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Recursive Bayesian Estimation for Discrete-Time
Systems With State-Dependent Packet Dropouts: A

Cross-coupled Method
Qinyuan Liu, Zidong Wang, Hongli Dong, and Changjun Jiang

Abstract—In this paper, the recursive Bayesian estimation
problem is investigated for a class of linear discrete-time systems
subject to state-dependent packet dropouts. During the transmis-
sion to a remote estimator, the data packets carrying the local
measurements might be dropped if the system state is located
within certain occlusion region, and this gives rise to a non-
stationary dropout process relying on real system states. In this
scenario, due to the exponential growth of the computational cost,
it is almost impossible to calculate the exact posterior distribution
of the system state for the purpose of optimal state estimation. To
address this issue, we propose a novel cross-coupled estimation
framework consisting of two interactively working estimators,
namely, a region-label estimator and a state estimator, where the
former is utilized to obtain the optimal estimates of the region-
label sequence in the maximum a posteriori sense, while the latter
is adopted to achieve the optimal estimates of the system states
in the minimum mean-square error sense. Moreover, a sufficient
condition is obtained to ensure the mean-square boundedness of
the resultant estimation error. The effectiveness of the proposed
cross-coupled estimation framework is verified by a numerical
simulation example.

Index Terms—State estimation, Bayesian inference, stochastic
systems, state-dependent packet dropouts, Kalman filter.

I. INTRODUCTION

State estimation has been an active research realm over
the past few decades due mainly to its significant applica-
tion insights in a variety of areas such as computer vision,
guidance and navigation, econometrics, target tracking, and
power systems [7], [14], [35], [36]. A fundamental issue for
state estimation is to develop appropriate algorithms capable
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of restoring system states of interest based on a series of
measurements observed over time, and some well-known
algorithms have been developed for Kalman filtering, extended
Kalman filtering, unscented Kalman filtering, particle filtering
and Bayesian filtering [1], [4]–[6], [19], [20], [29], [30], [41].
Among other, the Bayesian filtering method, which views
state estimation as a probability inference process, aims to
establish the posterior probability density function (PDF) of
the interested system state. Such a method has proven to be
extremely powerful in dealing with state estimation problems
for complicated dynamic systems subject to nonlinear process-
es and/or non-Gaussian noises. It is noteworthy that most of
the aforementioned filtering algorithms can be deduced from
the Bayesian framework according to different approximations
employed in the computational procedure.

Owing to the rapid development of sensing, processing
and communication technologies, the networked systems have
recently found widespread applications in control engineering
and signal processing [8], [9], [12], [17], [47], [48]. Under the
networked configuration, the measurements of sensor nodes
are transmitted to a remote estimator for further processing
via communication networks [3], [13], [21], [27], [28], [40],
[44]. Since the capacity of networks is often limited in prac-
tice, measurement transmission suffers inevitably from certain
network-induced phenomena including channel congestions,
communication delays and signal distortions [24], [42], [43],
[45], [49], and this might eventually result in unexpected
packet dropouts of transmitted measurements which, if not
properly dealt with, could further the jeopardize the estimation
performance or even lead to the divergence of the estimation
error dynamics.

According to the way it occurs, the phenomenon of the
packet dropout can be generally characterized by two main
models. The first is the independent and identically distributed
(i.i.d.) Bernoulli model where the packet dropout phenomenon
is described by a Bernoulli i.i.d. random process [2], [18],
[22], [26], [32], [34], [46], and the second is the two-state
Gilbert-Elliot channel model where the packet dropout is
characterized by using a binary Markov chain [10], [15], [16],
[23], [39]. Basically, in comparison with the i.i.d. Bernoulli
model, the Gilbert-Elliot channel model has been deemed
to be more general because of its capability of capturing
the temporal correlation in practical communication channels.
So far, considerable research attention has been devoted to
the networked state estimation subject to packet dropouts
described by the two models.
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For the i.i.d. Bernoulli model, the optimal linear estima-
tion problems have been investigated in [18], [34], where
linear minimum variance filters have been designed based
on the statistics of Bernoulli variables. The stability issue of
the Kalman filter with intermittent measurements has been
considered in [22], [26], [32] and a threshold of the packet
dropout rate has been critical in ensuring the convergence
of the mean covariance. As for the Gilbert-Elliot model,
the optimal recursive estimation problems have been fully
examined in [15], [23], and the Kalman filtering problem with
Markovian packet dropouts has been further addressed in [16]
with sufficient conditions established for the stability of the
peak covariance process. Moreover, the relationship between
the peak-covariance stability and the mean-square stability has
been thoroughly discussed in [39].

Up to now, the optimal state estimation problems subject
to various kinds of packet dropouts have drawn considerable
research attention, and most existing results have been ob-
tained by formulating the packet dropout phenomenon as a
Bernoulli or Markov random process. Such a formulation,
unfortunately, might be inappropriate in some practical s-
cenarios [25], [38]. For example, consider the scenario of
remote target tracking where the target information is first
collected by local sensors and then transmitted to an estimation
center for further processing. When the target enters certain
occlusion regions, data transmission between the sensor and
the estimator could blocked, making the sensor observations
unavailable to the estimator. In this case, the phenomenon of
the packet dropouts turns out to be a non-stationary random
process dependent on the real-time target state, and this renders
substantial difficulties to the corresponding filter design and
stability analysis.

To tackle the state estimation problem related to state-
dependent packet dropouts (SDPDs), some initial efforts have
been made in [37] where the packet loss has been described by
a state-dependent hybrid measurement model and the optimal
estimation has been accomplished by using the orthogonal
projection approach. The pioneering results presented in [37]
have been obtained based on a proposed optimal estimator
in the linear minimum mean-square error (MMSE) sense.
Unfortunately, the optimal filtering problem with SDPDs is
effectively a nonlinear filtering problem and, therefore, it
makes both practical and theoretical sense to improve the
existing results by specifically tackling the inherent nonlin-
earities resulting from the SDPDs. In doing so, the Bayesian
inference framework appears to be particularly suitable, and
this motivates our current investigation.

