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Abstract

Powell-Sabin B-splines, which are based on triangles, are employed in the framework of the extended finite element
method (XFEM) for fracture analysis. This avoids the necessity of remeshing in discrete fracture models and increases
the solution accuracy around the crack tip. Powell-Sabin B-splines are C1-continuous throughout the whole domain.
The stresses around crack tips are captured more accurately than when using elements with a standard Lagrangian
interpolation. Although Powell-Sabin B-splines do not hold the Kronecker-delta property, the Heaviside function and
the tip enrichment function are confined to the cracked elements only, similar to the traditional XFEM but different
from the extended isogeometric method. In addition, Powell-Sabin B-splines still hold C1-continuous throughout
cracked elements. There is no need to lower the continuity at element boundaries, to confine basis function support
in cracked elements. Shifting is used to ensure compatibility with the surrounding discretisation. The sub-triangle
technique is employed for the numerical integration over crack elements. The versatility and accuracy of the approach
to simulate crack problems are assessed in case studies, featuring mode-I and mixed-mode crack problems.

Keywords: crack; extended Powell-Sabin method; Powell-Sabin B-splines; compatibility enforcement; numerical
integration

1. Introduction

The numerical modeling of fracture problems is a technically relevant and scientifically challenging issue, and has
been a focal point of attention since the early simulations in the 1960s [1, 2]. Several numerical approaches such as
boundary element method [3, 4], meshless method [5, 6], Galerkin method [7, 8], extended FEM (XFEM) [9, 10],
scaled boundary finite element method [11], damage method [12–14] and phase field method [15] are proposed. For
the crack simulation, the XFEM holds unique advantages: no need to treat cracks as geometric discontinuities, and
avoiding mesh refinement around crack tips.

The XFEM was originally introduced by Belytschko et al. [16] to model linear elastic fracture problems. Then
its application has been extended to model structures with inclusions and voids [17], micro-structures[18, 19], inho-
mogeneous materials [20], fluid mechanics [21], hydraulic fracturing [22, 23], fatigue analysis [24], etc. Basically
the XFEM inserts arbitrarily shaped discontinuity by adding an additional set of discontinuous functions with own
degrees of freedom to the regular field variable. It exploits the partition of unity property of finite element basis func-
tions. For the development of the XFEM, several basis functions are employed for the interpolation of field variables.
Here we name a few for references. The initial work of the XFEM utilized the Lagrange basis function for the field
variable approximation [7, 9, 25]. The Lagrange basis functions have the advantage of easy understanding and easy
implementation in the analysis. In the XFEM framework, the local support and Kronecker-delta property of Lagrange
basis functions are essential to confine the influence of cracks locally and to shield remaining elements from the ef-
fect of crack interfaces [26]. However, due to C0-continuity between elements in using Lagrange bases, the stress is
generally discontinuous at element boundaries and the crack tip. The accuracy in the stress predication is particularly
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important for the stress evaluation around the crack tip. Normally, a post-processing, such as averaging over a finite
domain around crack tips, is required.

The NURBS basis functions in the isogeometric method could circumvent the stress inaccuracy issue in using
Lagrange bases, and have been used in the framework of the XFEM, namely extended isogeometric method (XIGA)
[27–29]. The XIGA employs the same set of basis functions for the design process and for the analysis. Due to the
higher order continuity of basis functions, the stress field is continuous across elements boundaries. The enhanced
continuity in the stress evaluation around the crack tip is essential for crack simulations [28]. For instance, it is
important for the prediction of the crack propagation direction in free crack propagation problems. However, to
confine the influence of cracks locally, C0-lines are added in cracked elements [30]. This leads to a reduced continuous
basis functions, violating the merit of the isogeometric approach (namely higher order continuity). The extended
meshless method has similar property and issue as the XIGA, such as higher order continuity and wide support of
basis functions in the domain [31], not illustrated here for brevity. Interesting reader could refer [32] for details.

In this contribution we employ Powell-Sabin B-splines [33] for crack modelling in the framework of extended ap-
proach, called XPSM. Powell-Sabin B-splines are based on triangles. The basis functions are C1-continuous through-
out the whole domain, leading to stresses which are smooth around the crack tip. Due to the triangle definition, the
XPSM confines the effect of the crack in a local area. This is an advantage over other approaches, such as the meshless
method or the isogeometric method. Generally, Powell-Sabin B-splines are not isogeometric in the strict sense that
the geometry can always be captured exactly, but they share with the isogeometric method the property that they can
exploit standard finite element data structures by using Bézier extraction.

We start with a review of basic properties of Powell-Sabin B-splines and boundary condition enforcement. Section
3 discusses the extended Powell-Sabin finite element (XPSM). Aspects of compatibility and integration scheme are
covered as well. In Section 4, numerical examples are given which demonstrate the versatility and accuracy of the
method. Finally conclusions are drawn.

(a) (b) (c)

(d) (e)

Figure 1: (a) example of a triangulation T (thick black lines), Powell-Sabin refinement T ∗ (thin black dashed lines) of T ; (b) Powell-Sabin triangle
(red line) and relevant Powell-Sabin points (green); (c) Powell-Sabin triangles (red face) for an unstructured mesh; (d) mini-triangles of triangle e,
each triangle is subdivided into six mini-triangles; (e) Barycentric coordinate system τ̄ of each mini-triangle.
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2. Powell-Sabin finite element method

Powell-Sabin finite elements (PS-FEM) are an extension of conventional finite element methods for approxima-
tions on triangular meshes. Basis functions for the PS-FEM are C1-continuous throughout the whole domain. In
this section, we will elaborate on the concept of the PS-FEM, including basis functions, discretizations and boundary
conditions. Then one could employ the PS-FEM to solve partial differential equations.

2.1. Powell-Sabin B-Splines

We consider a triangulation T with e = 1, 2, · · · , E triangles and Nv vertices, which is denoted by thick black
lines in Figure 1(a). A vertex Vk of the triangulation T has the coordinate ξ = (x1, x2). mk triangles are attached to
the vertex Vk, denoted as the molecule Ωk. Each triangle e has a barycentric coordinate τ̄ = (τ1, τ2, τ3), see Figure
1(d). To construct Powell-Sabin B-splines, which are C1-continuous, each triangle e is split into six (n = 1, 2, · · · , 6)
mini-triangles, cf. Figure 1(d). This leads to the Powell-Sabin refinement T ∗, see Figure 1(a). Each mini-triangle n
has a barycentric coordinate τ̃ = (τ̃1, τ̃2, τ̃3) and Bézier ordinates br,s,t, cf. Figure 1(e).

