct−1−r , ð7Þ

where k � ℤ≥1. We further extend the definition of Dt,k

by assigning the initial matrix value Dt,0 = IN.

3.2.2 | General solution

Next, we will present the general solution, which gener-
ates all the main time series properties of the AP-HEAVY
multivariate system.

Theorem 1 The general solution of the weak VARMA
representation in Equation (6) under the initial
matrix value σ^δt−k, is given by:

σ^δt =
Xk
r=1

Dt,r−1 ω+At−rvt−rð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Particular Solutionð Þ

+ Dt,kσ
^δ
t−k|fflfflfflffl{zfflfflfflffl}

HomogeneousSol:ð Þ

: ð8Þ

The proof is trivial. It is obtained by using repeated
substitution in Equation (6).

YFANTI ET AL. 2741
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In the above Proposition σ^δt is decomposed into two
parts. The homogeneous solution, which consists of the
initial (matrix) value σ^δt−k times Dt,k, and the particular
one that is formed by products involving the matrix Dt,r−1

times (i) the drift ω, and (ii) the matrix At−r times the serially
uncorrelated vector vt−r.

Remark 1 When k = 1 the general solution in Theorem 1
coincides with Equation (6). This is a consequence
of the following statement: Dt,0 = I and Dt,1 = Ct − 1

(see Equation (7)).

3.2.3 | Optimal predictors

In what follows, we will obtain the linear predictor of the
AP-HEAVY system.

First, we will introduce some additional notation.

Notation 6 (i) Let the expected value of Ct and At be
denoted as C= Ctð Þ and �A= Atð Þ , respectively
(where Ct is given in Equation (6)). Thus,

C=B+ �AZ,with �A= A+Γ
1
2

� �
, ð9Þ

(since  diag st½ ��= diag s2t
� 	�= 1=2ð ÞI ), and thus

Equation (7) implies that  Dt,kð Þ=Ck.
(ii) Let ρmax(C) refer to the modulus of the largest
eigenvalue of C.

(iii) Let (Ω,F,P) be a probability space and L2(Ω,F,P)
(in short L2) be the Hilbert space of random vari-
ables with finite first and second moments defined
on (Ω,F,P).

Condition 1 ρmax(C) < 1.

Taking the conditional expectation of Equation (8)
with respect to the σ field ℱt − k − 1 yields the following
Proposition.

Proposition 2 The k-step-ahead optimal (in L2 sense) lin-
ear predictor of the powered transformed σt for the
N-dimensional AP-HEAVY(1, 1) model is readily
seen to be:

 σ^δt ℱt−k−1j� �
= I−Cð Þ−1 I−Ck

� �
ω+Ckσ^δt−k: ð10Þ

Under Condition 1 the unconditional mean of σ^δt , that is
σ δð Þ= σ^δt

� �
is equal to the limk!∞ σ^δt ℱt−k−1j� �

,
and thus it is given by:

σ = I−Cð Þ−1ω: ð11Þ

(where C has been defined in Equation (9)).

Finally, the following Proposition gives the opti-
mal linear predictor of the power transformed
observed vector jrtj^δ as well as its first unconditional
moment.

Proposition 3 The k-step-ahead optimal (in L2 sense) lin-
ear predictor of jrtj^δ is given by:

 rtj j^δ ℱt−k−1j
� �

=Z σ^δt ℱt−k−1j� �
,

(Z has been defined in Definition 1(i), and Equation (10)
gives  σ^δt ℱt−k−1j� �

).
Under Condition 1, the unconditional mean of jrtj^δ, that is
r δð Þ= rtj j^δ

� �
is equal to limk!∞ rtj j^δ ℱt−k−1j

� �
,

and thus it is given by:

r=Zσ: ð12Þ

The proof is trivial. It follows from the definition of
jrtj^δ in Equation (4) and Proposition 2. Alternatively,
we could obtain the optimal linear predictor and the
first unconditional moment of jrtj^δ using its weak
VARMA(1, 1) representation, which is not difficult to
show (proof is not reported but it is available upon
request) that it is given by:

I−LCt� rtj j^δ =Zω+ I−BLð Þvt:

A comparison
Next, we provide a comparison between the bench-
mark HEAVY system and the more general AP spec-
ification. Their difference is captured by the matrix
C (see Equation (9)). We will examine the bivariate
case, which is when N = 2. For the more general
double asymmetric power (DAP) specification, C is
a full matrix with: (i) diagonal elements given by
βi + (αii + γii/2)zi, i = r, R, we recall that

zi = eitj jδi
� �

, and (ii) off-diagonal elements given by

(αij+ γij)zj, i, j = r, R, for i≠ j. For the benchmark model,
since γij = 0, zi = 1, for all i, j = r, R, and αRi = 0, C is
restricted to being an upper diagonal matrix. That is,
we have:
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DAPSpecification :

C=
βr + αrr + γrr=2ð Þzr αrR + γrR=2ð ÞzR
αRr + γRr=2ð Þzr βR + αRR + γRR=2ð ÞzR

 �

BenchmarkHEAVY :C=
βr αrR

0 βR + αRR

 �
:

Figure 1 presents the comparison of the benchmark
and DAP-HEAVY models' forecasting performance (see
also Section 5). We apply the optimal predictor of jrtj^δ
(under Proposition 3) on Dow Jones returns and realized
variance data and calculate 50-step-ahead forecasts. The
more general specification produces forecasts signifi-
cantly closer to the actual values for both returns
(Figure 1a,b) and realized measure (Figure 1c,d). Most
importantly, its forecasts are more accurate in peaks of
returns and realized variance actual values. The bench-
mark model remains behind our proposed asymmetric
power extension in predicting low- and high-frequency
volatility indicators. It produces, mostly, lower volatility

forecasts (dotted lines) in comparison with the DAP
(dashed lines) and actual (solid lines) values. Therefore,
our first contribution, which is the asymmetric power
extension, provides a significant improvement on the
HEAVY system of Shephard and Sheppard (2010).

3.3 | Second moments

Now that we have derived the optimal predictors and the
first unconditional moment of the AP-HEAVY system,
we will examine its second moment structure.

3.3.1 | Notation

But first, we will introduce some further notation.

Covariances
Let Γ ℓ;δð Þ= γij ℓ;δð Þ

h i
, ℓ�ℤ≥0, be the multidimensional

covariance function of σ^δt
� �

; as usual in what follows

FIGURE 1 Dow Jones returns and realized variance k-step-ahead forecasts
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we will suppress the index δ for ease of notation, that is
we will use Γ ℓ;δð Þ=Γ ℓð Þ . In view of this definition
we have:

Γ ℓð Þ= σ^δt−ℓ−σ
� �

σ^δt −σ
� �0h i

=Σ ℓð Þ−σσ0, ð13Þ

where Σ ℓð Þ= σ^δt−ℓ σ^δt
� �0� �

. In addition, let the

vectorizations of Σ ℓð Þ and Γ ℓð Þ be denoted by s(ℓ) and
γ(ℓ), respectively. Explicit solutions for the Γ ℓð Þ and con-
ditions for its existence will be presented below.

Further, let

D= diag
ffiffiffiffiffiffiffiffiffiffiffiffi
γ11 0ð Þ

p
,…,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γNN 0ð Þ

ph i
,

where γii(0) is the element occupying the ith diagonal
entry of Γ 0ð Þ . To further fix notation, write the ℓ-th
order, for ℓ≥ 1, autocorrelation matrix of σ^δt as:

R ℓð Þ=D−1Γ ℓð ÞD−1:

Kronecker products
In what follows we will introduce some additional nota-
tion, which involves various Kronecker products.

Notation 7 Let

C�2 =C�C, �A�2 = �A��A, ð14Þ

where C and �A have been defined in Equation (9).

We continue by introducing the following notation.

Notation 8 Let

Z�2 =Z�Z, Ztj j^δ
� ��2

 �
= Ztj j^δ� Ztj j^δ

� �
,

~Z=  Ztj j^δ
� ��2

 �
−Z�2 = Ztj j^δ−Z

� ��2
 �

,

be three diagonal matrices of order N2 (Zt and Z have been
defined in Equation (4) and Definition 1(i), respectively).