Concluding the above-mentioned discussions, we are in-
terested in addressing the optimal estimation problems for a
class of discrete-time systems subject to SDPDs based on the
Bayesian inference framework. The primary contributions of
this paper can be highlighted from the following aspects. 1)
To the best of our knowledge, this paper makes one of the
first few attempts to deal with the optimal estimation problem
subject to SDPDs based on a general Bayesian inference
framework; 2) a novel cross-coupled estimation algorithm,
which is composed of a region-label estimator and a system
state estimator, is proposed to obtain the MMSE estimate of

the system state; 3) several approximation methods are utilized
such that the obtained MMSE estimates have recursive linear
forms, which greatly reduces the computational complexity;
and 4) a sufficient condition is provided to guarantee the
mean-square boundedness of the estimation error dynamics.

The remainder of this paper is organized as follows. Section
II formulates the state estimation with SDPDs. Section III pro-
poses a novel cross-coupled estimation algorithm consisting
of the region-label and state estimators, and then analyzes the
mean-square boundedness of the associated error dynamics.
Numerical simulation is carried out in Section IV. Finally,
some conclusion remarks are made in Section V.

Notation: Throughout the paper, the notations utilized are
mostly standard except where otherwise stated. R

n denotes
the n-dimensional Euclidean space. The superscript T denotes
the transpose. ‖ ⋆ ‖ denotes the Euclidian norm of real vectors
or the spectral norm of real matrices. The indicator function
IΩ is equal to 1 if the event Ω occurs and zero otherwise.
The PDF of a random vector x is denoted as p(x) and the
conditional PDF of x given y is denoted as p(x|y). If x ∈
R

n obeys Gaussian distribution, then its PDF is denoted as
p(x) , N (x, µ,Σ), where

N (x, µ,Σ) ,
1

(2π)n/2|Σ|1/2 exp

(

−1

2
(x − µ)TΣ−1(x− µ)

)

.

II. PROBLEM FORMULATION

A. System description

Consider a discrete linear time-invariant system described
by the following state-space model:

xk+1 = Axk +Bwk,

zk = Cxk +Dvk
(1)

where xk ∈ R
nx and zk ∈ R

nz are the state vector and the
measurement vector, respectively; wk ∈ R

nw and vk ∈ R
nv

are sequences of white Gaussian noises with zero mean and
covariance matrices Q > 0 and R > 0, respectively; A, B,
C and D are known matrices of appropriate dimensions; and
the initial state x0 obeys a Gaussian distribution with mean µ0

and covariance matrix Σ0 > 0. It is assumed that BQBT > 0.

B. State-dependent packet dropouts

The remote state estimation problem is investigated in this
paper where the measurement vectors zk are transmitted to
a remote estimation center in order to generate an estimate
of the state vector xk. Furthermore, we consider the situation
where the transmissions might suffer from SDPDs.

As shown in Fig. 1, there are finite occlusion regions (for
the target plant) that are denoted as

Ro
i,k, for i ∈ Z[1,S]

where Z[1,S] is a set of positive numbers {1, 2, · · · , S} with
S representing the number of the regions. The target mea-
surements cannot be transmitted to the remote estimator once
the state variables (i.e., Exk ∈ R

ne ) fall into these occlusion
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Fig. 1. State-dependent packet dropouts. The remote estimator cannot obtain
measurements of the target plant when its trajectory enters the occlusion
region.

regions. The location of the occlusion region is defined as
follows:

Ro
i,k ,

{

x ∈ R
ne : ‖x− ζoi,k‖2 ≤ r2i

}

(2)

where ζoi,k = ζi − nk with ζi ∈ R
ne and ri ∈ R representing

the expected center and the radius of the occlusion region,
respectively. nk ∈ R

ne is a white zero-mean Gaussian noise
process with covariance Ψk. Apparently, the occlusion regions
Ro

i,k are randomly distributed at every time k because the cen-
ter ζoi,k is a random variable obeying the Gaussian distribution.
Throughout the paper, it is assumed that x0, wk , vk and nk

are i.i.d variables which are independent with each other.
We introduce an auxiliary variable as follows:

uk , Exk + nk, (3)

which implies that Exk ∈ Ro
i,k is equivalent to uk ∈ Ri

where Ri is an auxiliary region defined by

Ri ,

{

x ∈ R
ne : ‖x− ζi‖2 ≤ r2i

}

.

Moreover, let us define the set of the occlusion region and the
corresponding auxiliary region (i.e., Ro

k and R, respectively)
as follows

Ro
k , {Ro

1,k,Ro
2,k, · · · ,Ro

S,k},

and
R , {R1,R2, · · · ,RS}.

As such, the measurements available at the estimator at each
sampling instant k can be formulated by

yk =

{

zk, if uk /∈ Ri,

φ, if uk ∈ Ri,

for i ∈ Z[1,S], where φ represents the empty set. For simplicity
of presentation, we abbreviate uk ∈ Ri for i ∈ Z[1,S] as
uk ∈ R. It can be observed that, when uk ∈ Ri (i.e.,
Exk ∈ Ro

i,k), the packet dropout occurs and the estimator will
not receive any measurement signal at instant k. Furthermore,
we introduce a region-label hk satisfying hk = i if uk ∈ Ri

and hk = 0 if uk /∈ R. Then, the sequence of received
measurements and region-labels are denoted as

Yk , {y0, y1, · · · , yk} and Hk , {h0, h1, · · · , hk}.

C. Estimation Objectives

The estimation problem is to recursively calculate a degree
of belief in xk given the information set Yk by constructing
the posterior PDF p(xk|Yk). Generally speaking, the posterior
PDF can be obtained from the state-observation model in (1)
using the prediction-correction steps.

