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Abstract Demand Reduction is a strategy with the 
potential to make a significant contribution to the 
energy supply/demand balance. Its two major themes 
are improving the energy efficiency of devices (appli-
ances and processes) and changing people’s behav-
iour towards using less energy. In our analysis of a 
nation’s energy security, we treat Demand Reduction 
as an additional fuel which delivers ‘negafuel’, allow-
ing a particular level of energy services to be met at 
a lower volume of supply than would be possible in 
its absence. In common with other fuels, negafuel 
is delivered by a supply chain with linked stages, all 
encountering risks of various types. A comprehensive 
survey of these risks in a case study of the UK shows 
that Demand Reduction belongs to a middle-ranking 
group of fuels in terms of overall risk. High-level 
risks encountered include the difficulty of assessing 
and delivering potential energy savings, the rate of 
building construction at the highest energy efficiency 
standards, optimism bias, changing policy and regula-
tion, and operational failure (both of technology and 
policy). Assessing the risk of Demand Reduction as 

a supplied negafuel focuses attention on specific risks 
requiring mitigation, facilitating design of better pol-
icy, and more effective commercial products.

Keywords Energy conservation · Energy 
efficiency · Energy saving · Energy security · First 
fuel

Introduction

Since the oil crisis of 1973 disrupted supplies of 
middle eastern crude, energy efficiency/saving has 
been an important theme for research and public 
campaigns, emphasising the role it plays in enabling 
supply to match demand. Energy efficiency was 
described as “our most underrated energy resource” 
(Ross & Williams, 1976) and termed ‘the fifth fuel’ in 
the 1980s, after coal, oil and gas, nuclear, and renew-
ables. More recently, the group of activities, pro-
cesses, and technologies which comprise the energy 
efficiency/saving has been promoted to being ‘the 
first fuel’ (IEA, 2013; Yergin, 2011). A distinction 
can be drawn between energy efficiency/saving and 
energy conservation (Boardman, 2004; Karunathilake 
et  al., 2018). Conservation reduces the envelope of 
total energy demand, being the cumulative effect of 
energy efficiency/saving, accounting for rebound 
effects (Brockway et  al., 2021; Sorrell, 2009). The 
energy hierarchy (Arbon, 2012) also draws a distinc-
tion between energy conservation and efficiency, but 
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places conservation above efficiency rather than treat-
ing efficiency as a component. Our broad definition 
of Demand Reduction (DR) incorporates both the use 
of devices and behaviour change—the alteration of 
the way society and individuals use energy (Arbon, 
2012; Iweka et al., 2019; Seligman et al., 1978; Stad-
don et  al., 2016; Steg, 2008). Energy saving now 
includes a set of technologies and services enabling 
automatic control of devices with different timescales 
of response. Terms and techniques have emerged such 
as demand-side response (Gyamfi et  al., 2013; Par-
rish et al., 2020) and demand-side management (Dar-
wazeh et  al., 2022), including metering and control, 
which can be considered under the umbrella of DR 
insofar as they lead to a reduction in energy demand.

Calculations by the IEA for a group of eleven 
large economies in the 35 years following 1973 show 
that energy use grew by 65% less than it would have 
done without the contribution of energy efficiency 
(IEA, 2013). In developing policy for improving 
sustainability, particularly in the light of climate-
related goals, the strategy of energy saving focused 
on making appliances and processes more energy 
efficient (Pye et  al., 2021). Pye et  al. draw attention 
to the neglect in current energy modelling of a range 
of demand-side options such as reducing demand 
through lifestyle or behavioural change—how society 
makes use of energy services. Possibilities include 
rethinking business practices to extend the useful life 
of products and reduce resource consumption (Clift 
et al., 2022), greater use of teleworking (Hook et al., 
2020), the design and use of buildings (D’Oca et al., 
2018). Steinberger et al., (2009) remark that “Energy 
services are the correct conceptual framework to 
study energy demand”, advocating transition to a per-
formance-based energy economy. However, the nec-
essary business models have been slow to emerge due 
to various barriers and the lack of appropriate policy 
(Brown et al., 2022).

Sorrell, (2015) notes that “Reducing energy 
demand may prove more difficult than commonly 
assumed”, since orthodox economics may have 
underestimated the need for increasing energy con-
sumption to support economic growth. Sorrell also 
comments that policy remains largely focused on 
energy supply and incremental changes within exist-
ing systems. He advocates policy interventions to 
encourage more energy-efficient choices and more 
support for new energy-efficient technologies. Some 

of the rapid and large-scale changes needed in the 
sociotechnical systems that provide energy services 
are described in more detail by Barrett et al., (2022), 
who report a UK modelling case study that, utilis-
ing the full potential for improvements, could reduce 
energy demand by 2050 by 52% compared to that of 
2020. If such Demand Reductions could be achieved 
across similar energy economies, it would be much 
easier to meet global climate goals for carbon dioxide 
emissions. Chowdhury et al., (2018) list both drivers 
and barriers to energy saving by industry, catego-
rised as due to market-related factors, organisational 
and behavioural factors, and policy factors; a number 
of these may be interpreted in terms of risks which 
might restrict the contribution that Demand Reduc-
tion could make.

The provision of energy requires a supply–demand 
balance, so the analysis of the complete energy sys-
tem needs somehow to include DR in the same frame-
work as fuels used to provide primary energy. It 
would be possible to consider DR as part of each indi-
vidual fuel supply chain (oil, gas, wind, etc.), imply-
ing that every energy systems manufacturer, service 
provider, distributor, and user of that fuel should con-
sider a lack of DR activity as another cause of risk. 
However, this would lose the coherence that DR pro-
grammes should have, as part of the system deliver-
ing energy services to consumers (e.g. heat, light, 
mobility). Furthermore, relating DR always to the 
supply chains of other fuels would divert discussion 
of risks towards the supply side which has long domi-
nated the debate about energy security. Those oper-
ating the supply chains of individual fuels have little 
enough incentive to reduce the volumes being sold, 
yet DR has significant value with its role in reducing 
resource consumption and carbon emissions (Stein-
berger et al., 2009).

We therefore propose to include energy Demand 
Reduction in an analysis of the energy system, repre-
senting it as a separate supply chain, additional to the 
chains supplying conventional fuels. In the DR chain, 
various stakeholders undertake a series of activi-
ties which can be conceived as three distinct (com-
bined) conceptual stages: measuring the potential for 
Demand Reduction—creating devices, services, and 
communication campaigns—operating devices and 
social practice. DR brought about by this supply chain 
enables provision of the required level of energy ser-
vices using a lower volume of supply than would 
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otherwise be the case. This reduction in demand can 
be considered a ‘negative fuel’—negafuel—compris-
ing two elements: energy efficiency through use of or 
redesign of devices (appliances and processes) and 
change in behaviour by people. A related concept of 
the ‘negawatt’ has been most readily associated with 
reducing electricity demand through efficiency gains 
(Lovins, 1990). Recently, possible futures of the 
smart grid (Balta-Ozkan et  al., 2020) suggest new 
functionalities (Xenias et  al., 2015) including nega-
watt trading (Tushar et al., 2020) using various peer-
to-peer mechanisms (Xia et al., 2023). However, the 
negawatt concept does not easily encompass the wide 
range of activities constituting DR nor the provision 
of energy through the supply of molecules (gas or liq-
uid) for transport or heat.

