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Abstract. In this article, we introduce the xtgrangert command, which im-
plements the panel Granger noncausality testing approach developed by Juodis,
Karavias, and Sarafidis (2021, Empirical Economics 60: 93–112). This test offers
superior size and power performance to existing tests, which stem from the use of
a pooled estimator that has a faster

√
NT convergence rate. The test has several

other useful properties: it can be used in multivariate systems; it has power against
both homogeneous and heterogeneous alternatives; and it allows for cross-section
dependence and cross-section heteroskedasticity.

Keywords: st0706, xtgrangert, xtgrangert postestimation, panel data, Granger
causality, Nickell bias, heterogeneous panels, half-panel jackknife, cross-section
dependence

1 Introduction
Predictive (Granger) causality and feedback is an important aspect of applied time-series
and longitudinal panel-data analysis. Granger (1969) developed a statistical concept of
causality between two or more time-series variables, according to which a variable x
“Granger-causes” a variable y if the variable y can be better predicted using past values
of both x and y rather than using solely past values of y. The concept of “Granger
causality” has been widely adopted in economics, medicine, chemistry, physics, biology,
engineering, and beyond.

Granger causality is also useful when the data consist of multiple time series, as in
the case of panel data. Methods on testing for Granger causality using panel-data mod-
els are very well cited and widely available in standard econometric software. Prominent
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examples include the generalized method of moments (GMM) approach of Holtz-Eakin,
Newey, and Rosen (1988), which is valid for homogeneous panels with a few time-series
observations (T ), and the methods of Dumitrescu and Hurlin (2012) and Emirmahmu-
toglu and Kose (2011), suitable for heterogeneous, large-T panels. The GMM approach
of Holtz-Eakin, Newey, and Rosen (1988) has been implemented in Stata by Abrigo and
Love (2016) with the command pvargranger, whereas the method of Dumitrescu and
Hurlin (2012) is available in both EViews and Stata; see, for example, the command
xtgcause by Lopez and Weber (2017).

Recently, Juodis, Karavias, and Sarafidis (2021) developed a new method for testing
the null hypothesis of no Granger causality, which is valid in models with homogeneous
or heterogeneous coefficients. The novelty of their approach lies in the fact that under
the null hypothesis, the Granger-causality parameters equal zero, and thus they are
homogeneous. This allows the use of a pooled fixed effects-type estimator for these pa-
rameters only, which guarantees a

√
NT convergence rate, where N denotes the number

of cross-sectional units in the panel and T denotes the number of time-series observa-
tions in the panel.1 To account for the so-called Nickell bias of the pooled estimator,
their testing procedure makes use of the half-panel jackknife (HPJ) method of Dhaene
and Jochmans (2015). The resulting approach works very well under circumstances
that are empirically relevant: many cross-section units, a moderate time dimension,
heterogeneous nuisance parameters, and high persistence.

The method of Juodis, Karavias, and Sarafidis (2021) has a number of advantages
relative to existing approaches. In particular, the GMM approach of Holtz-Eakin, Newey,
and Rosen (1988) is not appealing when T is (even moderately) large. This is due to
the well-known problem of using too many instruments, which often renders the usual
GMM-based inference highly inaccurate; see, for example, Bun and Sarafidis (2015) and
remark 8 in Juodis and Sarafidis (2022). Moreover, when feedback based on past own
values is heterogeneous (that is, the autoregressive parameters vary across individuals),
inferences may not be valid even asymptotically. On the other hand, while the method of
Dumitrescu and Hurlin (2012) accommodates heterogeneous slopes under both null and
alternative hypotheses, their test statistic is theoretically justified only for sequences
where N/T 2 → 0. This implies that when T is sufficiently smaller than N , that is,
T << N , this method can suffer from substantial size distortions. In an extended
Monte Carlo experiment, Juodis, Karavias, and Sarafidis (2021) show that their method
outperforms the method of Dumitrescu and Hurlin (2012) in terms of power.

The present article introduces a new command, xtgrangert, that implements the
Granger noncausality test of Juodis, Karavias, and Sarafidis (2021). The command
reports the Wald test statistic and its p-value, the null and the alternative hypotheses,
and regression results with respect to the HPJ bias-corrected pooled estimator. The
command offers options for both manual and automatic lag-length selection, using a
Bayesian information criterion (BIC). The command further allows for cross-sectional
dependence and cross-sectional heteroskedasticity in the errors. Finally, the command

1. The autoregressive parameters and intercepts (fixed effects) are still allowed to be heterogeneous.
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can test for Granger causality in equations with multiple relevant variables.2 The panel
must be balanced.