Remark 2 The element occupying the rth diagonal entry
of ~Z, with r = [(i− 1)N+ j], where i, j = 1, …, N, is
given by:

 eitj jδi ejt
�� ��δj� �

− eðit
�� ��δi� �

 ejt
�� ��δj� �

:

Notation 9 Let

~C=C�2 + �A�2~Z, ð15Þ

(where C�2 and �A�2 are given in Equation (14), and
~Z is defined in Notation 8.

Condition 2 ρmax
~C

� �
<1:.

3.3.2 | Covariance structure

In the following theorem, we will present an explicit for-
mula for γ(0).

Theorem 2 Consider the N-dimensional vector AP-
HEAVY (1, 1) process. Under Condition 2 the
vectorization of Γ 0ð Þ, is given by:

γ 0ð Þ= IN2 − ~C
� �−1 �A�2~Zσ�2: ð16Þ

Further, γ(ℓ), for ℓ ≥ 1, is given by:

γ ℓð Þ= Cℓ�I
� �

γ 0ð Þ: ð17Þ

Next, let us denote the multidimensional covariance
function of {jrtj^δ} by Γr ℓð Þ= γij,r ℓð Þ

h i
.

Theorem 3 Consider the N-dimensional vector AP-
HEAVY (1, 1) process. Under Condition 2 the
vectorization of Γr 0ð Þ, is given by:

γr 0ð Þ=  Ztj j^δ
� ��2

 �
IN2 − ~C
� �−1 �A�2 + IN2

 �
~Zσ�2: ð18Þ

Moreover, γr(ℓ), for ℓ ≥ 1, is given by:

γr ℓð Þ=Zγr 0ð Þ: ð19Þ

In Appendix A, we derive the proofs of Theo-
rems 2 and 3.

3.4 | Simulations

After deriving the time series properties of the multivari-
ate AP-HEAVY system, we examine the finite-sample
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performance of the diagnostic tests employed in terms of
both their size and power properties. Given that simula-
tion studies have already widely explored the finite-
sample properties of the univariate (AP-)GARCH-X and
the multivariate GARCH with volatility spillovers (A and
B full matrices) but without asymmetries, that is the Γ
full matrix, (see, for example, Francq & Thieu, 2019; Hal-
unga & Orme, 2009; Li, Zhang, & Zhang, 2019;
Lundbergh & Teräsvirta, 2002; Nakatani & Teräsvirta,
2009; Pedersen, 2017; Pedersen & Rahbek, 2019), here
in the multivariate AP-HEAVY/GARCH case, we
choose to focus our simulation experiment on the sig-
nificance of the asymmetric effects, the sign bias test
(SBT) of Engle and Ng (1993) accounting for both own
and cross leverage of each equation in the system, and
the likelihood-ratio test (LRT) for model selection
(benchmark vs. AP-HEAVY). We conduct the Monte
Carlo simulations in OxMetrics 7 for the bivariate case
of the asymmetric Power specification with own and
cross Arch and Heavy parameters. For each data-
generating process (DGP) with Gaussian innovations
drawn from the standard Normal distribution (e1t,

e2t
�IIDN(0, 1)), we use the sample sizes T = 1, 000, 2,

500, 5, 000, 10,000 after discarding the first 1, 000
observations to avoid initialization effects. All simula-
tions are based on 5, 000 replications and the empirical
rejection frequencies are compared with the 5% nomi-
nal size of each test.

We first consider the size properties of the SBT statis-
tic for the DGPs 1–5 reported in Table 1, Panel A. We test
five different specifications of the bivariate benchmark
Heavy. The SBT statistic is calculated on each equation
(e1t and e2t processes) with similar results and the actual
rejection frequencies from both equations are stated in
Table 2, Panel A. The SBT results suggest that significant
sign effects are omitted by the benchmark specification.
For DGPs 3 and 5, the test is relatively undersized in the
sample size T = 1, 000 and slightly oversized in the sam-
ple size T = 10,000. Overall, our Monte Carlo experiment
shows that in most cases the sign bias test has reasonable
size properties quite close to the 5% nominal level in
larger samples.

Next, the simulations for the power of the sign bias
test are based on DGPs 6–10 (Table 1, Panel B)

TABLE 1 DGPs for size and power

simulations
Heavy models DGPs A B Γ δ

Panel A: Size simulations

Benchmark DGP 1 0 0:30

0 0:40

 �
0:65 0

0 0:55

 �
0 0

0 0

 �
2:0

2:0

 �

Benchmark DGP 2 0 0:20

0 0:40

 �
0:75 0

0 0:60

 �
0 0

0 0

 �
2:0

2:0

 �

Benchmark DGP 3 0 0:25

0 0:35

 �
0:85 0

0 0:65

 �
0 0

0 0

 �
2:0

2:0

 �

Benchmark DGP 4 0 0:18

0 0:25

 �
0:80 0

0 0:70

 �
0 0

0 0

 �
2:0

2:0

 �

Benchmark DGP 5 0 0:30

0 0:30

 �
0:80 0

0 0:70

 �
0 0

0 0

 �
2:0

2:0

 �

Panel B: Power simulations

OAP DGP 6 0 0:10

0:05 0:10

 �
0:80 0

0 0:70

 �
0:08 0

0 0:10

 �
1:5

1:5

 �

CAP DGP 7 0 0:10

0:05 0:10

 �
0:80 0

0 0:70

 �
0 0:08

0:10 0

 �
1:5

1:5

 �

DAP DGP 8 0 0:10

0:05 0:10

 �
0:80 0

0 0:70

 �
0:08 0:10

0:05 0:10

 �
1:5

1:5

 �

DAP DGP 9 0:04 0:10

0:05 0:10

 �
0:80 0

0 0:70

 �
0:05 0:05

0:05 0:10

 �
1:5

1:5

 �

DAP DGP 10 0:04 0:10

0:05 0:10

 �
0:80 0

0 0:70

 �
0:05 0:05

0:05 0:10

 �
1:5

1:0

 �

Note: For all DGPs ω=
0:01

0:02

 �
.

Abbreviation: DGP, data-generating process.
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corresponding to five bivariate AP-HEAVY models. The
B matrix remains diagonal as in the benchmark case, that
is without volatility spillovers from the cross Garch
effects (β12 = β21 = 0). The A matrix is either a full matrix
with all own and cross Arch effects (DGPs 9 and 10) or
with the own Arch effect excluded in the first equation
(DGPs 6–8), similarly to the returns and the Garman–
Klass volatility equations estimated in our empirical
application (see Table 5, Panels A and C). The Γ matrix
contains the leverage parameters, either own
asymmetries (OAP model, DGP 6) or cross asymmetries
(CAP model, DGP 7) or a full matrix with both own and
cross asymmetric effects (DAP model, DGPs 8–10). The
power transformations in δ are common for both equa-
tions in the system with δi = 1.5 for DGPs 6–9. In the case
of DGP 10, we test different powers (δ1 = 1.5 and
δ2 = 1.0) for the conditional variance of the two pro-
cesses. Table 2, Panel B reports the SBT power simulation
results with significant asymmetric effects not ignored
across all AP-HEAVY models considered. The power of
the test improves as the sample size increases for most
DGPs, while in the DAP models with full Γ matrix (DGPs
8–10) the power is already high from smaller samples.

Finally, we perform the likelihood-ratio test of the AP
model compared with the benchmark one for both equa-
tions. We consider DGPs 6–10 as the unrestricted

specifications and the corresponding benchmark ones
(with Γ=0 and α11 = α21 = 0) as the restricted cases. The
LRT results in Table 2, Panel C support the superiority of
the asymmetric models to the benchmark formulations.
The test suggests the significant improvement in terms of
the log-likelihood maximization for the more richly
parametrized unrestricted models versus the respective
restricted cases.

All in all, the simulation experiment suggests very
good size and power properties of the SBT in detecting
asymmetries in the HEAVY framework and quite good
performance of the LRT for model selection across all
sample sizes. Furthermore, our simulation results have
also shown that the empirical distribution of the t-
statistics of all estimated parameters in both equations is
quite close to normal (the average difference of the true
parameter and its estimate [bias], the standard error and
the root mean square error of the estimate are available
upon request for all parameters), mostly converging to
normal in higher sample sizes regardless of the degree of
persistence tested under each DGP, and at the same time
validating the finite-sample performance of the QML esti-
mators. In the remaining part of the article, the AP-
HEAVY model's overperformance in- and out-of-sample
is further illustrated through an empirical application on
stock index data (Sections 4 and 5).