Demand Reduction has the potential to transform 
the energy economy, but the path to achieving it car-
ries risk. Even when risk is not mentioned explicitly 
by commentators, descriptors such as ‘difficulty’, 
‘problematic’, ‘barrier’, ‘uncertainty’, or ‘issue’ can 
indicate its presence, where it suggests a possibil-
ity that the activity might not occur, or might fail to 
achieve its goal. This is consistent with the defini-
tion of risk as “Exposure to the possibility of loss, 
injury, or other adverse or unwelcome circumstance” 
(Oxford Dictionaries). Our aims in this work are to 
demonstrate a method to measure the risk present 
in programmes to promote Demand Reduction, and 
through a case study show how the assessment of risk 
could help in the formulation of relevant policy. The 
framework provides for the comprehensive screening 
of all activities in the supply chain against a range of 
risks in the categories of economic, environmental, 
innovation, manufacturing, political, skills, and tech-
nical. A wide variety of literature dealing with DR in 
the UK provides evidence for our assessments of risk 
severity.

Background to the UK case study of DR

We review the successes and failures of the various 
forms of Demand Reduction as they relate to the UK. 
Eyre, (2011) notes that one of the main difficulties in 
reducing demand is that the cost savings accrue to 
the individual consumer, but the reduction in carbon 
is to society as a whole because carbon is not ade-
quately costed. The energy efficiency of homes and 

businesses is in part about the interaction of techni-
cal innovations and the willingness of people to adopt 
them, and adapt their behaviours. For example, the 
innovation of automatic defrosting of freezers does 
not save energy, but does save time (Shove & South-
erton, 2000), while Lo Piano & Smith, (2022) review 
the possibilities for residential flexibility and the time 
shifting of energy demand.

Other claims made for improving energy efficiency 
include reducing energy poverty and GHG emissions, 
and improving thermal comfort, health, well-being, 
energy security, and economic productivity (POST, 
2017). A useful overview of the relevant UK policy 
since the early 1970s is given in Mallaburn & Eyre, 
(2014), and Hanmer & Abram, (2017) stress the need 
to learn lessons from previous societal transitions, 
e.g. moving from using coal to natural gas for heating 
homes. Most studies on DR are for buildings (Palmer 
& Cooper, 2014), but also of importance are indus-
trial processes (Griffin et al., 2016, 2017, 2018) and 
heat (DECC, 2013a; Delta Energy & Environment, 
2012; Eyre, 2011). Monahan & Powell, (2011) claim 
that reducing heating demand will have the greatest 
effect on reducing GHG emissions.

A synthesis report compiled by DECC, (2013b) 
suggests that interventions in the home may save 
between 1 and 10% depending on the sophistication 
of the scheme, and Rosenow et al., (2018) claim that 
through a combination of current technologies—
including energy efficiency—a 50% saving could be 
made. It is estimated (LCICG, 2016a) that a total of 
64  MtCO2 (by 2050) could be saved in residential 
buildings. A potential saving of 7% of household 
electricity use could be made by eliminating the 
stand-by mode of devices (Coleman et  al., 2012). 
Shove, (2003) contends that the population desires 
convenience which happens to demand energy. 
Recent detailed studies have shone light on house-
hold activities, practices, and the enabling products 
(Butler et  al., 2016) which gradually become nor-
malised (Shove & Southerton, 2000). As practices 
change there is a ratcheting-up of demand which acts 
to recalibrate societal expectations (Shove, 2003). A 
meta-study for DECC (RAND Europe, 2012) drew 
three conclusions as follows:

1.programmes combining information feedback on 
comparative consumption alongside energy effi-
ciency advice did lead to residential DR,
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2.awareness of pre-intervention consumption had 
a statistically measurable effect on the level of 
energy saving (independent of other factors), and
3.the structure and level of personalisation of the 
intervention affect the level of energy saving.

However, the provision of information alone is 
insufficient (Busic-Sontic et  al., 2017; Lange et  al., 
2014) which is described as the ‘information-involve-
ment gap’ (Axon, 2017). Its importance is noted 
(Bright et al., 2018) in deep retrofit of mixed tenure 
tower blocks in particular. Trust has emerged as an 
issue in the design of programmes for DR, e.g. energy 
advisors (Owen et  al., 2014) and government and 
businesses (Cotton et  al., 2016). However, work on 
residential consumers (Volland, 2017) indicates that 
greater trust in institutions is associated with lower 
energy use and a greater tolerance to risk is associ-
ated with higher energy use, and the trust engendered 
by community groups is demonstrated by Vita et al., 
(2020).

A group of reasons for the lack of engagement 
with DR can be described as cultural. Conservatism 
is observed among professionals and customers in 
the house building (Heffernan et  al., 2015; LCICG, 
2016a), commercial building (LCICG, 2016b; Scrase, 
2001), and the industrial sectors (LCICG, 2012). A 
particularly poorly understood factor is that of con-
spicuous consumption (Hards, 2013). Consumers 
may want to avoid the stigma of being labelled as 
“stingy”, or may prefer high-use devices such as tum-
ble dryers to mitigate the risk of visitors being faced 
with an unsightly scene. The social gains of, say, a 
new kitchen outweigh those of energy saving meas-
ures (Dowson et al., 2012). Olaniyan & Evans, (2014) 
suggest that for policies to tackle DR successfully, 
they must address behavioural and lifestyle and, in 
addition, cultural factors (Ivanova et al., 2020).

In the policy-making process the ability to use 
research feedback requires robust assessment of pilot 
and other schemes (Boardman, 2007a; Heffernan 
et  al., 2015), but such assessments are contextual 
for both consumers and policy-makers. Boardman, 
(2004) notes that weak efficiency standards have 
long-term effects as devices take many years to exit 
the stock, and stricter regulation would be a driver to 
increase energy efficiency and increase market oppor-
tunities (Stiehler & Gantori, 2016). This led Gavin 
Killip to call for a regulatory body to draw together 

training, standard setting, and compliance for the 
house-building sector (Killip, 2013). Looking to the 
second half of this century there is uncertainty in the 
amount of cooling demand for dwellings due to cli-
mate change (Gupta et al., 2015), affected by device 
efficiencies and the thermal performance of buildings.

