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Abstract
Distinguishing between mixtures of substances with similar and
dissimilar modes of action is believed to have implications for
judgements whether mixture risks might arise when all chem-
icals comply with their regulatory limits. However, differentiating
between similar and dissimilar action unnecessarily compli-
cates mixture risk assessments. Whether substances in a
mixture have similar or dissimilar mechanisms is often difficult to
decide. Only a few cases show the validity of dissimilar action;
concepts based on similar action (dose addition) generally
produce good approximations of observed mixture effects.
Further, the quantitative differences of mixture effect predictions
that follow from assumptions of similar or dissimilar action are
rather small. To avoid underestimations of mixture risks, chem-
icals that produce common adverse outcomes should be
assessed together, and this should not be restricted to chem-
icals with similar mechanisms. Assertions that compliance with
Health-Based Guidance Values (HBGVs) protects against
mixture risks can be de-constructed to reveal several false as-
sumptions, among them that chemicals generally act according
to dissimilar action and that HBGVs are equivalent to “zero-
effect levels.” The protection goals enshrined in HBGVs for
single chemicals may not be realized when there is co-exposure
to chemicals that produce the same effect, regardless of
perceived modes of action of the mixture components.
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Introduction
According to an often repeated and widely cited view
[1,2], chemical mixture risk assessments must distin-
guish between mixtures composed of substances with
similar modes of action (MOA) and those made up of
chemicals with dissimilar MOA. The issue has implica-
tions for judgements of whether mixtures composed of
large numbers of chemicals but present in low quanti-
tiesdexposures often experienced by the general
populationdcould pose risks to human health and

wildlife.

Representative is the opinion of the EU Scientific
Committees, who in 2011 proclaimed that “for chemicals
with different modes of action (independently acting), no robust
evidence is available that exposure to a mixture of such substances
is of health or environmental concern, if the chemicals are present
at or below their “zero-effect levels”” [1]. With the
assumption that regulatory limits such as Health-based
Guidance Values (HBGVs, including acceptable daily
intakes, tolerable daily intakes, reference doses and

similar) are equivalent to “zero-effect levels,” they
concluded that “the effects of co-exposure to several substances
all below the HBGV value should be assumed to be negligible if all
substances have dissimilar modes of action.” Continuous
updating of HBGVs was offered as a policy for protection
against mixture risks. In this view, additional risk
assessment or management approaches are not generally
required and should be reserved only for special cases.
More recently, these assertions have reappeared in a
critique by officials of the German Federal Institute for
Risk Assessment of new European Commission sug-

gestions for mixture risk management approaches [2].
In this critique, mixture risks are considered negligible,
unless several conditions come together: Mixture com-
ponents must have a common or interlinked MOA (how
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2 Risk assessment (mixture toxicology) (2023)
this is to be understood is not further defined) and must
produce hazards of high concern. Furthermore, the ex-
posures to all components must be below regulatory
limits and must be constant during windows of
vulnerability.

The assertions in the studies by EU Scientific Com-
mittees and Herzler et al. [1,2] can be de-constructed to

expose several assumptions which require scrutiny: The
first is, that it is possible to clearly distinguish between
similarly and dissimilarly acting mixture components.
Second, that the immense diversity of chemicals that
make up exposure scenarios in the real world implies that
they generally act together by dissimilar modes of action.
Third, that regulatory exposure limits set to protect
human health are not associated with any toxicity (“zero-
effect levels”). And finally, that estimates of “zero-effect
levels” are available for the multitude of chemicals that
constitute human exposures.

This article evaluates these assumptions by first tracing
the distinctions between similarly and dissimilarly
acting mixtures to the concepts of dose addition (DA)
and independent action (IA, often also called response
addition). This will be followed by a discussion of the
conceptual and practical difficulties encountered while
attempting to distinguish between similarly and
dissimilarly acting mixtures. Next, the empirical evi-
dence in support of dissimilarly acting mixtures and the
validity of IA will be considered, followed by a summary

of data of combined effects of multiple chemicals at low
doses and a discussion of the implications for chemical
risk assessment and management.
Dose addition, independent action, similar
and dissimilar action: implications for
mixture assessment groups
The theoretical importance of separating similar and
dissimilar action derives from the assumptions under-
lying the concepts for predicting mixture effects from
the toxicity of their components: dose addition (DA)
and independent action (IA).