Notably, by construction xtgrangert is computationally faster than xtgcause, es-
pecially so when N is relatively large. This is because the former is based on a single,
pooled regression, whereas the latter runs N individual regressions and retrieves N
individual-specific Wald test statistics, which are subsequently averaged over i.3

The xtgrangert command is applied to a real dataset from the U.S. banking in-
dustry, where we perform Granger noncausality tests to examine the type of temporal
relation between profitability, cost inefficiency, and asset quality. Our results show that
past values of inefficiency contain information that helps to predict profitability, while
this is not the case for asset quality.

The remainder of the article is organized as follows. Section 2 briefly outlines the
Wald test approach developed by Juodis, Karavias, and Sarafidis (2021). Section 3
describes the syntax of the xtgrangert command. Section 4 illustrates the command
using a real dataset. Section 5 concludes.

2 A bias-corrected test for Granger noncausality
We consider the following linear dynamic panel-data model,

yi,t = φ0,i +

P∑
p=1

φp,iyi,t−p +

P∑
p=1

βp,ixi,t−p + εi,t (1)

for i = 1, . . . , N and t = 1, . . . , T . Without loss of generality and for ease of exposition,
xi,t is assumed to be a scalar. The parameters φ0,i denote the individual-specific effects,
εi,t are the errors, φp,i denote the heterogeneous autoregressive coefficients, p = 1, . . . , P ,
and βp,i are the heterogeneous feedback coefficients, or Granger-causality parameters.

The restriction that the number of lags of yi,t is the same as that of xi,t has the
benefit of a minimal computational cost when it comes to lag-length selection. Such
restriction is also imposed by xtgcause and pvargranger.

The null hypothesis that xi,t does not Granger-cause yi,t can be formulated as a set
of linear restrictions on the parameters in (1):

H0 : βp,i = 0, for all i and p

The alternative hypothesis is

H1 : βp,i 6= 0 for some i and p

2. The command does not consider Granger-causal relations that exist only more than one period
ahead; see, for example, Dufour and Renault (1998).

3. To provide some indication of the likely computational gains of our method, in the application
of this article (N = 450, T = 56), we note that when the maximum number of lags equals 5,
xtgrangert requires roughly 1 second to test the null hypothesis, whereas xtgcause takes about 33
seconds.
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Failure to reject the null hypothesis can be interpreted as xi,t not Granger-causing yi,t.4
The same applies when xi,t consists of multiple relevant variables and is a k × 1 vector
of regressors.

The main feature of the above setup, utilized in the Granger noncausality test pro-
posed by Juodis, Karavias, and Sarafidis (2021), is that under the null hypothesis,
βp,i = 0, for all i and p. In other words, the model is homogeneous in the feedback
coefficients. This allows the use of a pooled estimator for {βp,i}Ni=1. Pooled estimators
have a faster rate of convergence,

√
NT , which means that they benefit from a larger

value of both N and T . However, they are subject to the so-called Nickell bias. Juodis,
Karavias, and Sarafidis (2021) propose that this bias is corrected using the HPJ method
of Dhaene and Jochmans (2015). Although bias corrections have been previously shown
to reduce the power of tests (Karavias and Tzavalis 2016, 2017), Juodis, Karavias, and
Sarafidis (2021) demonstrate that this test has very good power in empirically relevant
scenarios.

The above arguments are demonstrated as follows. Rewrite (1) as

yi,t = z′i,tφi + x′
i,tβi + εi,t (2)

where zi,t = (1, yi,t−1, . . . , yi,t−p)
′, xi,t = (xi,t−1, . . . , xi,t−p)

′, φi = (φ0,i, . . . , φp,i)
′, and

βi = (β1,i, . . . , βp,i)
′. Stacking (2) over time yields

yi = Ziφi +Xiβi + εi

where yi = (yi,1, . . . , yi,T )
′, Zi = (zi,1, . . . , zi,T )

′, Xi = (xi,1, . . . ,xi,T )
′, and εi =

(εi,1, . . . , εi,T )
′. Under the null hypothesis, βi = β = 0. The pooled least-squares

estimator of β is defined as follows,

β̂ =

(
N∑
i=1

X′
iMZiXi

)−1( N∑
i=1

X′
iMZiyi

)
(3)

where MZi = IT − Zi (Z
′
iZi)

−1
Z′

i. Fernández-Val and Lee (2013) show that under
general conditions, and as N,T → ∞ with N/T → κ2 ∈ [0;∞), we have

√
NT

(
β̂ − β0

)
→ J−1N (−κB,V)

where J = plimN,T→∞(NT )−1
∑N

i=1 X
′
iMZi

Xi, V denotes the variance–covariance ma-
trix, and B is the bias arising from the fact that N and T are of the same order.