For each vertex k of the triangulation T , Powell-Sabin points are given in green as the vertex itself and points
lying at the centre of the edges of T ∗, see Figure 1(b). Powell-Sabin triangles, drawn in red in Figure 1(c), are then
defined for each vertex k. In order to obtain positive basis functions, the Powell-Sabin triangle is required to contain
all Powell-Sabin points. Herein, we employ the algorithm of [34] to find the minimum area triangle, enclosing the
convex polygon defined by the Powell-Sabin points. For the Powell-Sabin triangles on the boundary, we will consider
following constraints: (i) for an angle γ < 180◦, two sides of the Powell-Sabin triangle must be aligned with two
boundary edges, (ii) for an angle γ = 180◦, one side of the Powell-Sabin triangle must be aligned with the boundary
edge, see Figure 2.

Figure 2: Strongly imposing Dirichlet boundary conditions to the corner of a Powell-Sabin triangle on boundary vertices with: an angle different
from 180◦ (left) and equal to 180◦ (right).

Three Powell-Sabin B-splines N j
k , j = 1, 2, 3, are defined on each vertex k with coordinate ξk =

(
xk

1, x
k
2

)
, i.e. one

for each corner of the Powell-Sabin triangle of vertex k, and have a support in the molecule Ωk of Vk. Obviously,
Powell-Sabin B-splines are defined by Powell-Sabin triangle corners. Thus we re-name the Powell-Sabin triangle
corner as the Powell-Sabin (PS) control point, similar to the concept of control points in the isogeometric analysis. A
Powell-Sabin B-spline N j

k (ξ) must be defined in each of the mk triangles of the molecule Ωk.

N j
k (ξ) = N j

k

(
ξ (τ̄)

)
=

mk∑
ek=1

N j,ek
k (τ̄) (1)

Each triangle in the molecule Ωk is split into six mini-triangles, so that Powell-Sabin B-splines N j,ek
k (τ̄) over a

triangle ek could be written as

N j,ek
k (τ̄) = N j,ek

k

(
τ̄ (τ̃)

)
=

6∑
n=1

N j,ek
k,n (τ̃) (2)
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For brevity, indices ek
n are omitted hereafter. Powell-Sabin B-splines over each mini-triangle, N j

k (τ̃) in Equation
(2), could be formulated using Bézier ordinates br,s,t:

N j
k (τ̃) =

∑
r+s+t=2

br,s,tB2
r,s,t (τ̃) (3)

where B2
r,s,t (τ̃) represent Bernstein polynomials:

B2
r,s,t (τ̃) =

2!
r!s!t!

τ̃r
1τ̃

s
2τ̃

t
3 (4)

Bézier ordinates br,s,t are obtained by first considering following properties:

N j
k (Vl) = 0

∂

∂x1
N j

k (Vl) = 0
∂

∂x2
N j

k (Vl) = 0 (5)

for any vertex Vk , Vl, and we denote

N j
k (Vk) = α j

k
∂

∂x1
N j

k (Vk) = β j
k

∂

∂x2
N j

k (Vk) = γ j
k (6)

To form a partition of unity on the domain, we must require [35]:

3∑
j=1

α
j
k = 1

3∑
j=1

β
j
k = 0

3∑
j=1

γ
j
k = 0 (7)

and coefficients α j
k, β j

k and γ j
k are subsequently obtained by solving the linear system [36]:α

1
k α2

k α3
k

β1
k β2

k β3
k

γ1
k γ2

k γ3
k



xk,1

1 xk,1
2 1

xk,2
1 xk,2

2 1
xk,3

1 xk,3
2 1

 =
xk

1 xk
2 1

1 0 0
0 1 0

 (8)

in which Q j
k =

(
xk, j

1 , x
k, j
2

)
are coordinates of Powell-Sabin triangle corners associated with each vertex k.

We next arrange Bézier ordinates br,s,t in a matrix form Ce
n and denote Powell-Sabin B-splines associated with

each mini-triangle n in element e by Ne
n. To implement the method in existing finite element codes Bézier extraction

is used [37]:
Ne

n = Ce
nB (9)

over each mini-triangle n in element e with six Bernstein polynomials, contained in the vector B [37]. Figure 3 gives
an example of three Powell-Sabin B-splines associated with a vertex m. In the figure, the basis functions are non-zero
only in the moleculeΩm of the vertex m. Here, the moleculeΩm contains five triangle elements surrounding the vertex
m. This is similar to Lagrange bases, confining the influence of basis functions in a local manner. However, the basis
functions are C1-continuous throughout the molecule Ωm. As illustrated in Figure 3, the basis functions are smaller
than one, which indicates that Powell-Sabin B-spines do not hold the Kronecker-delta property.

2.2. Governing equations and finite element discretization
Assuming linear elastic material behaviour, omitting body force, the equilibrium equations read:

∇ ·σσσ = 0 on Ω

u = û on Γu

σσσ · n = t̂ on Γt

(10)

where Γu are essential boundaries with prescribed displacements û. Γt denote Neumann boundaries with prescribed
tractions t̂. n denotes the normal vector at boundaries, and σσσ is the Cauchy stress tensor, which relates to εεε as

σσσ = Dεεε εεε =
1
2

(
∇u + (∇u)T

)
on Ω (11)
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Figure 3: Example of three Powell-Sabin B-splines associated with a vertex m. In the figure, five triangle elements are attached to vertex m,
bounded by thick black lines.

with D the fourth-order elastic stiffness tensor.
The governing unconstrained weak form of Equation (10) is given as:∫

Ω

δε : σdΩ −
∫
Γt

δu · t̂dΓ = 0 ∀δu ∈ ν0 (12)

where δε and δu are the virtual strain and virtual displacement, respectively.
The solution u belongs to the function space ν:

ν =
{
v : vi ∈ H1 (Ω) , vi|Γu = ûi

}
ν0 =

{
v : vi ∈ H1 (Ω) , vi|Γu = 0

}
(13)

in which H1 denotes the first-order Sobolev space.
To discretize Equation (12), we employ Powell-Sabin B-splines for the description of the geometry as well as for

the interpolation of the displacement field:

x =
Nv∑

k=1

3∑
j=1

N j
k X j

k = NeXe u =
Nv∑

k=1

3∑
j=1

N j
kU j

k = NeUe (14)

where X j
k represents coordinates of Powell-Sabin triangle corners (Powell-Sabin control points) Q j

k; U j
k denotes de-

grees of freedom at Q j
k and Nv is the total number of vertices. Ne, Xe and Ue are shape functions, coordinates and

degrees of freedom (DOFs) associated with each element e.
Considering the kinematic relation, Equation (11), and the Powell-Sabin approximation, Equation (14), the weak

form, Equation (12), yields a set of system equations:

KU = f (15)

where K denotes the stiffness matrix, f represents the force vector and U is the displacement control variable vector.
K and f are assembled from the element stiffness matrix and element force vector, respectively.