DA, developed by Loewe and Muischneck [3], states
that chemicals producing a common effect can be
replaced with each other by equal fractions of equi-
effective doses, without loss of combination effect.
From this follows that multiple chemicals, when com-
bined at fractions of their threshold dose, will produce a
joint effect, but only if present in sufficient numbers
and at sufficiently high levels [4]. These principles are
fulfilled with combinations of chemicals that act
through similar mechanisms or at the same site. For this

reason, DA has been allied to “similarly acting” mixtures,
even though the original article by Loewe and Muisch-
neck [3] reveals nothing that links the idea to mecha-
nisms or MOAs. As detailed below, the applicability of
Current Opinion in Toxicology 2023, 35:100418
DA is not limited to mixtures of chemicals with similar
MOAs.

Independent action (IA) [5] was originally conceived to
deal with irreversible events such as mortality, where
probabilistic principles apply. IA is commonly associated
with toxicity through different mechanisms, and in more
contemporary parlance could be defined as applying to

mixtures composed of chemicals with no common mo-
lecular initiating events and few common key events. IA
predicts that combination effects are not expected if all
chemicals are present at quantities below their “zero-
effect levels.”
Conceptual and practical difficulties in
distinguishing similar and dissimilar
mixtures and implications for grouping
decisions in mixture risk assessments
Separating similar from dissimilar action is not
straightforward. In many cases, the mechanistic infor-
mation needed to distinguish chemicals in terms of their
MOA or mechanism of action is simply not available. It is
also unclear how the terms “MOA” or “mechanism”
should be applied to separate similar from dissimilar

action in practice. For example, phthalates and 2,3,7,8
TCDD can reduce sperm numbers after exposure
during gestation [6,7] (common MOA, therefore similar
action?), but through different pathways and mecha-
nisms not yet defined in every detail (dissimilar
action?). Advocates of using strict mechanistic criteria of
similar action would regard the grouping of phthalates
and TCDD in common assessment groups as inappro-
priate. Yet, there is clear evidence that mixture effects
from phthalates and 2,3,7,8 TCDD on sperm numbers
occur [7].

In view of the enormous diversity of chemicals in “real
world” exposure scenarios it is persuasive to assume
dissimilarity of action by default [1]. What then is the
empirical evidence that IA is generally valid for
predicting the effects of most mixtures?
Scarce evidence for the general validity of
IA as an assessment concept
Backhaus et al. [8], Walter et al. [9] and Faust et al. [10]
went to great lengths to select mixtures of chemicals
with strictly dissimilar MOAs for tests in luminescent
bacteria and algae. With mixtures of up to 16 chemicals
they demonstrated the superior performance of IA. DA
overestimated the observed effects, but by a small
margin. However, further examples proved difficult to
find, especially with mammalian cells or multicellular

organisms. To our knowledge, the only empirical
example of the validity of IA with multi-component
mixtures in higher organisms is in fish exposed to
different hormonally active chemicals that disrupt
reproduction in breeding experiments [11].
www.sciencedirect.com
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MOA in mixture risk assessment Kortenkamp 3
In contrast, there are numerous examples for the validity
of DA with mixtures composed of chemicals showing a
variety of different MOAs. Already in 1995, work with
chemical mixtures in fish led van Leeuwen to conclude
that “chemicals with different modes of . action can
often almost behave according to concentration-addi-
tion” [12].

DA performed well in approximating the effects of
chemicals that disrupt male sexual development by
androgen receptor antagonism, suppression of foetal
androgen synthesis or inhibition of steroid-converting
enzymes [13e15], while IA often led to un-
derestimations of effects (for a more detailed discussion
see the study by Conley et al. [16]). In a very recent
example, DA predicted accurately the effects of a
mixture of eight chemicals that produce malformations
in fish by a diversity of mechanisms [17].

The difficulties in finding additional reference cases for
IA suggest that the theoretical principles of strict
dissimilarity are confounded by the convergence of
multiple effector chains or adverse outcome pathways
on common downstream pathways better described by
DA. Although downstream effects (e.g. smaller birth
weight, poor semen quality, malformations etc) derive
from a greater number of diverse MOAs, there seem to
be biological limits to the number of strictly dissimilar
MOAs for chemicals affecting the same adverse
outcome. With rising numbers of mixture components

therefore, combined effects approaching similar action
better approximated by DA are increasingly likely.
Quantitative differences in mixture effect
predictions derived from DA and IA
Are dissimilarity of action and IA therefore theoretically

relevant, but of limited practical applicability? The
available evidence suggests that this is indeed the case
and supports the idea of default application of DA, even
to mixtures that could be viewed as dissimilarly acting,
as advocated by the European Food Safety Authority
[18]. Examples where observed mixture effects exceed
those anticipated by DA (synergisms) are relatively rare
[19].