TABLE 2 Size and power simulation results

First equation (e1t) Second equation (e2t)

Panel A: Size simulations (SBT empirical rejection frequencies)

T DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

1, 000 0.031 0.046 0.009 0.059 0.010 0.026 0.039 0.001 0.051 0.012

2, 500 0.035 0.041 0.030 0.044 0.045 0.031 0.040 0.036 0.040 0.047

5, 000 0.040 0.049 0.041 0.039 0.049 0.049 0.055 0.049 0.047 0.043

10,000 0.046 0.052 0.058 0.045 0.059 0.046 0.052 0.055 0.048 0.061

Panel B: Power simulations (SBT empirical rejection frequencies)

T DGP 6 DGP 7 DGP 8 DGP 9 DGP 10 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

1, 000 0.442 0.204 0.632 0.841 0.809 0.506 0.233 0.701 0.892 0.831

2, 500 0.261 0.356 0.891 0.992 0.878 0.286 0.447 0.856 0.976 0.924

5, 000 0.755 0.694 0.949 0.997 1.000 0.623 0.688 0.991 0.999 1.000

10,000 0.893 0.905 0.995 1.000 1.000 0.850 0.969 1.000 1.000 1.000

Panel C: LRT p-values for AP (unrestricted) versus benchmark (restricted) heavy specification

T DGP 6 DGP 7 DGP 8 DGP 9 DGP 10 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

1, 000 .043 .067 .011 .014 .000 .038 .044 .009 .020 .010

2, 500 .037 .055 .025 .018 .001 .042 .041 .019 .027 .003

5, 000 .049 .048 .008 .022 .031 .047 .051 .012 .026 .036

10,000 .050 .046 .030 .020 .018 .052 .048 .036 .018 .024

Note: Empirical rejection frequencies based on the 5% nominal level.
Abbreviations: AP, asymmetric power; DGP, data-generating process; LRT, likelihood-ratio test; SBT, sign bias test.
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4 | EMPIRICAL APPLICATION

4.1 | Data description

We provide an empirical application of the HEAVY
framework on five stock indices' returns, realized and GK
volatilities. We use daily data for five stock market indi-
ces extracted from the Oxford-Man Institute's (OMI) real-
ized library version 0.3 of Heber, Lunde, Shephard, and
Sheppard (2009): Dow Jones Industrial Average from the
US (DJ), Korea Composite Stock Price Index from South
Korea (KOSPI), CAC 40 from France (CAC), All Ordinar-
ies from Australia (AORD), and MXSE IPC from Mexico
(IPC). Our sample covers the period from 3 January 2000
to 30 September 2019 for most indices. The OMI's
realized library includes daily stock market returns and
several realized volatility measures calculated on high-
frequency data from the Reuters DataScope Tick History
database. The data are first cleaned and then used in the
realized measures calculations. According to the library's
documentation, the data cleaning consists of deleting
records outside the time interval that the stock exchange
is open. Some minor manual changes are also needed
when results are ineligible due to the rebasing of indices.
We use the daily closing prices, PC

t , to form the daily
returns as follows: rt = ln PC

t

� �
− ln PC

t−1

� �
, and two real-

ized measures as drawn from the library: the realized ker-
nel and the 5-min realized variance. The estimation
results using the two alternative measures are very simi-
lar, so we present only the ones with the realized vari-
ance (the results for the realized kernel are available
upon request).

4.1.1 | Realized measures

The library's realized measures are calculated in the way
described in Shephard and Sheppard (2010). The realized
kernel, which we use as an alternative to the realized var-
iance (results are not reported but they are available
upon request), is calculated using a Parzen weight func-
tion as follows: RKt =

PH
k= −Hk h= H +1ð Þð Þγh , where k(x)

is the Parzen kernel function with γh =
Pn

j= jhj+1xj,txj− jhj,t ;
xjt =Xtj,t −Xtj−1,t are the 5-min intra-daily returns where
Xtj,t are the intra-daily log-prices and tj,t are the times of
trades on the tth day. Shephard and Sheppard (2010)
declared that they selected the bandwidth of H as in
Barndorff-Nielsen et al. (2009).

The 5-min realized variance, RVt, which we choose to
present here, is calculated with the formula: RVt =

P
x2j,t .

Heber et al. (2009) additionally implement a subsampling
procedure from the data to the most feasible level in
order to eliminate the stock market noise effects. The

subsampling involves averaging across many realized
variance estimations from different data subsets (see also
the references in Shephard & Sheppard, 2010 for realized
measures surveys', noise effects, and subsampling
procedures).

4.1.2 | GK volatility

Using data on the daily high, low, opening, and closing
prices of each index in the OMI's realized library we gen-
erate an additional daily measure of price volatility. To
avoid the microstructure biases introduced by high-
frequency data and based on the conclusion of Chen,
Daigler, and Parhizgari (2006), that the range-based and
high-frequency integrated volatility provide essentially
equivalent results, we construct the daily GK volatility as
follows:

GKt =
1
2
u2t − 2ln2−1ð Þc2t ,

where ut and ct are the differences in the natural loga-
rithms (as of time t) of the high and low and of the clos-
ing and opening prices, respectively. The Garman–Klass
is an open-to-close range-based volatility estimator that is
documented as a more precise volatility proxy, with supe-
rior empirical performance in the GARCH framework.
Recently, Molnár (2016) has demonstrated that the inclu-
sion of the Parkinson and GK estimators in the Range-
GARCH model he proposed, outperforms the standard
GARCH(1, 1), and it performs particularly better in situa-
tions, where volatility level changes rapidly. Several stud-
ies have also discussed the improvement of the GARCH
framework through the open-to-close range-based volatil-
ity proxies, regarded as more accurate than the close-to-close
squared returns: they exclude the noise from the dynamics of
the opening jumps and they ensure greater accuracy in volatil-
ity forecasting through the range information they provide
(see Chou, Chou, & Liu, 2010, 2015; Molnár, 2012 and the ref-
erences therein). Therefore, we incorporate the GK variable in
our HEAVY system, in order to improve the model's forecast-
ing performance.

Table 3 presents the five stock indices extracted from
the database and provides volatility estimations for each
one's squared returns, realized variances, and GK volatil-
ities time series for the respective sample period (see also
the DJ series graphs in Figures B1–B4). We calculate the
standard deviation of the series and the annualized vola-
tility. Annualized volatility is the square rooted mean of
252 times the squared return or the realized variance.
The standard deviations are always lower than the annu-
alized volatilities. The realized variances and the GK

YFANTI ET AL. 2747

 10991158, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijfe.2296 by T

est, W
iley O

nline L
ibrary on [30/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



volatilities have lower annualized volatilities and stan-
dard deviations than the squared returns since they
ignore the overnight effects and are affected by less noise.
The returns represent the close-to-close yield, the realized
variance the open-to-close variation, and the GK volatil-
ity the open-to-close range-based variation. The annual-
ized volatility of the realized and GK measure is between
10 and 18%, while the squared returns show figures from
14 to 24%.

Next, we examine the sample autocorrelations of the
power transformed absolute returns rtj jδr , signed square
rooted realized variance SSR RMtj jδR , and GK volatility
SSR GKtj jδg , for various values of δi. Figures 2, 3, and 4
show the autocorrelograms of the Dow Jones index from
lag 1 to 120 for δr = 1.3,1.7,2.0, δR = 1.1,1.5,2.0, and
δg = 1.0,1.5,2.0 (similar autocorrelograms for the other
four indices available upon request). The sample autocor-
relations for jrtj1.3 are greater than the sample autocorre-
lations of rtj jδr for δr = 1.7,2.0 at every lag up to at least
120 lags. In other words, the most interesting finding
from the autocorrelogram is that rtj jδr has the strongest
and slowest decaying autocorrelation when δr = 1.3.