Ke =

∫
Ωe

BT
e DBedΩ fe =

∫
Γe

t

NT
e t̂dΓ (16)

in which matrices Ne and Be contain shape functions and their derivatives associated with each element e.

2.3. Essential boundary conditions

From Equations (6) and (7), Powell-Sabin B-splines do not satisfy the Kronecker-delta property and are non-
interpolatory at the vertex. Thus, imposing u = û on Γu is not as trivial as in standard finite elements. In this section,
we will present implicit methods to impose essential boundary conditions.
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2.3.1. Strongly imposing Dirichlet boundary condition
For problems with analytical solutions available, we could impose essential boundary conditions strongly for

Powell-Sabin elements. In Section 2.1, a special choice of Powell-Sabin triangle is given along the boundary: vertex
with an angle γ < 180◦ (Figure 2(left)), and vertex with an angle γ = 180◦ (Figure 2(right)). Equation (8) could be
formulated in terms of nodal degrees of freedom U

αa
k αb

k αc
k

βa
k βb

k βc
k

γa
k γb

k γc
k



Uk,a

Uk,b

Uk,c

 =

Uk

∂Uk

∂x1

∂Uk

∂x2

 , (17)

where Uk,i is nodal degree of freedom of Powell-Sabin control point i (i = a, b, c), associated with vertex k; Uk denotes
the displacement at vertex k. ▽Uk =

[
∂Uk

∂x1

∂Uk

∂x2

]
is the gradient of Uk.

For the case of γ < 180◦, we have following relations for coefficients αi
k, βi

k and γi
k (i = a, b, c):

αa
k = α

c
k = 0, αb

k = 1,[
βa

k
γa

k

]
· t = 0,

[
βc

k
γc

k

]
· v = 0,

(18)

where t and v are unit vectors along the boundary, see Figure 2(left)

t =
xa − xb

∥xa − xb∥
, v =

xc − xb

∥xc − xb∥
(19)

From Equations (17) and (18), we have:

Uk,b = Uk, Uk,a = Uk +
▽Uk · v[
βa

k
γa

k

]
· v
, Uk,c = Uk +

▽Uk · t[
βc

k
γc

k

]
· t

(20)

For the case of γ = 180◦, coefficients αi
k, βi

k and γi
k (i = a, b, c) should satisfy

αa
k , 0, αb

k , 0, αc
k = 0,[

βc
k
γc

k

]
· v = 0,

(21)

where v denotes the unit vector along the boundary given in Equation (19), see Figure 2(right).
Equations (17) and (21) lead to

Uk,a =
Uk∆1 − α

b
k▽Uk · v

αa
k∆1 − α

b
k∆

, Uk,b =
−Uk∆ + αa

k▽Uk · v
αa

k∆1 − α
b
k∆

, (22)

with ∆ =
[
βa

k
γa

k

]
· v, ∆1 =

[
βb

k
γb

k

]
· v.

Once obtaining Uk,i, we apply it directly in the system of equations like in the standard finite element method.

2.3.2. Lagrange multiplier method
If analytical solutions for the displacement u are not available, one should consider to weakly enforce essential

boundary conditions. In this study, the Lagrange multiplier method is adopted for weak imposition of essential
boundary conditions. This method introduces a new unknown vector λ. We discretize Lagrange multipliers λ and
displacement filed u on the essential boundary Γu by using Powell-Sabin B-splines:

λ =
Nbv∑
k=1

3∑
j=1

N j
kλ

j
k = Ne

bλ
e
b, u =

Nbv∑
k=1

3∑
j=1

N j
kU j

k = Ne
bUe

b, (23)
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with Nbv total number of vertices on the essential boundary Γu. Ne
b denotes the element boundary shape function

matrix. λe
b and Ue

b denote degrees of freedom associated with element boundaries.
Applying the Lagrange multiplier method, the weak form Equation (12) is reformulated as∫

Ω

δε : σdΩ −
∫
Γt

δu · t̂dΓ −
∫
Γu

δλ · (u − û) dΓ −
∫
Γu

δu · λ dΓ = 0, (24)

Lagrange multipliers λ introduce additional unknowns on the boundary Γu, which could be interpreted as reactive
tractions, i.e. λ = σ (u) · n on Γu. Equation (24) yields following system of equations:[

K G
GT 0

] [
ue

λe

]
=

[
f
fl

]
, (25)

where
G =

∫
Γu

NT Nb dΓ fl =

∫
Γu

NT
b û dΓ, (26)

where N and Nb are shape functions related to the element and the element boundary, respectively.

3. Extended Powell-Sabin finite element analysis

In the extended finite element method (XFEM), cracks are numerically modeled by coupling discontinuous dis-
placement field into the finite element displacement approximation, based on the partition of unity [9]. Powell-Sabin
B-splines are C1-continuous throughout the whole domain. This is beneficial for the stress evaluation. Here, we
will extend Powell-Sabin B-splines into the framework of the XFEM, called XPSM. In the XPSM, the Powell-Sabin
approximation is locally enriched to simulate discontinuities and singular fields. In Equation (1), the Powell-Sabin
triangle only has a support in the molecule of each vertex, confining the influence of the basis function in a local
area, also see Figure 3. According to the location of cracks, only few DOFs are added to the original PS-FEM model.
Thus, the XPSM holds the higher continuity of Powell-Sabin B-splines, but confines the crack in a local area. This
is an advantage of PS-FEM over other approaches, such as the meshless method or the isogeometric method. To
elaborate on the concept of the XPSM, we take an edge cracked square plate as an illustrative example, see Figure 4.
An initial crack is placed in the middle of the plate. The plate is subjected to pure mode-I loading. Figure 4 presents
the geometry and boundary conditions of the problem, while Figures 4(b) and 4(c) show the initial triangulation of
the plate and associated Powell-Sabin control points.

crack

(a) (b) (c)

Figure 4: (a) geometry and boundary conditions for an edge cracked square plate; (b) initial triangulation; (c) Powell-Sabin control points associated
with the triangulation in figure (b). In figure (b) and (c), the initial crack is introduced as the red line.