In their international comparison of measures 
and policies the IEA (2017) claims that energy effi-
ciency has improved the economic competitiveness of 
energy-intensive industries, but it is worth noting that 
the payback period is crucial for industry (Eiholzer 
et al., 2017). The expected return-on-investment peri-
ods for efficiency projects in industry are short—per-
haps one to two years. If the payback is quick there 
is no risk of lack of access to capital, but for longer 
than, say, three years, it will be very difficult to raise 
the required investment.

A principal source of energy demand is transport. 
Low-carbon transport cannot be realised by technol-
ogy alone (Upham et  al., 2013), yet policy remains 
focused on technology innovation and not on trans-
port and mobility as a service. Furthermore, the 
widely discredited ‘predict and provide’ model per-
sists in government policy albeit sometimes disguised 
(Goulden et al., 2014). When considering innovation 
in transport planning to reduce energy use, Banister 
& Hickman, (2013) recommend the use of robust sce-
nario methods at all stages of decision making and 
policy planning. However, these principles are not 
applied universally—in the policy context, this can be 
considered an example of weak technology transfer.

In their extensive review of energy system sce-
narios, Skea et  al., (2021) note the inclusion of 
energy efficiency gains; however, this is usually as 
an assumption or modelled in a superficial manner. 
Demand Reduction is frequently overlooked in UK 
energy scenarios (Axon & Darton, 2023), though 
notable exceptions are those devised by the UK 
Energy Research Centre (Ekins et  al., 2013; Skea 
et al., 2011) and National Grid, (2022).

Methodology

We treat DR, like other fuels, as having a sup-
ply chain, in the sense that it results from a series 
of activities undertaken in a particular order by the 
stakeholders. For example, smart meters were con-
ceived as a way of reducing energy costs for UK 
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consumers by giving real-time information about 
energy use. The chain of activities that we treat as a 
‘supply chain’ in this case is as follows: pilot stud-
ies and academic investigation suggest the scale of 
the potential energy savings—go-ahead is given by 
government to roll-out smart meters to all UK house-
holds—meter manufacturers devise and supply the 
appropriate equipment—installers are trained, and the 
replacement meters are fitted—the householder uses 
the in-home display to take various steps to reduce 
their energy use. These activities are intended to lead 
to a reduction in demand and can therefore be consid-
ered comprising a typical negafuel supply chain.

To enable comparisons with fuels on the supply 
side of the energy balance, the series of activities 
directed at reducing energy demand is considered a 
sequence of six stages: exploring, exploiting, condi-
tioning, converting, distributing, using (Axon & Dar-
ton, 2021a). For some fuels some consecutive stages 
may be combined, and this is the case with DR. By 
generalising the activities for all DR supply chains, 
we obtain the descriptions in Table 1.

The stages for DR are less distinct than for other 
fuels (Axon, 2019), and their aggregation can be 
thought of as follows (Table  1). Exploration (stage 
1, measuring potential) identifies the amount of DR 
which could be obtained by a particular intervention; 
it includes, for example, public/consumer survey-
ing or the theoretical modelling of energy efficiency 
devices or processes and similar investigations. 
Stages 2–3 (exploit and condition the fuel) develop 
the instruments (devices, services, or campaigns) by 
which users can achieve DR. Activities include pilot 
studies, the planning (or modelling) of major activi-
ties, and testing energy efficiency devices/processes 

at the research stage of development. Stages 4–6 
(convert, distribute, use) see the deployment of the 
DR intervention in the market place. Inevitably there 
is blurring at the interfaces between stages, reflecting 
the nature of social systems. Furthermore, explicitly 
incorporating social practices in our assessment leads 
to considering the lack of take-up or the rebound 
effect (Sorrell, 2009) a ‘technical failure’.

All activity carries risks, and whether these are 
trivial or significant is important for analyses such 
as energy security. We aim to provide a comprehen-
sive and self-consistent system view, incorporating 
all significant causes of risk that are applicable to the 
complete range of fuels used by a nation, for all pur-
poses and applications (Axon & Darton, 2021a). The 
risks were identified using a modified Process Analy-
sis Method (Axon, 2019; Darton, 2017; Smith et al., 
2013) for discovering sustainability indicators. The 
process analysis method identifies impacts (associ-
ated with causes of risk in the modified method) and 
links each to a decision, policy, or practice generating 
the impact, and to an entity (person or group) receiv-
ing the impact. The causes of risk were found using 
an extensive literature study (Axon & Darton, 2021b) 
yielding a total of 34 generic but distinct potential 
causes of risk which are listed in Fig. 1. These causes 
of risk can be conveniently classed in seven catego-
ries: economic, environmental, innovation, manufac-
turing, political, skills, and technical. For each cat-
egory we compose a description of the desirable state 
of the energy system and typical causes of risk to help 
identify the relevant risks at each stage of a specific 
fuel supply chain.

Severity of each identified risk is scored by consid-
ering its likelihood of occurring (L) and its impact if it 
does (I). Then Risk = L × I, following the rules for risk 
matrices (Baybutt, 2016; Cox, 2008; Levine, 2012; 
MacKenzie, 2014). Likelihood is scored on a scale 
1 to 3, where 1 indicates ‘rare’ (frequency <  < once 
in 10 years), 2 indicates ‘possible’ (frequency ~ once 
in 10 years) and 3 indicates ‘likely’ (frequency ~ once 
per year). Impact is measured on a scale of 1 to 
4. Insignificant impacts (score 1) are at the edge of 
normal or accepted operation; minor impacts (score 
2) involve recoverable short-term loss of activity or 
function; moderate impacts (score 3) involve recover-
able but sustained delay, loss or change in function; 
major impacts (score 4) cause irrecoverable change or 
loss of function or enforced cessation of activity such 

Table 1  Process stages for DR and a description of the activi-
ties which characterise them

Stage Activity

1. Explore Measure potential
2. Exploit Create devices, 

services, and 
communication 
campaigns

3. Condition

4. Convert Operate devices 
(electrical, heat, 
vehicles) or social 
practice

5. Distribute
6. Use
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as complete loss of fuel source, loss of life, closure 
of business/site/operation. This scoring of impacts 
takes account of the resilience of the energy system to 
recover or adapt following a risk event.

The likelihood and impact scores are determined 
for each risk in the context of the activity at each 
stage for each fuel. For a particular fuel the same 
risk may occur at different stages, but if it relates 
to a different activity, it must be counted each time. 
This is not double counting. Some of the evidence 
which supports the expert assessment of likelihood 
and impact is cited here, together with the UK case 
study results for the different DR supply chain stages. 
The literature consulted includes a wide range of 
published data relating to the UK, a meta-analysis of 
energy system performance in which risk is seldom 
articulated directly.