However, there are concerns that the default application
of DA irrespective of the toxicants’ MOA and mecha-

nisms of action produces vastly over-protective mixture
toxicity assessments, and is therefore poorly justified
scientifically and in conflict with principles of propor-
tionality in the regulatory management of chemicals
risks.

Studies that have evaluated the performance of DA and
IA side-by-side (e.g. the studies by Backhaus et al.,
Walter et al., Faust et al., Thrupp et al., Christiansen
et al., Conley et al.,Conley et al., Ermler et al., Ermler
www.sciencedirect.com
et al., Orton et al., Villas et al. [8e11,13e15,20e23] all
showed that the prediction differences between DA and
IA, quantified as ratios of effect doses, are small, and
normally do not exceed one order of magnitude.

DA-IA prediction differences are driven by four factors:
the number of mixture components n, the slope of the
components’ dose response curves, the mixture ratio

and the effect level under consideration [10,24,25].
With 100 mixture components, the ratio of mixture
effect doses predicted by DA and IA cannot be larger
than 100, but this can only occur when all components
are present in equal fractions of equi-effective doses, a
highly unlikely scenario. In any other situation, the ratio
will always be smaller than n, the number of mixture
components. Independent of the mixture ratio, the
slopes of individual dose response curves of a given set
of mixture components have a general limiting effect on
the possible range of prediction ratios. Depending on

the slope values and the effect level under consider-
ation, DA may predict equal, higher or lower toxicities
than IA as explained in extensive detail by Kortenkamp
et al. [25]. Simulation studies with 100 chemicals that
affect algal reproduction have shown that greater than
4.2-fold differences between the two predictions never
occurred, a difference well within the “noise” intro-
duced by experimental error [25]. Finally, under condi-
tions of strict independence of action no mixture effects
will arise below “zero-effect” levels of all single com-
ponents, while DA predicts effects whose magnitude

depends on the number of components in the mixture.
DA as a default, also for mixtures perceived
as dissimilar: Implications for mixture risk
assessments and decisions on cumulative
assessment groups
Thus, if cases demonstrating the validity of IA are rare, if
there are biological limits constraining the occurrence of
strict independence of action and if the prediction dif-
ferences between DA and IA are relatively small, then
reflexions on presumed MOAs or mechanisms unnec-
essarily complicate decisions regarding the choice of DA
or IA as the “correct” assessment concept.

All this argues for the general application of DA, irre-
spective of MOA or mechanisms, unless there are data
to show that IA provides the better prediction of

mixture effects, as proposed by the EU Scientific
Committees [1], EFSA [18] and WHO-IPCS [26].

This has implications for building cumulative assess-
ment groups in mixture risk assessments. Instead of a
narrow focus on common mechanisms as practised in
USEPA assessment groups for pesticides, and proposed
recently for phthalates [27], broader criteria are needed.
Chemicals with similar modes of action, based on in silico,
in vitro and in vivo data should be grouped together, but
Current Opinion in Toxicology 2023, 35:100418
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beyond that, the emphasis must be on common adverse
outcomes, regardless of perceived mechanisms. Adverse
outcome pathway networks may offer additional support
in decisions about which chemicals to group together in
mixture risk assessments [15,16,28]. Debates about
similar or dissimilar action as such lead into a dead end.

Suggestions to restrict mixture risk assessments to

chemicals with common or interlinked MOAs [2] are
therefore of little use in risk assessment practice. At
best, such proposals limit considerations of mixture risks
to special cases in which only a sub-set of chemicals
contributing to mixture risks are assessed together,
introducing a bias towards underestimations of risks. At
worst, they lead to largely fruitless debates about cu-
mulative assessment group membership, thereby
blocking mixture risk assessments entirely.
Observations of mixture effects at low
doses and their implications
Experimental studies in the field of disruption of male
sexual development have been particularly informative
about mixture effects at low doses, often at fractions of
the no-observed-adverse-effect levels (NOAELs) of

individual mixture components and with chemicals that
produce these effects through a variety of molecular
initiating events and key event-relationships [7,13e
15,29]. Malformations of the penis (hypospadias) were
seen when each mixture component was present at
doses that exceeded 25% of their individual NOAELs
for this effect; other, less severe effects occurred at only
12% of individual NOAELs [15]. The data from geno-
toxicity studies [21] and from studies of developmental
toxicity in fish [17] point in the same direction.