3.1. Kinematics of the displacement discontinuity

For the deformation of a cracked solid, the effect of a crack includes a jump in displacements and a singularity
at the crack tip. Normally, a Heaviside function is employed to enrich Powell-Sabin control points belonging to
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Tip enriched control points

Tip element Split element Normal control points

Heaviside enriched control points

(a) (b)

Figure 5: Various types of elements and control points. (a) element with the crack tip (tip element and tip enriched control points); (b) elements
split by the crack path (split elements) and Heaviside enriched control points; in the figure, the initial crack is introduced as the red line.

the element cut by the crack path, while nodes belonging to the element containing the crack tip are enriched by
asymptotic functions. Then, the approximate expression of the XPSM in the displacement field is written as

u =
∑
I∈S

NIUI +
∑
J∈SJ

NJ H (x) dJ +
∑

K∈SK

NK

 4∑
α=1

Bα (x) dαK

 (27)

in which S is a set of normal Powell-Sabin control points for all elements; SJ denotes the set of enriched control
points covered by elements that are split by the crack path (split elements), see Figure 5(b); SK represents a set of
enriched control points covered by the element with the crack tip (tip element), e.g., Figure 5(a). NI , NJ and NK

are Powell-Sabin B-splines with a support on corresponding elements. UI denotes the DOFs associated with normal
elements, while dJ and dαK are enriched DOFs related to split elements and the tip element, respectively. If enriched
control points are covered by both split elements and the tip element, the Powell-Sabin control points are preferentially
enriched by the tip element enrichment scheme. In Figure 5(a), we adopt the topological enrichment scheme for the
tip enrichment. Only one layer of elements in the vicinity of the crack tip is enriched [38]. To improve the accuracy of
the XPSM, one could also enrich all Powell-Sabin control points within a fixed distance re from the crack tip, named
the geometrical enrichment scheme, as illustrated in Figure 11(b). We compared the accuracy of both enrichment
schemes in Section 4.1. The focus of current study is the illustration of the XPSM method, hereafter if not specified,
the tip enrichment used is the topological enrichment.

H (x) is the Heaviside function, which takes the form

H (x) =

1 if (x − x∗) · n ≥ 0
−1 otherwise

(28)

where x∗ is the projection point of point x on the crack surface. n denotes the unit vector normal to the crack surface.
Bα (x) represents the tip enrichment function, writing as

Bα (x) = Bα (r, θ) =
[√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin θ sin
θ

2
,
√

r sin θ cos
θ

2

]
(29)
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in which r = |x − xtip| is the distance from a given point to the crack tip, and θ denotes the angle between the vector
x − xtip and the tangent vector of the crack at the crack tip xtip.

Tip element Split element

Normal control points Heaviside enriched control points

Blending element

(a) (b)

Figure 6: (a) blending elements in the XPSM; (b) blending element associated with Powell-Sabin control points of the vertex m; in the figure, the
initial crack is introduced as the red line.

3.2. Compatibility enforcement
In the XPSM, elements are grouped in two parts: enriched elements and standard elements, see Figure 5. For

enriched elements, all control points with support on them are enriched with DOFs, i.e., Equation (27); while for
standard elements, no extra DOF is prescribed. Obviously, at the interface between enriched elements and standard
ones, elements are partially enriched with extra DOFs and partially not. These elements are generally referred as
blending elements, see Figure 6. In the figure, orange elements are the blending elements inter-connecting standard
and enriched elements. For blending elements, the displacement field is given as

u =
∑
I∈S

NIUI +

Bh∑
j=1

N jH (x) d j +

Bt∑
k=1

Nk

 4∑
α=1

Bα (x) dαk

 (30)

in which Bh and Bt are the set of control points enriched by Heaviside functions and tip enrichment functions, re-
spectively. In blending elements, the partition of unity property is violated since not all control points are enriched:
Bh∑
j=1

N j , 1 and
Bt∑

k=1
Nk , 1. Correspondingly, the completeness is not satisfied in blending elements, which yields

a non-smoothness displacement field. In addition, blending elements introduce spurious terms in the displacement
field, resulting in an error in the solution. In general, blending elements face a compatible issue due to the influence of
partially enriched control points. Numerous contributions have been devoted on how to enforce the compatibility in
blending elements [26]. Khoei have studied limitations and difficulties of the blending technique in a comprehensive
manner [39]. A simple but useful approach has been presented to enforce the compatibility, namely shifting [39].

u =
∑
I∈S

NIUI +

Bh∑
j=1

N j

(
H (x) − H j

)
d j +

Bt∑
k=1

Nk

 4∑
α=1

Bα (x) dαk

 (31)
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(a)

(b)

Figure 7: (a) extended Powell-Sabin basis functions of the vertex m; (b) effect of shifting on Powell-Sabin basis functions; in the figure, H (x) is
the Heaviside function; while Hi (i = 1, 2, 3) denotes the Heaviside value of the Powell-Sabin control point i of the vertex m.

in which H j denotes the Heaviside value of the Powell-Sabin control point j.
Figure 7 illustrates the effect of shifting on Powell-Sabin basis functions. Figure 7(a) presents extended basis

functions. Obviously, they shield an influence on blending elements. Applying shifting technique to basis functions,
their influence is confined to the cracked side of elements, see Figure 7(b). Although Powell-Sabin B-splines do not
hold the Kronecker-delta property, Heaviside functions are confined to cracked elements, similar to the traditional
XFEM [39] but different from the extended isogeometric method [40]. In Figure 7, Powell-Sabin B-splines still hold
C1-continuous throughout cracked elements. We did not lower the continuity at element boundaries to confine basis
functions in cracked elements. Generally, Powell-Sabin B-splines not only hold the property of traditional XFEM,
namely confining basis functions in cracked elements, but also keep higher order continuity between elements. This is
a superior aspect of the XPSM over traditional XFEM, extended isogeometric method and extended meshless method.

3.3. Numerical integration scheme

The Gauss quadrature rule is employed to integrate over XPSM elements. Due to the discontinuity in cracked
elements, the accuracy of integration decreases significantly. The sub-triangle technique is employed to avoid this
issue [25], see Figure 8. Due to the requirement of Powell-Sabin B-splines, each triangle in the triangulation T is
split into six mini-triangles (Figure 8(a)). The numerical integration is performed on each mini-triangle [41]. The
sub-triangulation is done on mini-triangles intersecting with the crack path, as shown in Figure 8(b). The delaunay
triangulation technique is employed to subdivide the mini-triangle into sub-mini-triangles at both sides of the crack
path. The command ’delaunay’ of MATLAB is used here to carry out the sub-triangulation. Such sub-triangulation
integration scheme is also applied to the element with the crack tip. The numerical integration over ordinary mini-
triangles, not cut by the crack path, is performed normally.

