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Abstract

Motivation: The wealth of data resources on human phenotypes, risk factors, molecular traits and therapeutic inter-
ventions presents new opportunities for population health sciences. These opportunities are paralleled by a growing
need for data integration, curation and mining to increase research efficiency, reduce mis-inference and ensure re-
producible research.

Results: We developed EpiGraphDB (https://epigraphdb.org/), a graph database containing an array of different bio-
medical and epidemiological relationships and an analytical platform to support their use in human population
health data science. In addition, we present three case studies that illustrate the value of this platform. The first uses
EpiGraphDB to evaluate potential pleiotropic relationships, addressing mis-inference in systematic causal analysis.
In the second case study, we illustrate how protein–protein interaction data offer opportunities to identify new drug
targets. The final case study integrates causal inference using Mendelian randomization with relationships mined
from the biomedical literature to ‘triangulate’ evidence from different sources.

Availability and implementation: The EpiGraphDB platform is openly available at https://epigraphdb.org. Code for
replicating case study results is available at https://github.com/MRCIEU/epigraphdb as Jupyter notebooks using the
API, and https://mrcieu.github.io/epigraphdb-r using the R package.

Contact: yi6240.liu@bristol.ac.uk or ben.elsworth@bristol.ac.uk or Tom.Gaunt@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The wealth and diversity of biomedical and population data now
available to epidemiologists is enabling new discoveries and methods
development in population health data science. However, harmoniza-
tion and integration of data presents a challenge to researchers aiming
to ‘triangulate’ evidence from different sources or uncover potential
mechanistic pathways of disease development. This challenge can be
tackled through the development of dedicated data integration plat-
forms, which curate and combine data sources to enable integrative
analyses, removing this burden from individual researchers.

One area in which data integration offers potential value is
causal inference. Over the last two decades, Mendelian randomiza-
tion (MR) (Davey Smith and Ebrahim, 2003) has risen to promin-
ence as a key causal inference method. MR exploits genetic variants
as causal ‘anchors’ (randomly allocated and invariant from

conception) to estimate causal effects between an ‘exposure’ (risk
factor) influenced by the genetic variant(s) and a health outcome.
The approach has various assumptions, of which a key constraint is
that the genetic variants should not pleiotropically affect the health
outcome through a pathway other than the risk factor in question.
The two-sample MR approach enables MR to be performed in situa-
tions where a risk factor (exposure) and an outcome are analysed
for genetic association in separate studies (Pierce and Burgess,
2013), enabling the thousands of published genome-wide associ-
ation study (GWAS) datasets (MacArthur et al., 2017) to be lever-
aged for causal inference.

Database resources, such as the IEU OpenGWAS database
(https://gwas.mrcieu.ac.uk) (Elsworth et al., 2020a), and the linked
MR-Base analytical platform (Hemani et al., 2018) now enable sys-
tematic MR application using the MR Mixture of Experts approach
(Hemani et al., 2017). This ‘systems’ approach offers the capacity to
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standardize the evaluation of potential intervention targets, as we
have recently demonstrated with the plasma proteome (Zheng et al.,
2020). However, such high-throughput approaches raise new chal-
lenges in the interpretation of the wealth of causal estimates gener-
ated. The integration of causal estimates with data from other
sources is one way to tackle such challenges. Combining evidence
with different biases (such as MR estimates, observational correla-
tions and literature-mined experimental results) can provide more ro-
bust causal interpretation in an approach described as ‘triangulation’
(Lawlor et al., 2017). Agreement between sources strengthens the
case for causality, whilst disagreement helps identify sources of bias.

Integration of data also offers the scope to gain more mechanistic
insight into complex networks of association. For example, linking
phenotypic data with genetic variants and molecular pathway data
may make it easier to identify potential intervention targets once a
causal relationship has been established. Similarly, an extensive net-
work of associations provides the opportunity to identify drug repo-
sitioning opportunities and on-target side effects for pharmaceutical
targets.

Here, we describe EpiGraphDB (https://epigraphdb.org/), a data-
base and analytical platform, that integrates trait relationships
(causal, observational or genetic), literature-mined relationships,
biological pathways, protein–protein interactions (PPIs), drug–target
relationships and other data sources to support data mining of risk
factor/disease relationships. In the following sections, we describe
the EpiGraphDB platform and its biomedical and epidemiological
resources, and then illustrate some potential applications of this
platform through specific case studies.