The risk score can vary between 1 and 12, with 
three consequence levels. Low risk scores (1–2) 

denote risks which are routinely managed. Mod-
erate risk scores (3–6) require responses rang-
ing from a ‘watching brief’ to some technical or 
policy intervention, for example. High risk scores 
(> 6) must be addressed—mitigation plans must be 
in place and/or immediate attention is needed to 
reduce risk level. We find in practice that our scale 
of risk severity (1–12) enables sufficient granular-
ity in the analysis to locate and quantify the risks 
in fuel supply chains. The more nuanced distinc-
tion between risks that would be possible using a 
scale with more points is not justified by the qual-
ity of the data on which our risk assessments are 
based (Axon & Darton, 2021b). Scoring the indi-
vidual risks all on the same scale avoids the need 
for the later introduction of arbitrary weighting 
factors which arise, for example, when different 
types of risk (economic, environmental, etc.) are 
rated on different scales.

Fig. 1  Ranked list of the scores for the causes of risk for the relevant stages (Table 1). Entries in grey are not relevant at that stage.  
Source: Axon, (2019)
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In the description of each identified risk an addi-
tional element is its scale. Risks are designated as 
‘micro’ if they relate to single sites or projects; ‘meso’ 
risks occur at the scale of the system boundary; 
‘macro’ risks relate to widespread activity outside the 
system boundary. When considering the consequence 
for energy security of the complete risk profile of a 
fuel supply chain, appreciating which parts are influ-
enced by actors at different scales helps to inform 
the choice of appropriate responses and intervention 
(Axon & Darton, 2021b).

Statistical analysis of the results for the UK case 
study demonstrated no systematic bias, and low sen-
sitivity to the likelihood and impact scores for indi-
vidual risks. An expert verification workshop sug-
gested general agreement with the approach; the need 
for greater stakeholder consultation on the nature of 
risks in fuel supply chains was emphasised (Axon & 
Darton, 2021b).

Results and discussion

We use the academic and grey literature, particu-
larly that focussed on the UK, to identify risks 
from descriptions of ‘barriers’, ‘issues’, ‘difficul-
ties’, ‘failures’, and related synonyms. The complete 
risk assessment is given in Fig. 1, in the form of a 
ranking of total risk score for particular causes of 
risk for the three combined stages of DR (Table 1). 
The ranking of the causes of risk (Fig. 1) is indica-
tive only and not meant to be used in isolation. The 
exact placement of an individual cause of risk is of 
secondary importance. The detail for each risk at 
each stage gives the richness required to develop 
a strategy for intervention; the distribution of the 
high- and medium-level risks signals where atten-
tion should be paid. We discuss the interpretation 
of the causes of risk in the context of a negafuel and 
the underlying evidence for assigning the likelihood 
and impact scores. For brevity we have only dis-
cussed the moderate- (yellow) and high-level (pink) 
risks.

Stage 1: measuring the potential

Although some companies are creating products and 
services, measuring the potential, for the most part, is 
at the research stage in the UK.

Stage 1: one high‑level risk

The sole high-level risk for stage 1 is the quality of 
fuel source. In the context of DR, the risk posed is 
the combination of the variability of savings gained in 
trials and the estimated maximum potential savings. 
Strictly the latter is abundance or resource availability 
(of negafuel). Pragmatically it is not helpful to distin-
guish between variability and the estimated maximum 
because of the high uncertainty in such estimates (van 
den Brom et  al., 2019). From the individual studies 
(modelling and trials) described below, we suggest 
that the ‘quality of the fuel’ as a cause of risk is in the 
highest category—the risk is likely to occur, and the 
variability may give rise to major delays in exploiting 
this ‘resource’, i.e. designing and implementing effec-
tive DR programmes. The discussion of the quality of 
the fuel source addresses four applications: residen-
tial dwellings, commercial buildings, industrial pro-
cesses, and transport.

Despite claims for the potential of residential 
energy saving, Buchanan et  al., (2015) observe 
that there is little evidence that feedback via in-
home displays reduces demand. There is some 
evidence that installing residential PV may also 
reduce demand by raising awareness of energy use 
and cost (Keirstead, 2007). A field study by Wyatt, 
(2013) suggested that installing a condensing 
boiler and cavity-wall insulation simultaneously 
might yield a reduction in gas use of 14–20%, but 
only 8–12% when the boiler was in combination 
with loft insulation. The quantity of hot water use 
(Allen et al., 2010) and heat use (Brook Lyndhurst, 
2012) vary between similar households. The pat-
terns of use of heating vary substantially (Huebner 
et  al., 2013a, b, 2015; Kane et  al., 2015), in part, 
explained by a wide range of system set-point tem-
peratures (Jones et  al., 2016). Experiments using 
zoning of dwellings suggested a potential saving 
of approximately 12% of energy for space heat-
ing (Beizaee et  al., 2015). The gap between pro-
jected and actual energy savings for residential 
thermal renovations has been quantified (van den 
Brom et  al., 2019). Usually the magnitude of DR 
estimated is what could be described as the ‘peak’ 
value. Batey & Mourik, (2016) show the difficulty 
in retaining the levels of reductions post-study, 
indicating that the quality of the fuel source (i.e. 
negafuel) can degrade quickly with time.
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Commercial buildings have received less attention. 
Using US data, modelling (Sun et al., 2016) estimates 
that the energy demand for cooling, lighting, space 
heating, and water heating could be reduced by 15%, 
5%, 16%, and 20%, respectively, by 2035. Estimates 
for the UK suggest that a total saving of 70  MtCO2 
could be made by 2050 (LCICG, 2016b).

For industry, modelling suggests that by 2050 it 
may be possible to achieve reductions in total energy 
usage of 77% (Fais et  al., 2016) and 500  MtCO2 in 
emissions (LCICG, 2012). However, a case study of 
a cement production facility showed that a 4% reduc-
tion was possible at that site (Summerbell et  al., 
2017), and better management of the HVAC system 
in supermarkets might yield a 4% reduction in elec-
tricity (Mylona et al., 2017). A wide range of savings 
has been identified throughout the entire food chain 
(Tassou et  al., 2014). An important role is played 
by systematic energy auditing to identify opportuni-
ties for energy saving in industrial operations (Selim 
et  al., 2021; Thollander et  al., 2020). Meath et  al., 
(2016) surveyed energy saving measures for SMEs, 
noting the motivating factors and barriers both to 
technological and behavioural changes, many of 
which can be interpreted in terms of risks which ham-
per DR programmes.

