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Preface

We are proud to present the proceedings of the 18th International Symposium on
Intelligent Data Analysis (IDA 2020), which was held during April 27–29, 2020, in
Konstanz, Germany. The first symposium of this series was organized in 1995 and held
biannually until 2009, when the conference switched to being held annually. Following
demand expressed by the IDA community in a survey held in 2018, IDA 2020 was the
first of the series to take place in spring rather than fall, as was common before.

The switch to April, and a more organized outreach to the community, coincided
with an increase in the number of submissions from 65 in 2018, to 114 in 2020. After a
rigorous review process, 45 of these 114 submissions were accepted for presentation.
Almost all submissions were reviewed by at least three Program Committee
(PC) members (only two papers had two reviews) and a substantial number of sub-
missions received more than three reviews. In addition to the PC, the review process
also involved program chair advisors – a select set of senior researchers with a
multi-year involvement in the IDA symposium series. Whenever a program chair
advisor flagged a paper with an informed, thoughtful, positive review due to the paper
presenting a particularly interesting and novel idea, the paper was accepted irrespective
of the other reviews. Each accepted paper was offered a slot for either oral presentation
(15 papers) or poster presentation (30 papers).

We wish to express our gratitude to the authors of all submitted papers for their
high-quality contributions; to the PC members and additional reviewers for their efforts
in reviewing, discussing, and commenting on all submitted papers; to the program chair
advisors for their active involvement; and to the IDA council for their ongoing guid-
ance and support. Many people have helped behind the scenes to make IDA 2020
possible, but this year we are particularly grateful to our publicity chairs who helped
spread the word: Daniela Gawehns and Hugo Manuel Proença!

February 2020 Georg Krempl
Ad Feelders

Michael R. Berthold
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Estimating Uncertainty in Deep Learning
for Reporting Confidence: An Application
on Cell Type Prediction in Testes Based

on Proteomics

Biraja Ghoshal1(B), Cecilia Lindskog2, and Allan Tucker1

1 Brunel University London, Uxbridge UB8 3PH, UK
biraja.ghoshal@brunel.ac.uk

2 Department of Immunology, Genetics and Pathology, Rudbeck Laboratory,
Uppsala University, 75185 Uppsala, Sweden

https://www.brunel.ac.uk/computer-science

Abstract. Multi-label classification in deep learning is a practical yet
challenging task, because class overlaps in the feature space means that
each instance is associated with multiple class labels. This requires a pre-
diction of more than one class category for each input instance. To the
best of our knowledge, this is the first deep learning study which quan-
tifies uncertainty and model interpretability in multi-label classification;
as well as applying it to the problem of recognising proteins expressed
in cell types in testes based on immunohistochemically stained images.
Multi-label classification is achieved by thresholding the class proba-
bilities, with the optimal thresholds adaptively determined by a grid
search scheme based on Matthews correlation coefficients. We adopt MC-
Dropweights to approximate Bayesian Inference in multi-label classifica-
tion to evaluate the usefulness of estimating uncertainty with predictive
score to avoid overconfident, incorrect predictions in decision making.
Our experimental results show that the MC-Dropweights visibly improve
the performance to estimate uncertainty compared to state of the art
approaches.

Keywords: Uncertainty estimation · Multi-label classification · Cell
type prediction · Human Protein Atlas · Proteomics

1 Introduction

Proteins are the essential building blocks of life, and resolving the spatial distri-
bution of all human proteins at an organ, tissue, cellular, and subcellular level
greatly improves our understanding of human biology in health and disease. The
testes is one of the most complex organs in the human body [15]. The spermato-
genesis process results in the testes containing the most tissue-specific genes
than elsewhere in the human body. Based on an integrated ‘omics’ approach
using transcriptomics and antibody-based proteomics, more than 500 proteins
with distinct testicular protein expression patterns have previously been identi-
fied [10], and transcriptomics data suggests that over 2,000 genes are elevated
c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 223–234, 2020.
https://doi.org/10.1007/978-3-030-44584-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_18


224 B. Ghoshal et al.

in testes compared to other organs. The function of a large proportion of these
proteins are however largely unknown, and all genes involved in the complex pro-
cess of spermatogenesis are yet to be characterized. Manual annotation provides
the standard for scoring immunohistochemical staining pattern in different cell
types. However, it is tedious, time-consuming and expensive as well as subject to
human error as it is sometimes challenging to separate cell types by the human
eye. It would be extremely valuable to develop an automated algorithm that can
recognise the various cell types in testes based on antibody-based proteomics
images while providing information on which proteins are expressed by that cell
type [10]. This is, therefore, a multi-label image classification problem.