2 Materials and methods

2.1The EpiGraphDB platform
The EpiGraphDB platform (Fig. 1) integrates data from a range of
biomedical and epidemiological sources into a Neo4j graph data-
base and supports interactive and programmatic access using a var-
iety of methods aimed at different needs. We provide a web user
interface (UI) as a user-friendly entry point to the rich integrated
resources that the platform offers, and users are able to program-
matically query data via the application programming interface
(API) web service or the client package in R. Finally, the Neo4j
graph database can be directly queried in Cypher, which is sup-
ported as part of the API.

2.1.1 Interactive access

As an entry point to the platform, the Web UI serves two primary
purposes: (i) it showcases a selection of exemplar topics for the inte-
grated biomedical evidence that EpiGraphDB provides and (ii) as an

interactive interface it helps users in understanding how the queries of
their requested data are structured, in order to assist their further use
of EpiGraphDB. For example, the confounder topic view (https://epi
graphdb.org/confounder) demonstrates the use of EpiGraphDB in
investigating the potential confounders, mediators and colliders be-
tween exposures and outcomes. Aside from viewing the returned data
in tabular format and its visualization in network diagrams, from the
‘Query’ tab users are able to see the underlying API call (using cURL,
Python Requests and the epigraphdb R package) and Neo4j Cypher
query to assist their further use of EpiGraphDB. In addition, users
can use the Explore views (https://epigraphdb.org/explore) to browse
and search EpiGraphDB and visit the Gallery (https://epigraphdb.org/
gallery) for exemplar use cases.

2.1.2 Programmatic access

EpiGraphDB can be queried via the API web service (https://api.epi
graphdb.org), which includes a variety of accessible topic endpoints (as
showcased on the Web UI) and other functionalities that enable further
customized usage. In addition, we developed an R package epigraphdb
(https://mrcieu.github.io/epigraphdb-r) to provide further ease of use
for users to incorporate EpiGraphDB directly into their analytical pipe-
lines in R, without having to be proficient in handling web requests or
parsing response data. We discuss simple examples on how to query
EpiGraphDB via the API or the R package in Supplementary Appendix
S4, and further details on accessing EpiGraphDB are available in the
platform documentation (https://docs.epigraphdb.org). In addition, we
provide companion guides on replicating results of the Section 3 case
studies in Jupyter notebooks and R package vignettes as well as a ‘get-
ting started’ guide (the ‘getting started’ guide using Jupyter notebook
can be found at https://github.com/MRCIEU/epigraphdb/blob/master/
general-examples/getting-started-with-epigraphdb.ipynb. The guide
using the R package can be found at https://mrcieu.github.io/epi
graphdb-r/articles/getting-started-with-epigraphdb-r.html) on accessing
EpiGraphDB data programmatically.

2.1.3 Graph database and graph-based queries

At its core, EpiGraphDB stores integrated data using the Neo4j
graph database. The graph database paradigm supports interpret-
able representation of biomedical information by storing data as
relationships (e.g. associations, causal estimates and mappings) be-
tween entities (e.g. genes, proteins, diseases and genetic variants).
Compared to a relational database architecture using structured
query language, the use of Neo4j and the associated Cypher query
language enables more natural representation of hypotheses as
queries. For example, a hypothetical query for the causal effect for a
risk factor on disease could be conceptualized in Cypher as a
directed acyclic graph (r: RiskFactor)-[c: CausalEffect]->(d:
Disease), which as is an exact representation of the epidemiological
modelling. Although users are not required to know Cypher in order
to use EpiGraphDB, the underlying Cypher query that is used to re-
turn user’s requested data via the Web UI, API or R package is
returned as part of the response data, which can be further used as a
baseline query for users to customize for their specific needs.
Discussions on accessing EpiGraphDB in Cypher using the API and
R package are available in Supplementary Appendix S4.