The employed integration scheme is illustrated in Figure 9. For ordinary elements, not split by the crack path,
only transformation T1 and T2 is considered in the integration. 12 Gauss points are employed in the integration for
each mini-triangle. For elements with the crack path, transformation T3 is added to transform the reference element to
the parent element. The division of mini-triangles into sub-mini-triangles is performed on the parent element

(
ξ̂1, ξ̂2

)
.

To find intersection points of the crack path and parent element edges, sign distance of mini-triangle vertexes with
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3

4
6

1

2

3

(a)

(b) (c)

Figure 8: (a) six mini-triangles of the representative element; (b) delaunay triangulation of mini-triangle 4; (c) Gauss points in the representative
element. In the figure, the initial crack is introduced as the red line. Point P1 and P2 are intersection points of the crack path and boundaries of
mini-triangle 4. In figure (c), blue stars correspond to Gauss points in elements with the crack path, while red stars denote those without the crack
path.

respect to the crack path is used. The intersection point ξ̂i is given as

ξ̂i1 =

(
1 −

D1
s

D1
s − D2

s

)
· ξ̂11 +

D1
s

D1
s − D2

s
· ξ̂21 if D1

s · D
2
s < 0

ξ̂i2 =

(
1 −

D1
s

D1
s − D2

s

)
· ξ̂12 +

D1
s

D1
s − D2

s
· ξ̂22 if D1

s · D
2
s < 0

(32)

in which D1
s and D2

s are the sign distance of mini-triangle vertex ’1’ and ’2’ in the physical space, respectively; while(
ξ̂11 , ξ̂

1
2

)
and

(
ξ̂21 , ξ̂

2
2

)
are corresponding coordinates in the parent element

(
ξ̂1, ξ̂2

)
.

For the numerical integration in the element with the crack tip, we firstly find the intersection point P1 of the crack
path and the mini-triangle edge. Then we connect point P1 and the crack tip Pc into a straight line P1Pc, and extend
the line to get the intersection point P2 of the line and the mini-triangle edge in the physical space. This could be
easily done because of only linear algebra involved. We apply the sub-triangulation on the mini-triangle intersecting
with the line P1PcP2. In current study, for elements with the crack path, 25 Gauss points are used in the integration
for each min-triangle and sub-mini-triangle. In Section 4.3, we present an example of numerical integration in the
element with a crack tip, see Figure 21.

The corresponding coordinate of the crack tip in the parent element is obtained similarly by applying Equation
(32). We connect any mini-triangle vertex Pv and the crack tip Pc into a straight line PvPc. Computing the sign
distance of the intersection point P1 and P2 with respect to the line PvPc and applying Equation (32) to get crack
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tip coordinates in the parent element
(
ξ̂1, ξ̂2

)
. Even Powell-Sabin B-splines hold C1-continuous throughout the whole

domain, here we get crack tip coordinates in an analytical way, different from the isogeometric method, which requires
to solve a nonlinear algebraic equation due to the higher continuity of basis functions.

Transformation T1 and T2 are standard in the Powell-Sabin FEM [41]. The transformation T3 is defined as

ξ̂1 =
1 − ξ̄1 − ξ̄2

2
· ξ̂11 + ξ̄1 · ξ̂

2
1 + ξ̄2 · ξ̂

3
1

ξ̂2 =
1 − ξ̄1 − ξ̄2

2
· ξ̂12 + ξ̄1 · ξ̂

2
2 + ξ̄2 · ξ̂

3
2

(33)

where
(
ξ̄1, ξ̄2

)
are coordinates in the reference element, see Figure 9(a).

(
ξ̂i1, ξ̂

i
2

)
(i = 1, 2, 3) are coordinates of

vertexes of the sub-mini-triangle ’1’ in Figure 9(b).
Obviously, the sub-triangulation technique employed here is reliable, considering that the crack path is straight in

the parameter space and in the parent element. All numerical examples provided in current study are assumed to be
straight cracks (or crack segments) in both physical and parameter spaces.

3

4
6

(a) (b)

(c) (d)

Figure 9: Transformations for numerical integration of mini-triangle 4 in Figure 8. (a) Gauss points in the reference element with coordinates(
ξ̄1, ξ̄2

)
; (b) transformation T3 from coordinates

(
ξ̄1, ξ̄2

)
to the parent element

(
ξ̂1, ξ̂2

)
; (c) transformation T2 from the parent element

(
ξ̂1, ξ̂2

)
to

barycentric coordinates τ̃ = (τ̃1, τ̃2, τ̃3); (d) transformation T1 from barycentric coordinates τ̃ = (τ̃1, τ̃2, τ̃3) to the physical space (x1, x2). In the
figure, the initial crack is introduced as the red line.

3.4. Stress intensity factors (SIFs)

The stress intensity factors are the quantitative parameters, reflecting the strength of elastic stress field at the crack
tip. The concept of J-integral is employed to evaluate the energy release rate for a crack. For general mixed-mode
problems, the energy release rate G can be given as the composition of stress intensity factors (SIFs)[9]

J = G =
K2

I

E∗
+

K2
II

E∗
(34)
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(a) (b)

Figure 10: (a) J-integral around a notch in two dimensions; (b) triangles (yellow) chosen about the crack tip for the interaction integral. In the
figure, the initial crack is introduced as the red line. The set of yellow triangles are selected as the collection of elements with a domain radius rd
about the crack tip. In current study, rd is taken to be twice of smallest triangle element size.

in which KI and KII are stress intensity factors of mode-I and mode-II. E∗ is a fracture parameter, relying on Young’s
modulus E and Poisson’s ratio ν, E∗ = E for plane stress and E∗ = E/

(
1 − ν2

)
for plane strain condition.

Theoretically, the J-integral is calculated as a contour integral along any line C in Figure 10(a) [9]. Once the
J-integral obtained, we could get the SIFs. However, the contour integral is not well suitable for finite element calcu-
lation [9]. Thus in practice the SIFs are computed by the interaction integral technique. For the crack model employed
in the interaction integral, two states are considered: actual state

(
σ(1)

i j , ε
(1)
i j , u(1)

i

)
and auxiliary state

(
σ(2)

i j , ε
(2)
i j , u(2)

i

)
.