The prediction stage involves the knowledge of the system
model to obtain a prior PDF of the state xk at instant k via
the Chapman–Kolmogorov equation

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1. (4)

At the correction stage, when a measurement yk is newly
available, it can be exploited to update the prior PDF via
Bayes’ rule

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

∫

f(yk|xk)f(xk|Yk−1)dxk
. (5)

If all the observations zk from instant 0 to instant k are
obtained at the estimator, the prior PDF is naturally Gaus-
sian distributed, and its expectation and covariance can be
calculated by the Kalman filter. Moreover, if observation zk
at instant k suffers from a packet dropout, which randomly
occurs according to an i.i.d Bernoulli process, the correction
stage is invalid and the posterior would be equal to the prior,
i.e., p(xk|Yk) = p(xk|Yk−1) (as in [32]). Unfortunately, such
an equality apparently no longer holds in this paper since the
occurrence of packet dropouts depends explicitly on the real-
time system state. In this scenario, calculating the posterior
PDF p(xk|Yk) involves integrations of nonlinear terms and
requires a large amount of computational cost, which makes
the concerned optimal filtering problem intractable in general.
To handle such an issue, a simplified workaround is developed
in the following section via designing a cross-coupled estima-
tion framework consisting of two interactively working state
estimators, i.e. a region-label estimator and a state estimator.

In what follows, we briefly describe the framework of
this cross-coupled estimation framework. To begin with, at
every instant k, let us approximate the PDF p(xk−1|Yk−1)
as a Gaussian distribution characterized with mean x̂k−1 and
covariance Pk−1. On one hand, if the observation zk arrives
at time k, then the posteriori PDF will also be Gaussian
distributed, and therefore the subsequent estimation procedure
would be the same as that of the Kalman filter by computing
the updated mean x̂k and covariance Pk . On the other hand, if
the observation zk is dropped while the region-label hk = i is
available, then the knowledge is available about the trajectory
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of the system state located in the ith occlusion region (i.e.,
uk ∈ Ri), which provides additional information for updating
the prior PDF. To be specific, we aim to 1) utilize the historical
estimation results to evaluate a most possible value for the
current region-label hk in the maximum a posteriori (MAP)
sense; and 2) exploit the obtained label to generate an MMSE
estimate of the target state.

Motivated by the above discussion, we outline the main
objectives of this paper as follows.

i) MAP estimation of Hk. The optimal estimate of the
region-label sequence is obtained by maximizing the
PDF of Hk conditioned on Yk, i.e.

Ĥk = argmax
Hk

p(Hk|Yk). (6)

ii) MMSE estimation of xk . The MMSE estimate of the
system state is obtained by calculating the expectation
of xk conditioned on both Yk and Hk, i.e.

x̂k = E{xk|Hk, Yk}. (7)

Before proceeding, a useful lemma is provided as follows
to benefit the subsequent derivation.

Lemma 1 ( [31]): Given two Gaussians N (x, µ1,Σ1) and
N (µ2, Ax,Σ2), letting

µc , ΣcΣ
−1
1 µ1 +ΣcA

TΣ−1
2 µ2

cc , N (µ2, Aµ1, AΣ1A
T +Σ2)

Σc , (Σ−1
1 +ATΣ−1

2 A)−1

the following equality holds

N (x, µ1,Σ1)N (µ2, Ax,Σ2) = ccN (x, µc,Σc).

III. MAIN RESULTS

In this section, we are dedicated to establishing a cross-
coupled estimation algorithm composed of a region-label
estimator and a state estimator for networked systems sub-
ject to SDPDs. A sufficient condition for the mean-square
boundedness of the estimation error dynamics will be further
obtained.

A. MAP estimation of the region-label

From the previous section, we know that a precise recogni-
tion of the current region-labels is critical to the development
of the subsequent state estimation procedure as well as the
enhancement of the state estimation performance. As such, a
recursive estimator will be firstly developed to obtain the MAP
estimate of the region-label sequence.

The propagation of the conditional PDF p(Hk|Yk) can be
derived by applying Bayes’ rule as follows:

p(Hk|Yk)

=
p(yk|Hk, Yk−1)p(Hk|Yk−1)

p(yk|Yk−1)

=
p(yk|Hk, Yk−1)p(hk|Hk−1, Yk−1)

p(yk|Yk−1)
p(Hk−1|Yk−1)

where the last step follows from the fact that

p(Hk|Yk−1) = p(hk|Hk−1, Yk−1)p(Hk−1|Yk−1).

From the above equality, it is not difficult to see that
the MAP estimate of Hk is, in fact, intractable because the
computational cost of the optimization problem (6) increases
exponentially as time goes on. Such a high computational cost
is inherent to the augmented dimension of Hk as k increases,
and this motivates the following approximation:

p(Hk|Yk) ≈ p
(

hk, Ĥk−1|Yk

)

where

Ĥk−1 = arg max
Hk−1

p(Hk−1|Yk−1).

Using such an approximation, the conditional PDF p(Hk|Yk)
can be rewritten as

p(Hk|Yk)

=
p(yk|hk, Ĥk−1, Yk−1)p(hk|Ĥk−1, Yk−1)

p(yk|Yk−1)
p(Ĥk−1|Yk−1).

Given the previous estimate of the region-label sequence at
instant k − 1, we can then reformulate the MAP estimate of
the region-label hk as

ĥk = argmax
hk

p
(

hk, Ĥk−1|Yk

)

. (8)

Once the current estimate ĥk is acquired, the approximated
MAP estimate of sequence Ĥk can be finally obtained by
augmenting ĥk with the previous estimate Ĥk−1 as

Ĥk =
[

Ĥk−1 ĥk

]

.