2.2Integration of epidemiological evidence
EpiGraphDB contains data from a range of biomedical and epi-
demiological sources (see criteria in Supplementary Appendix S2),
with these data represented as nodes and relationships (we refer to a
type of biomedical entity as a meta node (e.g. (Gwas) in Cypher no-
tation) and a type of association as a meta relationship (e.g. [MR]),
whereas a specific entity is referred to as a node (e.g. (Gwas fid:
‘ieu-a-2’, trait: ‘Body mass index’g)) and a specific asso-
ciation as a relationship (e.g. [Gwas (trait: ‘Body mass
index’)]-[MR fbeta, se, pvalg]->(Gwas ftrait:
‘Coronary heart disease’g))) in a graph database. The rela-
tionships broadly represent: epidemiological relationships (e.g. gen-
etic correlations) between phenotypes, biomedical mappings (e.g.
genes to protein and pathways) and relationships derived from the

Fig. 1. Architecture of the EpiGraphDB platform. Source datasets are integrated

into a Neo4j graph database. Standard HTTP queries are processed through a

RESTful API service, which can be called from any REST API client, including our

R package epigraphdb. The web UI showcases main topics of the epidemiological

evidence in EpiGraphDB and demonstrates the example API queries to get the

underlying data
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biomedical literature. Table 1 reports a summary of the evidence
available in EpiGraphDB.

We combined data from over 20 independent sources. All data-
sets required some level of processing in preparation for loading into
EpiGraphDB. Detailed information including sources of data, proc-
essing steps and data ingest method are described in the
Supplementary Appendix S2 and further in the platform documenta-
tion (https://docs.epigraphdb.org).

3 Results

The data integrated within EpiGraphDB offer a wide array of poten-
tial opportunities for data mining and analysis. Here, we present
three case studies which illustrate some of the potential that is
afforded by EpiGraphDB for new knowledge discovery. These do
not, however, represent the full extent of the data or potential of the
platform, which is provided as an open resource for the reader to
use for their own novel research investigations.

In case study 1, we explore the potential of pathway data to char-
acterize pleiotropy of genetic instruments used to generate causal esti-
mates of the effect of protein levels on disease outcomes. Case study 2
seeks to identify alternative drug targets using PPI data in conjunction
with causal estimates of protein levels on disease outcomes as well as
literature-mined/derived evidence. Case study 3 uses knowledge
extracted from the scientific literature to identify potential mechanis-
tic pathways linking causal risk factors to diseases. We discuss the
general steps to replicate these case studies in Supplementary
Appendix S5 and users are encouraged to use the Jupyter notebooks
and R package to replicate and modify the analyses.

3.1Distinguishing vertical and horizontal pleiotropy for

SNP–protein associations
A key MR assumption is that the genetic variant [single-nucleotide
polymorphism (SNP)] is only related to the outcome of interest

through the exposure under study (the ‘exclusion restriction’ as-
sumption). This assumption is potentially violated under horizontal
pleiotropy, where a SNP is associated with multiple phenotypes (e.g.
proteins) independently of the exposure of interest. In contrast, ver-
tical pleiotropy, where a SNP is associated with multiple phenotypes
on the causal pathway to the outcome, does not violate the ‘exclu-
sion restriction criterion’ of MR (Fig. 2A). For molecular pheno-
types, where the number of genetic instruments is typically limited,
it is almost impossible to distinguish vertical and horizontal plei-
otropy using established statistical approaches (van Kippersluis and
Rietveld, 2018).

Table 1. Summary of epidemiological evidence in EpiGraphDB

Category Description Sources

Causal relationships Pairwise MR between traits MR-EvE (Hemani et al., 2017)

pQTL/eQTL MR xQTL (Zheng et al., 2019)

Association relationships Genetic correlations Neale Lab (Abbot et al., 2020)

Observational correlations EpiGraphDB inhousea

GWAS top hits OpenGWAS (Elsworth et al., 2020a)

Polygenic risk score associations PRS atlas (Richardson et al., 2019)

PPIs IntAct (Orchard et al., 2014), STRING (Szklarczyk et al., 2019)

Drug targets Open targets (Carvalho-Silva et al., 2019), CPIC (Relling and Klein,

2011), Druggable genome (Finan et al., 2017)

Molecular pathways Pathway ontologies and molecular events Reactome (Jassal et al., 2019)

Gene expression for tissues GTEx (The GTEx Consortium et al., 2015)

Literature-mined/derived

evidence

Literature evidence of biomedical entities

and mechanisms

SemMedDB (Kilicoglu et al., 2012), MELODI (Elsworth et al.,

2018), MetaMap (Demner-Fushman et al., 2017), Monarch

(Mungall et al., 2017)Mapping of biomedical entities to litera-

ture terms

Ontology and semantic

relationships

Mapping of biomedical entities to ontol-

ogy terms

EFO (Malone et al., 2010), SemMedDB (Kilicoglu et al., 2012),

Vectology (Elsworth et al., 2020b), MELODI (Elsworth et al.,

2018),

Semantic similarities of biomedical

entities

Vectology (Elsworth et al., 2020b)