Fig. 1. Schematic overview: cell type-specific expression of testis elevated genes [10]

Exact Bayesian inference with deep neural networks is computationally
intractable. There are many methods proposed for quantifying uncertainty or
confidence estimates. Recently Gal [5] proved that a dropout neural network,
a well-known regularisation technique [13], is equivalent to a specific varia-
tional approximation in Bayesian neural networks. Uncertainty estimates can
be obtained by training a network with dropout and then taking Monte Carlo
(MC) samples of the prediction using dropout during test time. Following Gal
[5], Ghoshal et al. [7] also showed similar results for neural networks with Drop-
weights and Teye [14] with batch normalisation layers in training (Fig. 1).

In this paper, we aim to:

1. Present the first approach in multi-label pattern recognition that can recog-
nise various cell types-specific protein expression patterns in testes based
on antibody-based proteomics images and provide information on which cell
types express the protein with estimated uncertainty.

2. Show Multi-Label Classification (MLC) is achieved by thresholding the class
probabilities, with the Optimal Thresholds adaptively determined by a grid
search scheme based on Matthews correlation coefficient.
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3. Demonstrate through extensive experimental results that a Deep Learning
Model with MC-Dropweights [7] is significantly better than a wide spectrum
of MLC algorithms such as Binary Relevance (BR), Classifier Chain (CC),
Probabilistic Classifier Chain (PCC) and Condensed Filter Tree (CFT), Cost-
sensitive Label Embedding with Multidimensional Scaling (CLEMS) and
state-of-the-art MC-Dropout [5] algorithms across various cell types.

4. Develop Saliency Maps in order to increase model interpretability visualizing
descriptive regions and highlighting pixels from different areas in the input
image. Deep learning models are often accused of being “black boxes”, so
they need to be precise, interpretable, and uncertainty in predictions must be
well understood.

Our objective is not to achieve state-of-the-art performance on these prob-
lems, but rather to evaluate the usefulness of estimating uncertainty leveraging
MC-Dropweights with predictive score in multi-label classification to avoid over-
confident, incorrect predictions for decision making.

2 Multi-label Cell-Type Recognition and Localization
with Estimated Uncertainty

2.1 Problem Definition

Given a set of training data D, where X = {x1, x2 . . . xN} is the set of N images
and the corresponding labels Y = {y1, y2 . . . yN} is the cell-type information.
The vector yi = {yi,1, yi,2 . . . yi,M} is a binary vector, where yi,j = 1 indicates
that the ith image belongs to the jth cell-type. Note that an image may belong to
multiple cell-types, i.e., 1 <=

∑
j yi,j <= M . Based on D(X,Y ), we constructed

a Bayesian Deep Learning model giving an output of the predictive probability
with estimated uncertainty of a given image xi belonging to each cell category.
That is, the constructed model acts as a function such that f : X → Y using
weights of neural net parameters ω where (0 <= ŷx,j <= 1) as close as possible
to the original function that has generated the outputs Y, output the estimated
value (ŷi,1, ŷi,2, . . . , ŷi,M ) as close to the actual value (yi,1, yi,2, . . . , yi,M ).

2.2 Solution Approach

We tailored Deep Convolutional Neural Network (DCNN) architectures for cell
type detection and localisation by considering a large image capacity, binary-
cross entropy loss, sigmoid activation, along with Dropweights in the fully con-
nected layer and Batch Normalization formulation of propagating uncertainty in
deep learning to estimate meaningful model uncertainty.