In the sequel, we will turn our attention to the optimization
problem (8) (instead of the optimization problem (6)). Note
that a proportional counterpart of p(hk, Ĥk−1|Yk) has the
following form:

p
(

hk, Ĥk−1|Yk

)

∝ p
(

yk|hk, Ĥk−1, Yk−1

)

p
(

hk|Ĥk−1, Yk−1

)

,

which implies

ĥk = argmax
hk

p
(

yk|hk, Ĥk−1, Yk−1

)

p
(

hk|Ĥk−1, Yk−1

)

.

To proceed further, the probability distributions
p(yk|hk, Ĥk−1, Yk−1) and p(hk|Ĥk−1, Yk−1) shall be
evaluated. Obviously, the following relationship

p
(

yk 6= φ|hk = i, Ĥk−1, Yk−1

)

= 0

is true for i ∈ Z[1,S]. Consequently, whenever an observation
zk arrives, an optimal estimate of current label hk is set
to be ĥk = 0. In this case, the major challenge we are
encountering is to estimate the region-label hk for the case
yk = φ. Moreover, we have

p
(

hk|Ĥk−1, Yk−1

)

=

∫

p
(

xk|Ĥk−1, Yk−1

)

p
(

hk|xk, Ĥk−1, Yk−1

)

dxk

=

∫

p
(

xk|Ĥk−1, Yk−1

)

p(hk|xk)dxk. (9)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to 
final publication. Citation information: DOI10.1109/TAC.2023.3316989, IEEE Transactions on Automatic Control



FINAL VERSION 5

Taking advantage of the Gaussian approximation

p(xk−1|Ĥk−1, Yk−1) , N (xk−1, x̂k−1, Pk−1)

and the Chapman-Kolmogorov equation, the predicted PDF
p(xk|Ĥk−1, Yk−1) can be obtained as

p(xk|Ĥk−1, Yk−1)

=

∫

p(xk|xk−1)p(xk−1|Ĥk−1, Yk−1)dxk−1

=

∫

N (xk, Axk−1, BQBT)N (xk−1, x̂k−1, Pk−1)dxk−1.

Applying Lemma 1 to the above equation yields

p
(

xk|Ĥk−1, Yk−1

)

= N
(

xk, x̂k|k−1, Pk|k−1

)

(10)

where

x̂k|k−1 = Ax̂k−1,

Pk|k−1 = APk−1A
T +BQBT.

(11)

Moreover, noting that p(hk = i|xk) (i ∈ Z[1,S]) represents the
probability of the event that the system trajectory is in the ith
occlusion region given the condition of current state vector
xk, we have

p(hk = i|xk) = p(uk ∈ Ri|xk)

= |Ri|
∫

ΛRi
(uk)p(uk|xk)duk (12)

where ΛRi
(uk) is denoted as ΛRi

(uk) = 0 if uk /∈ Ri and
ΛRi

(uk) = |Ri|−1 if uk ∈ Ri with |Ri| representing the
Lebesgue measure of Ri. Note that it is analytically impossible
to calculate p(hk = i|xk) due to its non-Gaussian distribution.
As such, a sum of Gaussian densities is employed to provide
an approximation on ΛRi

(uk) (see [31], [33]):

ΛRi
(uk) ≈

1

N

N
∑

s=1

N
(

uk, ũ
s
ik, V

s
ik

)

where the mean and covariance of the sth Gaussian distribution
are denoted as ũs

ik and V s
ik , respectively. For brevity, ũs

ik are
chosen by equidistantly sampling the region Ri, and V s

ik are
chosen to have the same value Vk . Moreover, by introducing
a new variable

Σk = Vk +Ψk,

we have
∫

N
(

uk, ũ
s
ik, Vk

)

p(uk|xk)duk

=

∫

N
(

uk, ũ
s
ik, Vk

)

N
(

uk, Exk,Ψk

)

duk

= N
(

ũs
ik, Exk,Σk

)

,

where the last equality follows from Lemma 1. Substituting
the above equation into (12) yields

p(hk = i|xk) =
1

N
|Ri|

N
∑

s=1

N
(

ũs
ik, Exk,Σk

)

. (13)

Combining (10) and (13) and using Lemma 1 once again,
we have

p
(

xk|Ĥk−1, Yk−1

)

p(hk = i|xk)

=
1

N
|Ri|

N
∑

s=1

N
(

ũs
ik, Exk,Σk

)

N
(

xk, x̂k|k−1, Pk|k−1

)

=
1

N

N
∑

s=1

ωs
ikN

(

xk, θ
s
ik,Θk

)

(14)

where

Θk =
(

P−1
k|k−1 + ETΣ−1

k E
)−1

,

θsik = Θk

(

P−1
k|k−1x̂k|k−1 + ETΣ−1

k ũs
ik

)

,

ωs
ik = |Ri| N

(

ũs
ik, Ex̂k|k−1, EPk|k−1E

T +Σk

)

.

(15)

By noting that the integral of the Gaussian distribution over
the state is equal to 1, an explicit expression of (9) can be
derived as

p
(

hk = i|Ĥk−1, Yk−1

)

=

∫

p
(

xk|Ĥk−1, Yk−1

)

p(hk = i|xk)dxk

=
1

N

∫ N
∑

s=1

ωs
ikN (xk, θ

s
ik,Θk) dxk

=
1

N

N
∑

s=1

ωs
ik, (16)

for i ∈ Z[1,S]. It is acknowledged that, when the system
trajectory is in the occlusion region, the transmission would
suffer from packet dropouts, and thus

p
(

yk = φ|hk = i, Ĥk−1, Yk−1

)

= 1, for i ∈ Z[1,S].

Therefore, the MAP estimate of the current region-label can
be given as follows:

ĥk =











0, if yk = zk,

arg max
i∈Z[1,S]

N
∑

s=1

ωs
ik, if yk = φ.

