
Abstract

The nnUNet is a state-of-the-art deep learning based segmentation framework which automatically
and systematically configures the entire network training pipeline. We extend the network architec-
ture component of the nnUNet framework by newly integrating mechanisms from advanced U-Net
variations including residual, dense, and inception blocks as well as three forms of the attention
mechanism. We propose the following extensions to nnUNet, namely Residual-nnUNet, Dense-
nnUNet, Inception-nnUNet, Spatial-Single-Attention-nnUNet, Spatial-Multi-Attention-nnUNet,
and Channel-Spatial-Attention-nnUNet. Furthermore, within Channel-Spatial-Attention-nnUNet
we integrate our newly proposed variation of the channel-attention mechanism. We demonstrate
that use of the nnUNet allows for consistent and transparent comparison of U-Net architectural
modifications, while maintaining network architecture as the sole independent variable across ex-
periments with respect to a dataset. The proposed variants are evaluated on eight medical imaging
datasets consisting of 20 anatomical regions which is the largest collection of datasets on which
attention U-Net variants have been compared in a single work. Our results suggest that attention
variants are effective at improving performance when applied to tumour segmentation tasks con-
sisting of two or more target anatomical regions, and that segmentation performance is influenced
by use of the deep supervision architectural feature.
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1. Introduction

Medical imaging is a valuable tool utilised by clinicians to assess a variety of anatomical struc-
tures [1]. Medical image segmentation supports clinicians during anatomical diagnosis by assigning
anatomical labels to pixels in an image and thereby transforms raw images into spatially mean-
ingful evidence [2]. At present, clinicians manually segment images which is a time consuming
process with intra and inter observer variability [3]. Automatic segmentation provides an opportu-
nity for significant impact as clinical adoption would increase reproducibility and improve clinical
workflows, which is topical due to increased healthcare demands and clinician shortages [4].

Deep Learning (DL) methods are the state-of-the-art approach for tackling automatic medical
image segmentation tasks, with the U-Net [5] being the most widely adopted network variation [6].
Currently, the DL based medical image segmentation literature focuses predominantly on network
architecture and architectural modifications, such as the integration of residual, dense, or inception
blocks, for achieving performance improvements with evaluation commonly conducted on a single
dataset or restricted number of datasets [7, 8, 9, 10, 11, 12, 13, 14, 15]. However, in addition
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to network architecture, DL based automatic segmentation performance depends on further net-
work training pipeline components and hyperparameters, for example, image resampling strategy,
input image patch size, augmentation strategy etc. In fact, algorithms with identical architec-
tures can display performance gaps due to differences in training pipeline component selections [6].
Furthermore, DL segmentation pipelines require dataset-dependent tailoring, which is subject to
inter-expert variability, and could negatively impact a networks’s potential performance if not op-
timally configured. Consequently, for a standardised and transparent evaluation of U-Net network
modifications we propose that architectural modifications be integrated within nnUNet which is
the state-of-the-art automatic segmentation framework for biomedical image segmentation [16].

Isensee et al. [16] developed the nnUNet framework which, for any segmentation task, self-
configures the network training pipeline while considering computer-hardware capabilities and
dataset specific properties. Its use of a systematic method for pipeline component selection re-
sulted in best automatic segmentation performance on 33 of the 53 anatomical structures nnUNet
was evaluated on while it otherwise achieved performance in line with the top challenge partici-
pants. Additionally, nnUNet utilises a standard U-Net type architecture which self-configures its
topology, and therefore allows researchers considerable freedom to experiment with integrating
more advanced U-Net modifications in order to evaluate performance within the state-of-the-art
framework.

We believe that widespread adoption of nnUNet as a base framework in which to implement
architectural modifications allows an opportunity for increased reproducibility, consistency and
transparency for optimal model selection in DL based biomedical image segmentation. The main
contributions of this article are summarised as follows:

• Demonstrate that utilisation of the nnUNet framework allows for comparison of U-Net ar-
chitectural modifications while maintaining network architecture as the sole independent
variable across experiments and allowing fixed training pipeline components across all com-
parisons with respect to a dataset.

• Extension of the nnUNet framework via the integration of advanced U-Net architectural
components for performance gains, and thereby we propose the following six variations with
source code provided 1: Residual-nnUNet, Dense-nnUNet, Inception-nnUNet, Spatial-Single-
Attention-nnUNet, Spatial-Multi-Attention-nnUNet, Channel-Spatial-Attention-nnUNet.

• In the Channel-Spatial-Attention-nnUNet we integrate our newly designed variation of the
channel-attention mechanism.

• Evaluate our novel nnUNet extensions on eight 3D medical imaging datasets consisting of
20 anatomical regions which is the largest collection of datasets on which attention U-Net
variants have been compared in a single work.

2. Background

2.1. nnUNet Extensions

The nnUnet automatic segmentation framework has been shown to attain segmentation per-
formance in line or close to the state-of-the-art [16]. Furthermore, while nnUNet’s impressive

1Source code available via: https://github.com/niccolo246/Advanced_nnUNet.git
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performance was achieved utilising a standard U-Net within its architecture component, research
regarding integration of advanced architectural features within the nnUNet architecture compo-
nent currently remains limited. Isensee et al. [16] investigated use of a fully residual U-Net
encoder, however the nnUNet model extension failed to outperform standard nnUNet on eight of
the ten investigated datasets. Isensee et al. [17] extended nnUNet for optimal performance on
2020 Brain Tumour Segmentation (BraTS) Challenge [18, 19]. The proposed nnUNet extension
achieved first place, however the architecture-specific extensions were limited to the inclusion of
batch normalisation layers and hence no advanced architectural modificaions were investigated.
Luu et al. [20] extended nnUNet for BraTS 2021 and achieved first place on the unseen test
data, with architecture alterations including a deeper U-Net encoder, axial attention mechanism
in the decoder, and replacement of batch normalisation with group normalisation. The authors
hence demonstrated that extending nnUNet via the inclusion of advanced architectural can im-
prove performance, however their work was limited to single dataset evaluation. Finally, to the
best of our knowledge, our previous work [21] is the only instance in which nnUNet was utilised to
compare several advanced network modifications, specifically, we integrated residual, dense, and
inception blocks into the nnUNet. An important distinction and extension of our current article is
the controlling of training pipeline hyperparameters which were previously not constant meaning
that network architecture was not the only modified variable during comparisons; furthermore, we
now also investigate the use of three variations of the attention mechanism.