To remove the bias of the pooled estimator, we use the HPJ estimator of Dhaene and
Jochmans (2015), which is defined as follows:

β̃ = β̂ +

{
β̂ − 1

2

(
β̂1/2 + β̂2/1

)}
= β̂ + T−1B̂

4. Obviously, nontrivial power of the test requires that there exist sufficiently many individuals with
nonzero coefficients.
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where β̂1/2 is the estimator in (3) calculated using all units but only the first half of
the time-series observations and β̂2/1 is the estimator in (3) calculated using all units
but only the second half of the available time-series observations.

The bias-corrected estimator then forms the basis of a Wald test for Granger non-
causality. In particular, under mild regularity assumptions reported in Juodis, Karavias,
and Sarafidis (2021), as N,T → ∞ with N/T → κ2 ∈ [0,∞), we have

ŴHPJ = NT β̃
′ (

Ĵ−1V̂Ĵ−1
)−1

β̃ → χ2(P )

where Ĵ = (NT )−1
∑N

i=1 X
′
iMZiXi.

When the errors are assumed to be homoskedastic along both time and cross-
sectional dimensions, then

V̂ = σ̂2Ĵ

with the variance estimator given by

σ̂2 =
1

N(T − 1− P )− P

N∑
i=1

(
yi −Xiβ̂

)′
MZi

(
yi −Xiβ̂

)
(4)

On the other hand, if the errors are cross-sectionally heteroskedastic,

V̂ =
1

N(T − 1− P )− P

N∑
i=1

X′
iMZi ε̂iε̂

′
iMZiXi (5)

The model in (1) can allow for weak cross-section dependence as in Sarafidis and Wans-
beek (2012) and Dumitrescu and Hurlin (2012). Under weak cross-sectional dependence,
the HPJ estimator β̃ remains consistent, but V̂ in the above equations is not. In this
case, an estimator for V̂ is obtained by using the pairs bootstrap as in Gonçalves and
Kaffo (2015). Unreported Monte Carlo simulations show that this approach works well
in finite samples.

3 The xtgrangert command
3.1 Syntax

xtgrangert depvar
[

indepvars
] [

if
] [

in
] [

, lags(#) maxlags(#) het nodfc

bootstrap
[
(#reps, seed(seed))

]
sum

]
Data must be xtset before using xtgrangert. The panel must be balanced.
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3.2 Options

lags(#) specifies the number of lags of dependent and independent variables to be
added to the regression. The default is lags(1). The lags of the dependent variable
are partialed out.

maxlags(#) specifies the upper bound of lags. The BIC is used to select the number of
lags that provides the best model fit. lags() and maxlags() cannot be used at the
same time.

het allows for cross-sectional heteroskedasticity.

nodfc does not apply the degrees-of-freedom correction in (4) and (5). This option is
mostly useful under cross-sectional heteroskedasticity.

bootstrap
[
(#reps, seed(seed))

]
specifies a bootstrap variance estimator in the HPJ

Wald statistic that allows for cross-sectional dependence and uses a custom seed and
#reps replications. By default, 100 replications are used based on the current seed.
This is useful in the presence of weak cross-sectional dependence.

sum presents results on the sum of the estimated feedback coefficients. This option can
be useful when P > 1.

3.3 Stored results

xtgrangert stores the following in e():

Scalars
e(N) number of units
e(T) number of time periods
e(p) number of lags
e(BIC) BIC value
e(W_HPJ) Wald statistic
e(pvalue) p-value for the HPJ Wald test

Matrices
e(b_HPJ) HPJ coefficient estimator
e(Var_HPJ) variance–covariance matrix of the HPJ estimator
e(b_Sum_HPJ) sum of the HPJ estimates of the feedback coefficients
e(Var_Sum_HPJ) variance of the sum of the HPJ estimators

3.4 Postestimation command

predict can be used after xtgrangert. The syntax for predict is

predict newvar
[

if
] [

in
] [

, residuals xb
]

residuals calculates the residuals.

xb calculates the linear prediction on the partialed-out variables.
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4 Example
4.1 Estimation of the determinants of banks’ capital adequacy ratios

To illustrate the xtgrangert command, we perform Granger noncausality tests and
examine the type of temporal relation between profitability, cost efficiency, and asset
quality in the U.S. banking industry. We draw a random sample of 450 U.S. bank-
holding companies, each one observed over 56 time periods, namely, 2006:Q1–2019:Q4.
The data are publicly available, and they have been downloaded from the Federal De-
posit Insurance Corporation website.5

We focus on the following model,

ROAi,t = φ0,i +

P∑
p=1

φp,iROAi,t−p +

P∑
p=1

β1,p,iinefficiencyi,t−p

+

P∑
p=1

β2,p,iqualityi,t−p + εi,t

for i = 1, . . . , N(= 450) and t = P + 1, . . . , T (= 56).

