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ABSTRACT The generalisation of Neural Networks (NN) to multiple datasets is often overlooked in
literature due toNNs typically being optimised for specific data sources. This becomes especially challenging
in time-series tasks due to difficulties in fusing temporal data from multiple sources. However, in a
commercial environment, generalisation can effectively utilise available data and computational power
which is essential to Green AI, the sustainable development of AI models. This paper introduces ‘‘Dataset
Fusion,’’ a novel dataset composition algorithm for fusing periodic signals from multiple homogeneous
datasets whilst retaining unique features for generalised anomaly detection. The proposed approach, tested
on a case study of three-phase current data from two different homogeneous Induction Motor (IM) fault
datasets on anomaly detection, outperforms conventional training approaches with an Average F1 score of
0.879 and effectively generalises across all datasets. Furthermore, when tested with varying percentages of
the training data, results show that using only 6.25% of the training data, translating to a 93.7% reduction in
computational power, results in only a 4.04% decrease in performance, demonstrating the advantages of the
proposed approach in terms of both performance and computational efficiency. Moreover, the algorithm’s
effectiveness under imperfect conditions highlights its potential for use in real-world applications.

INDEX TERMS Generalisation, dataset fusion, data reduction, anomaly detection, neural network training,
green AI, time series, environmental AI.

I. INTRODUCTION
Generalisation is a measure of a Neural Network’s (NN)
performance on data that it has not seen before but that is in
the same class as the data that it has been trained on. The idea
behind generalisation with Deep Learning (DL) is to transfer
domain knowledge from data the NN has been trained on to
unseen data in the same class, where the unseen data may
contain conditions that slightly vary from the training data.
This allows for a NN to be able to maintain performance
across the dataset, and potentially transfer across multiple
datasets with a similar distribution to the initial trained
data. Various studies have been undertaken to understand
the factors that affect the generalisation performance of a
NN [1], and how to mitigate these factors to achieve the
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optimal level of performance [2]. The underlying concept
is as follows: When training a NN on a data sample,
the NN learns to represent the function between the input
data and the output data through the adjustment of the
weights and biases. If the distribution of the data sample
used for training is not fully representative of the true
distribution population, then the input-output function that
is represented by this sample will inevitably vary from the
function of the population. Extensive training on this sample
will then result in a phenomenon known as overfitting [3],
which refers to when the NN has accurately modelled the
function represented by the training data but is not able to
generalise to data in the same class due to the discrepancy
between the functions represented by the sample and
population.

Many works have been published with the aim of
addressing overfitting and thus maximising the potential
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generalisation ability of a NN.Manyworks focus on architec-
tural improvements to theNN to increase the robustness of the
NN to overfitting through novel architectures such as Capsule
Networks [4], whilst other research directions focus on the
manipulation of the training procedure to limit overfitting
with techniques such as Dropout [5], Early Stopping [6],
Pruning [7] and adding noise to the weights and biases of the
NN whilst training [8].
There is much less focus on research concerning the

effect of the composition and specification of the dataset
on generalisation, especially regarding time series data.
A common approach currently used includes denoising the
training sample to better align the distribution of the sample
to the population and hence limit the level of overfitting [9],
[10]. Additionally, there is a consensus in ML research that
increasing the volume of data through various means such
as augmentation [11], [12] improves NN generalisation per-
formance; whilst this has been empirically confirmed, more
recent research has discovered that this improvement largely
comes specific samples within the supplementary data, and
a significant volume of this data is essentially redundant and
does not contribute to a performance improvement [13], [14].

Furthermore, there is a gap in literature concerning the
fusion of multiple time series datasets in a single training set
to balance the probability distribution of the training sample
so that it better aligns with the true distribution of the problem
domain. This is largely due to a lack of necessity in an
experimental environment since most ML research tends to
optimise the solution for a single dataset source. However,
from a commercial standpoint, this can have many benefits
with regard to time and computational power saved, as well
as the added benefit of reducing the data requirements for
training. In addition to this, the dynamic shifting of the
distribution of data is often a bottleneck to the performance
of the NN; this is a prevalent issue that is encountered when
a NN is deployed in a non-stationary environment, which
is common with time series data. Some recent works have
detected this shift [15], and mitigate the effect this has on the
generalisation performance of the NN with both time series
data [16], [17] and image data [18]. However, the majority
of empirical evaluations of NN approaches in literature are
mostly conducted on an isolated sample of data, which,
in many cases, is not representative of the dynamic shifting
of the distribution temporally.

To address the identified gaps in the literature, we propose
a novel algorithm, named Dataset Fusion. The proposed
method merges multiple homogeneous, periodic time series
datasets into a single unified dataset for training anomaly
detection NN models. The fusion process is designed to
accurately represent population distributions and increase
robustness against potential data distribution shifts. Our
primary objective in this study is to examine efficient
generalisation approaches that can minimise training time
and computational demands for neural networks when
workingwith new homogeneous time series data sources. The
contributions of this paper can be summarised as follows:

• A novel dataset composition algorithm is proposed,
referred to as Dataset Fusion

• The proposed approach is applied to a case study
focused onmotor current data, with a qualitative analysis
conducted to assess the preservation of features from
each individual dataset.

• The generalisation performance of the proposed method
is empirically evaluated in anomaly detection with the
LSTMCaps neural network architecture from previous
work [4], and compared to the performance when using
conventional training approaches

• The potential practical limitations of the proposed
method in a real-world environment are discussed and
assessed through further experimentation

In the context of the sustainable development goals
(SDGs), our work primarily focuses on Goal 9 (Industry,
Innovation, and Infrastructure) through the exploration of
innovative approaches to improve the performance and
efficiency of neural network models; Goal 12 (Responsible
Consumption and Production) through the proposal of a
method that demands less computational power and training
data, and Goal 13 (Climate Action) through the resulting
reduction in the energy consumption for model training.

II. RELATED WORKS
This section investigates the current literature on different
methods of addressing NN generalisation performance,
as well as recent works using multiple datasets in different
domains and tasks.

A. NN BASED GENERALISATION TECHNIQUES
1) DROPOUT
Dropout [5] is a regularisation technique that can be used to
prevent the neural network from overfitting on the training
data. This is done by ignoring several randomly selected
neurons, with the number of neurons dropped dependent
on the ‘‘dropout rate’’ parameter, so they do not affect the
output of the neural network on the forward pass. The idea
behind dropout is to effectively train many subnets in your
network so that your network acts as a sum of many smaller
networks that can learn the representation of the data without
the presence of the dropped-out neurons. This was found to
improve the generalisation performance of the network by
reducing data overfitting.