Now we consider quality of fuel source (DR) in 
transport systems. Between 2002 and 2019 the num-
ber of trips shorter than one mile made by motor-
ised transport increased by about 5%, and in 2016 
the proportion of trips between 1 and 2 miles made 
by private motorised transport was about 60% (DfT, 
2018). Also using modelling, Lovelace et al., (2011) 
examined energy savings from a range of scenarios 
by which short trips could be switched from car to 
bicycle, and Anable et  al., (2012) suggest that the 
distance travelled could be reduced by 74% by 2050. 
The seemingly misaligned theoretical savings and 
field measurements suggest that the quality of the 
fuel as a cause of risk has been underestimated. Haq 
& Weiss, (2018) point to the wide range of uncer-
tainties facing consumers and businesses when mak-
ing transport purchasing decisions, that might make 
more energy-expensive options nevertheless more 
attractive. Reducing the energy used for shipping is 
an under-researched topic. However, the trade-off 
between speed and patterns of demand for goods and 
services shows that deep decarbonisation of maritime 
transport can only come about by a fleet-wide speed 

reduction (Walsh et  al., 2017). Energy-saving tech-
niques are available, both for ships at sea and for port-
to-ship interactions (Hoang et al., 2022).

Stage 1: four moderate‑level risks

One problem identified is the lack of continuity of 
funding for public programmes (De Laurentis et  al., 
2017), interpreted as lack of access to capital (eco-
nomic). For energy efficiency products and services, 
however, Stiehler & Gantori, (2016) report that the 
market may grow by 7–8% p.a. One example of this 
potential is the comparatively poor U-values of the 
UK’s housing stock (Guertler, 2016). On balance, we 
judge the lack of access to capital to be a moderate 
risk.

Turning to the causes of risk in the innovation 
category, Hannon & Skea, (2014) make a compel-
ling case for the necessity of public support for basic 
research which assesses the possibilities and scale for 
DR. The lack of public subsidy may occur, and with-
out public funding many programmes would suffer 
significant disruption; therefore, we judge this to be a 
moderate risk.

In the political category, we consider that the risk 
of a changing policy and regulatory framework may 
occur and will have a short-term effect at this stage; Ó 
Broin et al., (2015) suggest that further policy inter-
ventions will be required as price signals will not be 
sufficient to achieve DR. Significant public concern 
may arise (Brook Lyndhurst, 2012), though currently 
it may be more accurately described as resistance 
to change. Gill et  al., (2011) conclude that residents 
need ‘recalibrating’ as to what ‘high’ and ‘low’ mean 
in terms of energy use.

Stages 2–3: creating devices, services and 
communication campaigns

Stages 2–3: one high‑level risk

The sole high-level risk for stages 2–3 is insufficient 
capacity to construct sites. We interpret this cause of 
risk as uncertainty regarding the replacement rate of 
the housing stock with new buildings of the highest 
energy efficiency rating, and the rate of retrofitting 
efficiency measures to existing stock. Our assess-
ment places it in the highest risk category. The rate of 
improvement in energy efficiency of dwellings is not 
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only related to the rate of building and retrofitting at 
the best current standards but also the rate of demoli-
tion of inefficient stock (Boardman, 2007a). This lack 
of capacity in the construction of housing has been 
prevalent for a significant period in the UK (Board-
man, 2007b; Boardman et  al., 2005). Planning also 
plays a role in the insufficient rate of housing con-
struction (Boardman, 2007a; Forde et al., 2021; Hef-
fernan et al., 2015) and industrial facilities (LCICG, 
2012). Killip et al., (2020) point to the complexity of 
the construction industry supply chain with its many 
actors, serious pressure on costs, and (often) poor 
quality control. These make it difficult to frame and 
implement policy for effective promotion of energy-
saving building performance in the UK.

Stages 2–3: nine moderate‑level risks

The services to deliver behaviour change are not part 
of a well-functioning market (economic) because the 
understanding is at the research stage. Some energy 
efficiency products are in a mature market, but the 
design for low carbon homes and some products are 
not (Heffernan et al., 2015). Overall, we consider the 
lack of a well‑functioning market to be a moderate-
level risk, but the impact could be significant if the 
effects of behaviour change programmes are not sus-
tained or not scalable. Macroeconomic modelling 
(Figus et  al., 2018) suggests that reductions in fos-
sil fuel use for private transport will not be achieved 
through technical efficiency improvements, but prob-
ably require either travel mode switching or whole-
sale substitution of fossil fuel by renewables.

Killip et  al., (2018, 2020) observe technology 
transfer issues for low carbon in the construction 
industry, specifically for supply chains, designers, 
and installers. They suggest that these are overlooked 
at the policy level so there is no driving force suf-
ficiently strong to promote change. There is strong 
evidence of the significant scope for innovation in, 
for example, the steel sector (Garvey et  al., 2022), 
new and renovated domestic buildings (Killip et  al., 
2014; LCICG, 2016a), non-domestic buildings 
(LCICG, 2016b), energy efficiency policy (POST, 
2017), and demand management technologies for 
industry (Dyer et al., 2008). Despite this open R&D 
landscape, Gupta & Gregg, (2012) claim that public 
subsidy in housing research is essential, i.e. a lack of 
public subsidy is a significant cause of risk for future 

development. Likewise, the UK’s energy efficiency 
demonstrator scheme was responsible for 25% total 
industrial DR between 1979 and 1989 (Griffin et al., 
2012). The need for ‘clean’ innovation to lead long-
term sustainable (i.e. zero-carbon) growth has been 
emphasised, together with coordinated policies and 
institutions to foster it (Stern & Valero, 2021); their 
lack constitutes an innovation risk.

In considering the political category of risks, 
there is some overlap with stages 4–6, but this sec-
tion concentrates on the design of measures and pro-
grammes and less on the results of market-led prod-
ucts and services. Rosenow & Eyre, (2013) note that 
“…UK energy efficiency policy is very fluid…” and 
this remains true currently including for road vehi-
cles. The importance of policy on pricing and taxa-
tion instruments is emphasised by Brand et al., (2013) 
who conclude that policy design should concentrate 
on incentive schemes with strong signals to prioritise 
low carbon systems. In a thorough review of Euro-
pean community-based behaviour change initiatives 
(Axon et  al., 2018), it was observed that communi-
cations are the focus of most programmes with little 
emphasis on the role of fiscal support or regulation 
and legislation. Modelling work (Figus et  al., 2017) 
suggests that it is hard to meet all targets and expected 
outcomes simultaneously, but nevertheless Dato, 
(2018) makes the case that not combining policy for 
energy efficiency and renewable energy presents a 
risk. The risk of public concern of energy technolo-
gies and services aimed at achieving DR has already 
occurred, for example in smart metering (Buchanan 
et  al., 2016) and dynamic tariffs (Darby & Pisica, 
2013). Another example is that of the Kirklees warm 
zone scheme where even though the interventions 
were free, there was less than 100% take-up (Long 
et al., 2015) with the main concern being the physi-
cal disruption to the home. When questioned about 
the possibility of adopting heat network members of 
the public liked the idea that someone else would be 
responsible for the maintenance but disliked the nec-
essarily long contracts and the level of disruption.