The auxiliary state is chosen as asymptotic fields for mode-I and mode-II. The interaction integral takes the form [9]

I(1, 2) =

∫
A

σ(1)
i j

∂u(2)
i

∂x1
+ σ(2)

i j

∂u(1)
i

∂x1
−W (1, 2)δ1 j

 ∂q∂x j
dA (35)

with W (1, 2) being interaction strain energy, W (1, 2) =
(
σ(1)

i j ε
(2)
i j + σ

(2)
i j ε

(1)
i j

)
/2. q is the weight function value varying

from 0 to 1. In the integral, the domain A is the collection of triangles about the crack tip, see Figure 10(b). In current
study, for convenience, we consider triangles, instead of mini-triangles, to form the integration domain A in Equation
(35). In the implementation, we choose triangles touched by the crack tip with a characteristic length rd, as shown in
Figure 10(b).

Once obtaining the interaction integral I(1, 2), we could approach the SIFs by [9]

I(1, 2) =
2
(
K(1)

I K(2)
I + K(1)

II K(2)
II

)
E∗

(36)

Choosing separately the auxiliary state for mode-I and mode-II, the SIFs could be obtained

KI = K(1)
I =

E∗

2
I(1,mode-I) mode-I: K(2)

I = 1, K(2)
II = 0

KII = K(1)
II =

E∗

2
I(1,mode-II) mode-II: K(2)

I = 0, K(2)
II = 1

(37)

For the crack propagation modelling, the propagation direction is a key factor to guild the crack growth. Here, we
take the maximum circumferential stress criterion to determine the crack growth angle θc [42]

θc = 2 arctan

 −2
(

KII
KI

)
1 +

√
1 + 8

(
KII
KI

)2

 (38)

once obtaining the crack growth direction θc, we could get the updated crack path with a crack increment. Here, a
constant crack incremental length da is used in the study.
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4. Numerical examples

To investigate the performance of the approach, we present four examples: a square plate with an edge crack, an
inclined crack, a curved crack and a plate with two propagating cracks. For the square plate with an edge crack in
Figure 4, analytical solutions are available in the literature [43]. The performance of the approach is assessed using
the energy error norm. The error of each element is given as:

∥u − ū∥E(Ωe) =

√(∫
Ωe

(εεε − ε̄̄ε̄ε)T · (σσσ − σ̄̄σ̄σ) dΩ
)

(39)

where u, εεε and σσσ stand for the analytical solution, ū, ε̄̄ε̄ε and σ̄̄σ̄σ denote the approximate solution.The domain error is
obtained by summing up the element error:

∥u − ū∥E(Ω) =

√∑
e

(
∥u − ū∥E(Ωe)

)2
(40)

4.1. Edge crack under far field uniform tensile loading
A square plate of the dimension 1 × 1 is considered with an edge crack, shown in Figure 4. The length of the

initial crack is a = 0.5. We set Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3. Plane-stress conditions
are assumed. Figure 4(a) shows the geometry and boundary conditions. Here we consider the displacement on the
boundary corresponding to the singular stress field (parameterized by the stress intensity factor KI) around the initial
crack tip. The analytical expressions of displacement field are given in the Appendix A. Due to available analytical
solutions, imposing Dirichlet boundary condition could be performed by the formulations presented in Section 2.3.1.
Figure 4(b) and (c) show an example of the triangulation and Powell-Sabin control points. Figure 5 shows enriched
control points associated with cracked elements for the triangulation given in Figure 4(b).

Tip enriched control points Heaviside enriched control pointsNormal control points

(a) local mesh refinement (b) geometrical enrichment

Figure 11: Example of local mesh refinement along the crack path and geometrical enrichment around the crack tip. In figure (b), we enrich all
control points belonging to triangle vertexes located within a given distance (re = 0.1) to the crack tip.

In the analysis, we employ the mesh refinement scheme proposed by Funken et al. [44] and Geuzaine et al. [45]
to locally refine the mesh around the crack path, see Figure 11(a). For brevity, the marked element for refinement
is determined as follows: it starts at the crack path, and then a radial marching is done until three elements have
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Top-enr-uni

Geo-enr-uni

Top-enr-ada

(a) energy error norm (b) contours of displacement u1

Figure 12: Energy error norm for various number of degree of freedoms (dofs
√

N scale) and contours of displacement u1. In the figure, ’Top-
enr-uni’ and ’Top-enr-ada’ denote separately the results from uniform and adaptive local refinement with topological tip enrichment scheme, while
’Geo-enr-uni’ represents the results from uniform mesh refinement with geometrical tip enrichment scheme.

XPSM

XFEM

Exact solution

XPSM

XFEM

(a) σ2 along x1-axis (b) error of σ2 along x1-axis

Figure 13: σ2 and its error along x1-axis. In the figure, ’XFEM’ stands for the results from the extended finite element method using Lagrange

basis functions. r is the radius of the point with respect to the crack tip; Err is the error of the numerical solution, Err =
σnum

2 −σext
2

σext
2

, where ’num’

denotes numerical results from the XPSM and XFEM, ’ext’ represents the exact solution.

been crossed in all directions, see Figure 11(a). Of course, one could employ the posteriori error estimator to mark
elements for refinement [46, 47]. However, it is not the focus of current study, we will work on this in the next step.
In addition, to improve the accuracy of the proposed method, we also employ the geometrical enrichment scheme for
the tip enrichment, see Figure 11(b).

As demonstrated in Figure 12(a), increasing the number of control points, namely decreasing the element size,
improves the solution accuracy. In addition, the local refinement and geometrical tip enrichment could increase the
rate of convergence, due to a smoothed gradient around the crack tip [37]. Figure 12(b) shows the contour plot of
the displacement u1 of the proposed method. Figure 13 compares the stress σ2 obtained from the proposed method
(XPSM) and extended finite element method (XFEM). In the XFEM, Lagrange basis functions are employed to
approximate the displacement field. However, due to C0-continuity between elements in using Lagrange bases, the
stress σ2 is discontinuous at element boundaries. Extra effort is needed to smooth the stress field in the domain. Here
we use the commercial software Abaqus to get the stress σ2. In Abaqus, averaging concept is employed to smooth the
stress σ2. In Figure 13(a), both the XPSM and XFEM compare well with the exact solution. Figure 13(b) presents the
error of both methods. Obviously, the error of the XPSM is mainly at the crack tip due to the singularity, while that
of the XFEM is throughout the whole area. In addition, the maximum error of the XPSM is around 4%, while that of
the XFEM is around 10%. The improved accuracy is due to the improved continuity of Powell-Sabin B-splines.
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crack

(a) (b) (c)

Figure 14: (a) geometry and boundary conditions for an inclined center crack problem; (b) initial triangulation; (c) Powell-Sabin control points
associated with the triangulation in figure (b). In figure (b) and (c), the initial crack is introduced as the red line.