2) PRUNING
Pruning is a process whereby a NN selectively removes
trainable parameters based on an established criterion with
the aim of maintaining the performance of the NN [19].
There are two main categories of pruning: Structured and
Unstructured pruning. Unstructured pruning directly removes
trainable parameters from the network, such as connections
to neurons (weights). Structured pruning involves removing
entire structures from the network such as neurons and filters.
Structured pruning allows for a faster computational time in
relation to unstructured pruning, as most frameworks existing
for Machine Learning (ML) do not allow for the acceleration
of sparse matrix calculations, therefore the NNwill be able to
reduce the number of calculations for the former but not the
latter.
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Various criterion has been established in literature for the
pruning of NNs. One primitive but popular method is known
as the weight magnitude criterion. The criterion dictates that
the weights of the smallest magnitude are removed. The idea
behind this is to remove all the weights that contribute the
least to the function as they are less likely to impact the final
prediction.

The most established framework for pruning is known as
the train, prune and fine-tune method [19]. As the name
suggests, the model is first trained, then iteratively pruned
and fine-tuned based on the weight magnitude criterion.More
recently however, an increasing number of works [7], [20],
[21] have evolved this framework with novel methodology
that has allowed for further reduction of NN parameters
and hence more efficient training and computation whilst
maintaining similar performance.

B. DATA-BASED GENERALISATION TECHNIQUES
Data-based generalisation techniques are largely overlooked
in the field of deep learning in comparison to NN-based
techniques. This is because the NN structure and learning
optimisation algorithms are usually the reason for such
weak performance, so improvements can largely be made
by improving and optimising how the NN learns as opposed
to what the NN is learning. However, it is still important to
consider the training data as it can be a bottleneck for learning
ability if not composed in the correct manner [22].
An important aspect to consider is the difference in the

data distribution between the data used to train the NN and
the data that the NN will eventually be applied to. Often
the data picked for training is not fully representative of the
true distribution of the dataset, which creates a bottleneck to
generalisation as the NN is not prepared for the distribution
found in the overall population since it has been tuned to
the distribution of the training sample. Shuffling the data
before taking the training sample often helps with this to
increase the likelihood of the sample representing the true
distribution. Furthermore, shuffling during training also helps
the NNweights to escape local minima and converge towards
the global minimum of the function. Many works in deep
learning falsely assume that the data distribution is static,
which is largely incorrect as in practice data distributions
are generally dynamic and tend to shift away from the test
data distribution with real-world data; this phenomenon is
known as distribution shift. This shift has been detected and
quantified in recent works [23], [24], and accounted for with
online adaptation to the shift [25], which allows the NN
weights to adjust themselves to account for this distribution
shift.

Data with excessive noise can inhibit the NNs ability to
learn the true input-output function required by a specific
application. Mathematically, this can be explained by the
bias-variance decomposition [26], specifically the variance
component. The variance value refers to the change in
prediction accuracy over different subsets of the data. A high
variance value indicates that the NN has learnt the noise in
the data, or in other words overfit on the training data. The
most common method of reducing the variance is increasing

the volume of the training data, which will naturally bring
the distribution of the data closer to the required distribution
that represents the overall dataset as opposed to just the
subset of training data. As well as using real-world data, data
augmentation has also proved to be an effective method of
increasing data volume using data that is already accessible
[11], [12]. Another effective method that is commonly used
is the denoising of data [27]. This also contributes to the
reduction of the variance: By removing the noise in the
data, the training data subset will be cleaner and will more
accurately represent the true distribution of the dataset.
Whilst both methods are generally proven to work, there
are still major issues with both methods that are still being
addressed in literature, such as effectiveness in a real-world
situation.

The financial and computational costs associated with
increasing the volume of training data are not just substantial
but also rapidly increasing [28]. This makes it increasingly
difficult to train models without significant resources.
Consequently, only well-funded entities with considerable
resources can achieve a performance boost using this method,
as their computational power and finances typically surpass
those of other research entities and companies. This disparity
creates a bottleneck for smaller entities, hindering their
competitiveness in the field [29].

Denoising is still a very active field of research due to
the many limitations of the currently proposed techniques.
Since it is very difficult to determine which aspects of the
data features are representative of the true distribution [27],
it is very difficult to use denoising techniques such as filtering
since features that are potentially important to NNs could be
filtered out, limiting the potential performance of the NN.
Furthermore, filtering techniques are largely contextual, so it
is very difficult to develop filtering methods that work across
multiple contexts to the same level of effectiveness.

Transfer learning [30] is also widely regarded in literature
as a robust method of improving performance by utilising
data from a different set but in the same domain as the target
data. Whilst there have been many recent works regarding
transfer learning [31], there is a gap in research concerning
dataset fusion methods, an alternative to transfer learning
that utilises multiple datasets in the same training phase,
as opposed to multiple training phases to train a model more
robust to the difference in data distributions between the
training data and the data encountered during operation. This
will be further explored in the present work.

C. MULTI-DATASET TRAINING
Recently, researchers have identified the potential benefits
of training generalisable NNs using multiple datasets to
enhance performance and expand the capabilities of the
NN models. Many of these approaches primarily focus
on image-based applications [32], [33]. For example,
Yao et al. [34] introduced a novel framework for cross-
dataset training, leveraging pre-existing labels from multiple
datasets to create a single model capable of detecting the
union of labelled features from all contributing datasets.
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This approach aims to maximise the utility of available labels
for distinct classes in each dataset, thereby circumventing the
time-consuming and resource-intensive process of labelling
a single dataset with new classes that are already present in
another dataset. Empirical evidence provided by the authors
demonstrates the effectiveness of this approach when applied
across multiple datasets, achieving comparable performance
levels without sacrificing accuracy. In a related study, Zhou
et al. [35] introduce a technique for training a unified
object detection model on several extensive datasets by using
dataset-specific training methods and losses, but maintaining
a shared detection architecture with outputs specific to
each dataset. This approach circumvents the necessity for
manual taxonomy alignment, as it automatically combines
the outputs of different datasets into a unified semantic
taxonomy. The authors show that this multi-dataset detector
achieves comparable performance to dataset-specific models
in their respective domains while effectively generalising
to unseen datasets without the need for fine-tuning. By
utilising multiple training datasets, these approaches can
lead to reduced resource requirements in terms of training
data and improved performance. However, it is worth noting
that they do not specifically address the aspect of reducing
computational power during the training process.