Within the technical risk category, we can define 
the rebound effect as a failure of policy design 
and operation. Using a combination of modelling 
tools, Chitnis et  al., (2013) suggest that a shift to a 
low carbon energy system will lead to an increased 
rebound effect. A small field study (Jones et al., 2016) 
demonstrated a rebound effect of space heating in 



 Energy Efficiency           (2023) 16:84 

1 3

   84  Page 10 of 22

Vol:. (1234567890)

social housing. The concept of the ‘prosumer’ (pro-
ducer–consumer) is widely considered positive for 
the take-up of microgeneration; however, questions 
remain whether this is just a technical fix which could 
be considered in opposition to DR (Ellsworth-Krebs 
& Reid, 2016).

Stages 4–6: operating devices (electrical, heat, 
vehicles) or social practices

Stages 4–5: three high‑level risks

The three high-level risks are optimism bias arising 
in the innovation category, changing policy and regu‑
latory framework occurring in the political category, 
and operational failure in the technical category.

So-called ‘smart homes’ have long been touted 
as a way to reduce energy consumption, but Darby, 
(2018) suggests that this will simply lead to increased 
parasitic loads and that smart homes have little to do 
with energy efficiency or DR. Estimates or projec-
tions of energy savings carry uncertainty, for exam-
ple retrofitting of various solutions for dwellings 
(Loucari et  al., 2016), Passivhaus standards (John-
ston & Siddall, 2016), the fabric performance of 
new-build dwellings (Johnston et  al., 2015), heating 
controls (Shipworth, 2011), and the performance of 
non-domestic buildings (Pritchard & Kelly, 2017). 
Batey & Mourik, (2016) consider the performance 
explicitly to be a risk. In the light of the wide range 
of systems and situations where optimism bias mani-
fests, we judge this to be a risk in the highest category 
with an impact that could lead to significant delays in 
energy efficiency improvements and DR.

The widely recognised changing policy and 
regulatory framework in the UK is acknowledged 
to extend to energy efficiency and DR in industry 
(LCICG, 2012). An important, but subtle, observa-
tion is that UK energy policy is in conflict with the 
aims of DR (Sun et al., 2016). UK policy is supply-
side dominated, the  CO2 target incentivising fuel-
switching and more renewable generation. Unstable 
policy and legislation (including unclear definitions) 
is hampering the development of the ESCO mar-
ket (energy efficiency projects financed by savings) 
(Bertoldi & Boza-Kiss, 2017), while O’Keeffe et al., 
(2016) observe discontinuities in policy and its 
objectives. O’Keeffe et al. focus on the UK Govern-
ment’s Green Deal scheme, noting that SMEs express 

concern about the Government’s commitment to the 
programme and the lack of a visible coordinating 
body. The lack of long-term monitoring of projects 
(Santangelo & Tondelli, 2017) can be viewed as not 
only a problem about measuring the potential for DR 
but also a failure of regulation particularly as public 
subsidies invariably support the projects.

The main risk in the technical category is that of 
operational failure of various types: some are engi-
neering failures, others are policy or behaviour ‘fail-
ure’. Many authors identify the split incentive prob-
lem which we class as a policy failure since it is 
not clear where the responsibility lies between the 
parties, and no policy framework exists to guide or 
instruct them. An example is the case of the landlord-
tenant relationship in a multi-occupancy commercial 
buildings (Axon et al., 2012; LCICG, 2016b; Scrase, 
2001). It is the landlord only who can improve the 
energy efficiency of the building, but it is the tenant 
who pays the energy bills (without the control over 
the building environment). The problem is similar in 
the private rented sector (Hamilton et al., 2014; Hope 
& Booth, 2014; LCICG, 2016a; Reid et  al., 2015), 
with Dato, (2018) investigating household investment 
in renewable energy systems specifically. A variant 
of the split incentive problem arises in deep retrofit 
projects in mixed tenure tower blocks (Bright et  al., 
2018) where the question arises whether the private 
co-owners should have to pay the bill for improve-
ments that can only be justified as wider community 
benefits.

We also class the performance gap as an opera‑
tional failure. It is well documented and refers to 
either optimism in the modelled or anticipated perfor-
mance (Marshall et al., 2017) or lower actual perfor-
mance due to installation or operation issues (Dow-
son et al., 2012; Johnston et al., 2016; Watson, 2015), 
for example. An important observation is that there 
is no legal requirement to fix any performance gap in 
the finished building (LCICG, 2016a). Operational 
issues of a building can be due to human factors (a 
‘behavioural failure’), but other examples are data 
visualisation for industrial processes (Challis et  al., 
2017) and installers making engineering errors due 
the heterogeneity of installations (Fylan et al., 2016). 
Another common failure is retrofitting of low U-value 
cladding leading to over-heating (Baborska-Narozny 
& Grudzinska, 2017). The rebound effect (Chitnis & 
Sorrell, 2015) is also considered an operational failure 
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in the context of DR, with Baborska-Narozny et  al., 
(2016) showing that the marketing of PV systems as 
‘free green electricity’ undermined DR, creating an 
unintended rebound. Turning briefly to transport, the 
provision of well-used cycle routes and increases in 
active travel did not lead to reductions in transport 
 CO2 emissions in the UK (Brand et  al., 2014). Fur-
thermore, the passenger vehicle rebound effect (gen-
eral) is estimated as 26% (Stapleton et al., 2017). As 
this cause of risk has occurred and has the capacity to 
halt projects (particularly the split incentive problem), 
we place operational failure in the highest category.

Stages 4–6: eight moderate‑level risks

There is evidence of a lack of well‑functioning mar‑
kets (economic). For improving energy efficiency 
the ownership and operations of networks are prob-
lematic and particularly noticeable in the UK smart 
meter roll-out programme (Pyrko & Darby, 2011). 
The energy service company market is noted as hav-
ing high transaction costs which inhibit market entry 
(Bertoldi & Boza-Kiss, 2017). Two other indicators 
of a weak market structure are “green over‑pricing” 
observed by Heffernan et al., (2015) and low energy 
price elasticity (Eyre, 2013). The lack of access to 
capital (economic) is described by various authors 
(Brown & Chapman, 2021; POST, 2017; Rosenow 
& Eyre, 2013). According to Booth & Choudhary, 
(2013) risk arises because the benefits are not all 
measured in the reduction of consumer energy bills, 
but financially unquantifiable improvements such as 
thermal comfort or health. They claim that only loft 
insulation and draught excluders show a net present 
value greater than zero. In the residential housing sec-
tor there are specific issues for private landlords (Reid 
et  al., 2015), social landlords (Liu, 2018), adopting 
zero-carbon technologies (Caird et  al., 2008), and 
renewable energy systems specifically (Dato, 2018). 
Dato, (2018) also makes the case that poorer house-
holds need additional financial support, even for 
energy efficiency measures. In the previous stage we 
noted that the expected payback periods in indus-
try for energy efficiency measures might scupper 
projects, but even if they go ahead access to capital 
may still be a barrier (LCICG, 2012). In commercial 
buildings the trend towards shorter leases reduces the 
tenant’s appetite for DR unless payback time of any 
project is similarly short (Elliott et al., 2015).