2.2. Residual, Dense, and Inception U-Net Architectures

While the nnUNet framework has been able to achieve impressive segmentation performance
by utilising a standard U-Net architecture, various works in the literature have reported that
the use of advanced U-Net architectures attain improvements in biomedical image segmentation
tasks relative to standard U-Net, with all comparisons conducted via expertly customised network
training pipelines.

Residual connections were originally developed by He et al. [22], and their proposed network,
ResNet, achieved top performance on the ImageNet challenge [23]. Consequently, residual con-
nections have been integrated into U-Net, in both the downsampling and upsampling paths of
the network architecture, and have been found to have positive impact on biomedical image seg-
mentation performance. Various works have investigated the integration of residual connections
in U-Net in order to tackle segmentation tasks on target anatomical regions including the lung
(CT) [24, 25], brain tumours (MRI) [26], and white matter hyperintensities (MRI) [27, 13] with
proposed modifications outperforming the standard U-Net.

DenseNet, proposed by Huang et al. [28], was designed with the aim to improve ResNet
by instead making use of dense connections, with DenseNet surpassing ResNet on the ImageNet
challenge. H-DenseUNet was proposed by Li et al. [29] which achieved top performance on the
2017 Liver Tumour Segmentation (LiTS) challenge [30] relative to other expert solutions. Their
proposed model consisted of a hybrid densely connected U-Net consisting of both a 2D and 3D
DenseUNet which were jointly optimized via a hybrid feature fusion (HFF) layer.

Inception-blocks were originally integrated within Google’s Inception-Net [31]. Inception-blocks
avoid choosing a fixed convolutional filter size, and instead make use of multiple filter sizes without
incurring a high computational costs. Chen et al. [32] proposed S3D-UNet which made use of 3D
inception blocks in order to learn richer feature representations for the 2018 BRATS challenge, with
their model shown to outperform a standard 3D U-Net. Li et al. [33] proposed a modified U-Net
which integrated inception blocks, while modifying the skip connection between upsampling and
down-sampling paths, and utilising a cascaded training strategy. Their method was applied on the
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2015 and 2016 BRATS segmentation dataset and surpassed alternative baseline 2D and 3D U-Net
models. In their work, Rad et al. [34] proposed four novel U-Net inspired segmentation models,
which were applied on trophectoderm segmentation in human embryo images. Their proposed
Inception-U-Net model achieved the highest performance relative to alternative U-Net models,
outperforming the state-of-the-art solution by 9.3% in Dice coefficient score.

Various works have proposed U-Net inspired architectures which make use of a combination of
the aforementioned advanced architectural features. Dolz et al. [35] proposed a Dense multi-path
U-Net for multi-modal ishemic stroke lesion segmentation. Their U-Net inspired model featured
the use of multiple encoders to process each input modality individually, and also made use of
inception modules in order to help handle varying lesion sizes. Furthermore, the authors ensured
each of the input paths are densely connected to allow for learning of the scale at which modalities
should be processed and combined. Meng et al. [36] proposed a U-Net inspired architecture for
cerebrovascular segmentation in Digital Subtraction Angiography (DSA) images. The authors
reported that their proposed architecture, which made use of a modified dense block for improved
feature extraction and an inception inspired multiscale atrous convolutional module designed to
capture multiscale vessel structure, attained superior performance relative to other advanced U-
Net architectures. The DRI-Net was proposed by Chen et al. [37] which makes use of dense,
residual, and inception modules integrated within a U-Net inspired architecture with the proposed
model outperforming standard U-Net on multi-class segmentation of cerebrospinal fluid on brain
CT images, multi-organ segmentation on abdominal CT images, and multi-class brain tumor
segmentation on MR images. Ziang et al. [38] proposed a U-Net inspired architecture which made
use of Inception-Res blocks and Dense-Inception blocks which combined inception with residual
and dense features, respectively. Their model was evaluated on three tasks including retina blood
vessel segmentation, CT lung segmentation, and the BraTS challenge with the proposed model
achieving superior performance relative to alternative state-of-the-art U-Net variations.

2.3. Attention U-Net Architectures

With regards to integration of the attention mechanism, the original spatial-attention gate was
proposed by Oktay et al. [39] who evaluated performance of their Attention U-Net for pancreas
segmentation on two CT abdominal datasets consisting of 150 and 82 volumes, respectively. The
authors focused on the use of multi-attention gates which aimed to highlight target structures of an
input image. The results indicated attention gates showed an increase in the performance metrics
relative to standard U-Net. Huang et al. [40] explored the use of several U-Net variations which
included a U-Net with VGG-16 inspired encoder [41]. The authors experimented with residual
connections and attention gates, with the resulting variants trained on a dataset of 910 median
nerve images and tested on 207 images, with the VGG inspired Attention U-Net achieving best
performance. Maji et al. [42] proposed Attention Res-UNet with Guided Decoder (ARU-GD). The
architecture utilises spatial attention gates, deep supervision [43], and residual blocks in both the
encoder and decoder. The model was applied to the 2019 BraTS challenge dataset and performed
favourably relative to standard U-Net. Wu et al. [44] proposed the use of MSA-UNet which makes
use of inception inspired blocks in the encoder, an Attention Atrous Spatial Pyramid Pooling
(AASPP) module in the bottleneck layer, and a multi scale attention module in the skip connections
which aim to increase the model’s ability to learn spatially relevant contextual information from
the encoder. The model was evaluated on a publicly available dataset of liver images in which
it able to achieve top performance relative to other U-Net inspired architectures. Amer et al.
[45] proposed Multi-Scale Dilated Attention U-Net. The authors proposed a channel attention
module variation, inspired by Woo et al. [46], which encouraged selection of meaningful contextual
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information along the channel dimension. Additionally, a multi-scale spatial attention module
utilised a dilated convolutional module for capturing multi-scale contextual information. The
authors evaluated performance on a lung segmentation dataset with 2628 axial CT images and an
echocardiographic dataset containing 2000 images, and in both cases achieved superior performance
relative to Attention U-Net. Wang et al. [47] proposed HDA-ResUNet which improves U-Net via
the integration of residual blocks, a channel attention mechanism, and dilated convolutions. The
authors claim that the channel attention block improves upon attention gate by taking advantage
of the interdependencies between the feature map channels. The resulting model is evaluated on a
liver, lung, nuclear, and neuron segmentation datasets, and is shown to attain better performance
compared baseline U-Net. Wu et al. [48] proposed an Attention-based glioma grading network
for MRI which made use of both spatial and channel attention mechanism which allowed for
highlighting of key modalities and locations in feature maps. While the proposed network was
not U-Net based, its use of attention allowed for robustenss and generalizability in the relative to
other advanced models, thereby further demonstrating the potential for performance increase via
the use of attention.