D. DOMAIN ADAPTATION
Domain adaptation techniques are designed to enable models
to leverage common features between different but related
datasets, while also accommodating the unique character-
istics of each domain [36]. Techniques such as Domain-
Adversarial Neural Networks (DANN) [37] and Domain
Adaptive Faster R-CNN [38] have shown success in allowing
models to generalise across domains with slight non-
homogeneity. These models identify both domain-specific
and domain-invariant features, facilitating training on both
source and target domains. Furthermore, they show consid-
erable strength in dealing with the domain shift from source
to target domains, which is a common issue when integrating
datasets from different contexts or applications. However,
while these techniques offer significant advancements in
handling domain shifts, they do not explicitly address the
distribution characteristics of the initial source domain,
an aspect which the present study aims to explore and address
using the proposed method.

In summary, analysing previous works on multi-dataset
utilisation reveals clear benefits, such as reduced dataset
labelling requirements and increased generalisation perfor-
mance. However, there is a lack of exploration in time-
series-based multi-dataset models due to challenges in
fusing sequential data from different sensors and collection
specifications. The current study aims to address these points
by proposing a novel approach for effectively integrating
time-series data from multiple sources. Furthermore, it is
essential to consider computational efficiency, as training
on multiple datasets may require additional computational
resources. By addressing these points, this study aims to
contribute valuable insights to the field of multi-dataset
modelling and help pave the way for more robust and

efficient approaches in various applications, particularly
those involving time-series data.

III. DATASET FUSION
A summary of the dataset fusion process is depicted in
Figure 1.
The signal in each dataset is first down-sampled to the

sampling frequency, Fs, of the dataset with the lowest
sampling frequency. This step is essential to models with
look-back such as Recurrent Neural Networks so that the
same signal length is considered for every motor when
training the model. Taking the example in Figure 1, for a set
of signals {A[n],B[n], . . . ,N [n]} with sampling frequencies
{FsA ,FsB , . . . ,FsN }, the target sampling frequency, Fsnew ,
is expressed in Equation 1.

Fsnew = min{FsA ,FsB , . . . ,FsN } (1)

The re-sampling is implemented using the Fourier method.
This method was chosen over decimation due to the
simplicity of implementation and with the assumption that
the signals used are periodic in nature. To avoid aliasing
and other artefacts, a low-pass windowed-sinc filter is first
designed and applied to the signal, with a cutoff frequency
based on the target Nyquist frequency. The Hann window,
hann(n), was employed in the filter design due to its desirable
characteristics for resampling, such as reduced spectral
leakage and smooth sidelobes. In the present work, 101 taps
were used, giving a filter order of 100. Equation 2 expresses
the impulse response, h[n], of this filter.

h[n] = K ·
sin (2π fc(n−M/2))

n−M/2
· hann(n) (2)

where K is the normalisation factor, fc is the cutoff frequency
in Hz, n is the discrete time index, and M is the filter length
or number of taps.

To implement the Fourier Method, the time series signal is
first transformed into the frequency domain with a Discrete
Time Fourier Transform (DTFT). For a discrete periodic
sequence x[n] its DTFT, X [ω] is expressed in Equation 3.

X [ω] =

∞∑
n=−∞

x[n]e−jωn (3)

where ω = 2π f and j =
√

−1.
The spectrum X [ω] is then band-limited to the Nyquist

frequency of the lowest Fs. The resulting spectra are then
inverse-transformed back into the time domain. The down-
sampling operation is expressed in Equation 4a and the new
number of samples, Nnew, is calculated using Equation 4b.
Equation 5 shows the Inverse DTFT operation used to obtain
the resampled time series signal.

x[ω]resampled = {x[ω] : ω <
Fsnew
2

} (4a)

Nnew =
N
Fs

∗ Fsnew (4b)

x[n]resampled =
1

Nnew

Nnew−1∑
ω=0

X [n]e
j2πωn
Nnew (5)
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FIGURE 1. A summarised illustration of the Dataset Fusion algorithm.

Each dataset is then normalised using Z-score normalisa-
tion, to overcome varying motor currents. For the resampled
sequence, x[n]resampled , the normalised sequence, x ′[n],
is calculated using Equation 6.

x ′[n] =
x[n]resampled − x̄resampled

σxresampled
(6)

where x̄resampled is the mean of the resampled sequence, and
σxresampled is the standard deviation of the re sampled sequence.
To batch the periods together, a zero-crossing algorithm,

configured to detect crossings from positive to negative,
is employed to first identify a single period, and then
concatenate n periods based on the user-defined parameter.
Given that z-score normalisation is utilised, any periodic
time-series data will exhibit sign changes, making the
zero-crossing algorithm applicable. In cases where multiple
features are present in the data, the zero-crossing algorithm
calculates only the first feature as a reference for period
batching, in order to maintain the temporal integrity of the
data and preserve the spatial relationship between features.
The impact of varying batch sizes on training performance
differs based on the nature of the data and problem domain;
hence, it is recommended that this parameter be optimised
alongside other training hyperparameters. For a discrete
periodic signal x[n] with assumed periodic sign changes,
the set of indices for the positive-to-negative zero crossings,
c+ →−, can be expressed as shown in Equation 7.

c+ →− = { n | x[n− 1] > 0 ≥ x[n] } (7)

For each dataset, the batch order is then shuffled randomly.
This is done in order to mitigate the effect of distribution
shift and prevent noise in one area of the signal from being
prevalent in other areas of the signal. In other words, this step
helps to reduce the variance of the NN prediction. A new
signal is then constructed using the shuffled batches from
each dataset by appending a batch from each dataset in an
alternating fashion.

The full process of the Dataset Fusion algorithm is
expressed in Algorithm 1.
where % represents the modulo operator and ++ represents
concatenation.

A. COMPUTATIONAL COMPLEXITY
The computational complexity of the Dataset Fusion
algorithm, represented in Big O notation, can be determined
by breaking down the steps of the algorithm when practically
applied. The breakdown of the complexity of each stage is
provided in Table 1.