If experiments with even greater numbers of chemicals

could be performed, they could demonstrate effects
occurring at doses below HBGVs. If proof positive was
required, this could no doubt be provided, but ethical
and resource considerations prevent the realisation of
such studies.

Mixture risks, regulatory limits and “zero-effect
levels”
Proper application of IA for judging the health risks from
combined exposures in the low dose range requires clear
distinctions between zero effects and small effects:
Before an exposure scenario involving multiple chem-
icals can be declared safe under IA, certainty is required
that the individual effects of all components are indeed
zero.

While toxicologists have defined thresholds and “zero-

effect levels” into existence, it has fallen to bio-
metricians and statisticians to emphasise the difficulties
involved in determining “zero-effect levels” by experi-
ment or by statistical means. Due to the limited
Current Opinion in Toxicology 2023, 35:100418
resolving power of toxicological assays, in practice this
task cannot be realised [30,31].

Considerations of the mathematics underpinning IA
highlight the scale of the problem: IA predicts that the
combined effect of 100 chemicals with a 1% effect each
will be 63% of a possible maximal effect. With an effect
of only 0.1% from each component, the expected com-

bined response will still be 9.5%. However, effect mag-
nitudes of 1% and smaller are beyond the discriminatory
power of most toxicological tests and will almost
certainly be overlooked. With the usual number of ani-
mals per dose group (20e50) in guideline toxicity tests,
the minimum detectable effect magnitudes range from
10% to 30% of a possible maximal effect [32]. With 50
animals per dose group, long-term bioassays for carci-
nogenicity struggle to resolve a 10% cancer incidence. In
their landmark low-dose study of dibenzo-al-pyrene
carcinogenesis in trout, Bailey et al. [33] had to use no

fewer than 4535 fish per dose to demonstrate tumour
incidences of 0.1%. The measurement of incidences of
only 0.02% required 6429 animals per dose group; the
entire experiment consumed over 40,000 fish. Similar
numbers of animals had to be used to detect cancer
incidences of 1% in rodents [34]. Ruling out combina-
tion effects with multi-component mixtures according
to IA would require the detection of very small effects of
the individual components, especially with large
numbers of chemicals in the mixture, to a level of
refinement and sophistication that is currently

unachievable. Similar challenges exist with in vitro assays
where the detection of small effects is limited by the
sensitivity of the measurement methods applied [31].

Not only according to DA, but also under the assump-
tion of strict independence of action, small effects that
can no longer be demonstrated directly in single
chemical toxicity testing, may reveal themselves as
combination effects, provided chemicals are combined
in sufficient numbers. With a mixture of 16 toxicants
shown to comply with IA, Faust et al. [10] detected a
18% inhibition of algal reproduction when all chemicals

were present at concentrations estimated to produce 1%
inhibition (EC01). This can only mean that the esti-
mated EC01 were not “zero-effect levels.”

The issue is well recognised. The EU Scientific Com-
mittees [1] emphasised that NOAELs derived from
experimental studies do not always equate with “zero-
effect levels,” and that “exposures to these levels may also
contribute to mixture effects of dissimilarly acting substances.”

Accordingly, they redefined the key issue: “The question,
therefore, is not if exposures to mixtures of substances at the
NOAEL or NOAEC for each component represent a potential
risk, but if exposures to mixtures well below these levels, and in
particular at the level assumed to be safe for each component
www.sciencedirect.com
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(TDI, DNEL, PNEC or equivalent) may produce adverse ef-
fects” [1].

What then of the idea that HBGVs are “zero-effect
levels”? The EU Scientific Committees [1] write: “The
HBGVs are hence expected to represent a value at which no
effects are produced; thus for threshold substances, the assump-
tion is that this value is equal to or lower than the no effect level;
thus an E(Ci) = 0 should be assumed for exposures at the
HBGV level. Consequently, the effects of co-exposure to several
substances all below the HBGV value should be assumed to be
negligible if all substances have dissimilar modes of action
(emphases added).”