Similarly, for the realized measure and GK volatility, the
powers with the strongest autocorrelation function are
δR = 1.1 and δg = 1.0, respectively. Furthermore,
Figures 5, 6, and 7 present the sample autocorrelations of
rtj jδr , SSR RMtj jδR , and SSR GKtj jδg as a function of δi for
lags 1,12,36,72 and 96. For example, for lag 12, the
highest autocorrelation values of power transformed
absolute returns and signed square rooted realized and
GK volatility are calculated closer to the power of 1.5 and
1.0, respectively. These figures explain our motivation to
extend the benchmark HEAVY through the APARCH
framework of Ding et al. (1993) and confirm the power
choice of our econometric models, which is δr = 1.3 for
returns, δR = 1.1 for the realized measure, and δg = 1.0
for GK volatility (see Section 4).

4.2 | Estimated models

Building upon the introduction of the GARCH-X process
by Engle (2002b) to include realized measures as exoge-
nous regressors in the conditional variance equation,

TABLE 3 Data description

Sample period r2t RVt GKt

Index Start date End date Obs. Avol SD Avol SD Avol SD

DJ 03/01/2000 27/09/2019 4,950 0.178 0.040 0.165 0.026 0.145 0.022

KOSPI 04/01/2000 30/09/2019 4,857 0.235 0.067 0.174 0.022 0.170 0.027

CAC 03/01/2000 30/09/2019 5,034 0.222 0.052 0.182 0.022 0.175 0.021

AORD 04/01/2000 30/09/2019 4,985 0.143 0.022 0.108 0.008 0.100 0.009

IPC 03/01/2000 30/09/2019 4,953 0.202 0.044 0.144 0.018 0.155 0.017

Abbreviation: Avol, annualized volatility.

FIGURE 2 Autocorrelation of Dow Jones rtj jδr for δr = 1.3,1.7,

and 2.0

FIGURE 3 Autocorrelation of Dow Jones SSR RMtj jδR for
δR = 1.1,1.5, and 2.0
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Han (2015) and Han and Kristensen (2014) studied the
asymptotic properties of this new specification with a
fractionally integrated (non-stationary) process included
as covariate (see also Francq & Thieu, 2019). Moreover,
Nakatani and Teräsvirta (2009) and Pedersen (2017)
focused on the multivariate case, the so-called extended
constant conditional correlation, which allows for volatil-
ity spillovers and they developed inference and testing for
the QMLE parameters (see also Ling & McAleer, 2003 for
the asymptotic theory of vector ARMA-GARCH pro-
cesses). For the extended HEAVY models, we employ the
existing Gaussian QMLE and multistep-ahead predictors
applied in the APARCH framework (see, for example,
He & Teräsvirta, 1999; Karanasos & Kim, 2006;
Laurent, 2004, and the theoretical properties derived in
Section 3). Following Pedersen and Rahbek (2019), we
first test for arch effects and after rejecting the condi-
tional homoscedasticity hypothesis we apply one-sided

significance tests of the covariates added to the estimated
GARCH processes.

We first estimate the bivariate benchmark formula-
tion as in Shephard and Sheppard (2010), that is, without
asymmetries and power transformations, obtaining very
similar results (Table 4). For the benchmark specifica-
tion, the only unconditional regressor in both equations
is the first lag of the RMt. In other words, the chosen
returns equation is a GARCH(1, 0)-X process leaving out
the own Arch effect, αrr, from lagged squared returns
since it becomes insignificant when we add the cross
effect of the lagged realized measure as regressor, with a
Heavy coefficient, αrR, high in value and significance
across all indices. The momentum parameter, βr, is esti-
mated around .44 to .84. For the SSR realized variance,
the best-chosen model is the GARCH(1, 1) without the
cross effect from lagged squared returns. The Heavy term,
αRR, is estimated between .25 and .47 and the

FIGURE 4 Autocorrelation of Dow Jones SSR GKtj jδg for
δg = 1.0,1.5, and 2.0

FIGURE 5 Autocorrelation of Dow Jones rtj jδr at lags
1,12,36,72, and 96

FIGURE 6 Autocorrelation of Dow Jones SSR RMtj jδR at lags
1,12,36,72, and 96

FIGURE 7 Autocorrelation of Dow Jones SSR GKtj jδg at lags
1,12,36,72, and 96
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momentum, βR, is around .53 to .74. The benchmark sys-
tem of equations chosen (three alternative GARCH
models are tested for each dependent variable with order:
(1, 1), (1, 0)-X, and the most general one, that is, (1, 1)-X)
is the same as in Shephard and Sheppard (2010) with
similar parameter values and the identical conclusion
that the realized measure of variation does all the work
of moving around the conditional variances of stock
returns and the SSR realized variance. The benchmark's
conclusion, as we show in this study, does not hold for
the more richly parametrized asymmetric power model.
More importantly, according to the SBT statistics, the
asymmetric effect is obviously omitted from the bench-
mark specification with the sign coefficient always signif-
icant (p-values lower than .02).

Moving to our proposed extension of the benchmark
bivariate system, Table 5, Panels A–C presents the esti-
mation results for the chosen three-dimensional asym-
metric power specifications (see also the 3D-benchmark
model in Table C1). Wald and t-tests are used to test the
significance of the Heavy, Arch, and Garman parameters,
rejecting the null hypothesis at 10% in all cases. We
should highlight the fact that since all the parameters
take non-negative values, we use one-sided tests (see, for
example, Pedersen & Rahbek, 2019).

For all three dependent variables, we statistically pre-
fer the double asymmetric power (DAP) specification
since most power transformed conditional variances are
significantly affected by own and cross asymmetries.
KOSPI's realized measure equation is the only case where
we prefer the cross asymmetric power (CAP) model since
own asymmetries are insignificant and therefore
excluded. Furthermore, we estimate the power terms sep-
arately with a two-stage procedure, as follows: We, first,
estimate univariate asymmetric power specifications for
the returns, the realized measure, and GK volatility. The
Wald tests for the estimated power terms (available upon
request) reject the hypothesis of δi = 2 in all cases. In the
second stage, we use the estimated powers, δr, δR, and δg,
from the first step to power transform each series' condi-
tional variance and incorporate them into the trivariate
model. The sequential procedure produces the fixed
power term values, which are the same for the three
specifications (δr, δR, and δg are common for Panels A, B,
and C).

For the returns, the estimated power, δr, is between
1.30 and 1.60 (see Table 5, Panel A). The Heavy asymme-
try parameter, γrR, is significant and around 0.06 (min.
value) to 0.13 (max. value). Although αrr is insignificant

TABLE 4 The benchmark HEAVY

model
DJ KOSPI CAC AORD IPC

Panel A: Stock returns, HEAVY - r

1−βrLð Þσ2rt =ωr + αrRL RMtð Þ
βr :65

15:99ð Þ���
:67

10:58ð Þ���
:44

7:68ð Þ���
:78

26:61ð Þ���
:84

28:45ð Þ���

αrR :39
7:62ð Þ���

:62
5:27ð Þ���

:82
9:05ð Þ���

:37
6:88ð Þ���

:25
5:17ð Þ���

Q12 15:43
:22½ �

12:94
:37½ �

12:05
:44½ �

14:40
:28½ �

15:40
:21½ �

SBT 3:07
:00½ �

2:32
:02½ �

2:29
:02½ �

2:60
:01½ �

4:91
:00½ �

lnL −6, 336.82 −7, 599.64 −7, 762.45 −5, 728.74 −7, 582.94

Panel B: Realized measure, HEAVY − R

1−βRLð Þσ2Rt =ωR + αRRL RMtð Þ
βR :57

14:06ð Þ���
:53

13:11ð Þ���
:57

17:08ð Þ���
:74

30:57ð Þ���
:67

11:56ð Þ���

αRR :44
9:26ð Þ���

:47
10:59ð Þ���

:42
12:40ð Þ���

:25
10:45ð Þ���

:33
5:19ð Þ���

Q12 12:52
:41½ �

16:20
:18½ �

9:54
:66½ �

16:77
:16½ �

16:23
:17½ �

SBT 3:68
:00½ �

3:49
:00½ �

2:25
:02½ �

2:47
:01½ �

2:99
:00½ �

lnL −5, 930.41 −6, 140.66 −6, 819.26 −4, 362.39 −5, 823.11

Note: The numbers in parentheses are t-statistics. * * *, **, and * denote significance at the .01,
.05, and .10 level, respectively. Q12 is the Box-Pierce Q-statistics on the standardized residuals
with 12 lags. SBT denotes the sign bias test of Engle and Ng (1993). lnL denotes the log-
likelihood value for each specification. The numbers in square brackets are p-values.
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TABLE 5 The 3D-DAP-HEAVY