Entity metricsb Meta nodes Meta

relationships

Nodes Relationships

14 42 32 969 103 84 181 124

Note: Detailed discussion on data integration and how these biomedical entities and associations are represented in EpiGraphDB are available in the

Supplementary Appendices S1 and S2.
aFurther details on the inhouse results by EpiGraphDB members are available from Supplementary Appendix S2.
bInformation and metrics are based on latest version of EpiGraphDB platform (version 0.3.0, April 21, 2020).

Fig. 2. Distinguishing vertical and horizontal pleiotropy using EpiGraphDB. (A)

Concept of vertical and horizontal pleiotropy using SNP–proteins relationship as an

example. We have a valid instrument for MR when a SNP affects proteins in a single

path; in contrast, if an instrument is associated with proteins participating in differ-

ent pathways, it violates the ‘exclusion restriction criterion’ and our instrument is

invalid. (B) Integration of SNP–protein associations with pathway information and

PPI data to distinguish vertical and horizontal pleiotropy using EpiGraphDB. All

four proteins are associated with the same SNP. Proteins 1 and 2 share the same bio-

logical pathway. Proteins 2 and 3 are in PPI. Protein 4 shares no links with other

proteins. Therefore, the SNP association on proteins 1, 2 and 3 are likely to act

through vertical pleiotropy, where the SNP association on protein 4 verse other

three proteins are likely to be horizontal pleiotropy
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Here, by integrating SNP–protein associations with biological
pathway and PPI information retrieved from EpiGraphDB, we have
developed an approach to assess potential horizontal pleiotropy. As
demonstrated in Figure 2B, for a SNP associated with a group of
proteins, we check the number of biological pathways and PPIs that
are shared across this group of proteins. If these proteins are mapped
to the same biological pathway and/or a PPI exists between them,
then the SNP is more likely to act through vertical pleiotropy and
therefore be a valid instrument for MR.

3.1.1Assessing the pleiotropy of an autoimmune-related variant

In this case study, we assessed the pleiotropy of rs12720356, a SNP
located in TYK2 gene that is associated with Crohn’s disease and
psoriasis (Solovieff et al., 2013), by exploring the relationships be-
tween genes (and their products) to which this SNP can be mapped
using expression QTL data. We used the GTEx database (The GTEx
Consortium et al., 2015) to identify single-tissue eQTL effects, gath-
ering a set of genes whose expression level is associated with
rs12720356 in different tissues: FDX1L, ICAM1, ICAM5, KRI1,
MRPL4, GRAP2, TMED1, TYK2 and ZGLP (details on the list of
pleiotropic genes are reported in Supplementary Table S4). We then
proceeded to query EpiGraphDB to extract pathway and PPI data as
described in the methods section (Supplementary Appendix S5).

The results were then converted to a graph that shows two small
connected components and a few isolated nodes (Fig. 3). Note that,
the knowledge about biological processes described by pathways
has to be considered incomplete, and perhaps partially incorrect,
and therefore these results must be treated as hypothesis generating,
and the user should be aware that absence of interaction evidence is
not definitive proof of an absence of pleiotropy. Also, given that the
same protein might participate in different pathways in different
contexts, it is important to verify the soundness of these relation-
ships. For instance, in our case study, ICAM1 shares pathways with
ICAM5, the interactions of integrin cell surface and between lymph-
oid and non-lymphoid cells. Integrin expression has been shown to
be altered in psoriasis (Creamer et al., 1995), and integrins also have
an important pro-inflammatory role in Crohn’s disease, where they
facilitate the movement of leukocytes from the systemic circulation
(note that the association is detected in whole blood) to the intes-
tinal mucosa (Park and Jeen, 2018). ICAM1 also participates with
TYK2 in the regulation of Interleukin-4 (IL4) and Interleukin-13
(IL3) signalling, important actors that drive a predominantly humor-
ally mediated hypersensitivity response (Sartor, 1994). In terms of
PPIs, the above pairs of genes are still connected, and we retrieved a
triple formed by ICAM1, RAVER1 and TYK2, and the pair KRI1-
MRPL4 that is associated with sun exposure, a well-established
beneficial factor for psoriasis and Crohn’s disease (Jantchou et al.,

2014; Søyland et al., 2011). However, here, the results depict that
some single-tissue eQTLs with a strong association, like ZGLP1 and
FDX2, remain unconnected in our network. This shows that they
potentially work along different molecular pathways, acting in hori-
zontal pleiotropy. It would be important to consider their potential
biological role in the outcome phenotypes of any MR analyses using
this instrument.