2.4. Synthesis

Overall, as discussed in sections 2.2, 2.3 there are numerous works in the literature which have
evidenced that performance improvements for biomedical image segmentation tasks can be at-
tained by integrating advanced architectural components into U-Net. However the aforementioned
works report performance improvements resulting from network modifications using expertly tai-
lored network training pipelines evaluated on a limited number of segmentation datasets and
hence reported performance increases due to network extensions may not be reproducible or gen-
eralisable to new datasets and are also time-consuming to investigate as they require expert deep
learning training pipeline adjustments. Meanwhile, the nnUNet fully automates the network train-
ing pipeline component selection, and has been shown to attain SOTA segmentation performance
through utilising a standard U-Net [16], however, as discussed in section 2.1 there are limited works
investigating the use of advanced architectures within the framework. In this work we therefore
integrate advanced architectural features into the architectural component of the nnUNet frame-
work, and demonstrate that nnUNet can be utilised for fair and transparent comparison of U-Net
architectural modifications by maintaining the network training pipeline consistent, with resulting
comparisons conducted on eight medical imaging datasets - the largest number of datasets on
which Attention U-Net variants have been compared. Furthermore, due to the automated nature
of the framework, network extensions can be swiftly evaluated on a range of datasets without
requiring time-consuming network training pipeline tailoring.

3. Methods

We propose to implement U-Net architectural modifications into the architecture component
of the nnUNet framework in order to allow consistent and transparent comparison of network
variations on a range of datasets. In section 3.1 we provide a brief overview of nnUNet’s systematic
automated pipeline design process. In section 3.2 we discuss the standard architecture utilised
by nnUNet, while in sections 3.3 - 3.8 we provide details of the architectural modifications we
integrated within the framework whilst preserving its self-configuring nature.

3.1. nnUNet Overview

The nnUNet framework automatically self-configures the full network training pipeline by em-
ploying the systematic process extensively described in the original article by Isensee et al. [16].
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In summary, once the framework is provided with training data, it obtains a “data-fingerprint”
with information on the dataset’s key properties such as modality, shape, and spacing. Based
on data-fingerprint and GPU memory constraints, heuristic decisions are conducted to determine
“rule-based parameters” which include the network topology, image resampling methods, and
input-image patch sizes. Once training is complete the framework determines “empirical param-
eters” for output post-processing. Parameters which remain constant during training irrespective
of the specific segmentation task, named “fixed parameters”, include the use of Cross Entropy plus
Dice loss function, ADAM optimiser [49], and type of data augmentation techniques done on the
fly during training. Training duration is fixed at 1000 epochs with learning rate starting at 0.01
and decreasing according to the following: (1− epoch num/1000)0.9.

3.2. Standard-nnUNet
The network component of the Standard-nnUNet framework consists of a 3D U-Net inspired

architecture which makes use of skip connections to allow feature maps from the encoder to be
taken into account during the decoder’s reconstruction process. The network consists of 3D convo-
lutions for feature extraction, transposed convolutions for upsampling, and strided convolutions for
downsampling. Furthermore, the network utilises deep supervision [43] in all but the two deepest
levels in order to ameliorate gradient flow within the network. nnUNet will automatically configure
the network topology in order to attain a feature map of size 4 × 4 × 4 in the bottleneck layer.
Topological modifications include network depth, kernel sizes, and stride parameters depending on
the aforementioned dataset/ hardware-specific rule-based parameters. A Standard-nnUNet archi-
tecture representation is illustrated in Fig. 1. The network is taking as input x ∈ RCx×Dx×Hx×Wx ,
and outputting y ∈ RCy×Dx×Hx×Wx in which Cy corresponds to the number of foreground classes,
Cx is the input channel, Dx, Hx and Wx are the depth, height and width of the input image,
respectively.

Figure (1) Baseline-nnUNet architecture representation.

3.3. Residual-nnUNet
We propose Residual-nnUNet for which we integrated a fully residual U-Net with the architec-

ture component illustrated by the template in Fig. 2. The residual connection performs addition
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of a convolutional block’s input to its output. Residual connections allow for increased network
depth without degradation in performance, which in turn allows networks to learn more discrim-
inative features. Training of deep networks is improved due to enhanced gradient flow during
backpropagation, which thereby helps alleviate potential vanishing gradient issues [50].

Our implementation integrates residual connections at depth level which implies that the resid-
ual connection will operate over the two convolutional blocks contained at each depth level. There-
fore, for depth level l ∈ Z+ and input x(l) ∈ RCx(l)

×Dx(l)
×Hx(l)

×Wx(l) our implementation of the
residual-block may be denoted by residual block(l) = conv(l 2)(conv(l 1)(x(l))) + x(l).

Figure (2) Residual-nnUNet architecture representation.

3.4. Dense-nnUNet

Our proposed Dense-nnUNet, inspired by DenseNet [28], was designed by integrating dense-
blocks into the nnUNet architecture component via the template illustrated in Fig. 3, in which
the orange blocks represent the dense-blocks visualised in Fig. 4. A dense-block contains a series
of convolutional sub-blocks, with each subsequent sub-block receiving as input channel-wise con-
catenated feature maps outputted from the preceding sub-blocks. Each convolutional sub-block
outputs K channels, where K denotes the growth rate. Dense connections theoretically improve
gradient flow within deep networks, allowing for greater preservation of information between layers,
and implicit deep supervision [28].