model
DJ KOSPI CAC AORD IPC

Panel A: Stock returns

1−βrLð Þ σ2rt
� �δr

2 =ωr + γrr st−1L r2t
� �δr

2 +

γrRst−1L RMtð Þ
δR
2 +αrgL GKtð Þ

δg
2

βr :81
45:11ð Þ���

:82
25:25ð Þ���

:80
24:33ð Þ���

:87
55:05ð Þ���

:91
65:59ð Þ���

αrg :10
4:78ð Þ���

:13
4:66ð Þ���

:12
3:19ð Þ���

:08
3:83ð Þ���

:07
3:99ð Þ���

γrr 0:08
5:08ð Þ���

0:09
4:84ð Þ���

0:10
6:00ð Þ���

0:09
6:46ð Þ���

0:11
8:39ð Þ���

γrR 0:10
4:76ð Þ���

0:12
3:48ð Þ���

0:13
4:32ð Þ���

0:07
2:76ð Þ���

0:06
3:90ð Þ���

δr 1.30 1.50 1.40 1.60 1.60

δR 1.10 1.20 1.10 1.30 1.00

δg 1.00 1.20 1.10 1.20 1.20

Q12 15:89
:20½ �

11:64
:48½ �

15:12
:24½ �

13:73
:19½ �

8:12
:62½ �

SBT 1:16
:24½ �

0:84
:40½ �

0:31
:75½ �

0:41
:68½ �

0:11
:91½ �

lnL −5, 974.12 −6, 933.25 −7, 078.02 −5, 584.51 −6, 890.68

Panel B: Realized measure

1−βRLð Þ σ2Rt
� �δR

2 =ωR +

αRR + γRRst−1ð ÞL RMtð Þ
δR
2 +

γRr st−1L r2t
� �δr

2 +αRgL GKtð Þ
δg
2

βR :71
41:14ð Þ���

:62
25:07ð Þ���

:72
36:11ð Þ���

:81
47:29ð Þ���

:73
31:23ð Þ���

αRR :10
5:62ð Þ���

:27
12:04ð Þ���

:16
7:57ð Þ���

:05
3:43ð Þ���

:19
9:48ð Þ���

αRg :12
7:94ð Þ���

:06
3:83ð Þ���

:05
4:38ð Þ���

:08
5:96ð Þ���

:05
4:33ð Þ���

γRR 0:05
5:09ð Þ���

0:03
3:61ð Þ���

0:04
4:60ð Þ���

0:03
2:82ð Þ���

γRr 0:08
8:23ð Þ���

0:04
9:44ð Þ���

0:05
11:25ð Þ���

0:04
6:75ð Þ���

0:09
5:74ð Þ���

δR 1.10 1.20 1.10 1.30 1.00

δr 1.30 1.50 1.40 1.60 1.60

δg 1.00 1.20 1.10 1.20 1.20

Q12 15:18
:23½ �

14:40
:28½ �

15:16
:23½ �

13:72
:19½ �

13:68
:20½ �

SBT 0:64
:52½ �

0:71
:48½ �

0:74
:46½ �

1:01
:31½ �

1:12
:26½ �

lnL −5, 264.81 −5, 346.23 −5, 865.78 −4, 151.74 −5, 230.93

Panel C: GK volatility

1−βgL
� �

σ2gt

� �δg
2
=ωg + γggL GKtð Þ

δg
2 +

αgRst−1L RMtð Þ
δR
2 + γgr st−1L r2t

� �δr
2

βg :76
35:34ð Þ���

:65
18:49ð Þ���

:75
28:51ð Þ���

:82
44:50ð Þ���

:84
42:41ð Þ���

αgR :11
8:07ð Þ���

:26
9:18ð Þ���

:16
7:44ð Þ���

:09
7:93ð Þ���

:09
5:57ð Þ���

γgg 0:07
7:87ð Þ���

0:02
1:77ð Þ�

0:05
5:82ð Þ���

0:03
3:52ð Þ���

0:03
3:11ð Þ���

γgr 0:05
6:62ð Þ���

0:05
7:85ð Þ���

0:04
8:33ð Þ���

0:04
6:83ð Þ���

0:05
8:66ð Þ���

δg 1.00 1.20 1.10 1.20 1.20

δr 1.30 1.50 1.40 1.60 1.60

δR 1.10 1.20 1.10 1.30 1.00

Q12 13:70
:32½ �

14:98
:24½ �

15:04
:24½ �

13:75
:30½ �

13:72
:31½ �

SBT 0:78
:44½ �

0:91
:36½ �

1:16
:25½ �

0:90
:37½ �

1:08
:28½ �

lnL −4, 990.36 −5, 213.30 −5, 677.71 −3, 421.67 −5, 838.98

Note: See notes in Table 4.
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and excluded in all cases, the own asymmetry parameter
is significant with γrr � 0.08,0.11]. In addition, the cross
Garman parameter, αrg, is significant and .07 ≤ αrg ≤ .13
in all cases. In other words, the lagged values of all three
powered variables, that is, the negative signed realized
measure, the squared negative returns, and the GK vola-
tility, drive the model of the power transformed condi-
tional variance of returns. Moreover, the momentum
parameter, βr, is estimated to be around .80 to .90. Obvi-
ously, all five indices generated very similar DAP
specifications.

Similarly, for the realized measure the most preferred
specification is the DAP one in most cases, as the esti-
mated power is δR � [1.00,1.30] (see Table 5, Panel B).
Both Heavy parameters, αRR and γRR, are mostly signifi-
cant: αRR is around .05 (min. value) to .27 (max. value),
while γRR, is between 0.03 and 0.05. Only for the KOSPI
index, the own asymmetries are insignificant and
excluded. Moreover, the cross Arch asymmetry parame-
ter is significant with γRr � 0.04,0.09], as well as the cross
Garman parameter, αRg, (with estimated values between
.05 and .12). This means that the power transformed con-
ditional variance of ~RMt is significantly affected by the
lagged values of all three powered variables: squared neg-
ative returns, realized measure, and GK volatility. Lastly,
the momentum parameter, βR, is estimated to be around
.62 to .81.

Finally, regarding the GK volatility the DAP specifica-
tion is again the chosen one (see Table 5, Panel C). In
particular, the own power term is 1.00 ≤ δg ≤ 1.20 in all
cases. In addition, the Heavy (αgR), the own asymmetry,
γgg, and the Arch asymmetry, γgr, parameters are signifi-
cant in all cases. In other words, the first lags of all three
powered variables (realized measure, negative signed GK
volatility, and squared negative returns) drive the model
of the power transformed conditional variance of ~GKt.

Overall, our results show strong Heavy effects (cap-
tured by the γrR, αRR, γRR, and αgR parameters), asymmet-
ric Arch influences (as the estimated γrr, γRr, and γgr are
significant), as well as Garman impacts (captured by the
αrg, αRg, and γgg parameters). According to the log-
likelihood (lnL) values reported, the log-likelihood is
always higher for the DAP specifications compared to the
benchmark ones, that is without asymmetries and pow-
ers, proving the superiority of our model's in-sample esti-
mation. The SBT statistics further show that the
asymmetric effect is not omitted any more since the sign
coefficients are insignificant, with p-values consistently
higher than .24 (see also Data S1 on the empirical appli-
cation of the trivariate AP specification with long mem-
ory [Section A] and structural breaks [Section B]).