TABLE 1. Algorithm complexity for dataset fusion algorithm, for n
datasets with m length.
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Algorithm 1 Pseudocode of Dataset Fusion Algorithm
Function: Dataset_Fusion(x,Fs,P)
Input:

A set of s finite discrete periodic sets x where s > 1
A set of sampling frequencies Fs corresponding to X
Number of periods batched P

Output: xfused
Determine Fsnew using Equation 1
for x1 to xs do

if FsXs ̸= Fsnew then
Apply filter shown in Equation 2
Calculate X [ω] using Equation 3
Calculate X[ω]resampled using Equation 4a
Calculate Nnew using Equation 4b
Calculate x[n]resampled using Equation 5

Calculate x ′ using Equation 6
Calculate c+ →− using Equation 7
Calculate x ′

batched through grouping P periods by
slicing x ′ at the values where c+ →−[n]%P = 0
Shuffle x ′

batched
xfused = {x ′

1batched
[0] ++ . . . ++x ′

sbatched [0] ++x ′

1batched
[1]

++ . . . ++x ′
sbatched [1] ++ . . .}

return xfused

As Table 1 shows, the filtering and resampling step has a
complexity of O(nm(1 + log(m))), since it involves applying
a finite impulse response (FIR) filter with a complexity
of O(m) and performing resampling using the Fast Fourier
Transform (FFT) with a complexity of O(m ∗ log(m)) for
each of the n datasets. The Normalisation step scales each
dataset using Z-score normalisation with a complexity of
O(m) for each dataset, resulting in a total complexity of
O(n ∗ m). The Period Batching step identifies zero-crossings
and creates period batches with a complexity of O(m) for
each dataset, resulting in a total complexity of O(n ∗ m).
Finally, the Chaining and Stacking batches step involves
filtering, chaining, and stacking the period batches with a
total complexity of O(n ∗ m). The overall complexity of the
Dataset Fusion algorithm is the sum of the complexities of
these steps, which is O(n ∗m ∗ (1+ log(m)))+ 3 ∗O(n ∗m),
with the dominating term being O(n ∗ m ∗ log(m)) due to its
faster growth as the input size (n and m) increases.

The logarithmic factor in the dominating term, O(n ∗ m ∗

log(m)), makes the Dataset Fusion algorithm scale well with
increasing input size. This is because logarithmic growth is
slow growth, ensuring that the algorithm remains efficient
even as the number and size of the datasets (n andm) increase.
Additionally, since the complexity is dependent on both the
number of datasets (n) and the length of the datasets (m),
the algorithm can efficiently handle varying dataset sizes
and compositions. This scalability makes the Dataset Fusion
algorithm a versatile algorithm and suitable for processing
large and diverse datasets, which is essential in the context of
real-world applications where data size and complexity are
constantly evolving.

B. REQUIREMENTS FOR APPLICATION
Whilst the proposed algorithm is domain-independent, there
are requirements regarding the data that must be met for
the proposed method to be applicable. These requirements,
as well as the reasoning, are detailed in the following sections.

1) HOMOGENEOUS DATASETS
Although the methodology can be used in varying problem
domains, the dataset fusion algorithm can only fuse homoge-
neous data, since the aim of the algorithm is to capture the
data distribution of a problem domain as a whole in order
to mitigate overfitting on a specific dataset. Generalisation
to multiple problem domains is not in the scope of this
algorithm.

2) DATA PERIODICITY
As explained in section III, The algorithm relies on the fact
that the data is periodic, due to the resampling method used,
the zero crossing method, and to be able to create a coherent
and usable sequential fused time series dataset.

3) TIME DOMAIN DATA
The proposed approach will only be applicable in the time
domain representation of the datasets, as it relies on the
sequential nature of the data to fuse it together in ameaningful
way.

If the datasets being fused meet the requirements detailed
above, then there is feasibility in applying the proposed
method. Some examples of where the proposed method may
be feasible are daily temperatures in a region, electrical power
data and vibration data.

C. PROPOSED BENEFITS OF DATASET FUSION
The Dataset Fusion algorithm seeks to eliminate the necessity
of multiple NNs for a single problem domain. This approach
theoretically enables the development of anNN that can adapt
to unseen data from the same domain, even if originating
from different data sources. Moreover, the Dataset Fusion
algorithm aims to reduce data requirements from individual
sources, as achieving ideal data collection conditions from
each source can often prove to be challenging. Potential
issues with collected data, such as data corruption, sensor
faults, or insufficient data volume, among other data collec-
tion complications, further emphasise this need. The present
study will experimentally investigate the proposed benefits of
the Dataset Fusion algorithm.

IV. CASE STUDY: DATASET FUSION FOR 3-PHASE
MOTOR CURRENT DATA
This section will explore the feasibility of applying the
proposed method with a case study on motor current signals.
The aim of the case study is to empirically test and validate
the effectiveness of our proposed method. The datasets used
will first be introduced and the feasibility of the proposed
method will be confirmed. The dataset fusion algorithm will
then be applied, and the resulting signal will be compared and
analysed to the original signals.
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A. DATASET INTRODUCTION
For the present case study, two homogeneous open-source
datasets [39], [40] will be used to confirm the feasibility of the
Dataset Fusion methodology. Specifications of the datasets
used are detailed in Table 2. Both datasets are composed
of three-phase motor current signals, however, one dataset,
which will be referred to as Dataset A, contains fault data for
an inter-turn short circuit fault, and the other dataset, which
will be referred to as Dataset B, contains current signals for a
broken rotor bar fault.

1) DATASET A
Dataset A [40] contains files from a motor running at a vari-
able operating frequencyFo, ranging from 30Hz to 60Hzwith
5Hz increments. The motor has the following specifications:
4 poles, 1HP mechanical power, 220V supply and 3A rated
current. The authors simulated both high-impedance and low-
impedance short circuits, for different levels of fault severity.
For the purpose of this case study, only the files captured
at Fo = 60Hz were used to meet the limitation of Dataset
Fusion of only being applicable to homogeneous data. The
new dataset structure is depicted in Table 3.

2) DATASET B
The motor used to capture Dataset B [39] is a squirrel
cage AC motor, running at a constant Fo = 60HZ and
has similar specifications to the motor used to capture
Dataset A. The breakdown of the dataset is shown in
Table 4. At the beginning of each file, for roughly the
first 4 seconds, a transient signal representing the motor
startup was also recorded. For the purpose of the case
study, and for compatibility with the proposed algorithm, the
transient subset of the signal, the first 200,000 samples, was
discarded from each file, so that only the steady state of the
motor remained. This left 801,000 samples left in each file,
representing an approximate 20% redundancy of data.

B. APPLICATION OF DATASET FUSION AND ANALYSIS
The Dataset Fusion algorithm was used to fuse the healthy
files from Datasets A and B into a single, fused dataset.
First, all healthy files were extracted from each dataset and
concatenated into a large signal. The files in Dataset B
were first sliced to remove the motor startup signature,
then resampled to 10,000Hz, the same Fs as Dataset A.
Each Dataset was split into batches of 4 periods and then
concatenated alternating between each Dataset to create the
final fused dataset. This was found to be the optimal value for
this dataset through a grid-search-based optimisation of the
parameters for DF tomaximise NN performance. The batches
were then concatenated, alternating between each dataset,
to create the final fused dataset.

For each dataset, an initial analysis was conducted in
order to understand the data and enable a more accurate
interpretation of the fused dataset experimental results. The
time series signal, a Probability Distribution Function (PDF)
and FT representations from 0-500Hz were generated for a

single phase from a healthy file from each dataset. The plots
are illustrated in Figure 2.