The dense-block we integrated contains four convolutional sub-blocks each with a growth rate
K=10. Importantly, we utilise a 1 × 1 × 1 kernel within the dense-block’s final layer, in order
for the block to output the nnUNet-predetermined number of channels to be passed on to the
rest of the network - this allows for the framework’s self-configuration abilities to be preserved.
The stride, kernel, and padding parameters utilised in our dense-block are such that at depth
level l ∈ Z+, and for dense-block input x(l) ∈ RCx(l)

×Dx(l)
×Hx(l)

×Wx(l) , the dense-block’s output is

dense block(x(l)) = y ∈ RCy(l)
×Dx(l)

×Hx(l)
×Wx(l) i.e. the dimensions of the input and output are

equivalent except for the channel dimension as shown in Fig. 4.
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Figure (3) Dense-nnUNet or Inception-nnUNet architecture representation depending whether custom blocks (rep-
resented in orange) replaced with Dense-block (Fig. 4) or Inception-block (Fig. 5), respectively.

Figure (4) Dense-block representation.

3.5. Inception-nnUNet

We propose Inception-nnUNet, which makes use of the inception-block illustrated in Fig. 5.
The block’s input is passed to four branches which include kernel size 1×1×1, kernel size 3×3×3,
kernel size 5× 5× 5 and an average pool operation. The outputs of each branch are concatenated
meaning the final output contains the nnUNet self-determined number of channels to be passed on
to the rest of the network. To attain the correct number of channels for the block’s final output,
the penultimate layer of each sub-branch outputs a quarter of the desired number of final output
channels, Cy(l) - alternatively one could use the 1× 1× 1 convolutional layer, as was done with the
dense-block in Fig. 4, and thereby have an arbitrary number of channels in individual branches,
although our current design is more memory efficient. As with the dense-block (Section 3.4), stride,
kernel, and padding parameters are automatically selected such that the inception-block’s input
and output are equivalent in dimensions except for the channel dimension.
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Our proposed Inception-nnUNet integrates the custom inception-block into the nnUNet ar-
chitecture component via the template illustrated in Fig. 3, where orange blocks represent the
aforementioned inception-blocks shown in Fig. 5.

Figure (5) Inception-block representation.

3.6. Spatial-Single-Attention-nnUNet

Our proposed Spatial-Single-Attention-nnUNet was designed by integrating the spatial-single-
attention gate illustrated in Fig. 7 into the nnUNet architecture component as illustrated by the
template in Fig. 6, in which the purple blocks are replaced with the spatial-single-attention gates.
The spatial-attention-gate was originally proposed by Oktay et al. [39]. For depth level, l ∈ Z+,

the attention-block takes as input a gating signal, g(l+1) ∈ RCg(l+1)
×Dg(l+1)

×Hg(l+1)
×Wg(l+1) , and the

feature map, x(l) ∈ RCx(l)
×Dx(l)

×Hx(l)
×Wx(l) , forwarded from the encoder via the skip connection,

with the theoretical aim being to down-weight non-relevant spatial regions within x(l). Signal,
g(l+1), originates from a depth level l + 1, and is therefore at a coarser scale relative to x(l) which
originates from depth level l. Therefore, g(l+1) originates from deeper in the decoder and provides
increased contextual information which the gating mechanism can use to determine which spatial
regions from the encoder’s feature maps, x(l), forwarded via the skip connections are most relevant
for the decoder’s reconstruction process. The gate performs initial convolutional operations on
both x(l) and g(l+1) with the resulting output channels set to K ∈ Z+. Input, x(l) is downsam-

pled such that {convx(l)
(x(l)), convg(l+1)

(g(l+1))} ∈ RK×Dg(l+1)
×Hg(l+1)

×Wg(l+1) which allows for the
subsequent addition operation - for nnUNet compatibility this was achieved by utilising the same
kernel, padding, and stride parameters for convx(l)

(·) that the encoder utilised for downsampling
at corresponding depth level l. The sigmoid operation will output a grid of weights, which is up-
sampled, via trilinear interpolation, to be the same dimension as initially inputted x(l) with weight

ωi ∈ [0, 1]. The upsampled grid, Ω ∈ R1×Dx(l)
×Hx(l)

×Wx(l) is then multiplied with broadcasting along
each of the channels in x(l), and therefore an increased weight is given to spatial regions of interest.

3.7. Spatial-Multi-Attention-nnUNet

The spatial-multi-attention block is illustrated in Fig. 8, with the block’s inputs, x(l) and g(l+1),
being equivalent to the inputs of the spatial-single-attention gate described in section 3.6. Our
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Figure (6) Spatial-Single-Attention-nnUNet, Spatial-Multi-Attention-nnUNet, or Channel-Spatial-Attention-
nnUNet architecture representation depending o whether attention blocks (represented in purple) are replaced
with Spatial-Single-Attention block (Fig. 7), Spatial-Multi-Attention block (Fig. 8), or Channel-Spatial-Attention
block (Fig. 9), respectively.

Figure (7) Spatial-Single-Attention block representation.

multi-attention block contains two spatial-single-attention gates α and β with x(l) and g(l+1) being
inputted to each. The theoretical aim is for each respective attention gate, α and β, to focus on
highlighting different spatial regions of interest from the feature maps forwarded from the encoder
to the decoder via the skip connections - this was demonstrated empirically by Oktay et al. [39]. As
illustrated in Fig. 8, in spatial-multi-attention block the outputs of the two spatial-single-attention
gates are concatenated and passed to a convolutional block with 1× 1× 1 kernel in order for the
final output to be of the required dimension RCx(l)

×Dx(l)
×Hx(l)

×Wx(l) . Our proposed Spatial-Multi-
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Attention-nnUNet was designed by integrating the spatial multi-attention block illustrated in Fig.
8 into the nnUNet architecture component as illustrated by the template in Fig. 6, in which the
purple blocks therefore represent the spatial-multi-attention gates.

Figure (8) Spatial-Multi-Attention block representation.