Lastly, we estimated the trivariate system of the
extended HEAVY models with four alternative

correlation models: the constant conditional correlations
(CCC; Bollerslev, 1990), the dynamic conditional correla-
tions (DCC; Engle, 2002a), the asymmetric dynamic con-
ditional correlations (ADCC; Cappiello, Engle, &
Sheppard, 2006) and the dynamic equicorrelations
(DECO; Engle & Kelly, 2012). For simplicity, hereafter,
we will assume that δi = 2 for all i = 1, …, N. The condi-
tional covariance matrix for the N-dimensional vector rt,
Ht (see Section 3.2, as well), when the conditional corre-
lation matrix is time-varying and is denoted by Rt, can be
written as:

Ht =ΣtRtΣt,

where the elements occupying the off-diagonal entries of
Rt are given by ρij,t = σij,t/σitσjt for i ≠ j. In our HEAVY
model, we initially assumed that the conditional covari-
ances and dynamic correlations are zero: ρij,t = σij,t = 0
for all t and i ≠ j. This implies that Rt = I and Ht is a
diagonal matrix (Ht =Σ2

t ). Allowing for non-zero condi-
tional correlations does not alter our estimation results
because the estimation of various non-zero correlation
models: the four alternative specifications, namely the
CCC, DCC, ADCC, and DECO—is a two-step procedure,
where in the first step the parameters in the Σt matrix
are estimated using the conditional variance equations,
while the second step consists of estimating the (off-diag-
onal) parameters in Rt (or R for the CCC case). To see
this more explicitly, we present the quasi-likelihood
(QL) function. But first, note that rt can be written as (see
Equation 4):

rt =Ztσt =Σtet,or equivalentlyet =Σ−1
t rt:

Then QL is given by:

QL=QL1 +QL2

= −
XT

t=1
nlog 2πð Þ+2log Σtj j+ r0tΣ

−2
t rt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QL1

−T
t=1 log Σtj j+ e0tR

−1
t et + e0tet

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QL2

:

Thus in the first step the parameters of the various
extensions of the multivariate HEAVY process are esti-
mated using QL1, and in the second step we estimate the
off-diagonal element in Rt using the standardized resid-
uals: êt = Σ̂

−1
t rt in QL2. In all cases, the three alternative

dynamic models (DCC, ADCC, and DECO) estimate the
average conditional correlations for the three volatility
measures around 0.75 to 0.95 similar to the CCC constant
correlation values.
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All in all, the conditional correlations extension does
not improve further the 3D-DAP-HEAVY formulation
since it provides identical results for the conditional vari-
ance equations and estimates similar correlation levels
for all indices' formulations (results not reported but
available upon request).

5 | FORECAST EVALUATION

Following the in-sample estimation of the proposed
extensions to the HEAVY system of equations, we per-
form multistep-ahead out-of-sample forecasting in order
to compare the forecasting accuracy of the enriched

TABLE 6 MSE and QLIKE of m-step-ahead out-of-sample forecasts for DJ as a ratio of the benchmark model and HLN test

Specifications # m-steps !
MSE QLIKE

1 5 10 22 1 5 10 22

Panel A: Stock returns (HEAVY-r)

Benchmark (bivariate) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3D-DAP 0.769 0.791 0.824 0.872 0.711 0.747 0.761 0.833

Panel B: Realized measure (HEAVY-R)

Benchmark (bivariate) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3D-DAP 0.784 0.836 0.845 0.946 0.721 0.744 0.780 0.865

Panel C: GK volatility (HEAVY-g)

Benchmarka 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3D-DAP 0.804 0.773 0.850 0.912 0.832 0.741 0.841 0.897

Note: Bold numbers indicate minimum values across the different specifications.
Abbreviation: MSE, mean square error.
aThe benchmark Heavy-g specification is defined in Table C1, Panel C (trivariate benchmark).

TABLE 7 HLN forecast

encompassing test results for DJ

(p-values)

Specifications # m-steps ! 1 5 10 22

Panel A: Stock returns (HEAVY-r)

Benchmark versus 3D-DAP .011 .019 .033 .041

Panel B: Realized measure (HEAVY-R)

Benchmark versus 3D-DAP .017 .022 .036 .053

Panel C: GK volatility (HEAVY-g)

Benchmark versus 3D-DAP .020 .015 .038 .046

Note: The numbers reported are p-values of the HLN (1998) test of the null hypothesis for equal
forecasting performance against the one-sided alternative that the 3D-DAP outperforms the
nested benchmark specification.

TABLE 8 VaR backtesting results and descriptive statistics for the DJ portfolio

Specifications

Backtesting results
Descriptive statistics

No. of exceptions 99% VaR 95% VaR

99% VaR 95% VaR Mean Min. Mean Min.

Panel A: Stock returns (HEAVY-r)

Benchmark (bivariate) 1 3 −700.04 −1,418.87 −494.97 −1,003.22

3D-DAP 1 3 −656.75 −1,346.29 −468.80 −951.90

Panel B: Realized measure (HEAVY-R)

Benchmark (bivariate) 1 3 −632.24 −934.48 −447.03 −660.72

3D-DAP 1 3 −641.20 −1,241.32 −456.90 −877.68

Note: Mean and Min. denote the average and minimum VaR estimate, respectively. Bold numbers indicate the preferred specifications for
the lower market risk capital charge with the higher loss coverage.
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specifications proposed in this study with the benchmark
model introduced by Shephard and Sheppard (2010). We
compute 1-, 5-, 10-, and 22-step-ahead forecasts of the
(power transformed) conditional variances for the bench-
mark and the 3D-DAP models. We apply a rolling win-
dow in-sample estimation using 2,500 observations (the
initial in-sample estimation period for DJ spans from
3 January 2000 until 24 December 2009). Each model is
reestimated daily based on the 2,500-day rolling sample.
The resulted out-of-sample forecasts of each specification
calculated for DJ are as follows: 2,450 one-step-ahead,
2,446 five-step-ahead, 2,441 ten-step-ahead, and 2,439
twenty-two-step-ahead forecasted variances.

We then use the time series of the forecasted values
to compute the mean square error (MSE) and the QLIKE
Loss Function (Patton, 2011) of each point forecast com-
pared to the respective actual value. For each formulation
and each forecast horizon, we calculate the average MSE
and QLIKE to build the ratio of the forecast losses for
each extended HEAVY specification to the loss of the
benchmark one. A ratio lower than the unity indicates
the forecasting superiority of the proposed models rela-
tive to the benchmark one. The lowest ratio means lowest
forecast losses, that is the model with the best forecasting
performance. Based on the MSE calculations, we further
apply the test for the pairwise comparison of nested
models (here the benchmark specification vs. the AP
extensions) suggested by Harvey, Leybourne, and
Newbold (1998), HLN thereafter. The HLN forecast
encompassing test was introduced as a modification to
the Diebold–Mariano test (Diebold & Mariano, 1995) to
account for the fact that models are nested (here the 3D-
DAP nests the benchmark specification). HLN test
whether the differences between the two competing for-
mulations' forecasts are statistically significant and the
larger model's forecast losses are lower than the nested
model's ones (see also Clark & McCracken, 2001).

We apply the optimal predictor jrtj^δ (under Proposi-
tion 3 in Section 3.2.3) and calculate the out-of-sample
forecasts. The results, presented in Tables 6 and 7 for the
DJ index (similar forecasting results for the other four
indices available upon request), clearly show the prefer-
ence for our extensions over the benchmark models
across all time horizons. The 3D-DAP specification domi-
nates the benchmark model with the lowest MSE and
QLIKE (Table 6). Given the HLN test, the asymmetric
power formulation performs significantly better than the
benchmark HEAVY model in the short- and long-term
horizons, with the computed forecasts significantly closer
to the actual values for the enriched HEAVY formula-
tions. HLN test results reject the null hypothesis of equal
forecasts in favour of the 3D-DAP model's lower forecast
losses at 5% significance level (Table 7). Investors, traders

and risk managers can benefit from the superior short-
term forecasts for 1–10 days, while policymakers should
focus on the longer-term forecasting performance to pre-
dict ‘safely’ the 1-month-forward financial volatility given
the significant range-based effects.