A Principal Component Analysis (PCA) was also per-
formed on the healthy data from each dataset as well as
the fused data to gain comprehensive insights into the
data, wherein the resulting axes are linear combinations
of the original variables, defined by the eigenvectors and
eigenvalues. This method allows for the identification of the
most significant patterns to increase the interpretability of the
proposed method. All datasets were uniformly downsampled
to 10,000Hz, which corresponds to the minimum sampling
frequency in Dataset A. Subsequently, the samples were
partitioned into groups of 100,000, aligning with the smallest
sample size per file in Dataset A. The data’s three features,
representing the three phases, were flattened into a single
axis before being subjected to the PCA algorithm. The
visualisation of the first two Principal Components in a 2D
scatter plot can be found in Figure 3.
It is clear to see from Figure 2(d) and Figure 2(e), as well

as Figure 2(g) and Figure 2(h) that Dataset B contains a
considerable amount of noise in comparison to Dataset A.
In addition to this, the frequency spectra of Dataset A show
more pronounced harmonics in comparison to Dataset B.
Although this may not be as evident from the time series
signal plot, a NN will most likely pick up these differences in
noise, and thus a NN trained on a single dataset, especially in
the case of Dataset B, will struggle to distinguish files from
Dataset A with fault signals as anomalous. This hypothesis
will be further discussed in the results and discussion.

The time series signal of the fused data looks similar
visually in comparison to the datasets, albeit in a different
input space due to normalisation. From the PDF and FFT
representations shown in Figure 2(f) and Figure 2(I) however,
there are subtle indications of features present in both
Dataset A and Dataset B. For instance, the overall shape
of the frequency spectra follows Dataset A, however, there
is noise clearly present in the spectra, a significant feature
of Dataset B. Furthermore, the harmonic peaks in the fused
frequency spectra contain the same characteristics of both
datasets, which is interesting to note as this representation
would still be considered a healthy signal. Future work will
investigate the use of a fused Dataset in the frequency domain
to train a classifier NN. However, the scope of this study is
to validate the use of the time series representation to train a
generalised time series anomaly detector with reduced data
requirements.

Upon examining the PCA plot depicted in Figure 3,
it is clear that the healthy data from both datasets exhibit
comparable traits and patterns. Interestingly, the fused dataset
forms a cluster around the origin, positioning itself at the
center of the two datasets. This central location of the fused
dataset within the circular arrangement of points from the
two datasets signifies that it effectively captures the salient
features of both datasets. By doing so, the fused dataset aids in
bringing the training data closer to the population distribution
of the problem domain, thereby enhancing the robustness and
generalisability of the model derived from this data. Further
evidence of this will be given in the experimental results.
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TABLE 2. Specification for motor datasets used in the case study.

FIGURE 2. Time series signal from Dataset A (a), B (b) and fused (c), Probability Distribution Function from Dataset A (d), B (e) and fused (f), and
Fourier Transform from Dataset A (g), B (h) and fused (i) healthy files.

It is important to note that simply concatenating two
healthy files from each Dataset will produce a similar out-
come to the representations shown in Figure 2. However, the
purpose of this analysis is to show that the Dataset algorithm
will still preserve the individual features of each represen-
tation in a new signal and still be usable for a data-driven
approach. The PCA plot, as displayed in Figure 3, provides
more compelling evidence of the impact of the Dataset Fusion
technique on the combined dataset. Subsequent experimental
results on anomaly detection, utilising the various datasets,
will further explore the implications of employing a fused
dataset for training an anomaly detection model.

C. EXPERIMENTAL DESIGN
The aim of the experimentation presented in this study is
to observe the effectiveness of Dataset Fusion in training
an anomaly detector Neural Network (NN) using some of
the healthy files from Dataset A and Dataset B, and then
evaluating the model on the remaining healthy and faulty
files, in comparison to commonly used training methods.
The training methods selected as baselines in this study
are commonly utilised in the domain of anomaly detection
and have been previously validated in literature [41], [42].
These methods serve as a standard against which the
proposed Dataset Fusion method is compared. The following
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TABLE 3. Breakdown of dataset A 60Hz files.

TABLE 4. Breakdown of dataset B.

FIGURE 3. Principal component analysis of dataset A, B and the fused
dataset.

training methods will be compared for all of the subsequent
experiments:

• Traditional Approach: This approach involves training
on a single dataset. It’s a common baseline method used
in many studies [41].

• Transfer Learning: A two-phase training method
where the first training phase occurs on one dataset,
followed by a second training phase on another dataset.
This method leverages knowledge transfer between
datasets and has shown promise in related works [42].

• Mixed Dataset: A single training phase is conducted
using all healthy files from each dataset. This method
aims to leverage the diversity of multiple datasets.

• Dataset Fusion: Our proposed method involves a single
training phase on fused healthy data consisting of all
datasets.

• Dataset Fusionwith Transfer Learning: Combines the
dataset fusion and transfer learning approaches, with the
first training phase on fused healthy data consisting of all

datasets, followed by a second training phase on a single
dataset.

To provide clarity on the variations within each training
method, Table 5 provides a full breakdown of the different
variants, along with labels used in the experimental results
tables.

TABLE 5. Experiment variants and corresponding key for results tables.

The same workstation was used to conduct all experi-
mentation in order to maximise experimental rigour. The
specifications of this workstation are given in Table 6, for the
purpose of experiment reproducibility.

TABLE 6. Specifications for workstation used for experimentation.

Each experiment iteration was repeated 10 times for
experimental rigour. The outcome of each experiment is
validated for statistical significance using an Analysis Of
Variance (ANOVA), to ensure the reproducibility of the
results presented. The ANOVA is generated using custom
functions on Python 3.9, and the numpy [43] and pandas [44]
libraries, with versions 1.22.0 and 1.3.5 respectively.

The Precision, Recall and F1 score metrics, popularised in
[45], will be used to evaluate the performance of the anomaly
detector model with each training method. Equation 8,
Equation 9, and Equation 10 show how the Precision, Recall,
and F-beta scores are calculated, respectively:

Precision =
True Positives

True Positives+ False Positives
(8)

Recall =
True Positives

True Positives+ False Negatives
(9)

Fβ Score = (1 + β2) ×
Precision× Recall

(β2 × Precision) + Recall
(10)

where ‘True Positives’ (TP) denote the anomalies correctly
identified by the NN model, ‘False Positives’ (FP) indicate
the normal events incorrectly classified as anomalies, ‘False
Negatives’ (FN) are anomalies that the NN model failed to
detect, and β is the degree of prioritisation of recall over
precision. In this study, we set β to 1, which means that the F-
beta score becomes the F1 score, treating precision and recall
equally in its calculation.
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1) NEURAL NETWORK MODEL
The multi-channel LSTMCaps autoencoder NN developed in
previous work will be used as the anomaly detection models
for the following experiments. Further details regarding the
architecture are given in [4]. For the following experimen-
tation, three input branches were used to accommodate the
three features present in the dataset: the three-phase motor
current signals. The model hyperparameters were optimised
for anomaly detection using a grid-search procedure. Table 7
details the optimal hyperparameters for this task, which will
be used across all training methods. For all experiments, this
model will be trained on ‘‘healthy’’ motor data only, since it
is an unsupervised autoencoder.