ROAi,t stands for the “return on assets” and is used as a measure of profitability; in
particular, it is defined as annualized net income expressed as a percentage of average
total assets. inefficiencyi,t−p presents a measure of cost inefficiency, which has been
constructed from a stochastic cost frontier model using a translog function form.6 Fi-
nally, qualityi,t−p represents the quality of banks’ assets and is computed as the total
amount of loan-loss provisions expressed as a percentage of assets. Thus, a higher level
of loan-loss provisions indicates lower quality.

We start by testing whether the pair of inefficiency and quality Granger-causes
ROA. Then, we consider univariate tests by modeling ROA as a function of inefficiency
and quality separately. Throughout, we allow for a maximum of four lags of the
dependent variable and the covariates. The following results are obtained:

5. See https://www.fdic.gov/.
6. See section 5 in Juodis, Karavias, and Sarafidis (2021) for more details.

https://www.fdic.gov/
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. use xtgrangert_example

. xtset cert time
Panel variable: cert (strongly balanced)
Time variable: time, 1 to 56

Delta: 1 unit
. xtgrangert roa inefficiency quality, maxlags(4) het
Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -34257.34
------------------------------------------------------------------------------
JKS non-causality test
H0: Selected covariates do not Granger-cause roa.
H1: H0 is violated.
HPJ Wald test : 30.2387
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -34257.336*
lags = 2, BIC = -33371.195
lags = 3, BIC = -32727.595
lags = 4, BIC = -32715.923

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency
L1. .2562039 .0572807 4.47 0.000 .1439358 .368472

quality
L1. -.0162294 .0444754 -0.36 0.715 -.1033996 .0709409

As we can see, the null hypothesis that cost inefficiency and asset quality do not
Granger-cause profitability is rejected at the 5% level of significance. The optimal
number of lags equals 1 according to the BIC.7 The option het requests computing
cross-sectional heteroskedasticity-robust standard errors.

In addition to the Wald test statistic, the command also reports regression results
with respect to the HPJ bias-corrected pooled estimator. The regression output above
indicates that the test outcome may be driven by inefficiency. To shed some light on
this issue, we test for Granger noncausality for each variable separately using univariate
tests. We obtain the following output:

7. Assuming that the maximum number of lags is 4, we tested the residuals for remaining serial
correlation of order up to 3 using the community-contributed command xtqptest by Wursten
(2018). We did not find evidence of residual serial correlation (p-value = 0.089). The commands
for getting these results are predict epsilonres, residuals and xtqptest epsilonres, lags(3)
force.
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. xtgrangert roa inefficiency, maxlags(4) het
Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -33295.8
------------------------------------------------------------------------------
JKS non-causality test
H0: inefficiency does not Granger-cause roa.
H1: inefficiency does Granger-cause roa for at least one panelvar.
HPJ Wald test : 24.3174
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -33295.799*
lags = 2, BIC = -32170.227
lags = 3, BIC = -31112.604
lags = 4, BIC = -30724.676

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency
L1. .2549723 .0517052 4.93 0.000 .1536319 .3563127

. xtgrangert roa quality, maxlags(4) het
Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 450 Obs. per unit (T) = 55
Number of lags = 1 BIC = -33816.06
------------------------------------------------------------------------------
JKS non-causality test
H0: quality does not Granger-cause roa.
H1: quality does Granger-cause roa for at least one panelvar.
HPJ Wald test : 0.2090
p-value : 0.6476
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -33816.061*
lags = 2, BIC = -32649.24
lags = 3, BIC = -31479.433
lags = 4, BIC = -30607.217

------------------------------------------------------------------------------
Results for the Half-Panel Jackknife estimator

Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

quality
L1. -.0201426 .0440637 -0.46 0.648 -.1065059 .0662207

The output on the top (bottom) corresponds to the Granger noncausality univariate
test of the relationship between profitability and cost inefficiency (asset quality). The
null hypothesis that inefficiency does not Granger-cause ROA is rejected at the 5%
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level of significance. This implies that past values of inefficiency contain information
that helps to predict ROA over and above the information contained in past values of
ROA. On the other hand, one fails to reject the null hypothesis that quality does not
Granger-cause ROA.