3.8. Channel-Spatial-Attention-nnUNet

Our proposed channel-attention-block takes equivalent inputs as the spatial-single-attention
gate discussed in section 3.6, however it utilises spatial-attention to highlight most-relevant spatial
regions while also making use of channel-attention which aims to highlight which channels of the
input feature map, x(l) ∈ RCx(l)

×Dx(l)
×Hx(l)

×Wx(l) , forwarded from encoder, are most relevant to the

decoder by assigning a weight to each individual channel of x(l) via weight tensor Γ ∈ RCx(l)
×1×1×1

.
In contrast, the spatial-attention block gives an equal weighting to all channels of x(l) via weight

tensor Ω ∈ R1×Dx(l)
×Hx(l)

×Wx(l) . We designed our Channel-Spatial-Attention-nnUNet to take ad-
vantage of both channel and spatial attention by sequentially utilising a channel-attention-block
and spatial-single-attention block; we refer to the overall block as the channel-spatial-attention
block illustrated in Fig. 6. Channel-Spatial-Attention-nnUNet integrates our proposed channel-
spatial-attention block illustrated in Fig. 9 into the nnUNet architecture component as illustrated
by the template in Fig. 6, where the purple blocks represent channel-spatial-attention blocks. The
design of our channel-attention-block is inspired by Woo et al. [46] and Amer et al. [45]. We added
key modifications which consist in the replacement of fully connected layers with 1× 1× 1 convo-
lutional layers, and the replacement of an addition operation after the fully connected layers with
a concatenation before the convolutions for improved information preservation and to maintain
numerical distinction between max and average output for use by the subsequent convolutional
layers [28]. A computationally inexpensive maximum and mean operation is utilised for channel-
wise spatial aggregation - outputs are concatenated and passed to the fully convolutional layers,
with the resulting outputs being summed and passed to a sigmoid function. Finally, the original
input x(l) is multiplied with the channel weights Γ ∈ RCx(l)

×1×1×1
.

4. Experiments and Discussions

In section 4.1 we describe our approach for maintaining pipeline component consistency across
the architectural comparisons with respect to an anatomical dataset. We then present the datasets
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Figure (9) Channel-Spatial-Attention block representation.

utilised for the nnUNet variation comparison in section 4.2. Finally, results are presented and
discussed in sections 4.3 and 4.4, respectively.

4.1. Pipeline Component Consistency and Network Training:

The training of each nnUNet variation was executed on an NVIDIA A6000 GPU, with training
times ranging from 24-72 hours, depending on dataset properties. For reproducibility, we ensured
training was completed with nnUNet deterministic training activated.

As explained at the start of Section 3, the automated design of the nnUNet training pipeline
takes into account hardware memory constraints and, therefore, utilising a network architecture
with increased memory requirements will alter other components in the training pipeline, such
as the input image patch size, in order to keep overall memory required by the pipeline equal to
the available memory provided by the hardware. In this article, we aim to compare architectural
variations while maintaining training pipeline consistency with respect to a specific anatomical
dataset, and therefore we hard-coded nnUNet network architecture additions as requiring zero ad-
ditional memory. Our approach ensures pipeline components including input image patch size and
base network topology (depth, kernel, and stride parameters) are all allowed to remain consistent
across all network variations applied to a specific anatomical dataset. Hence, network architecture
is the only variable changing between experiments. Importantly, we note that controlling training
pipeline hyperparameters is one of this article’s distinctions and extensions relative to our previous
work [21].

We also note that since our nnUNet extensions maintain the framework’s ability to self-configure
the training pipeline, the network visualisations in Fig. 1, 2, 3 and 6 are meant to serve as
conceptual illustrations. The depth of the neural networks will vary according to the specific
network modifications based on the training dataset.

Table 1 provides a summary of the explored nnUNet variations.

4.2. Overview of Explored Datasets

Table 2 shows parameters for the evaluation datasets, with datasets D1-D7 derived from the
Medical Segmentation Decathlon Challenge [51, 52] and dataset D8 originating from the 2021
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Fetal Brain Tissue Annotation and Segmentation Challenge (FeTA) [53]. We conducted train
and test splits locally using the challenge train sets since the challenge test sets did not have
segmentation ground truths publicly available. For datasets D1-D8 we maintained a consistent
train to test ratio in which the test set accounted for approximately 33% of the total cases for
each respective dataset. Example visualisations of both the grayscale volume and the respective
clinician annotated ground truth segmentation, for example cases from datasets D1-D8, are shown
in Fig. 10. Table 2 shows that all the datasets have a restricted training dataset size, with D3,
D4, D6 and D8 having under 100 training observations. Restricted dataset sizes are a common
challenge in medical image segmentation due to the sensitive nature of the data, however, nnUNet
utilises a 3D patch based approach for training in conjunction with on-the-fly augmentation which
helps to address this issue (please refer to [16] for further details).

4.3. Results

As described in Section 4.1, our approach ensures pipeline components are consistent across all
network variations applied to a specific anatomical dataset, which means network architecture is
the independent variable in our experiments. Table 3 presents the nnUNet automatically selected
hyperparameters relating to input image patch size, spacing of resampled image, and network depth
which were kept constant across network variations with respect to each anatomical dataset. For
our performance evaluation metric we utilise Dice score due to its widespread adoption in medical
volume segmentation evaluation [55]. Given a segmentation prediction represented by set A, and
a ground truth represented by set B, Dice score is computed as:

DSC(A,B) =
2|A+B|
|A|+ |B|

The average Dice scores for the explored nnUNet variations discussed in Section 3 are presented
in Tables 4, 5, 6, 7, and the results are visualised in Fig. 11. We denote Standard-nnUNet to refer
to the original nnUNet described in section 3.2 which utilises deep supervision, while Baseline-
nnUNet is identical to Standard-nnUNet except for the removal of deep supervision. Residual-
nnUNet, Dense-nnUNet, and Inception-nnUNet refer to our proposed nnUNet extensions which
make use of residual (section 3.3), dense (section 3.4), and inception (section 3.5) blocks, respec-
tively. Spatial-Single-Attention-nnUNet, Spatial-Multi-Attention-nnUNet, and Channel-Spatial-
Attention-nnUNet refer to our proposed nnUNet variants which make use of spatial-single-attention
(section 3.6), spatial-multi-attention (section 3.7), and our designed channel-spatial-attention block
(section 3.8). Deep supervision is utilised in all the proposed nnUNet variations.