Turning to the innovation category, although 
some areas of energy efficiency are mature, oth-
ers—including retrofitable technologies (Gooding & 
Gul, 2017)—have plenty of scope. The energy effi-
ciency of homes and businesses is in part about the 
interaction of technical innovations and the willing-
ness of people to adopt them and adapt their behav-
iours. This led Shove, (1998) to question whether 
people really do have technologies “transferred upon 
them”. This somewhat reductionist process assumes 
that the uptake of energy efficient technologies (for 
buildings) simply requires overcoming non-technical 
barriers; but this may well be missing the point, and 
perhaps explains the hit-and-miss nature of the take-
up of devices and practices. We assess this to be an 
underestimated cause of risk. The cost of financing 
R&D is widely accepted as requiring public support, 
but because of the high absolute costs early adop-
ters of industry energy efficiency measures may also 
need subsidies (LCICG, 2012). Analysis of patents 
(Bonilla et al., 2014) shows the importance of public 
R&D (in addition to oil price) for innovation in diesel 
engines.

In the political category, the development and 
enforcement of codes and standards are a recognised 
risk in several areas of residential (LCICG, 2016a) and 
commercial buildings (LCICG, 2016b). Two examples 
are the current building regulations (Heffernan et  al., 
2015) and the installation of zero carbon technologies 
(Caird et al., 2008). The lack of standardisation is put 
forward by Fawkes, (2015) as a deterrent to invest-
ment. In the context of DR, significant public concern 
manifests as lack of engagement or willingness to 
make changes, e.g. due to added complexity (Parrish 
et  al., 2020). An important tool available to the gov-
ernment is taxation and although it could be effective 
at driving policy for DR, it is deeply disliked by the 
citizenry (Eyre, 2013). Homeowners exhibit scepti-
cism about the effectiveness of some new technologies 
(Ipsos, 2013) and will not undertake even the easiest 
efficiency measures (Palmer et  al., 2012). The latter 
may be due to the low level of importance they place 
on energy, or the dislike of the disruption and hence 
inconvenience caused (Rosenow & Eyre, 2013). There 
may also be aesthetic reasons (Sunikka-Blank & Gal-
vin, 2016) or cultural factors (Dowson et  al., 2012; 
Hards, 2013; Heffernan et  al., 2015; Olaniyan & 
Evans, 2014). Despite a plethora of evidence for public 
concern, we also note that the UK economy’s energy 
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intensity per job has been falling steadily since at least 
1990 (Roberts et al., 2019), as has the thermal demand 
per unit output (Roberts et  al., 2015). This tension 
between home and work might be summed up as a lot 
of fuss by a public that mistrusts change, whereas the 
workforce quietly adopts new technologies and prac-
tices. Buyers of new-build homes are concerned about 
the quality of work delivered, but loss of reputation for 
housebuilders appears not to be a sufficiently strong 
incentive to improve the quality of work.

Skills—a cross-cutting issue

The lack of appropriate vocational and specialist skills 
in the UK workforce is judged to pose a moderate level 
risk arising at stages 2–3 and 4–6. In the industrial sec-
tor there is a lack of energy management professionals, 
with the food and drink industry considered critical 
(LCICG, 2012). For commercial buildings, the instal-
lation, commissioning, and operation of building ser-
vices have been identified as suffering a skills shortage 
(LCICG, 2016b; Engineering UK, 2018). In the residen-
tial sector, it is recognised that designers lack knowledge 
to create dwellings to passive house and zero-carbon 
standards (respectively) (Heffernan et  al., 2015; Pitts, 
2017) that specifying and estimating skills are a problem 
(Glass et al., 2008), and that technical skills for retrofit 
are lacking (Fylan et al., 2016; Gooding & Gul, 2017; 
Killip, 2013; LCICG, 2016a). According to Fylan et al. 
(2016) installers lack the knowledge of the technologies 
and products to make good adaptations, which is less of 
a problem in high-volume new-build. There is also some 
evidence of a lack of facilitators in the ESCO market 
(Bertoldi & Boza-Kiss, 2017). There is evidence that 
building regulations are not strictly followed (Board-
man, 2007a; Killip et  al., 2020) which may in part be 
due to the standard of construction skills in the UK.

The relative position of DR compared with other 
fuels

Table  2 presents the risk scores for DR at each stage 
and the comparison with other non-renewables and 
the average for all fuels. We observe for stage 1 that 
although the risk score for DR is lower than the average 
for other non-renewables, it is higher than the average 
for all fuels. Stage 1 is measuring the potential of DR 
as a resource (negafuel) and its relative score reflects 
the need for less investment to explore for negafuel 

resource compared with fossil fuels, but acknowledges 
that investigating DR is a process more complex than 
measuring the potential of most renewables. Similarly, 
the risk associated with stages 2–3 for DR is signifi-
cantly lower than the average for both other non-renew-
ables and the average for all fuels. At stages 4–6 (con-
vert, distribute, use) DR risk is again lower than the 
average for other non-renewables, but higher than the 
average for all fuels. This reflects the relatively poor 
levels of maturity of DR compared with all fuels.

The full list of risk scores for all fuels, not examined 
in detail here, is given in the Appendix. As expected, 
non-renewables cluster mainly at the top while renewa-
bles cluster at the bottom. Overall DR has a normalised 
risk score of 45, placing it mid-way between the most 
and least risky fuels. At first glance this is a surpris-
ing result for what is termed the ‘first fuel’. However, 
our analysis assesses identified risks, not what may be 
intuitive, nor what may be desirable from a sustain-
ability viewpoint (efficiency). This distinction can be 
thought of as between stating that efficiency ‘is’ and that 
it ‘ought to be’ the ‘first fuel’.1 In Table 3 we summa-
rise various characteristics of DR resulting from the risk 
assessment method. DR is a non-renewable resource 
because when an action is taken to eliminate a particular 
(part of) demand, that exact action cannot be repeated.