However, there are well-recognised uncertainties in
setting HBGVs. What was judged as “safe” only a few
years ago, is evaluated today as associated with human
health risks. As knowledge about the toxicity of chem-
icals grew with the accumulation of further data, HBGVs

have tended to decrease. The most striking recent
example is the new exposure limit for bisphenol A pro-
posed by the European Food Safety Authority [35],
20,000-fold lower than the previous value. Perfluori-
nated chemicals, PCDDs and lead, to name a few, are
similar cases. To our knowledge, there is no example
where a HBGV for a single chemical has been corrected
upwards.

Continuous refinement of HBGVs is therefore essential.
But the Committees offer this as a policy to also protect

humans from mixture risks. Accordingly, if HBGVs turn
out not to be “zero-effect levels,” . the conclusion should
be that the HBGV should be recalculated for offering a proper
level of protection” [1].
Re-assessment of single chemical HBGVs
as a policy for protection against mixture
risks?
As the only policy for delivering protection against
mixture risks for human health, the continuous refine-
ment of HBGVs for single substances has inherent
limitations, to a point where this approach jeopardises
essential protection goals.

First, the contention that the principles of indepen-
dence of action apply by default to human exposure
scenarios [1] is in contradiction to the available evi-

dence. Accordingly, the claim that HBGVs for single
chemicals alone can safeguard against mixture risks
breaks down when independence of action does not
apply.

Second, the research effort and data that have to go into
the derivation of HBGV is enormous. Only for a small
sub-set of chemicals, perhaps 2000e3,000, does suffi-
cient knowledge exist to support the derivation of
HBGVs. These numbers are dwarfed by the multitude
www.sciencedirect.com
of chemicals relevant for human exposures, estimated to
be in the order of several tens of thousands. Most
chemicals in current use are essentially untested.

Thus, the idea that HBGVs afford protection from
mixture risks is only tenable scientifically when all of
three conditions are fulfilled [1]: That all HBGV are
zero-effect levels [2], that chemicals act together ac-

cording to the principles of independent action, and [3]
that the two conditions apply to all chemicals in a
mixture, including untested chemicals. We have seen
that these conditions are not met, and viewed from this
perspective, continuous refinement of HBGVs as the
sole safeguard against mixture risks, as advocated by the
EU Scientific Committees and Herzler et al. [1,2] is a
reckless policy doomed to failure.
Conclusions
Whether we accept DA as the default concept or prefer
the (unrealistic) case of IA, the decisive factor that
determines whether concerns about possible mixture
risks are justified is the sheer number of chemicals that
contribute to a common adverse outcome, their expo-
sure levels and their potency. Fragmentary knowledge

about the human exposome, and the fact that most
chemicals are essentially untested, present formidable
barriers to providing reassuring answers.

The inevitable conclusion is that the protection goals
enshrined in HBGVs for single chemicals may not be
realised when there is co-exposure to chemicals that
produce the same effect, regardless of perceived MOA
(see a recent mixture risk assessment study of male
reproductive health [36]). HBGVs do not per se protect
against mixture risks. While certain co-exposure sce-
narios may not present any risks, concerns about com-

bined exposures cannot be ruled out without further
investigation. Mixture risk assessments must therefore
be at the heart of chemical risk assessment and be
addressed as a matter of course, rather than be reserved
for special cases, as argued by Herzler et al. [2]. Their
four preconditions (common or interlinked MOA, haz-
ards of high concern, exposures below regulatory limits
for all single chemicals, and constancy of exposures
during windows of vulnerability) for conducting mixture
risk assessments are intended to define a very limited,
arbitrarily circumcised chemical space for initiating

mixture risk assessments. The inevitable result will be
to leave the general population and wildlife largely un-
protected against mixture risks.

As the political demand for considering mixture risks
increases, regulatory authorities should emphatically
embrace the challenge of dealing with mixture risks.
First, more mixture risk assessments are needed, and
this should be enshrined in all relevant chemical regu-
lations, across regulatory domains [37]. Considerations
Current Opinion in Toxicology 2023, 35:100418
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of MOAs should not be used to obfuscate and delay
progress with mixture risk assessment. Second, addi-
tional risk management tools such as lowering of HBGVs
by inclusion of so-called mixture assessment factors, or
the introduction of group limit values, require urgent
consideration.
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