The results indicate that Standard-nnUNet and Baseline-nnUNet achieved best performance
on at least one anatomical region in three and two of the eight datasets, respectively. Our proposed
Residual-nnUNet, Dense-nnUNet, and Inception-nnUNet variants achieved best performance on at
least one anatomical region in two, two, and zero, datasets, respectively. Our proposed attention
nnUNet variants, namely Spatial-Single-Attention-nnUNet, Spatial-Multi-Attention-nnUNet, and
Channel-Spatial-Attention-nnUNet achieved best performance on at least one anatomical region
in two, four, and four, datasets, respectively. Overall, as shown in Fig. 12, Standard-nnUNet,
Baseline-nnUNet, Residual-nnUNet, Dense-nnUNet, Inception-nnUNet, Spatial-Single-Attention-
nnUNet, Spatial-Multi-Attention-nnUNet, and Channel-Spatial-Attention-nnUNet attained top
performance on four, three, two, two, zero, five, five, and four of the 20 overall anatomical regions,
respectively.

It is observed that on datasets with a single target region, specifically D4 and D6, none of
the proposed nnUNet variants outperformed the Baseline-nnUNet (D4) and the Standard-nnUNet
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Table (1) Summary of investigated nnUNet variants. Note that in all experiments with respect to a dataset,
only U-Net architecture changes. Hence, network training pipeline components including, patch-size, resampling
spacing, and network depth all remain constant - Refer to Table 2 for specific values of α, β, γ for each respective
dataset. Relative memory gives an indication of the relative memory consumption of the network variations relative
to Baseline-nnUNet memory µ - we note that since network topology changes for each dataset, a fixed memory
value cannot be provided but this serves as an indication of relative memory proportions.

nnUNet Variant Component Blocks Deep-supervision Patch-Size Spacing Network-Depth Relative Memory

Standard-nnUNet Standard (Fig. 1) Yes α β γ 1.01µ

Baseline-nnUNet Standard (Fig. 1) No α β γ µ

Residual-nnUNet Residual (Fig. 2) Yes α β γ 1.20µ

Dense-nnUNet Dense (Fig. 4) Yes α β γ 2.58µ

Inception-nnUNet Inception (Fig. 5) Yes α β γ 1.55µ

Spatial-Single-Attention-nnUNet Spatial-Single-Attention (Fig. 7) Yes α β γ 1.17µ

Spatial-Multi-Attention-nnUNet Spatial-Multi-Attention (Fig. 8) Yes α β γ 1.41µ

Channel-Spatial-Attention-nnUNet Channel-Spatial-Attention (Fig. 9) Yes α β γ 1.17µ

Table (2) Summary of explored datasets. MRI—magnetic resonance imaging, FLAIR—fluid-attenuated inver-
sion recovery, T1w—T1 weighted image, T1w Gd—post-Gadolinium (Gd) contrast T1-weighted image, T2w—T2
weighted image, CT—computed [51].

Dataset Modality Regions of Interest Median
Volume Size

(Voxel)

Median
Volume

Spacing (mm)

No. Cases
(train/valid/test)

D1 - Brain Multi-modal
MRI (FLAIR,
T1w, T1w Gd,

T2w)

Edema, non-enhancing
tumour, enhancing tumour

[137, 169, 138] [1.00, 1.00, 1.00] 484 (257/ 65 / 162)

D2 - Hippocampus Mono-modal
MRI

Anterior hippocampus,
posterior hippocampus

[40, 56, 40] [1.00, 1.00, 1.00] 260 (137/ 35 / 88)

D3 - Liver Portal venous
phase CT

Liver, liver tumour [482, 512, 512] [1.00, 0.76, 0.76] 129 (68/ 18 / 43)

D4 - Lung CT Lung cancer [253, 512, 512] [1.25, 0.79, 0.79] 63 (33/ 9 / 21)

D5 - Pancreas Portal venous
phase CT

Pancreas, pancreatic
tumour mass

[96, 512, 512] [2.50, 0.79, 0.79] 280 (148/ 38 / 94)

D6 - Colon CT Colon cancer primaries [152, 512, 512] [3.00, 0.78, 0.78] 126 (67/ 17 / 42)

D7 - Hepatic Vessels CT Hepatic vessels, hepatic
tumour

[150, 512, 512] [1.50, 0.80, 0.80] 303 (161/ 41 / 101)

D8 - Fetal Brain Mono-modal
MRI

External cerebrospinal
fluid, grey matter, white

matter, ventricles,
cerebellum, deep grey
matter, brainstem/

spinal-cord

[256, 256, 256] [0.50, 0.50, 0.50] 80 (44/ 12/ 24)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure (10) Example visualisations of the explored datasets. In each subfigure, axial (red), sagittal (green), and
coronal (blue) projections of the 3D volume are presented, with the raw greyscale scan presented in the upper
portion and its respective ground truth segmentation presented below, for each respective example case.
(a) D1-Brain: Edema (yellow), non-enhancing tumour (green), enhancing tumour (violet). (b) D2-Hippocampus:
Anterior hippocampus (yellow), posterior hippocampus (green). (c) D3-Liver: Liver (yellow), liver tumour (green).
(d) D4-Lung: Lung cancer (yellow). (e) D5-Pancreas: Pancreas (yellow), pancreatic tumour mass (green). (f) D6-
Colon: Colon cancer primaries (yellow). (g) D7-Hepatic Vessel: Hepatic vessels (yellow), hepatic tumour (green).
(h) D8-Fetal Brain: External cerebrospinal fluid (dark blue), grey matter (pastel blue), white matter (neon blue),
ventricles (yellow), cerebellum (orange), deep grey matter (red), brainstem (maroon). Note all visualisations created
via The Medical Imaging Interaction Toolkit [54]

15



Table (3) Table presenting selection of hyperparameters automatically chosen by nnUNet with respect to each
dataset - these hyperparameters were kept constant across each of the experimented nnUNet architecture variants.
Patch size is the image patch size inputted to network during training/inference; resampled spacing is the spacing
selected for the resampled input image; network depth is the depth of the U-Net type architecture component.