Tip enriched control points

Tip element Split element Normal control points

Heaviside enriched control points

(a) (b)

Figure 15: Various types of elements and control points for the inclined crack problem. (a) element with the crack tip (tip element and tip
enriched control points); (b) elements split by the crack path (split elements) and Heaviside enriched control points; in the figure, the initial crack
is introduced as the red line.

4.2. Inclined center crack in a square plate under uniaxial tension
To verify the accuracy of the present approach in the case of mixed-mode crack problems, a square plate of the

dimension L × L = 3 × 3 is considered, see Figure 14. An inclined center crack is placed inside the plate, with a
length 2a = 1. The tilt angle of the crack θ = π/6 is chosen as the demonstrative case, see Figure 14. The material
parameters are E = 1000 and ν = 0.3. Plain-strain condition is assumed. Figure 14(a) presents the geometry and
boundary conditions. The uniaxial stress σ = 1 is uniformly prescribed along top and bottom edges. For known
loadings σ, the exact mixed-mode stress intensity factors are given as[29]

KI = σ

√
πa sec

(
πa
L

)
cos2 θ KII = σ

√
πa sec

(
πa
L

)
cos θ sin θ (41)

Figure 14 shows the initial triangulation and corresponding Powell-Sabin control points for the case of θ = π/6.
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Figure 15 shows enriched control points associated with cracked elements for the triangulation in Figure 14(b). In the
figure, two groups of control points are enriched by the tip enrichment due to two crack tips. For each crack tip, nine
control points are enriched because of three vertexes of the cracked element. The contours of maximum principal
stress σm are shown in Figure 16. The stress plot of the XFEM is used to provide the reference solution, obtained
from Abaqus. The figure shows that the results of the proposed method are in a good agreement with the reference
solution. The stress profile presents obvious sliding between crack interfaces. The principal stress σm is close to zero
on the crack surface, but the largest stress appears at the crack tip due to the stress singularity.

(a) contour plot of the XPSM (b) contour plot of the XFEM

Figure 16: Contour plot of maximum principal stress σm.

Figure 17 presents the SIFs of mode-I and mode-II at different inclination angle θ. The SIFs of the proposed
method and XFEM agree well with the exact solution. The mode-I SIFs decrease drably with the rise of θ. The
mode-II SIFs increase monotonically in θ ∈ [0, π/4], while decrease monotonically in θ ∈ [π/4, π/2]. The mode-II
SIFs attain its maximum at θ = π/4.

Exact solution

XPSM

XFEM

Exact solution

XPSM

XFEM

(a) mode-I SIF KI (b) mode-II SIF KII

Figure 17: SIFs with different inclination angle θ for the inclined center crack problem.
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crack

(a) (b)

Figure 18: (a) geometry and boundary conditions for a curved center crack problem; (b) initial triangulation. In figure (b), the initial crack is
introduced as the curve.

Tip enriched control points

Tip element Split element Normal control points

Heaviside enriched control points

(a) (b)

Figure 19: Various types of elements and control points for the curved crack problem. (a) elements with crack tips (tip element and tip enriched
control points); (b) elements split by the crack path (split elements) and Heaviside enriched control points; in the figure, the initial crack is
introduced as the red curve.

4.3. Curved crack under uniaxial tension
The mixed mode SIFs for a curved crack under uniaxial loadings is considered here. Figure 18(a) presents the

geometry and boundary conditions. The uniaxial stress σ = 1 is uniformly prescribed along the top and bottom edges.
The plate is in a plane strain state, with the dimension L × L = 40 × 40. The material properties of the plate are:
Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3. An arc crack, starting at (−2, 0) and ending at (2, 0), is
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crack

crack
crack

(a)

(b) (c)

Figure 20: (a) six mini-triangles of the representative element; (b) delaunay triangulation of mini-triangle 6; (c) Gauss points in the representative
element. In the figure, the initial crack is introduced as the red curve. In figure (c), point P1 and P2 are intersection points of the crack path and
boundaries of mini-triangle 6. In figure (c), blue stars correspond to Gauss points in elements with the crack path, while red stars denote those
without the crack path.

prescribed in the center of the plate. The arc angle is 2θ and the radius of the arc is R. For a central curved crack in an
infinite plate, the SIFs are given as [48]

KI =
σ

2

√
πR sin θ

(
K cos

θ

2
+ cos

3θ
2

)
KII =

σ

2

√
πR sin θ

(
K sin

θ

2
+ sin

3θ
2

)
(42)

with K =
(
1 − sin2 θ cos2 θ

)
/
(
1 + sin2 θ

2

)
. To numerically approach the analytical solution, the ratio of the model

width to the crack length should be larger than 10.
For displacement boundary conditions, the bottom left corner is fixed in both directions, while the top left corner

is free in the vertical direction. Here, we take the case of half crack arc angle θ = π/6 as the demonstrative case, see
Figure 18. The enriched control points are illustrated in Figure 19. For the crack tips, two groups of tip enrichment
are given in Figure 19(a). For the Heaviside enrichment, we enrich elements touching the crack path.

We perform the numerical integration in cracked elements using the algorithm in Section 3.3, see Figure 20. In
the figure(b), the mini-triangle ’6’ is cut by the crack path. We first find intersection points P1 and P2 of the arc and
the min-triangle edge in the physical space. We connect P1 and P2 to get the linear line P1P2. Then we employ the
delaunay triangulation technique to subdivide the mini-triangle into sub-mini-triangles at both sides of P1P2. Finally
we perform the numerical integration as the scheme proposed in Figure 9. The corresponding Gauss integration points
are shown in Figure 20(c).