(17)

In summary, the proposed MAP estimation procedure of the
current region-label hk is outlined in Algorithm 1. It is worth
pointing out that the proposed algorithm works in a recursive
manner, where the label sequence Hk−1 and state estimate
x̂k−1 at instant k−1 are required to generate an MAP estimate
of the region-label hk at instant k.

B. MMSE estimation of the system state

Given the MAP estimate of the region-label sequence Hk,
we are now in the position to compute the approximated
MMSE estimate of the state vector in this subsection.

According to the arrivals of the measurements, the posterior
PDF p(xk|Hk, Yk) can be divided into two situations. Firstly,
we consider that the measurements are able to be received by
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Algorithm 1 MAP estimate of the region-label Hk.

Ĥk = MAPH [x̂k−1, Pk−1, Ĥk−1, zk]

Input: x̂k−1, Pk−1, Ĥk−1, zk.
Output: Ĥk.

1: calculate the one-step prediction

x̂k|k−1 = Ax̂k−1.

2: calculate the parameters

ωs
ik = |Ri|N

(

ũs
ik, Ex̂k|k−1, EPk|k−1E

T +Σk

)

.

3: if the observation arrives, i.e., yk = zk, then
4: set ĥk = 0.
5: else if the observation is missing, i.e., yk = φ then
6: calculate ĥk by solving

ĥk = arg max
i∈Z[0,S]

N
∑

s=1

ωs
ik.

7: augment Ĥk−1 and ĥk as Ĥk =
[

Ĥk−1 ĥk

]

.
8: return Ĥk.

the estimator at instant k (i.e., hk = 0). Then, the prior PDF
can be updated via the Bayes’ rule as follows:

p(xk|Hk, Yk)

=
p(zk, hk|xk, Hk−1, Yk−1)p(xk|Hk−1, Yk−1)

p(zk, hk|Hk−1, Yk−1)

=
p(zk, hk|xk)p(xk|Hk−1, Yk−1)

p(zk, hk|Hk−1, Yk−1)

where the last equality exploits the fact that xk has the
sufficient information to determined zk which makes the
information from Hk−1 and Yk−1 redundant. Moreover, the
normalizing constant p(zk, hk|Hk−1, Yk−1) can be written as

p(zk, hk|Hk−1, Yk−1)

=

∫

p(zk, hk|xk)p(xk|Hk−1, Yk−1)dxk.

As has been shown in (10), under the Gaussian approxi-
mation of the conditional PDF p(xk−1|Hk−1, Yk−1), it is not
difficult to see that the prior PDF of the state vector at time
k has the following structure:

p(xk|Hk−1, Yk−1) = N (xk, x̂k|k−1, Pk|k−1).

Moreover, it is apparent that the likelihood function

p(zk, hk|xk) = N (zk, Cxk, DRDT)

is Gaussian. In light of Lemma 1 and the matrix inversion
lemma, the posterior is also a Gaussian distributed PDF of the
form:

p(xk|Hk, Yk) = N (xk, x̂k, Pk)

with mean and covariance given by

x̂k = x̂k|k−1 + Pk|k−1C
TΩ−1

k (zk − Cx̂k|k−1),

Pk = Pk|k−1 − Pk|k−1C
TΩ−1

k CPk|k−1,

Ωk = CPk|k−1C
T +DRDT. (18)

According to the properties of Gaussian distributions, it can
be seen that the MMSE estimate of the state xk is x̂k given
in (18).

As for the situation where the measurements are dropped
at instant k, we know that the system trajectory is in the ith
occlusion region (i.e., hk = i, for i ∈ Z[0,S]), and therefore the
posterior PDFs p(xk|Hk, Yk) can be obtained via the following
Bayes’ rule:

p(xk|Hk, Yk)

=
p(yk = φ, hk = i|xk)p(xk|Hk−1, Yk−1)

p(yk = φ, hk = i|Hk−1, Yk−1)
(19)

where the likelihood function can be determined from (2) and
(3) as follows:

p(yk = φ, hk = i|xk) = p(uk ∈ Ri|xk)

=

∫

p(uk ∈ Ri)p(uk|xk)duk. (20)

It is trivial to see that

p(yk = φ, hk = i|xk) = p(hk = i|xk),

and

p(yk = φ, hk = i|Hk−1, Yk−1) = p(hk = i|Hk−1, Yk−1),

for i ∈ Z[0,S]. Substituting (14) and (16) into (19), we have the
following Gaussian sum approximation to the true posterior
PDF:

p(xk|Yk, Hk) =

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

N (xk, θ
s
ik,Θk)

Note that the above posterior PDF (approximated by a sum
of Gaussians PDFs) could be further approximated by a single
Gaussian PDF N (xk, x̂k, Pk) whose structure is similar to that
of the prior probability distribution p(xk−1|Yk−1, Hk−1). By
doing so, the approximated posterior PDF can be calculated
recursively in each step. Next, we need to determine the
mean and covariance x̂k and Pk so as to obtain the best
approximation. To achieve this goal, the Kullback-Leibler
divergence is introduced as follows to measure the difference
between two probability distributions f1(x) and f2(x) over
the same variable x:

D (f1(x), f2(x)) ,

∫

f1(x) log
f1(x)

f2(x)
dx.

Then, the best mean and covariance that minimize the
Kullback-Leibler divergence between

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

N (xk, θ
s
ik,Θk)
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and N (xk, x̂k, Pk) can be obtained by solving the following
optimization problem:

min
x̂k,Pk

D
(

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

N (xk, θ
s
ik,Θk),N (xk, x̂k, Pk)

)

.

whose unique solution is

x̂k =

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

θsik,

Pk =

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

(

Θk + (x̂k − θsik) (x̂k − θsik)
T
)

,

(21)

which is optimal in the MMSE sense. To sum up, the pro-
cedure of the proposed MMSE estimation scheme can be
outlined in Algorithm 2.