3.1.2An exemplar valid instrument

We recently used the same approach to explore potential vertical
and horizontal pleiotropy for a number of pleiotropic protein associ-
ated SNPs (Zheng et al., 2020). In one example, a specific set of
three proteins (IL6ST, ICAM1 and TIMP1) were associated with the
same SNP (rs144276707). The pair ICAM1 and TIMP1 was found
to participate in two common pathways, and there were four shared
PPIs among all three proteins. These results supported the hypoth-
esis that rs144276707 is more likely to influence these proteins via
the same biological pathway (acting through vertical pleiotropy),
strengthening the evidence that this SNP is a valid instrument for
MR analysis.

3.2Identification of potential drug targets
Systematic MR of molecular phenotypes, such as proteins and levels
of transcript expression, opens up important possibilities for drug–
target prioritization in pharmacological investigations. However,
many potential targets are not easily druggable. A parallel problem
is that current GWAS of plasma proteins have limited sample sizes,
are not available in many tissues, and only represent a subset of all
proteins. A potential way to address these problems is to use PPI in-
formation to identify druggable targets linked to a non-druggable,
but robustly causal gene. Their relationship to the causal gene
increases our confidence in their potential causal role even if the ini-
tial evidence of their causal effect is below our multiple-testing
threshold. Here, we have developed an approach using PPI data to
prioritize potential alternative drug targets. As a proof of principle,
we illustrate this approach using IL23R as an example.

3.2.1Integrating MR evidence with PPI networks for alternative

drug–targets search

IL23R is a well-established disease-susceptibility gene for inflamma-
tory bowel disease (IBD) (de Lange et al., 2017). The protein–dis-
ease association information retrieved from EpiGraphDB suggests
that IL23R has a robust causal effect on IBD (https://epigraphdb.
org/pqtl/IL23R) (beta¼1.50, P-value¼2.21�10�166, colocaliza-
tion probability¼75%) (Zheng et al., 2020). The drug PTG-200,
acting as an antagonist of IL23R has just passed Phase I and is in
Phase II trials for IBD treatment (Cheng et al., 2019), which aligns
well with the genetic/MR evidence implemented in EpiGraphDB.
Whilst IL23R is druggable, we illustrate how our approach can iden-
tify potential alternative targets using pathway data.

We used PPI information (Orchard et al., 2014; Szklarczyk et al.,
2019) and data on druggability (Finan et al., 2017) to identify a set
of proteins, which are the target of approved drugs and clinical-
phase drug candidates and have direct PPI with IL23R. Table 2
shows a subset of this list with strong MR evidence (P-value
<1�10�5) to IBD (Supplementary Table S5 reports the full list of
identified proteins with druggability information).

This list of proteins includes IL12B, the target protein for an exist-
ing drug Ustekinumab, which is currently under Phase 3 and 4 trials
for IBD treatment (drug trial information available via Open Targets
https://www.targetvalidation.org/evidence/ENSG00000113302/EFO_
0000540?view¼sec:known_drug). Although there is strong MR evi-
dence for IL12B (beta¼0.42, P-value¼9.59�10�34), there is little
evidence for genetic colocalization (https://epigraphdb.org/pqtl/IL12B)
(colocalization probability <1%), which prevents us prioritizing this
target based on MR evidence alone. However, the PPI between IL12B
and IL23R (which does have reliable MR and colocalization results)
increases our confidence that IL12B is a valid target.