Dataset nnUNet Patch Size nnUNet Spacing (mm) nnUNet Network
Depth

D1 - Brain [96, 128, 96] [1.00, 1.00, 1.00] 6

D2 - Hippocampus [40, 56, 40] [1.00, 1.00, 1.00] 4

D3 - Liver [96, 112, 112] [2.99, 2.27, 2.27] 5

D4 - Lung [64, 128, 128] [1.23, 0.79, 0.79] 6

D5 - Pancreas [40, 224, 224] [2.50, 0.80, 0.80] 6

D6 - Colon [64, 224, 224] [3.00, 0.78, 0.78] 6

D7 - Hepatic Vessels [48, 160, 160] [1.50, 0.80, 0.80] 6

D8 - Fetal Brain [96, 128, 96] [0.50, 0.50, 0.50] 6

(D6). Relative to Standard-nnUNet, Baseline-nnUNet attained a lower average Dice score on 14 of
the 20 investigated anatomical regions which suggests that removal of deep supervision generally
resulted in decreased performance. Overall Residual-nnUNet and Dense-nnUNet attained marginal
differences in performance relative to Standard-nnUNet and Baseline-nnUNet. The residual and
dense variants attained a performance improvement of up to 2.83% and 8.10%, respectively, com-
pared to Standard-nnUNet; which compares to an increased performance improvement of up to
5.35% and 13.36%, respectively, when Residual-nnUNet and Dense-nnUNet variants are, respec-
tively, compared to Baseline-nnUNet.

The results indicate that spatial-multi-attention and channel-spatial-attention nnUNet vari-
ants tended to attain their best relative performance on datasets which consisted of two target
anatomical regions with minority region consisting of tumour, namely D2, D3, D5. On dataset
D3 Channel-Spatial-Attention-nnUNet attained a 8.30% increase in average dice score for the tu-
mour region relative to the worst performing variant, Inception-nnUNet; meanwhile for dataset
D5 Spatial-Multi-Attention-nnUNet attained a 14.29% increase in average Dice for the tumour re-
gion relative to Baseline-nnUNet. Interestingly, we note that the Spatial-Single-Attention-nnUNet
attained top performance on four of the seven brain regions in dataset D8.

In terms of performance variations from the use of different forms of attention, we observe that
Spatial-Multi-Attention-nnUNet displayed a percentage difference in average Dice score compared
to Spatial-Single-Attention-nnUNet ranging up to 2.57% in dataset D4 and down to -5.56% in
dataset D3. Channel-Spatial-Attention-nnUNet displayed a percentage difference in average Dice
score compared to Spatial-Single-Attention-nnUNet ranging up to 3.45% in dataset D6 and down
to -1.43% in dataset D1. The results indicate that choice of the optimal attention variant is dataset
dependent.

4.4. Discussions

In our experiments, we observed that the attention mechanism was most effective on datasets
consisting of two or more anatomical regions. In particular, the attention mechanism improved the
performance of the anatomical region, which was spatially a minority region within the original
volume - in our explored datasets, this region was a tumour. We hypothesise the performance
gain is due to the nature of the attention mechanism being to highlight spatially relevant regions,
which can therefore increase the relative weighting of minority class voxels in a restricted region of
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Table (4) Average Dice score for anatomical regions in datasets D1-D2. Top score presented in bold.

nnUNet Variant D1 Edema D1 Non-Enhancing
Tumour

D1 Enhancing
Tumour

D2 Anterior D2 Posterior

Standard-nnUNet 0.798 0.621 0.797 0.893 0.879

Baseline-nnUNet 0.799 0.619 0.790 0.893 0.878

Residual-nnUNet 0.798 0.613 0.793 0.892 0.879

Dense-nnUNet 0.799 0.614 0.788 0.894 0.879

Inception-nnUNet 0.800 0.617 0.790 0.892 0.879

Spatial-Single-
Attention-nnUNet

0.799 0.618 0.792 0.892 0.879

Spatial-Multi-
Attention-nnUNet

0.801 0.617 0.788 0.893 0.881

Channel-Spatial-
Attention-nnUNet

0.800 0.621 0.781 0.893 0.881

Table (5) Average Dice score for anatomical regions in datasets D3-D5. Top score presented in bold.

nnUNet Variant D3 Liver D3 Tumour D4 Cancer D5 Pancreas D5 Tumour

Standard-nnUNet 0.947 0.663 0.716 0.823 0.486

Baseline-nnUNet 0.943 0.670 0.743 0.820 0.463

Residual-nnUNet 0.956 0.667 0.736 0.822 0.488

Dense-nnUNet 0.941 0.639 0.729 0.820 0.525

Inception-nnUNet 0.940 0.685 0.727 0.819 0.470

Spatial-Single-
Attention-nnUNet

0.945 0.675 0.697 0.824 0.517

Spatial-Multi-
Attention-nnUNet

0.946 0.638 0.715 0.824 0.529

Channel-Spatial-
Attention-nnUNet

0.948 0.691 0.714 0.824 0.528

Table (6) Average Dice score for a anatomical regions in datasets D6-D8. Top score presented in bold.

nnUNet Variant D6 Cancer D7 Vessels D7 Tumour D8 External
Cerebrospinal

Fluid

D8 Grey
Matter

Standard-nnUNet 0.464 0.636 0.709 0.789 0.737

Baseline-nnUNet 0.457 0.632 0.707 0.791 0.737

Residual-nnUNet 0.420 0.640 0.707 0.785 0.735

Dense-nnUNet 0.445 0.630 0.718 0.782 0.731

Inception-nnUNet 0.401 0.638 0.717 0.789 0.735

Spatial-Single-
Attention-nnUNet

0.444 0.637 0.711 0.790 0.739

Spatial-Multi-
Attention-nnUNet

0.445 0.639 0.716 0.787 0.735

Channel-Spatial-
Attention-nnUNet

0.459 0.634 0.717 0.788 0.737
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Table (7) Average Dice score for a subset of anatomical regions in dataset D8. Top score presented in bold.

nnUNet Variant D8 White
Matter

D8 Ventricles D8
Cerebellum

D8 Deep Grey
Matter

D8 Brainstem

Standard-nnUNet 0.914 0.887 0.881 0.870 0.833

Baseline-nnUNet 0.914 0.885 0.884 0.870 0.831

Residual-nnUNet 0.913 0.883 0.877 0.870 0.830

Dense-nnUNet 0.913 0.880 0.871 0.871 0.828

Inception-nnUNet 0.912 0.882 0.880 0.870 0.828

Spatial-Single-
Attention-nnUNet

0.914 0.888 0.882 0.874 0.831

Spatial-Multi-
Attention-nnUNet

0.914 0.885 0.882 0.873 0.831

Channel-Spatial-
Attention-nnUNet

0.913 0.884 0.882 0.873 0.831

Figure (11) Graph showing average Dice scores attained by each nnUNet variation for the anatomical regions from
datasets D1 - D8.
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Figure (12) Graph showing number of anatomical regions for which each respective nnUNet variation achieved
top performance.

the initial volume. Results on dataset D8, consisting of seven anatomical regions, suggested that
Spatial-Single-Attention-nnUNet was the relatively best performing model, which was contrary to
our expectation as, according to theory, spatial-multi-attention gates were expected to outperform
spatial-single-attention gates on datasets with multiple target regions. We hypothesise that the use
of spatial-single-attention gates outperformed the use of spatial-multi-attention gates due to their
reduced trainable parameter number, which leads to decreased risk of overfitting on the training
set, which is especially relevant for dataset D8 with 33 training cases.