Algorithm 2 MMSE estimate of the system state xk.

[x̂k, Pk] = MAPX [x̂k−1, Pk−1, Ĥk, zk]

Input: x̂k−1, Pk−1, Ĥk, zk.
Output: x̂k, Pk.

1: calculate x̂k|k−1 and Pk|k−1 by

x̂k|k−1 = Ax̂k−1,

Pk|k−1 = APk−1A
T +BQBT.

2: if ĥk = 0, then
3: calculate x̂k and Pk by

x̂k = x̂k|k−1 + Pk|k−1C
TΩ−1

k (zk − Cx̂k|k−1),

Pk = Pk|k−1 − Pk|k−1C
TΩ−1

k CPk|k−1,

Ωk = CPk|k−1C
T +DRDT.

4: else if ĥk = i, for i = 1, 2, · · · , S, then
5: calculate the parameters Θk, ωs

ik, and θsik by

Θk =
(

P−1
k|k−1 + ETΣ−1

k E
)−1

,

θsik = Θk

(

P−1
k|k−1x̂k|k−1 + ETΣ−1

k ũs
ik

)

,

ωs
ik = |Ri|N

(

ũs
ik, Ex̂k|k−1, EPk|k−1E

T +Σk

)

.

6: calculate x̂k and Pk by

x̂k =

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

θsik,

Pk =

N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

(

Θk + (x̂k − θsik) (x̂k − θsik)
T
)

.

7: return x̂k, Pk.

Up to now, the MAP estimation of the region-labels and the
MMSE estimation of the target state have been presented in
Algorithms 1-2. The region-label estimator is able to generate
the MAP estimate of the region-label when the target plant is
in the occlusion region, and the state estimator is capable of
generating the MMSE estimate of the real-time system state.

It should be further explained that, at instant k, to implement
Algorithm 1, one requires the knowledge of x̂k−1 and Pk−1

provided by Algorithm 2. Also, when implementing Algorithm
2, one requires the knowledge of ĥk provided by Algorithm
1. In this sense, with the initial information x̂0 and P0, the
MMSE estimate of the system state shall be obtained using
both Algorithms 1-2 in a cross-coupled manner as shown in
Fig. 2.

zk

Label EstimatorLLLLLaaaabbbbbeeeeelllll  EEEEEssssstttttiiiiimmmmaaaatttttooooorrrrrLabel Estimator

State EstimatorSSSSSttttaaaattttteeeee   EEEEEssssstttttiiiiimmmmmaaaaatttttoooorrrrrState Estimator

Fig. 2. Cross-coupled estimation algorithm

C. Boundedness analysis

In what follows, we aim to discuss the mean-square bound-
edness of the proposed cross-coupled estimator. For simplifica-
tion, we consider the case of E = I . The following preliminary
assumptions are made before proceeding.

Assumption 1: The pair (A,C) is detectable.
Assumption 2: There are positive real numbers ā, t̄, b, b̄, q,

q̄, χ, χ̄ > 0 such that the following inequalities

‖A‖ ≤ ā,

‖Ψk‖ ≤ t̄,

b ≤ ‖B‖ ≤ b̄,

q ≤ ‖Q‖ ≤ q̄,

χ ≤ ‖Σk‖ ≤ χ̄,

(22)

are satisfied for every k > 0.
Assumption 3: There are positive real numbers r̄, ζ̄, ϕ̄ > 0

such that ri < r̄, ‖ζi‖ < ζ̄, and ‖ζi − ζj‖ < ϕ̄, ∀i, j ∈
{1, 2, · · · , S}.

The inequalities (22) in Assumption 2 impose some con-
straints on the system parameters, and Assumption 3 supposes
that the radius and the spatial locations of the occlusion
region are upper bounded. These assumptions are in general
quite mild for practical systems with numerically calculated
parameters.

Theorem 1: Under Assumptions 1-3, if the inequality
āb2χ̄q̄ < 1 is satisfied, then the estimation error ek = xk − x̂k

is bounded in the mean-square sense, i.e.,

sup
∀k

E{‖ek‖2} < +∞.

Proof: The proof of this theorem is divided into two
situations. Firstly, we consider the situation where there exists
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an instant k0 such that, for every instant k > k0, the target
would never enter the occlusion region. In other words, the
measurements will be always received, and Algorithm 2 is thus
degraded to the standard Kalman filtering algorithm. Since
(A,C) is detectable and BQB > 0, it is straightforward
to see that, given any initial state x̂k0 and covariance Pk0 ,
the resultant covariance will always converge, and this proves
sup∀k E{‖ek‖2} < +∞.

The second situation considers that, for instant k > k0, the
target would re-enter the occlusion region after a finite interval
k1. The packet dropouts occur at instant k = k0 + k1, and the
corresponding label estimate given by Algorithm 1 is ĥk = i.
From (21), we have

ek = xk −
N
∑

s=1

ωs
ik

∑N
s=1 ω

s
ik

θsik. (23)

Denote

αs
ik =

ωs
ik

∑N
s=1 ω

s
ik

.

Then, one has 0 ≤ αs
ik ≤ 1 and

∑N
s=1 α

s
ik = 1. Inserting (15)

into (23) yields

ek = xk −
N
∑

s=1

αs
ikΘk

(

P−1
k|k−1x̂k|k−1 +Σ−1

k ũs
ik

)

= xk − ΘkP
−1
k|k−1x̂k|k−1 −

N
∑

s=1

αs
ikΘkΣ

−1
k ũs

ik.

(24)

Utilizing (11) and recalling

Θ−1
k = P−1

k|k−1 +Σ−1
k ,

it is not difficult to establish

ΘkP
−1
k|k−1x̂k|k−1 = (I −ΘkΣ

−1
k )Ax̂k−1|k−1.