Fig. 3. Network diagram with the evidence to assess the pleiotropy of genetic vari-

ant rs12720356. The network has one node for each protein regulated by the eQTL

rs12720356, and their size is inversely proportional to their P-value (see

Supplementary Table S4 for details). Dashed pink edges depict the participation in

common biological pathways, and blue edges represent the number of shared PPIs

(value indicated)
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3.2.2Using literature evidence for results enrichment and

triangulation

A further source of useful evidence is the literature-derived know-
ledge from SemMedDB (Kilicoglu et al., 2012) available in
EpiGraphDB. Integrating this literature evidence with the evidence
described above can further enhance confidence in the findings (as
well as identify potential alternative drug targets). Table 2 also
reports the gene-to-trait literature evidence regarding IL23R and
interacting proteins and IBD, where each entry shows a literature-
derived semantic triple (e.g. ‘IL23R’—‘ASSOCIATED_WITH’—
‘Inflammatory Bowel Diseases’), as well as the study articles from
which each triple was extracted. For the list of genes including
IL23R and IL12B that were identified with strong MR evidence, we
were also able to find abundant literature evidence supporting the
genetic causal evidence with derived mechanisms involving predi-
cates, such as ASSOCIATED_WITH, AFFECTS and CAUSES.

3.3Triangulating causal estimates with literature

evidence
Previously, we have demonstrated that existing literature can be
used to derive relationships and mechanisms between defined bio-
medical traits (Elsworth et al., 2018; Elsworth and Gaunt, 2020). By
integrating this knowledge with causal estimates in EpiGraphDB,
we can triangulate evidence, identifying where these two sources of
evidence are in agreement, and where they are not (Lawlor et al.,
2017). In this case study, we explore the literature connecting traits
with pre-defined causal relationships. From here, we can summarize
the key mechanisms defined in the literature, and also potentially de-
rive novel mechanisms.

3.3.1Sleep duration and coronary heart disease as an example

Starting with an exposure trait of ‘Sleep duration’, existing MR
data, and connections between traits and diseases in EpiGraphDB,

we extracted a set of potentially causally related traits (note that this
is limited to traits with GWAS and MR results) (Table 3).Multiple
disease entries arise from the mapping between the trait name and
EFO terms, each of which maps to a disease term. In this case, we
treated each mapping as a single relationship and extracted the lit-
erature data connecting a pair of traits. For this example, we
selected the outcome trait ‘Coronary heart disease’ to explore in
more detail the potential mechanisms linking this to sleep duration.
To do this, we queried EpiGraphDB to extract the semantic triples
associated with each trait and searched for overlapping terms, iden-
tifying 839 overlapping triples (Supplementary Table S6 reports the
top 10 items by enrichment P-value).

We then generated frequency counts for the overlapping terms
(Fig. 4), which identified many different overlapping terms and types
(https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml), including
6 proteins (aapp), 2 genes (gngm) and 11 organic chemicals (orch).
Each of these represents a key point in a potential mechanism, con-
necting the exposure and outcome traits. Terms of particular interest
are those with high counts (e.g. Ethanol) as these represent terms
with large numbers of supporting publications in the literature.
However, in this case, Ethanol may be present in such numbers due
to its inclusion in many publications as a co-factor when describing
the functionality and efficacy of drugs, highlighting the importance
of reviewing a selection of articles underpinning each mechanism.
For this reason, Ethanol has been excluded from this example.

Figure 5 suggests the main route from Sleep Duration to
Coronary Heart Disease via the intermediate term Leptin involves
only one term on the exposure side (‘ghrelin’) and 10 on the out-
come side, the most enriched being ‘Leptin – TREATS - Coronary
Arteriosclerosis’, providing this as a potential mechanism of interest.

3.3.2Check findings against the original publication text

Finally, EpiGraphDB provides a PubMed identifier to enable us to
check the validity of these connections in the original text. For

Table 2. Triangulation of MR and literature evidence on the effects of IL23R and associated genes to IBD

Gene Effect size (SE) P-value QTL SemMed predicate (count)

IL23R 1.50 (0.05) 2.21� 10�166 pQTL AFFECTS (1), ASSOCIATED_WITH (21),

NEG_ASSOCIATED_WITH (2), PREDISPOSES (1)0.89 (0.06) 4.16� 10�43 eQTL

IL12B 0.42 (0.03) 9.59� 10�34 pQTL ASSOCIATED_WITH (5)

IL15 �1.42 (0.20) 5.53� 10�13 eQTL ASSOCIATED_WITH (2)

IL4 0.46 (0.08) 4.47� 10�08 eQTL ASSOCIATED_WITH (3), DISRUPTS (1)

JAK2 �1.90 (0.20) 1.32� 10�20 eQTL AFFECTS (1), ASSOCIATED_WITH (3)