The forecasting performance of the proposed models
can be further examined in a real-world risk manage-
ment empirical example. VaR is a daily metric for market
risk measurement, defined as the potential loss in the
value of a portfolio, over a pre-defined holding period, for
a given confidence level. The most important input in the
VaR calculation is the 1-day volatility forecast of the risk
factor relevant to the trading portfolio under scope. We
directly apply our conditional variance forecasts in a long
portfolio position to one Dow Jones industrial average
index contract starting from 7 May 2019. We calculate
100 daily VaR values from 8 May 2019 to 27 September
2019 using the 1-day conditional variance forecasts of
each model for returns and realized measure (four
models in total). Given that the conditional mean return
is zero and the returns follow the normal distribution,
we, first, calculate the 1-day VaR with 99 and 95% confi-
dence level. According to the parametric approach to
VaR calculation, we multiply the daily portfolio value
with the 1-day-ahead conditional volatility forecast (equal
to the square root of the conditional variance forecast)
and the left quantile at the respective confidence level of
the normal distribution (the z-scores for 99 and 95% con-
fidence level are 2.326 and 1.645, respectively). Secondly,
we calculate the daily realized return of the portfolio
(gains and losses) and, thirdly, we perform the back-
testing exercise, comparing the realized returns with the
respective 1-day VaR for the 99 and 95% confidence
levels. In the cases where the realized loss exceeds the
respective day's VaR value, we record it as an exception
in the backtesting procedure, meaning that the VaR met-
ric fails to cover the loss of the specific day's portfolio
value.

According to the backtesting results (see Table 8:
Backtesting results, No. of Exceptions), the number of
exceptions across all models is in line with the selected
confidence level (the 99 and 95% confidence levels allow
for 1 and 5 exceptions, respectively, every 100 days) and
low enough to prevent supervisors from increasing the
capital charges (in which case we refer to a bank's trading
portfolio). The higher number of exceptions means
higher market risk capital requirements for financial
institutions since regulators heavily penalize banks' inter-
nal models that fail to cover trading losses through the
VaR estimates. Following the Basel traffic light approach,
the market risk capital charge increases when the back-
testing exceptions are more than 4 in a sample of
250 daily observations and 99% confidence level. Since all
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models provide adequate coverage of the realized losses,
we should further compare the average and minimum
VaR estimates calculated based on the forecasts of each
specification (Table 8: Descriptive statistics). The VaR
estimate that provides the higher loss coverage with the
lower capital charges is the one with the lower minimum
and higher mean values. This is achieved by the realized
measure specifications, where we prefer the asymmetric
power model, augmented with the range-based volatility
impact. Given that the market risk capital requirement is
calculated on the trading portfolio total 99% VaR (abso-
lute value, 60-day average) adjusted by the penalty of the
backtesting exceptions (higher than 4 in the 250-day sam-
ple), the bank needs the smallest possible VaR average
with the larger minimum estimate in absolute terms.
Thereupon, our proposed models clearly satisfy both
criteria, contributing to the risk manager's VaR calcula-
tion of the volatility forecasts that better capture the loss
distribution (higher extreme loss coverage with higher
absolute minimum value) without inflating the capital
charges (lower absolute mean).

Furthermore, the volatility forecasts produced by the
3D-DAP-HEAVY model are directly applicable to a wide
range of business finance operations, alongside the well-
established risk management practice outlined in the
VaR empirical exercise. Portfolio managers should rely
on the proposed framework to predict future volatility in
asset allocation and minimum-variance portfolio selec-
tion complying with their clients' risk appetite. Risk-
averse investors' mandates specify low volatility bound-
aries on their portfolio positions, while risk lovers allow
for higher volatilities on the risk–return trade-off of their
investments. Accurate volatility predictions can also be
used in a forward-looking performance evaluation con-
text, through the risk-adjusted metrics, that is, the Sharpe
or the Treynor risk-adjusted return ratios. Traders and
risk managers focus on the volatility trajectory in deriva-
tives pricing, volatility targeting strategies, and several
other trading decisions. Trading and hedging in financial
markets depend on risk factors whose predicted volatil-
ities are the main input of any pricing function applied.
Moreover, financial chiefs consider volatility forecasts
when they decide on investment projects or funding
choices (bond and equity valuation defining the cost of
capital) given that expected future cash-flow variation is
a critical factor in business analytics.

Finally, policymakers and authorities supervising and
regulating the financial system should take into account
reliable volatility forecasts in designing macro- and
micro-prudential policy responses. The risk management
of the financial system is structured as follows:
(i) identification of risk sources (both endogenous—
financial market volatility—and exogenous—the

macroeconomy), (ii) assessment of the nature of risk fac-
tors, (iii) risk measurement (micro-prudential metrics at
the financial institution level and macro-prudential met-
rics at the system and markets level), and (iv) risk mitiga-
tion with proactive regulation and crisis preparedness
plans and strategies. Therefore, regulators should employ
the range-informed financial volatility forecasts of the
3D-DAP-HEAVY model across the whole risk manage-
ment process and the financial stability oversight tools,
such as the early warning systems, the macro stress-tests
on financial institutions and the bank capital and risk
frameworks. For example, the macro stress-test scenario
inputs, which include, among others, stock market vola-
tility predictions for the financial institutions' trading
books, should consider range-informed volatility esti-
mates. Furthermore, complying with the capital and risk
frameworks set by supervisors (Basel committee and cen-
tral banks), financial institutions measure their trading
portfolio's market risk (beyond the credit risk of their
loan portfolio) with the daily VaR metric. Given that reli-
able volatility forecasts, provided by our superior model-
ling framework, improve the VaR estimates considerably,
supervisors should encourage banks to improve their
market risk internal models with more accurate range-
informed volatility forecasts based on both low- and
high-frequency data.

6 | CONCLUSIONS

Our study has extended the bivariate HEAVY system to
the three-dimensional DAP specification. Our major con-
tribution to volatility modelling research within this
HEAVY framework is twofold: We, firstly, augment the
benchmark model with a third variable, that is the range-
based volatility, in order to achieve greater accuracy in
volatility forecasting. Secondly, we enrich the trivariate
formulation by taking into consideration leverage and
power characteristics. Thirdly, we derive the theoretical
time series properties (optimal predictors and second
moment structure) of the multivariate asymmetric power
system and assess its finite-sample performance through
a simulation study. Our empirical results favour the most
general asymmetric power specification, where the lags
of all three powered variables—squared negative returns,
GK volatility, and realized variance—move the dynamics
of each power transformed conditional variance. The
asymmetric response to negative and positive shocks and
its power transformations ensure the superiority of our
contribution, which can be implemented on the areas of
asset allocation and portfolio selection, as well as on sev-
eral risk management practices. Further, we provide evi-
dence on the forecasting superiority of our extensions
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over the benchmark HEAVY model through the rolling
window out-of-sample forecasting across multiple short-
and long-term horizons.

Our empirical findings on the nexus between low-frequency
daily squared returns, range-based volatility, and high-frequency
intra-daily realized measures, provide a volatility forecasting
framework with important implications for policymakers and
market practitioners, from investors, risk and portfolio man-
agers up to financial chiefs, leaving ample room for future
research on further model extensions. Thereupon, policymakers
and market players should use our HEAVY framework to
closely watch and forecast financial volatility patterns in the
process of devising drastic policies, enforcing the financial sys-
tem's regulations to preserve financial stability, deciding on
asset allocation, hedging strategies, and investment projects. As
part of future research, it would be interesting to extend the the-
oretical framework of the asymmetric power system with long
memory features and structural breaks (supporting our empiri-
cal illustrations in Data S1). A further interesting line of future
research could be the enrichment of the multivariate HEAVY
formulation of Noureldin, Shephard, and Sheppard (2012) with
leverage, power transformations, and long memory, extending
the recent study of Dark (2018), who has applied a long mem-
ory multivariate GARCHmodel to the multivariate HEAVY, or
Opschoor, Janus, Lucas, and Van Dijk (2018) within the gener-
alized autoregressive score (GAS) process of Creal, Koopman,
and Lucas (2013).
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ENDNOTES
1 The acronym HEAVY is derived by ‘High-frEquency-bAsed Vola-
tilitY’ in Shephard and Sheppard (2010).

2 This type of asymmetry was introduced by Glosten, Jagannathan,
and Runkle (1993).

3 The benchmark HEAVY specification as established by Shephard
and Sheppard (2010) does not incorporate our third variable, that
is GK volatility.
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APPENDIX A.