In fact, from the results we notice that Standard-nnUNet and Baseline-nnUNet outperformed
the architecturally more advanced nnUNet variations on the D4 (Lung) and D6 (Colon) datasets,
with both datasets consisting of a single target anatomical region. Observing Table 2, both datasets
D4 and D6 had relatively small training sets consisting of 33 and 67 cases, respectively - even though
early-stopping was employed, we note that the size of the validation sets were also restricted at 9
and 17, respectively. We hypothesise that since Standard-nnUNet and Baseline-nnUNet did not
contain advanced architectural components, they were therefore less prone to overfitting to the
small number of training cases and, thereby, able to generalise better to the respective test sets.
Dataset D8, as mentioned, consisted of 44 (12) training (validation) set cases, with Standard-
nnUNet and Baseline-nnUNet achieving top performance on one and two regions, respectively
out of the 7 total regions. As discussed, Single-Attention-nnUNet achieved best performance on
the other four regions, and we believe this was due to the spatial-single-attention gate being able
to highlight spatially relevant regions while benefiting from less trainable parameters relative to
spatial-multi-attention gate, which led to decreased risk of overfitting on the restricted training
set and, therefore, improved test set generalisation ability.

It was shown that Standard-nnUNet tended to outperform Baseline-nnUNet likely due to the
reduced gradient flow during backpropagation, resulting from the removal of deep-supervision;
consequently, the performance gap suggests that deep supervision is beneficial to segmentation
performance. Dense-nnUNet and Residual-nnUNet generally resulted in marginal performance
differences relative to Standard-nnUNet, and this may be due to all three variations making use
of deep supervision. Residual and dense connections both aim to improve gradient flow during
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network training, and so the effectiveness of these connection types may be limited due to gradi-
ent flow already being enhanced via the incorporation of deep supervision. Furthermore, it was
observed that Inception-nnUnet achieved second best performance on three of the 20 anatomi-
cal regions, while it failed to achieve top performance on any of the investigated datasets. This
therefore suggest use of the standard 3 × 3 × 3 convolutional kernel tended to result in superior
performance relative to utilising a combination of larger and smaller kernel sizes as done by the
inception block. Nevertheless, use of Inception-nnUnet on an alternative dataset may result in
performance gains.

The results suggest that while no single architectural variant performs optimally on all datasets,
specific network modifications may result in marginal or considerable gains in performance. The
marginal performance differences were expected due to the nnUNet generally performing in line
with the state-of-the-art, with performance differences for top-ranking segmentation challenge
submissions also tending to be marginal. Therefore, given a dataset, selecting the optimal nnUNet
architectural variation may improve performance enough to establish a state-of-the-art result.

A current limitation of our work is the restricted number of datasets investigated. While this
is the most extensive collection of datasets on which the attention mechanism has been evaluated,
increasing the dataset number would allow for more generalisable conclusions.

Potential future avenues of exploration include investigating performance increases from com-
bining the different network architectures explored in this work, and thereby taking advantage
of the nnUnet built-in ensembling mechanism of averaging softmax predictions from several of
the best performing proposed models. Finally, we have demonstrated the integration of advanced
U-Net components however, Visual Transformers [56] have started to achieve SOTA results in
several image analysis tasks, and hence investigating the integration of the visual transformer for
segmentation within the automated nnUNet framework may be a promising avenue for exploration
especially when provided with large medical imaging datasets.

Overall, we have demonstrated that U-Net architectural variants can be implemented within
the state-of-the-art nnUNet framework, allowing for the comparison of network architecture mod-
ifications evaluated on several datasets. We believe that the widespread adoption of nnUNet,
within the deep-learning-based biomedical image segmentation community, as a base framework
for implementing architectural modifications, allows for two key advantages, which we have ev-
idenced in this article. The first advantage is improved transparency and consistency across all
the training pipeline components of network variations with respect to a specific dataset, allow-
ing network architecture to be the sole independent variable across experiments. The second key
advantage regards nnUNet’s automatic generalisability to new datasets, allowing researchers to
rapidly evaluate and compare newly proposed U-Net architectural variations implemented within
nnUNet without requiring training pipeline component alterations. Hence, any U-Net architecture
variation, once integrated into nnUNet, is ready to be rapidly utilised and evaluated “out of the
box” on any given dataset without needing dataset-dependent pipeline tailoring.

5. Conclusions

In this article we have extended the nnUNet framework via the integration of advanced archi-
tectural components including residual, dense, inception, and attention gates, resulting in six new
nnUNet variations including the Residual-nnUNet, Dense-nnUNet, Inception-nnUNet, Spatial-
Single-Attention-nnUNet, Spatial-Multi-Attention-nnUNet, and Channel-Spatial-Attention-nnUNet.
We have demonstrated that the nnUNet framework allows for consistent and transparent compari-
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son of advanced U-Net variations with respect to a given dataset. We have evaluated the proposed
models on eight medical imaging datasets consisting of 20 anatomical structures.

Experimental results indicate that the optimal architectural variation is dataset dependent.
While no single architectural variation performs dominantly on all datasets, the choice of certain
variations may offer a marginal or significant performance gain. In particular, (1) on datasets
consisting of a single target anatomical regions, the Standard-nnUNet and Baseline-nnUNet should
be able do well, therefore no need to use the advanced network variants; (2) on datasets consisting
of two or more anatomical regions and especially on minority regions in spatially imbalanced tasks,
the attention nnUNet variants tend to perform best.
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