NFKB1 0.97 (0.17) 2.16� 10�08 eQTL ASSOCIATED_WITH (2)

RORC �1.00 (0.12) 1.21� 10�17 eQTL ASSOCIATED_WITH (1)

STAT3 0.60 (0.08) 2.96� 10�15 eQTL AFFECTS (2), AUGMENTS (1), ASSOCIATED_WITH

(9), CAUSES (1)

Note: The MR evidence is the QTL MR estimates of IL23R and the associated druggable genes (via direct PPI with Tier 1 druggability) to IBD GWAS

(OpenGWAS ID: ieu-a-249). The literature evidence is the SemMed predicates derived by SemMedDB and the numbers of PubMed articles identified to support

the predicate mechanism. Here, we report the subset of genes that are identified to contain both MR evidence (P-value <1� 10�5).

Table 3. Summary of disease traits identified with causal association to ‘Sleep duration’

Exposure Outcome MR beta MR P-value Disease

ieu-a-1088: sleep duration ukb-a-107: non-cancer illness code self-

reported: gout

�0.00257 3.8� 10�24 ‘gout’

ieu-a-1088: sleep duration ieu-a-6: coronary heart disease �1.03933 2.3� 10�21 ‘coronary artery disease’

ieu-a-1088: sleep duration ukb-a-548: Diagnoses - main ICD10:

K35 acute appendicitis

�0.00671 8.0� 10�15 ‘appendicitis’

ieu-a-1088: sleep duration ukb-a-54: cancer code self-reported:

lung cancer

�0.00191 1.1� 10�14 ‘cancer’, ‘lung carcinoma’

ukb-a-9: sleep duration ukb-a-13: sleeplessness/insomnia �0.32167 1.1� 10�11 ‘insomnia (disease)’

Note: We searched for MR evidence associated with the trait ‘Sleep duration’ with P-value to be under 1�10�10, and map the outcome trait to a disease term

via mappings through EFO terms. The identifiers ‘ieu-a-’/‘ukb-a-’ are IEU OpenGWAS IDs.
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example, we found evidence of two statements that ‘Leptin
PREDISPOSES Coronary heart disease’. These were derived from
the following two sentences:

‘CONCLUSIONS: Consumption of sugar-sweetened beverages

was associated with increased risk of CHD and some adverse

changes in lipids, inflammatory factors, and leptin’ (de Koning

et al., 2012).

‘Leptin, one of the earlier adipocytokines, is known to play a

major role in cardiovascular disease and recent observations sug-

gest that leptin is an independent risk factor for coronary heart

disease’ (Amasyali et al., 2010).

The contrasting causal interpretation of these two sentences
highlights the importance of manual review of the original articles
to validate the semantic triples.

4 Discussion

EpiGraphDB is a new database and platform for data integration in
health data science, with a particular focus on understanding the
relationships between risk factors, intermediate phenotypes and dis-
ease outcomes described by epidemiological analyses. Whilst, we
present three specific case studies, we anticipate a much wider array
of uses and support this through an open API and R package. It is,
however, important to recognize that there are several existing plat-
forms for data integration in the health, biomedical and pharma-
ceutical domains (Supplementary Table S3).

The Open Targets platform (Carvalho-Silva et al., 2019;
Koscielny et al., 2017) (https://www.targetvalidation.org/) integrates
a wealth of genomic, phenotypic, ontology and drug–target data
into a single platform aimed at users in the pharmaceutical industry
and research community. Their platform has a well-developed web
interface in addition to a comprehensive API and Python package to
support the use of the API. This open approach has enabled
EpiGraphDB to utilize drug/target mappings with Open Targets.
However, whilst there is some overlap in this context, the Open
Targets platform lacks MR estimates (although it does include gen-
etic association data). Open Targets also includes some literature
data, and their LINK platform (https://link.opentargets.io/) extracts
semantic relationships from PubMed. However, despite some of the
conceptual similarities to EpiGraphDB, their focus is primarily on
drug–target prioritization, whilst EpiGraphDB also aims to support
the evaluation of lifestyle risk factors.