TABLE 7. Optimised hyperparameters for neural network.

As Table 7 shows, the NN trains best with 4M samples.
Since the healthy data from each dataset contains over 4M
samples, each file from the training set was randomly sliced
to reduce the number of samples from each file, totalling the
4M samples required for each dataset when concatenated.
This approach ensures that the model will train on a wide
variety of data, and subsequently increase the reliability of
the experimental results by avoiding optimising for a specific
set of files.

There are various methods of determining the error
thresholds of an Autoencoder NN. Themost commonmethod
is through the use of an unseen validation set. After training
the NN, the model is run on a file in the same class as
the training set, but which has not been used for training.
In this case, a single file containing data for a healthy
condition motor is used. The Mean Absolute Error (MAE)
for each prediction is then calculated, which provides a
baseline for the accuracy of the NN with reconstructing
healthy data. When multiple features are present in the
dataset, as is the case with the data used in this case
study, a threshold is calculated for each feature since the
reconstruction performance of the NNmodel may vary across
each feature. The overall threshold can be calculated through
different methods, and the method used is determined based
on the training performance of the NN as well as the data
consistency and behaviour. In the present work, two methods
are used: The largest MAE for each feature, or two standard
deviations away from the mean MAE of each feature. The
reasoning behind using two standard deviations from the
mean as a threshold is, assuming a Gaussian distribution of
error residual values, two standard deviations from the mean
covers 95% of the data. In the case of an inconsistent or
noisy dataset, it is better to use this method since there are
more likely to be anomalous MAE values in the validation

set, and if the largest MAE value is used, the threshold may
be too high to consistently detect abnormalities in the test
data. In the case of a consistent dataset with contains minimal
noise, the largest MAE value is generally a good threshold to
use since an MAE value to exceeds this threshold is more
likely to indicate an anomaly as opposed to noisy but healthy
behaviour.

2) ADDRESSING LIMITATIONS THOUGH EXPERIMENTAL
DESIGN
A potential limitation of the proposed experimentation is
the experimentation on static datasets. By experimenting on
static datasets, results achieved in experimental conditions
may not generalise effectively to real-world conditions or
even other data in the same problem domain. One experiment
will address this limitation by recreating the dataset for each
of the ten test iterations, shuffling the dataset files for each test
iteration randomly in each dataset prior to data formulation.

Another potential limitation is the availability of an equal
amount of health data from each Dataset tested. For the
purpose of this experimentation, an equal amount of data
from each dataset will be used, however, it cannot be ensured
that there is an equal amount of healthy data available outside
of experimental settings. Therefore, one experiment will
address this issue by modifying the ratio of data used from
each dataset to obverse the difference that is made to the
anomaly detection results.

D. EXPERIMENT 1 - TRAINING METHODS COMPARISON
Experiment 1 aims to provide an initial comparison of the
various training approaches detailed in Section IV-C. To
ensure experimental validity, the experiment will be repeated
10 times. However, each iteration will not utilise the same
training data; instead, it will employ a randomly shuffled
subset of data from each file to create a dataset comprising
4M samples. This approach further bolsters the validity of the
proposed method and mitigates the risk of misrepresenting its
performance by only validating it on a single subset of data.

Table 8 presents the Precision, Recall, and F1 score results
for each experiment, as well as the average F1 score across
the datasets. Table 9 displays the ANOVA for the Average F1
score results in 6. Additionally, Figure 4 features a box and
whisker plot that visually compares the Average F1 scores
from all 10 runs from each training approach, offering a
representation of result spread and consistency.

E. EXPERIMENT 2 - VARYING DATA VOLUME
Experiment 2 aims to observe the effect of reducing the
volume of training data on the performance of the anomaly
detection model using the different training approaches.
Similar to Experiment 1, the experiment will be repeated
10 times, and the dataset will be shuffled to ensure
experimental validity. The experiment details for each test
are shown in Table 10. The estimated FLOPs used for each
number of samples are calculated using Equation 11 [46]:

FLOPs = 2 · P · 3 · S · E (11)
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TABLE 8. Experiment 1 results - A comparison of the performance of the anomaly detection model using all training approaches. The experiment key is
shown in Table 5.

TABLE 9. One-way ANOVA test results for Experiment 1 - Training methods comparison.

where P is the number of trainable parameters in the NN,
N is number of training samples, and E is the number of
epochs. Whilst the complexity of the model can undoubtedly
affect the complexity of training, since the same model is
used across all experiments, it will not be relevant for this
calculation.

The tabulated results for experiment 2 can be found in
Table 11. A summary of the results in the form of a box and
whisker plot is illustrated in Figure 5. The One-way ANOVA
table for the Average F1 scores is shown in Table 12.

F. EXPERIMENT 3 - VARYING DATASET RATIO
Experiment 3 aims to assess the performance of each training
method with an imbalanced dataset containing a different
number of samples from each dataset. The purpose of this

TABLE 10. Experiment settings for Experiment 2 - Varying data volume,
including an estimation of the FLOPs used for training.

experiment is to simulate a real-world environment, where
the volume of data available from different sources will not
be equal in many cases. Similar to Experiments 1 and 2, the
experiment will be repeated 10 times, and the dataset will be
shuffled to ensure experimental validity.
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TABLE 11. Full results of experiment 2 - Varying data volume.
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TABLE 12. One-way ANOVA test results for Experiment 2 - Varying data volume.

FIGURE 4. Box and whisker plot comparing the results for Experiment 1 -
Training methods comparison.

Table 13 shows a breakdown of the experimental settings
used. In the case of traditional training, the anomaly detector
model will be trained on the reduced dataset, similar to
experiment 2. However, transfer learning approaches will
make use of both datasets.

The tabulated results for experiment 3 can be found
in Table 14 for results from 10:90 to 50:50 (Dataset A:
Dataset B), and in 15 for results from 60:40 to 90:10. The
tabulated results are summarised in a box and whisker plot,
shown in Figure 6. The One-way ANOVA table for the
Average F1 scores is shown in Table 16.