Second moments (Proofs)
In this section, we will derive the proofs of Theorems 2
and 3. But first we present the following lemma that we
will use in the proofs below.

Lemma 1 The vec  At−1vt−1v0t−1A
0
t−1

� �� 	
is given by:

vec  At−1vt−1v0t−1A
0
t−1

� �� 	
l= �A�2~Z γ 0ð Þ+ σ�2

� 	
: ðA1Þ

Proof Using the definition of vt − 1 in Definition 1(ii) and
interchanging the vec and expectation operators,
the left-hand side of Equation (A1) takes the form:
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 vec At−1 Ztj j^δ−Z
� �

σ^δt σ^δt
� �0

Ztj j^δ−Z
� �0

A0
t−1

h in o
:

Using the rules of the vec operator (see, for example,
Lütkepohl, 1996, sect. 7.2) and, under Condition
2, applying the expectation operator, in view of
Equation (13) the above expression yields:

vec  At−1vt−1v0t−1A
0
t−1

� �� 	
=  A�2

t−1

� �
 Ztj j^δ−Z
� ��2

γ 0ð Þ+ σ�2
� �

:

ðA2Þ

Since  A�2
t

� �
= �A�2 and in view of Notation 8, it fol-

lows that the right-hand side of Equation (A2) equals
the right-hand side of Equation (A1) as required.

Proof (of Theorem 2) Rewrite the weak VARMA repre-
sentation, Equation (6), as:

σ^δt =ω+Ct−1σ
^δ
t−1 +At−1vt−1:

Using ω = (I − C)σ (see Equation (11)) the above
equation can be expressed in terms of deviations
from the mean:

σ^δt −σ= Ct−1−Cð Þσ +Ct−1 σ^δt−1−σ
� �

+At−1vt−1: ðA3Þ

Taking the transpose on both sides of Equation (A3)
yields:

σ^δt −σ
� �0

= σ Ct−1−Cð Þ0 + σ^δt−1−σ
� � 0C0

t−1 + v0t−1A
0
t−1: ðA4Þ

Right-multiplying Equation (A3) by Equation (A4)
and, under Condition 2, taking expectations on
both sides, yields (in view of Equation (13) and
ignoring zero terms):

Γ 0ð Þ= Ct−1 σ^δt−1−σ
� �

σ^δt−1−σ
� � 0C0

t−1
� 	

+ At−1vt−1v0
t−1A

0
t−1

� �
:

ðA5Þ

Applying the vec operator to both sides of Equa-
tion (A5) yields:

γ 0ð Þ= C�2
t

� �
γ 0ð Þ+ vec  At−1vt−1v0t−1A

0
t−1

� �� 	
:

In view of Lemma 1 and the fact that  C�2
t

� �
=C�2 ,

we have:

γ 0ð Þ=C�2γ 0ð Þ+ �A�2~Z γ 0ð Þ+ σ�2
� 	

:

Solving the above equation for γ(0) gives:

γ 0ð Þ= IN2 − ~C
� �−1 �A�2~Zσ�2

(~C is given in Equation (15)), which completes the proof
of Equation (16).

Next, rewrite the general solution in Equation (8) as:

σ^δt
� �0

=
Xℓ
r=1

ω0 + v0t−rA
0
t−r

� �
D0

t,r−1 + σ^δt−ℓ

� � 0D0
t,ℓ:

Left-multiplying the above equation by σ^δt−ℓ , taking
expectations on both sides under Condition 2, and
using  Dt,ℓð Þ=Cℓ, see the text next to Equation (9),
yields (in view of Equation (13) and ignoring zero
terms):

Σ ℓð Þ= σω0 I−Cð Þ−1� 	0
I−Cℓ
� �0

+Σ 0ð Þ Cℓ
� �0

:

On account of ω = (I − C)σ, it follows that:

Γ ℓð Þ=Γ 0ð Þ Cℓ
� �0

:

Applying the vec operator to both side of the above
equation yields Equation (17) as claimed.

Proof (of Theorem 3) Rewrite jrtj^δ in terms of deviations
from the mean (see Equations (4) and (12)):

rtj j^δ−r= Ztj j^δ σ^δt −σ
� �

+ Ztj j^δ−Z
� �

σor

rtj j^δ−r
� �0

= σ^δt −σ
� �0

Ztj j^δ
� �0

+ σ0 Ztj j^δ−Z
� �0

:

Multiplying jrtj^δ − r by its transpose, using the above
expressions, taking expectations on both sides, and
ignoring zero terms, it follows that the vectorization
of Γr 0ð Þ is given by:

γr 0ð Þ= Ztj j^δ
� ��2

 �
γ 0ð Þ+ ~Zσ�2:

Applying Equation (16) to the above expression of
γr(0), Equation (18) follows (the proof of Equa-
tion (19) is similar to the proof of Equation (18)
and, thus it is omitted) and the proof is complete.
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APPENDIX B.

Dow Jones graphs

FIGURE B2 Dow Jones squared returns

FIGURE B1 Dow Jones close-to-close returns
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FIGURE B3 Dow Jones realized variance

FIGURE B4 Dow Jones Garman–Klass volatility
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APPENDIX C.

3D-benchmark model results

TABLE C1 The 3D-benchmark

HEAVY model DJ KOSPI CAC AORD IPC

Panel A: Stock returns, HEAVY - r

1−βrLð Þσ2rt =ωr + αrRL RMtð Þ+ αrgL GKtð Þ
βr :68

17:59ð Þ���
:67

10:81ð Þ���
:44

7:65ð Þ���
:77

25:67ð Þ���
:91

61:24ð Þ���

αrR :18
3:36ð Þ���

:40
2:99ð Þ���

:76
6:66ð Þ���

:28
4:48ð Þ���

:07
6:78ð Þ���

αrg :23
4:41ð Þ���

:23
1:86ð Þ�

:06
3:52ð Þ���

:13
2:26ð Þ��

:20
7:21ð Þ���

Q12 16:89
:15½ �

11:83
:46½ �

12:19
:43½ �

15:27
:23½ �

16:90
:15½ �

SBT 3:13
:00½ �

2:53
:01½ �

2:35
:02½ �

2:59
:01½ �

4:60
:00½ �

lnL −6, 315.85 −7, 579.14 −7, 757.28 −5, 721.07 −7, 398.91

Panel B: Realized measure, HEAVY - R

1−βRLð Þσ2Rt =ωR + αRRL RMtð Þ+ αRgL GKtð Þ
βR :58

12:42ð Þ���
:55

13:81ð Þ���
:57

16:89ð Þ���
:73

28:21ð Þ���
:67

11:04ð Þ���

αRR :31
4:44ð Þ���

:34
8:33ð Þ���

:36
9:78ð Þ���

:19
7:20ð Þ���

:26
3:49ð Þ���

αRg :14
4:18ð Þ���

:11
3:95ð Þ���

:06
2:88ð Þ���

:09
3:82ð Þ���

:06
2:66ð Þ���

Q12 12:85
:38½ �

15:44
:22½ �

9:46
:66½ �

16:89
:15½ �

9:53
:48½ �

SBT 3:45
:00½ �

5:26
:00½ �

2:39
:02½ �

2:67
:01½ �

3:12
:00½ �

lnL −5, 922.35 −6, 135.93 −6, 818.17 −4, 357.03 −5, 816.53

Panel C: GK volatility, HEAVY - g

1−βgL
� �

σ2gt =ωg + αgRL RMtð Þ
βg :58

12:13ð Þ���
:50

7:36ð Þ���
:57

13:46ð Þ���
:75

31:27ð Þ���
:76

14:33ð Þ���

αgR :33
7:67ð Þ���

:46
7:04ð Þ���

:38
9:84ð Þ���

:20
9:86ð Þ���

:24
4:44ð Þ���

Q12 9:65
:65½ �

12:72
:24½ �

9:33
:67½ �

12:39
:26½ �

9:62
:66½ �

SBT 4:42
:00½ �

3:01
:00½ �

2:85
:00½ �

3:22
:00½ �

8:70
:00½ �

lnL −5, 402.41 −6, 068.15 −6, 630.57 −3, 997.18 −6, 290.51

Note: See notes in Table 4.
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