The Hetionet platform (https://het.io/) is a graph database inte-
grating data from more than 29 different databases, which was ini-
tially set up to prioritize drugs for repurposing using an innovative
approach to predict gene/disease associations (‘Project Rephetio’)
(Himmelstein et al., 2017; Himmelstein and Baranzini, 2015), but
now aims to have a broader remit. The platform is very accessible,
with a web application, data downloads in multiple formats and
open access to their Neo4j database. The primary focus of the plat-
form is for molecular mechanisms and pharmacologic data while
EpiGraphDB additionally encompasses epidemiological relation-
ships (MR causal estimates, genetic correlation, etc.) and literature
data. However, the open nature of the platform enables users to eas-
ily work with Hetionet in parallel with EpiGraphDB.

The Monarch Initiative (Mungall et al., 2017) (https://monarchi
nitiative.org/) is focussed on the integration of genotypic and pheno-
typic data across species with the aim of identifying related pheno-
types and potential animal models of disease. This contrasts with the
human-centric epidemiological focus of EpiGraphDB. The Monarch
Initiative platform has an open-source approach to software devel-
opment and offers web interfaces powered by an open API. In com-
mon with Hetionet and EpiGraphDB, the platform uses the Neo4j
database. Users can easily integrate data from the Monarch
Initiative with EpiGraphDB given their open design principles.

Wikidata (https://wikidata.org) is a general knowledge base
which contains an array of biomedical data sources that have recent-
ly been reported (Waagmeester et al., 2020). In contrast to curated
knowledge bases, such as EpiGraphDB, Wikidata is developed
through community-driven efforts and bot automation, and incor-
porates extensive knowledge across a wide array of fields, including
(but not limited to) a range of biomedical entities. Unfortunately,
the scope of this project leads to inevitable duplication and redun-
dancy of the entities it comprises. This much broader approach dis-
tinguishes Wikidata from specialist platforms, such as EpiGraphDB,

Fig. 5. Literature-derived mechanisms between ‘Sleep duration’, ‘Leptin’ and

‘Coronary Heart Disease’. Network diagram displaying the literature connections

between ‘Sleep Duration’ and ‘Coronary Heart Disease’ through the intermediate

term ‘Leptin’. Predicates connecting two semantic terms, their frequencies and en-

richment P-value are labelled on the edges. Enrichment is calculated via MELODI

Presto (Elsworth and Gaunt, 2020) based on a comparison of query count to back-

ground. Edge width represents the enrichment log transformed P-value. Red nodes

represent the exposure (SLEEP DURATION) and outcome (CORONARY HEART

DISEASE) traits, blue nodes represent intermediate semantic literature nodes

Fig. 4. Literature-mined/derived evidence on the intermediates between ‘Sleep dur-

ation’ and ‘Coronary heart disease’. Counts of overlapping SemMed terms grouped

by the SemMed term type (aapp—amino acids, peptides, proteins, gngm—genes or

genome, horm—hormones, orch—organic chemicals; full list available at https://

mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml)
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which is focussed on epidemiological and biomedical knowledge. In
common with other platforms listed above, the open design of this
platform supports cross-platform data integration.

Various other platforms (Abbot et al., 2020; Coker et al., 2019;
Gaspar et al., 2018) exist with some conceptual overlaps with
EpiGraphDB (Supplementary Table S3). These represent a range of
different types of data based on molecular and genetic interactions
and drug targets. However, in contrast to the platforms described
above these platforms do not appear to have accessible API or soft-
ware packages. Although several are open access and available to
the wider community, the lack of programmatic interoperability
limits their scope.

As with all similar platforms, EpiGraphDB is constrained by the
available data and subject to any errors or quality issues that exist in
the original sources. However, by integrating data from a range of
sources (e.g. STRING, IntAct and Reactome for interactions be-
tween proteins), we ensure the user can evaluate consistency be-
tween data sources. We welcome feedback and suggestions from
users (https://docs.epigraphdb.org/#contact) and we provide infor-
mation on upcoming additions and updates via the platform docu-
mentation (https://docs.epigraphdb.org/CHANGELOG/).

5 Conclusions

The EpiGraphDB platform provides an integrated data resource to sup-
port data mining and interpretation of the relationships between disease
risk factors, intervention targets and disease outcomes. We present three
illustrative case studies that demonstrate the functionality and utility of
the platform, but it is important to note that much more extensive capa-
bilities are available and will continue to expand as the platform is
developed further. We aim to support open science by making the data
freely accessible, both programmatically and through a web interface,
and by providing open-source code and exemplar Jupyter notebooks.
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