TABLE 13. Experiment 3 - Varying dataset ratio details.

V. DISCUSSION
A. EXPERIMENT 1 - TRAINING METHODS COMPARISON
ANALYSIS
Examining the experimental results from Experiment 1,
as presented in Table 8, the DF method is empirically proven
to consistently deliver the best performance in terms of

F1 score for both Dataset A and Dataset B, as well as
the average F1 score across both datasets. With the best
Average F1 score of 0.879 and a 10-run average of 0.821,
DF surpasses the other methods. These findings suggest that
the DF approach effectively captures the salient features in
both datasets, resulting in consistently strong performance
across the datasets compared to the compared methods.
Moreover, the results imply a considerable advantage in
fusing the datasets, as the performance on individual datasets
significantly exceeds that of models specialised in each
respective datasets.

In comparison, the traditional training approach on
Dataset A (T-Dataset A) exhibits better performance on
Dataset A with a mean F1 score of 0.867 but suffers
from poor results on Dataset B with a weaker score of
0.423, consequently lowering the average F1 score and
making this model unsuitable for use across homogeneous
datasets. The superior performance of the DF method on
both Dataset A and Dataset B, along with the average
F1 score across both datasets, underscores the algorithm’s
effectiveness in fulfilling the need for a single neural network
adaptable to data from various sources within the same
problem domain. This outcome aligns with the algorithm’s
proposed benefits, which aim to eliminate the need for
multiple NNs and reduce data requirements from individual
sources.

Furthermore, the results indicate that the traditional train-
ing approach, while effective for the dataset it was trained on,
falls short in terms of generalisability across homogeneous
datasets. In contrast, the DF method not only provides a more
robust solution for handling data from multiple sources but
also proves to be consistent in performance across multiple
runs.

Utilising transfer learning, even when first training
with the fused dataset, does not lead to better overall
performance, even on the dataset that was trained on in
the second phase. However, the preprocessing methods
employed in the DF algorithm play a crucial role in enhancing
performance, particularly for Dataset B, which required
downsampling to meet the algorithm’s requirements. This
demonstrates the algorithm’s adaptability to variations in
data characteristics and its potential for handling real-world
scenarios where data collection specifications may be
inconsistent.

Although the performance across different training
approaches on Dataset B is lower than on Dataset A, using
transfer learning from the fused dataset to Dataset B yields
results that are on par with training solely on Dataset B
using the traditional approach. Simultaneously, this approach
achieves strong performance on Dataset A. However,
the DF algorithm still outperforms all transfer learning
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FIGURE 5. Box and whisker plot showcasing the impact of varying data volumes on each training method, grouped by training
approach and plotted against average F1 score (higher is better).

FIGURE 6. Box and whisker plot showcasing the impact of varying dataset ratios on each training method, grouped by training
approach and plotted against average F1 score (higher is better).

approaches in terms of overall performance on both test
datasets.

The box andwhisker plot in Figure 4, illustrating the spread
of the results, shows that the DF approach did not produce
any outlying results from the 10 runs, indicating high levels
of consistency. However, it is also evident that the transfer
learning approaches exhibit the lowest deviation in results
compared to a single training phase on one dataset, whether
using traditional training approaches or the proposed DF
method. This highlights the potential benefits of combining
transfer learning with the DF approach to achieve even
more consistent and reliable performance across datasets.
However, the results show that transfer learning may not
be the best approach, especially in this problem domain,
to achieve the best performance.

The ANOVA Analysis presented in Table 9 demonstrates
that the experimental results yield a statistically significant
outcome, with a p-value of 1e-16. This highlights the
relevance of the differences observed among the various
training approaches.

B. EXPERIMENT 2 - VARYING DATA VOLUME ANALYSIS
The results of Experiment 2, presented in Table 11 and
visualised in Figure 5, demonstrate that the DF approach
significantly outperforms other training approaches across
varying volumes of training data. Furthermore, when utilising
only 6.25%of the training data, themodel still surpasses other
training approaches that use 100% of the data, achieving an
Average F1 score of 0.788. As expected, most approaches
experience decreased performance when using less data,
with the proposed DF approach following this trend closely.
However, it is worth noting that the performance reduction is
minimal, with only a 4.04% drop compared to the baseline
results.

Interestingly, not all approaches follow this pattern. For
instance, transfer learning from the fused dataset to dataset
B performs best when using 50% of the data, while transfer
learning from the fused dataset to dataset A achieves optimal
results with only 6.25% of the data. For these approaches,
there does not appear to be a clear advantage to using more
data, leading to the conclusion that, for training unsupervised
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TABLE 14. Results for Experiment 3 - Dataset Ratio from 90:10 to 50:50 (Dataset A: Dataset B).
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TABLE 15. Results for Experiment 3 - Dataset Ratio from 40:60 to 10:90 (Dataset A: Dataset B).

TABLE 16. One-way ANOVA test results for Experiment 3 - Varying dataset ratio.

anomaly detectors, using more data is not always beneficial.
While this may not hold true for other tasks such as fault

classification, those tasks are beyond the scope of the present
study and will be explored in future works.
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The box and whisker plot in Figure 5 reveals that the
performance of the anomaly detection model trained with
DF is less consistent and has a larger spread when using
less data. However, examining the results from other training
approaches shows that this is not always the case. In some
instances, such as Transfer Learning from Dataset A to
Dataset B, the spread is largest when training with the
full dataset. Additionally, as the ANOVA table in Table 12
shows, the p-value for this experiment suggests the results
are statistically significant.

By outperforming all other models while using only
a small fraction of the training data, the DF method
addresses the common challenge of not having sufficient
training data from each data source. In this experiment,
as shown in Table 10, the estimated FLOPs needed for
training the model with 6.25% of the data dramatically
decreased from 4.92 × 1012 to 3.08 × 1011, representing
a 93.7% reduction in computational power. This significant
decrease is especially noteworthy when contrasted with the
minor 4.04% reduction in performance. The DF approach
effectively utilises less data, showcasing its potential to
contribute to more sustainable and environmentally friendly
AI development. Aligned with the principles of Green AI,
which emphasise efficiency and reducing the environmental
impact of training AI models, the results of Experiment 2
highlight the superior performance of DF. Its crucial impli-
cations for real-world applications demonstrate its ability to
address the issue of limited training data while promoting
more sustainable practices in AI development, providing a
valuable contribution towards SDG goals 12 and 13 with
reduced computational power requirements and hence energy
consumption.