The top-ranking risk (Fig. 1) is lack of public sub‑
sidy. Programmes to promote DR commonly rely on 
public funding to get started, for example to stimu-
late commercial activity in the early phase. Yet, the 
second-highest ranked risk is changing policy or 
regulatory framework which has afflicted UK policy 
towards DR for many years. Continuity and consist-
ency in policy help establish fledgling industries. The 

Table 2  The absolute scores for DR at each stage. The nor-
malised risk score is only generated at the final step to mini-
mise rounding errors. The risk score is calculated from Fig. 1

a  Source: Axon, (2019)
b Source: Axon & Darton, (2021a)

Stage Risk score (abs) 
DR

Average non-
renewables a

Average  
(all fuels) b

1 42 52 37
2–3 67 140 118
4–6 86 108 70

1 This distinction was brought to our attention by Prof. N.J. 
Eyre, Pers. Comm, September 2022.
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next highest-ranked risk is optimism bias, which has 
led to disappointment when programmes have not met 
their targets. This background of uncertain support 
and unexpected outcomes perhaps explains the next 
two highly ranked risks, lack of a well‑functioning 
market and lack of access to capital. If energy is rela-
tively cheap, which is also an objective of government 
policy, the value of negafuel remains low; thus, invest-
ment in DR is hampered. As a result, it is both difficult 
to establish a market for products and services related 
to DR, and to encourage the workforce to obtain the 
necessary vocational and specialist skills.

Conclusions

Our analysis shows that DR is far from risk-free. More-
over, the risk analysis method (in this case applied to 
the UK) identifies a small group of high-scoring risks 
that, taken together, suggest a narrative explaining why 
accomplishing DR is difficult. Each of the activities in 
the supply chain attracts risks in various forms. Our 
method and analysis show that the causes of these risks 
are not evenly distributed and have differing importance 
along the supply chain. Understanding the distribution 
of causes of risks sheds light on potential priorities for 
policy intervention and gives detail about the process of 
DR not previously considered in a single analysis. DR 
requires specific policy instruments to give necessary 
coherence to its promotion across the energy economy 
(all fuels); this reinforces the benefit of considering 
DR delivered by its own supply chain, rather than as an 
aspect of other fuels.

Demand Reduction appears near the middle of the 
risk-ranking of fuels. It seems likely that this explains 
why DR programmes have not achieved the impact 
expected—the risks involved have been underestimated 
previously. The misaligned theoretical savings and field 
measurements suggest that, in particular, the quality of 
the fuel (reliability of expected DR benefit) as a cause 
of risk has been underestimated. The activities associ-
ated with creating devices, services, and communica-
tion campaigns are often considered the essence of DR. 
However, our analysis shows that the other two stages of 
activity (measuring the potential and operating devices 
and social practice) carry greater risks though these risks 
are less often recognised. DR is seldom incorporated 
into future energy scenarios which usually focus on pri-
mary energy supply, thereby neglecting the contribution 
that could be made by reducing demand. We suggest 
that by treating DR (or energy efficiency / saving) as a 
‘negafuel’, it can be given equal status with fuel supply.

Declaring efficiency as the ‘first fuel’ is clearly not 
having the desired effect. Our work shows that it is not 
the ‘first fuel’, since there are other actual fuels which 
can meet demand at lower risk: thus, it appears to be 
less risky to add more PV or wind capacity to the elec-
tricity network, for example. The common presump-
tion that DR is cheaper than buying fuel is simplistic—
it fails to price in the direct costs and the risk of the 
DR route. The implied discount rate of the future value 
of DR is very aggressive, meaning that the long-term 
value of DR is not recognised, suggesting that DR is 
not worth investing in at the present time.

Thinking about risk in the context of DR, rather than, say 
drivers and barriers suggest that risk mitigation techniques 

Table 3  Summary of characteristics of DR as a negafuel

Characteristic Result

Fuel type Non-renewable
Risk group Bioliquids, Demand Reduction, ocean (tidal), ocean (wave), waste
Normalised risk score 45
Relative position 11/19 most risky
High-level risks (number) 5
Moderate-level risks (number) 21
High-level risks Quality of fuel source (stage 1), Insufficient capacity to construct sites (stages 

2–3), optimism bias (stages 4–6), Changing policy or regulatory framework 
(stages 4–6), operational failure (stages 4–6)

Riskiest category Innovation
Riskiest stage Stages 4–6
Most significant source of risk Lack of public subsidy
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should be part of the design process for programmes of DR, 
whether these are public pilot programmes, policy, or com-
mercial products. Barriers are an ill-defined entity that may 
not be quantified. Identifying explicit risk, on the other hand, 
enables pricing in the risk of an outcome not being achieved, 
providing a new set of tools to deploy. We propose that a holis-
tic risk-based approach to DR—including treating it as a nega-
fuel—will open-up new fronts to understand how to create 
programmes of DR which address the risks, and which con-
sequently may be more successful than previous programmes.

Formulating policy and regulation to promote DR 
should take account of the significant risks involved. 
In the UK there is a need to match policy for DR to 
the government’s long-term commitment to achieve 
Net Zero by 2050. DR potentially has an important 
role in meeting this goal, but policy is necessary to 
help develop and introduce the devices and social 
practices necessary. Policy should aim to provide 
appropriate subsidies, create a stable environment for 
DR investment, set appropriate regulations and stand-
ards, and support the provision of required skills in the 
workforce.

The methodology of our risk assessment is robust and 
transparent, and should be applicable to any energy econ-
omy, though the quantification of particular causes of risk 
will depend on the case considered. The UK case study 
benefits from a significant volume of literature and reports 
describing energy supply and demand in the UK, but simi-
lar evidence may not be available for other jurisdictions. It is 
likely that similar energy economies may exhibit similar risk 
profiles, though this remains to be shown by further study.
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Appendix

Table 4  Ranked list of fuels 
and the number of associated 
high-level risks. The ranking is 
not weighted for the availabil-
ity of each fuel. The clustering 
of the fuels into groups is also 
shown. Error analysis shows 
that the attribution of fuels 
to groups is robust (Axon & 
Darton, 2021a). Source: Axon, 
(2019) and Axon & Darton, 
(2021a)

Fuel Fuel type Normalised 
risk score (a.u.)

No. high-level 
risks

Cluster

Gas (unconventional) Non-renewable 100 12 1
Gas Non-renewable 99 11
Oil Non-renewable 98 10
Nuclear (fission) Non-renewable 94 17
Thermal (geological) Non-renewable 80 11 2
Biomass (solids) Renewable 65 3
Coal Non-renewable 65 6
Biogas Renewable 61 2
Bioliquids Renewable 48 1 3
Ocean (wave) Renewable 47 9
Demand Reduction Non-renewable 45 5
Waste Non-renewable 43 3
Ocean (tidal) Renewable 42 6
Thermal (low tempera-

ture)
Renewable 37 4 4

Wind (offshore) Renewable 34 4
Wind (onshore) Renewable 32 5
Hydro Renewable 31 5
Solar (electric) Renewable 25 3 5
Solar (thermal, water) Renewable 20 1
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