To illustrate further options of the xtgrangert command, we split the sample into
two groups according to their asset size, where the partitioning is determined based on
the kmeans clustering algorithm available in Stata. Subsequently, we test for Granger
noncausality for the smallest banks in the sample, using data from 2011:Q1 onward,
which corresponds to quarter 1 of the first year following the enactment of the Dodd–
Frank Wall Street Reform and Consumer Protection Act of 2010.8 We obtain the
following results:

. xtgrangert roa inefficiency quality, maxlags(4) het sum, if cluster==2 &
> time>20
Juodis, Karavias and Sarafidis (2021) Granger non-causality Test
------------------------------------------------------------------------------
Number of units= 183 Obs. per unit (T) = 34
Number of lags = 2 BIC = -10307.93
------------------------------------------------------------------------------
JKS non-causality test
H0: Selected covariates do not Granger-cause roa.
H1: H0 is violated.
HPJ Wald test : 36.3572
p-value : 0.0000
------------------------------------------------------------------------------
BIC selection:

lags = 1, BIC = -10249.44
lags = 2, BIC = -10307.934*
lags = 3, BIC = -9788.8299
lags = 4, BIC = -9963.9685

------------------------------------------------------------------------------
Sum of Half-Panel Jackknife coefficients across lags (lags>1)
Cross-sectional heteroskedasticity-robust variance estimation

Coefficient Std. err. z P>|z| [95% conf. interval]

inefficiency .4906756 .2405474 2.04 0.041 .0192113 .9621398
quality -.1765458 .1235961 -1.43 0.153 -.4187897 .0656981

As before, the null hypothesis that inefficiency and quality do not Granger-
cause ROA is rejected at the 5% level of significance. Note that the optimal number of
lags equals 2. The option sum requests reporting the sum of the lags of the regression
coefficients for each variable.

8. The Dodd–Frank Act is a U.S. federal law enacted during 2010, aiming “to promote the financial
stability of the United States by improving accountability and transparency in the financial system,
to end ‘too big to fail’, to protect the American taxpayer by ending bailouts, to protect consumers
from abusive financial services practices, and for other purposes”; see https: // www.cftc.gov /
LawRegulation /DoddFrankAct / index.htm. In a nutshell, the Dodd–Frank Act has instituted a
new failure-resolution regime, which seeks to ensure that losses resulting from bad decisions by
managers are absorbed by equity and debt holders, thus potentially reducing moral hazard.

https://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm
https://www.cftc.gov/LawRegulation/DoddFrankAct/index.htm
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5 Conclusions
xtgrangert implements the Granger noncausality test of Juodis, Karavias, and Sarafidis
(2021). The command reports the Wald test statistic and its p-value, the null and the
alternative hypotheses, and regression results with respect to the HPJ bias-corrected
pooled estimator. The command offers options for both manual and automatic lag-
length selection, using a BIC. Moreover, the command allows for cross-section depen-
dence and cross-section heteroskedasticity in the errors.

The Granger causality testing approach developed by Juodis, Karavias, and Sarafidis
(2021) is computationally fast and widely applicable. In the presence of cross-section
dependence, some caution must be exercised with interpreting the results. This is
because we do not provide a formal proof that the bootstrap methodology used in this
article is asymptotically valid in this case. The same issue applies to other notable
contributions in the literature; see, for example, Dumitrescu and Hurlin (2012). While
the Monte Carlo simulations are encouraging, a formal investigation on the properties
of estimators and the bootstrap is an interesting direction for future research.

A special case of strong cross-section dependence is the additive time effect of the
two-way fixed effects model, which is frequently used in the literature. Typically, this
time effect is removed by transforming the data to deviations from their cross-sectional
means for each time period. This approach is valid if the panel is assumed to be homo-
geneous across i. After the transformation, the Juodis, Karavias, and Sarafidis (2021)
test can be applied without using the bootstrap. If, however, the panel is heterogeneous,
then the demeaning no longer removes the additive time effect.
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install st0706 (to install program files, if available)

. net get st0706 (to install ancillary files, if available)

The xtgrangert command also is available on the Statistical Software Components
Archive and can be installed directly in Stata with the command

. ssc install xtgrangert
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