Substituting the above equality into (24) leads to

ek = ΘkP
−1
k|k−1Aek−1 −

N
∑

s=1

αs
ikΘkΣ

−1
k ũs

ik

+ΘkΣ
−1
k xk +ΘkP

−1
k|k−1Bwk−1.

Adding the zero terms

ΘkΣ
−1
k A(nk − ζi)−ΘkΣ

−1
k A(nk − ζi)

and

N
∑

s=1

αs
ikΘkΣ

−1
k ζi −

N
∑

s=1

αs
ikΘkΣ

−1
k ζi

to both sides of the above equation results in

ek = ΘkP
−1
k|k−1Aek−1 −

N
∑

s=1

αs
ikΘkΣ

−1
k (ũs

ik − ζi)

+ ΘkΣ
−1
k (xk + nk − ζi) + ΘkP

−1
k|k−1Bwk−1

−ΘkΣ
−1
k (nk − ζi)−ΘkΣ

−1
k ζi.

Taking norms on both sides of the above equation yields
that

‖ek‖ ≤ ‖Θk‖‖P−1
k|k−1‖ (‖A‖‖ek−1‖+ ‖B‖‖wk−1‖)

+ ||Θk‖‖Σ−1
k ‖ (‖xk + nk − ζi‖+ ‖nk‖+ 2‖ζi‖)

+

N
∑

s=1

αs
ik‖Θk‖‖Σ−1

k ‖‖ũs
ik − ζi‖. (25)

From the fact BQBT > 0, it is readily obtained that

Pk−1|k = APk−1|k−1A
T +BQBT > 0.

As such, one has

0 < ‖P−1
k−1|k‖ < b2q.

Moreover, we have

Θk =
(

P−1
k|k−1 +Σ−1

k

)−1

≤ Σk.

Since the remote estimator does not receive the transmitted
signals, one knows that the target state is in certain occlusion
region. Although the label estimate given by Algorithm 1 is
ĥk = i, the actual target state could be in the jth region (i.e.,
uk ∈ Rj) accounting for the possible estimation error, and
this indicates that

‖xk + nk − ζi‖2 ≤ ‖xk + nk − ζj‖2 + ‖ζj − ζi‖2
+ 2‖xk + nk − ζj‖‖ζj − ζi‖

≤ (r̄ + ϕ̄)2

for all i ∈ Z[0,S]. Moreover, since ũs
ik are chosen by equidis-

tantly sampling the region Ri, it is direct to see that ũs
ik ∈ Ri,

and therefore we have

‖ũs
ik − ζi‖ < ri.

Taking expectation on both sides of (25) yields

E{‖ek‖} ≤ χ̄b2q̄
(

āE{‖ek−1‖}

+ b̄
√
nwq̄

)

+ χ̄χ−1
(

4r̄ + ϕ̄+
√

nxt̄
)

where we have used the facts that E{wT
k−1wk−1} = tr(Q) ≤

nwq̄ and E{nT
k nk} = tr(Ψk) ≤ nxt̄. Since k1 is a finite posi-

tive number, during the interval [k0, k1] when the observation
is available, it follows from the properties of the Kalman filter
that ‖ek−1‖ should have an upper bound. Moreover, notice
χ̄b2q̄ā < 1 and

E{‖ek+d‖} ≤
(

āb2χ̄q̄
)d+1

E{‖ek−1‖}
+ āb2χ̄q̄(1− ǫd+1)/(1− ǫ)

where ǫ = χ̄b2b̄q̄
√
nwq̄+χ̄χ−1

(

4r̄+ϕ̄+
√
nxt̄
)

. Then, we see

that for any bounded initial condition E{‖ek−1‖} (as d → ∞),
even if the target state always stays in the occlusion region,
E{‖ek+d‖} will finally converge to āb2χ̄q̄/(1− ǫ). From the
above discussions, we have sup∀k E{‖ek‖} < +∞, which
completes the proof.

As has been discussed, Assumptions 1-3 natually hold
for many practical systems, and therefore, the mean-square
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boundedness of the estimation error can be easily verified by
checking the condition āb2χ̄q̄ < 1.

Remark 1: This paper investigates the remote state estima-
tion problem subject to SDPDs. A cross-coupled estimation
algorithm is proposed, which is composed of a region-label
estimator and a system state estimator. Although a linear
MMSE estimator has been initially designed in [37] for the
same problem, such an estimator is not optimal due to the fact
that the state estimation problem with SDPDs is essentially a
nonlinear filtering problem. In particular, when the state keeps
fluctuating over the occlusion region, the linear MMSE esti-
mator in [37] might diverge as the update terms in the Riccati
equation would be very small. Different from the linear MMSE
estimation scheme in [37], the Bayesian inference approach
has been utilized to solve the concerned nonlinear filtering
where the region information has been exploited to estimate
the target state according to (19), which could constrain the
state in a desired interval. Moreover, a sufficient condition is
established to guarantee the mean-square boundedness of the
resultant estimation error.

IV. A NUMERICAL EXAMPLE

In this section, a numerical example is presented to verify
the effectiveness of the proposed cross-coupled estimation
algorithm for systems with SDPDs.

The state propagation of the target plant is given by (1) with
transition matrix

A =





1.01 0.1 0
0 1.01 0.1
0 0 −1.02





and measurement matrix

C =

[

2 3 1
1 0 0.98

]

.

The covariances of the process and measurement noises wk

and vk are assumed to be Q = 0.3I3 and R = 0.2I2,
respectively. The initial value of the state x0 obeys a Gaussian
distribution with mean µ0 =

[

5 5 5
]T

and covariance
Σ0 = 4I3.