Multi-label Setup: There are multiple approaches to transform the multi-
label classification into multiple single-label problems with the associated loss
function [8]. In this study, we used immunohistochemically stained testes tissue
consisting of 8 cell types corresponding to 512 testis elevated genes.
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Therefore, we define a 8-dimensional class label vector Y = {y1, y2 . . . yN} ;
Y ∈ {0, 1}, given 8 cell types. yc indicates the presence with respect to according
cell type expressing the protein in the image while an all-zero vector [0; 0; 0; 0;
0; 0; 0; 0] represents the “Absence” (no cell type expresses the protein in the
scope of any of 8 categories).

Multi-label Classification Cost Function: The cost function for Multi-label
Classification has to be different considering the fact that a prediction for a class
is not mutually exclusive. So we selected the sigmoid function with the addition
of binary cross-entropy.

Data Augmentation: We used Keras’ image pre-processing package to apply
affine transformations to the images, such as rotation, scaling, shearing, and
translation during training and inference. This reduces the epistemic uncertainty
during training, captures heteroscedastic aleatoric uncertainty during inference
and overall improves the performance of models.

Multi-label Classification Algorithm: In Bayesian classification, the mean
of the predictive posterior corresponds to the parameter point estimates, and the
width of the posterior reflects the confidence of the predictions. The output of the
network is an M-dimensional probability vector, where each dimension indicates
how likely each cell type in a given image expresses the protein. The number
of cell types that simultaneously express the protein in an image varies. One
method to solve this multi-label classification problem is placing thresholds on
each dimension. However different dimensions may be associated with different
thresholds. If the value of the ith dimension of ŷ is greater than a threshold, we
can say that the i-th cell-type is expressed in the given tissue. The main problem
is defining the threshold for each class label.

A threshold based on Matthews Correlation Coefficient (MCC) is used on
the model outcome to determine the predicted class to improve the accuracy of
the models.

We adopted a grid search scheme based on Matthews Correlation Coefficients
(MCC) to estimate the optimal thresholds for each cell type-specific protein
expression [2]. Details of the optimal threshold finding algorithm is shown in
Algorithm 1.

The idea is to estimate the threshold for each cell category in an image sepa-
rately. We convert the predicted probability vector with the estimated threshold
into binary and calculate the Matthews correlation coefficient (MCC) between
the threshold value and the actual value. The Matthews correlation coefficient
for all thresholds are stored in the vector ω, from which we find the index of
threshold that causes the largest correlation. The Optimal Threshold for the ith

dimension is then determined by the corresponding value. We then leveraged
Bias-Corrected Uncertainty quantification method [6] using Deep Convolutional
Neural Network (DCNN) architectures with Dropweights [7].
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Input: Ground Truth Vector: {yi,1, yi,2, . . . , yi,M} ;
Estimated Probability Vector: {ŷi,1, ŷi,2, . . . , ŷi,M} ;
Upper Bound for threshold = Ω, and Threshold Stride = S
Result: The Optimal Thresholds T = (ot1, ot2, . . . , otM )
Initialization: The set of threshold T = (ot1 = 0, ot2 = 0, . . . , otM = 0) ;
for i ← 1 to M do

j ← 0;
ω ← 0;
π ← 0;
for j < Ω do

Initialize M-dimensional binary vector v ← (v1 = 0, v2 = 0, . . . , vM = 0)
;

if ŷi > j then
vi ← 1;

end
else

vi ← 0;
end
ω ← ω.append(MCC(y[1 : i], v));
π = π.append(j) ;
j = j + S

end
m̂ ← argmaxmω = (ω1, ω2, . . . , ωm, . . . ) ;
oti = π[m̂]

end
Algorithm 1. Find Optimal Threshold

Network Architecture: Our models are trained and evaluated using Keras
with Tensorflow backend. For the DNN architecture, we used a generic build-
ing block containing the following model structure: Conv-Relu-BatchNorm-
MaxPool-Conv-Relu-BatchNorm-MaxPool-Dense-Relu-Dropweights and Dense-
Relu-Dropweights-Dense-Sigmoid, with 32 convolution kernels, 3× 3 kernel size,
2 × 2 pooling, dense layer with 512 units, 128 units, and 8 feed-forward Drop-
weights probabilities 0.3. We optimised the model using Adam optimizer with
the default learning rate of 0.001. The training process was conducted in 1000
epochs, with mini-batch size 32. We repeated our experiments three times for
an algorithm and calculated a mean of the results.