For the numerical integration in elements with the crack tip, we first find the intersection point of the curve crack
and the mini-triangle edge, e.g., point P1 in Figure 21(b). In the figure, Pc is the crack tip. We connect Pc and P1 to
form the linear line P1Pc. Then we extend P1Pc in the physical space and get the intersection point P2 of the extended
line P1Pc and the mini-triangle edge. We perform the delaunay triangulation to subdivide the mini-triangle into sub-
mini-triangles at both sides of line P1PcP2, see Figure 21(b). The numerical integration is done as the algorithm
illustrated in Figure 9. Figure 21(c) presents Gauss integration points used in the integration.
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crack

crack
crack

(a)

(b) (c)

Figure 21: (a) six mini-triangles of the tip element; (b) delaunay triangulation of mini-triangle 2; (c) Gauss points in the tip element. In the figure,
the initial crack is introduced as the red curve. In figure (b), point Pc is the crack tip. Point P1 is the intersection point of the crack path and the
boundary of mini-triangle 2. P1Pc is a linear line, whose extended line touches the boundary of mini-triangle 2 at point P2. In figure (c), blue stars
correspond to Gauss points in elements with the crack tip, while red stars denote those without the crack path.

(a) contours of the displacement u2 (b) contours of stress σm

Figure 22: Contour plot of the displacement u2 and maximum principal stress σm.

Figure 22 illustrates the contour plot of the displacement u2 and the maximum principal stress σm. In the figure,
the displacement profile presents obvious jumping and sliding along the crack path due to pulling loads, see Figure
22(a). The stress is close to zero along the crack interface. The largest stress appears at the crack tip due to the stress
singularity. The SIFs for different arc angles are shown in Figure 23. In the figure, the results of the proposed method
are close to exact solutions. The mode-I SIFs decrease with the rise of the arc angle θ, while the mode-II SIFs increase
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as θ increases.

Exact solution

XPSM

Exact solution

XPSM

(a) mode-I SIF KI (b) mode-II SIF KII

Figure 23: SIFs with different inclination angle θ for the curved center crack problem.
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(a) (b)

Figure 24: (a) geometry and boundary conditions for a plate with two propagating cracks; (b) initial triangulation. In figure (b), initial cracks are
introduced as red lines.

4.4. A plate with two propagating cracks

In the last example, we consider a plate with two propagating cracks. This benchmark problem was introduced
by Bouchard [50]. It was considered in other numerical approaches, such as polygonal FEM (PFEM) with local
remeshing [49], to valid their performance. The detailed geometric parameters and boundary conditions are given in
Figure 24. The bottom and top edge is forced in tension via a controlled displacement of 0.1mm, which is imposed
by the Lagrange multiplier method in Section 2.3.2. The material properties of the plate are: Young’s modulus
E = 98000MPa and Poisson’s ratio ν = 0.3. A plain strain condition is assumed. Two initial cracks are placed at
the bottom left and top right edge. A crack increment da = 0.3mm is chosen to enforce the crack propagation. An
example of enriched control points is illustrated in Figure 25. For crack tips, two groups of tip enrichment are given
in Figure 25. For Heaviside enrichment, we enrich elements touching the crack path. For the numerical integration in
cracked elements, we employ the algorithm provided in Section 4.3.

In the analysis, two curved cracks will be obtained. Figure 26 depicts the propagation of two crack paths and
the comparison with the solution via the numerical approach used by Khoei et al. in [49]. Obviously, due to the
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Tip enriched control points

Tip element Split element Normal control points

Heaviside enriched control points

Circle

(a) (b)

Figure 25: Various types of elements and control points for the problem. (a) left bottom cracked elements with crack tips and split elements; (b)
right top cracked elements with crack tips and split elements; in the figure, cracks are introduced as red curves; the boundary of the circle is denoted
as blue lines.

(a) (b)

Figure 26: (a) final crack paths; (b) crack path of the left bottom crack in comparison with Khoei et al.’s simulation [49]. In figure (a), cracks are
introduced as red curves.

domain symmetry, crack paths show a similar pattern. The predicted crack path compares well with that from Khoei
et al.’s simulation. Figure 27 presents the displacement u2 and the corresponding maximum principal stress σm. The
displacement profile presents obvious jump between crack interfaces. The largest stress appears at the crack tip due
to the stress singularity.

5. Concluding remarks

An extended Powell-Sabin scheme (XPSM) has been developed for fracture analysis. It combines Powell-Sabin
finite elements with extended FEM. Powell-Sabin B-splines are employed to interpolate the displacement field and
to discretize the domain. Powell-Sabin B-splines are based on triangles and are C1 continuous with respect to the
interpolation of the displacement field, also across element boundaries. This implies that the stress field is continuous,
again also across element boundaries. For the analysis of crack problems Powell-Sabin B-splines have yet another
important advantage, namely that the C1 continuity in the displacement field is preserved at crack tips, unlike other
discrete crack models, where the higher-order continuity breaks down at the crack tip. Due to the localized property
of Powell-Sabin B-splines, basis functions are confined in cracked elements, similar to traditional XFEM. However,
the higher order continuity property still holds between elements. Numerical examples show that the ability of the
XPSM is very suitable for the analysis of crack problems. The C1-continuity of Powell-Sabin B-splines improves the
accuracy of the stress. In addition, comparing to the XFEM, no extra effort is needed to smooth the stress field.
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(a)

(b)

Figure 27: Contour plot of the displacement u2 (left) and maximum principal stress σm (right) at time: (a) step 38, (b) step 45.
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Appendix A. Crack tip displacement fields

For completeness, we present the formulations of asymptotic displacement fields under pure mode-I loadings
around a straight crack tip. We impose these displacement fields as boundary conditions to approximate singular
stress fields (parameterised by the stress intensity factor KI) around the crack tip. The asymptotic displacement fields
are given as

ux =
KI

2µ

√
r

2π
cos
θ

2
(κ − cos θ)

uy =
KI

2µ

√
r

2π
sin
θ

2
(κ − cos θ)

(Appendix A.1)

where µ = E/2(1+ν), κ = 3−4ν for plane strain and κ = (3−ν)/(1+ν) for plane stress, and (r, θ) are polar coordinates
with origin positioned at the crack tip. The derivatives of displacement fields with respect to Cartesian coordinates
(x, y) at the crack tip read:

∂ux

∂x
=

KI

4µ
√

2πr
cos
θ

2
(− cos θ + cos 2θ + κ − 1)

∂ux

∂y
=

KI

4µ
√

2πr
sin
θ

2
(cos θ + cos 2θ + κ + 1)

∂uy

∂x
=

KI

4µ
√

2πr
sin
θ

2
(cos θ + cos 2θ − κ − 1)

∂uy

∂y
=

KI

4µ
√

2πr
cos
θ

2
(cos θ − cos 2θ + κ − 1)

(Appendix A.2)
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