Let

xk =
[

x1,k x2,k x3,k

]T

with xi,k being the ith component of state vector xk. Suppose
that the packet dropout occurs when the first component of
the state vector enters the occlusion region, i.e., x1,k ∈ Ro

i,k.
The occlusion region Ro

i,k is given as

Ro
i,k = {x ∈ R : ‖x− ζoi,k‖2 ≤ r2i }

where ζoi,k = ζi−nk. The expected center and radius of these
regions are given by ζi = 20i, for i ∈ {1, 2, 3, 4} and ri = 5.
nk ∈ R is a white Gaussian noise sequence with zero mean
and covariance Ψk = 0.1. It is obvious that matrix E in (3) is
E =

[

1 0 0
]

and x1,k ∈ Ro
i,k is equivalent to uk ∈ Ri

with

Ri = {x ∈ R : ‖x− ζi‖2 ≤ r2i }.

TABLE I
THE KULLBACK-LEIBLER DIVERGENCE

σ2

i
0.10 0.21 0.31 0.50 0.80

D(·, ·) 83.4136 10.3434 7.1173 8.1292 10.5365

In this case, we have

ΛRi
(uk) =

1

2ri
I{ζi−ri≤uk≤ζi+ri}.

According to [33], the above uniform density function can be
approximated by Gaussian sums

ΛRi
(uk) ≈

1

N

N
∑

s=1

N (uk, ũ
s
ik, V

s
ik).

The number of Gaussian distributions are chosen to be N =
15, the mean value of each Gaussian distribution is chosen to
be ũs

ik∀j ∈ Z[1,N ] such that the densities are equally spaced on
[ζi−ri, ζi+ri], and the variance of each Gaussian distribution
is set to be the same (i.e., V s

ik = σ2
i , ∀j ∈ Z[1,N ] ). The

satisfactory mean and variance can be acquired by solving the
following Kullback-Leibler divergence:

min
σi

D
(

ΛRi
(x),

1

N

N
∑

s=1

N (x, ũs
ik, σi)

)

.

The Kullback-Leibler divergence of these two distributions
under different variances are listed in Table I. Via numerical
simulations, it is not difficult to find that the best variance
is σ2

i = 0.31. The actual uniform density function ΛR1(x)
and its Gaussian sum approximation 1

N

∑N
s=1 N (x, ûs

1k, σ
2
1)

are presented in Fig. 3. The results show that the Gaussian
sums approximate the uniform density function quite well,
and if the number of Gaussian distributions is increased, the
approximation accuracy will be further improved.

12 14 16 18 20 22 24 26 28

x

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 3. The uniform density function ΛR1
(x) and its Gaussian sum

approximation 1

N

∑
N

s=1
N (x, ûs

1k
, σ2

1
) with different parameters.

The one-trial simulation results of the proposed algorithm
are presented in Figs. 4-6. Fig. 4 shows that the true trajectories
of the target plant (red line) and the estimated trajectories
(blue line), and Fig. 5 plots the trajectories of variables uk

as well as regions Ri. The labels hk (that characterize the
occlusion regions uk) and their corresponding estimates ĥk are
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given in Fig. 6. These results demonstrate that the proposed
cross-coupled estimation algorithm can estimate the occlusion
regions and track the system trajectories well.
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Fig. 4. The true and estimated trajectories of the target plant, xk and x̂k

Fig. 5. The trajectories of variable uk and regions Ri.

Next, we compare the performance of the proposed cross-
coupled estimator with that of the intermittent Kalman filter
[32], and the linear MMSE estimator [37] (abbreviated as
CCE, IKF, and KF-IO, respectively henceforth). To make the
IKF applicable to the problem under consideration, the packet
arrival sequence is estimated utilizing the label estimator
given in Algorithm 1. When a packet arrives, the Kalman
filter is adopted, otherwise, the prediction is used. The mean-
square error (MSE), which reflects the estimation accuracy,

is utilized to evaluate the performance of these estimation
algorithms. Since the actual MSE of the proposed algorithm
versus time cannot be analytically calculated, the empirical
value is obtained through NMC = 5000 independent repeated
experiments as follows:

MSE(k) =
1

NMC

NMC
∑

n=1

(xn,k − x̂n,k)
T(xn,k − x̂n,k)

where xn,k and x̂n,k are the actual and estimated values of xk

in the nth run, respectively. The MSEs of the CCE, IKF, and
KF-IO are plotted in Fig. 7, from which it can be seen that the
CCE is more effective than the IKF and KF-IO to handle state
estimation problems with SDPDs. This is because although
we equip the IKF with the label estimator, the proposed CCE
further considers the information of occlusion regions, and
thus is capable of compensating the estimation performance
even when the packet is completely missing. Moreover, KF-
IO in fact is a robust linear optimal estimation based on the
statistics of the packet dropouts, and thus inevitably induces
uncertain terms with respect to the state into the evolution of
error covariance, which would lead to divergence for unstable
systems.
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0.5
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2

2.5

3

3.5

4

Fig. 6. The labels hk that characterize the regions uk belonging to and their
corresponding estimates ĥk .

V. CONCLUSION

In this paper, the recursive Bayesian filtering problems have
been investigated for linear discrete-time systems subject to
packet dropouts. Unlike the widely adopted packet dropouts
whose occurrence is described by the Bernoulli or Markov
process, in this paper, the sate-dependent packet dropout has
been considered to cover the case where the target state
enters certain occlusion regions. For the sake of obtaining the
MMSE estimate of the state vector, a cross-coupled estimation
algorithm has been proposed which is composed of a region-
label estimator and a state estimator. Based on the Gaussian
sum approximations, the MAP estimate of the region-label
has been first obtained by using the observation information
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Fig. 7. The respective MSEs of CCE, IKF and KF-IO.

as well as the previous state estimate, and this has supplied the
state estimator with region information to generate an MMSE
estimate of the system state. Furthermore, we have established
a sufficient condition for the mean-square boundedness of the
estimation error dynamics. The effectiveness of the proposed
estimation algorithm has been demonstrated via a numerical
example.
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