C. EXPERIMENT 3 - VARYING DATASET RATIO ANALYSIS
The results of the experiment, shown in Table 14 and
Table 15, reveal that the DF algorithm outperforms all other
training approaches in terms of Average F1 score. The best
performance is achieved with a 30:70 ratio (Dataset A:
Dataset B), resulting in an Average F1 score of 0.827, closely
followed by the baseline experiment (50:50) with an Average
F1 of 0.821. In comparison, the next best performing training
approach was transfer learning from the fused dataset to
Dataset B (TF - DF to Dataset B), which had an Average F1
score of 0.751. The ANOVA in Table 16 confirms that these
values are statistically significant.

The box and whisker plot in Figure 6 indicates that
the transfer learning approaches involving the fused dataset
generally exhibit less spread compared to other methods.
Furthermore, the spread of the DF results appears to be the
most consistent across different experimental settings. One
might hypothesise that the box plot trend would indicate an
increase in generalised performance as the balance between
samples from each dataset increases. Interestingly, this is not
the case.

While the results empirically demonstrate that an imbal-
ance in datasets mostly does not affect the stability of
the results for DF, a clear trend is observed, wherein the
average F1 score decreases as more of Dataset A is used

for training. This trend is more evident in some of the other
approaches, such as T-Dataset A, TL-Dataset B to A, and the
mixed dataset (MD). For instance, training with the Mixed
Dataset at a 40:60 ratio yields an F1 score of 0.889 on
Dataset A, 0.509 on Dataset B, and an overall average of
0.699. Conversely, training with a 90:10 ratio results in an
F1 score of 0.890 on Dataset A, 0.300 on Dataset B, and
an overall average of 0.595. These results show that the
performance on Dataset A can be maintained with less data
while improving the performance on Dataset B with more
data.

The observed trend leads to an intriguing conclusion: there
is a higher benefit to training with Dataset B compared to
Dataset A to achieve a more generalised anomaly detection
performance. Although both Dataset A and Dataset B
represent healthy data, Dataset B exhibits a higher level of
noise, which can be clearly seen in Figure 2h, the raw FFT
of the signal. Additionally, there is a slightly higher level of
spread on the PCA shown in Figure 3. These observations
suggest that Dataset B is a more difficult dataset to learn and
requires more training data compared to Dataset A. This also
implies that a larger variety of healthy data in the training
dataset contributes to an overall better anomaly detection
performance.

D. FURTHER REMARKS AND LIMITATIONS
In the context of Transfer Learning, it is worth noting
that better results on the dataset trained on in the second
phase are not guaranteed. The results of the experiments
demonstrate that swapping the transfer learning training
phases produces different outcomes, which indicates that
there is no clear approach to determine which dataset should
be used in each phase without conducting additional testing.
Dataset Fusion mitigates this issue by training on both
datasets simultaneously.

The conclusions drawn from Experiment 3 suggest that
there is a greater benefit to training on a higher number
of samples from Dataset B, as opposed to Dataset A,
in order to achieve amore generalised performance. However,
identifying this preference presents a challenge, as a similar
experiment must be conducted to reach this determination.
Despite this issue, the DF approach offers a solution
by providing a more stable performance across multiple
experimental settings. This advantage becomes particularly
significant in practical applications where time and resource
constraints may render extensive experimentation unfeasible.
By addressing these concerns and offering more consistent
results, DF shows potential as an effective method for
training unsupervised anomaly detection models, particularly
in situations where the optimal dataset and training phase
cannot be easily determined. The robust performance of the
DF approach, combined with its ability to accommodate
various experimental settings, positions it as a valuable tool
for practical use cases. It is currently unclear whether the
findings from these experiments will hold true for other
tasks, such as fault classification. Addressing this question
is beyond the scope of this paper, but it presents an intriguing
avenue for future research.
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In tasks requiring long-term degradation or forecasting,
where the sequential nature of the data is paramount, our
batching and fusion method may not be optimal. In such
tasks, training data are primarily aimed at identifying the
trend of data behaviour over time from a specific source,
which may be obscured when alternately mixing datasets.
However, for other tasks where the focus is on identifying
data source invariant changes - those consistent regardless of
the source - our DF algorithm proves to be highly beneficial.
This methodology enables the creation of a balanced training
set that is more representative of the population distribution of
the problem at hand. This approach, therefore, demonstrates
substantial value in tasks such as classification or anomaly
detection, where the detection of irregularities or deviations
is more critical than following a specific trend. In contrast,
in forecasting tasks, where the continuity and trend of a single
data source are paramount, alternative methods preserving
the sequential integrity within each source may yield better
models. Future work may explore additional strategies for DF
tailored specifically for different task types, offering further
flexibility and adaptability in tackling diverse data science
problems.

The homogeneity assumption in the proposed dataset
fusion technique presents a limitation, particularly when
handling real-world datasets that often exhibit some degree
of non-homogeneity such as in this case, motors of dif-
ferent sizes and rotational speeds. To mitigate this chal-
lenge, future research could look into the incorporation of
domain adaptation methods, which allow for the handling
of datasets that differ slightly in their distributions or
characteristics.

VI. CONCLUSION
This paper presents a time-series dataset composition
approach called the DF algorithm, designed to address
challenges in achieving generalised anomaly detection
performance across multiple homogeneous data sources.
The proposed algorithm was validated using a case study
involving motor current signals, demonstrating that the
fused dataset retains salient features from both source
datasets while clustering in the middle of both datasets
when PCA is applied. The algorithm was then tested on
an anomaly detection task and compared to conventional
training approaches, with empirical results showing that the
DF algorithm significantly outperforms other methods in
terms of average performance across both datasets.

Additionally, further experiments were conducted to assess
the performance of the proposed approach under non-
ideal conditions. Experimental results indicate that the DF
approach remains superior even when reducing the number
of data samples, with only a 4.04% reduction in performance
despite using only 6.25% of the training data, resulting
in a 93.7% reduction in computational power required for
training. When evaluating the model’s performance with
imbalanced numbers of samples from each dataset, the
proposed approach proved stable across different sample
ratios. These findings highlight significant benefits in the
context of Green AI, which emphasises sustainable AI model

development, as well as practical feasibility due to the
algorithm’s resilience under non-ideal conditions.

Several research directions could be explored based
on the present study. For instance, future works might
investigate the applicability of the algorithm for training
classifier models or examine whether using the frequency
domain representation of the fused dataset could enhance
performance. Furthermore, it would be worthwhile to explore
the relationship between dataset ‘‘complexity’’ and the
‘‘usefulness’’ of data from each fused dataset, enabling the
development of a more systematic approach to dataset fusion.
Furthermore, adapting the proposed method to enable com-
patibility with non-homogeneous datasets could potentially
be accomplished using domain adaptation techniques, which
would further strengthen the applicability of the proposed
method.
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