3 Estimating Bias-Corrected Uncertainty Using Jackknife
Resampling Method

3.1 Bayesian Deep Learning and Estimating Uncertainty

There are many measures to estimate uncertainty such as softmax variance,
expected entropy, mutual information, predictive entropy and averaging predic-
tions over multiple models. In supervised learning, information gain, i.e. mutual
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information between the input data and the model parameters is considered as
the most relevant measure of the epistemic uncertainty [4,12]. Estimation of
entropy from the finite set of data suffers from a severe downward bias when
the data is under-sampled. Even small biases can result in significant inaccura-
cies when estimating entropy [9]. We leveraged Jackknife resampling method to
calculate bias-corrected entropy [11].

Given a set of training data D, whereX = {x1, x2 . . . xN} is the set of N images
and the corresponding labels Y = {y1, y2 . . . yN}, a BNN is defined in terms of a
prior p(ω) on the weights, as well as the likelihood p(D|ω). Consider class prob-
abilities p(yxi

= c | xi, ωt,D) with ωt ∼ q(ω | D) with W = (ωt)T
t=1, a set

of independent and identically distributed (i.i.d.) samples draws from q(ω |,D).
The below procedure computes the Monte Carlo (MC) estimate of the posterior
predictive distribution, its Entropy and Mutual Information(MI):

N∑

i=1

IMC(yi;ω | xi,D) = H
(
p̂(yi | xi,D)

) − 1
|W|

∑

ω∈W
H

(
p(yi | xi, ω,D)

)
. (1)

where
p̂(yi | xi,D) =

1
|W|

∑

ω∈W
p(yi | xi, ω,D) . (2)

The stochastic predictive entropy is H[y | x, ω] = H(p̂) = −∑
c p̂c log(p̂c),

where p̂c = 1
T

∑
t ptc is the entire sample maximum likelihood estimator of prob-

abilities.
The first term in the MC estimate of the mutual information is called the

plug-in estimator of the entropy. It has long been known that the plug-in esti-
mator underestimates the true entropy and plug-in estimate is biased [11,17].

A classic method for correcting the bias is the Jackknife resampling method [3].
In order to solve the bias problem, we propose a Jackknife estimator to estimate the
epistemic uncertainty to improve an entropy-based estimation model. Unlike MC-
Dropout, it does not assume constant variance. If D(X,Y ) is the observed random
sample, the ith Jackknife sample, xi, is the subset of the sample that leaves-one-out
observation xi : x(i) = (x1, . . . xi−1, xi+1 . . . xn). For sample size N , the Jackknife

standard error σ̂ is defined as:
√

(N−1)
N

∑N
i=1(σ̂i − σ̂(�))2 , where σ̂(�) is the empir-

ical average of the Jackknife replicates: 1
N

∑N
i=1 σ̂(i). Here, the Jackknife estimator

is an unbiased estimator of the variance of the sample mean. The Jackknife correc-
tion of a plug-in estimator H(·) is computed according to the method below [3]:

Given a sample (pt)T
t=1 with pt discrete distribution on 1...C classes, T corre-

sponds to the total number of MC-Dropweights forward passes during the test.

1. for each t = 1...T
– calculate the leave-one-out estimator: p̂−t

c = 1
T−1

∑
j �=i pjc

– calculate the plug-in entropy estimate: Ĥ−t = H(p̂−t)
2. calculate the bias-corrected entropy ĤJ = TĤ + (T−1)

T

∑T
t=1 Ĥ(−i), where

Ĥ(−i) is the observed entropy based on a sub-sample in which the ith indi-
vidual is removed.
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We leveraged the following relation:

μ−i =
1

T − 1

∑

j �=i

xj = μ +
μ − xi

T − 1
.

while resolving the i-th data point out of the sample mean μ = 1
T

∑
i xi and

recompute the mean μ−i. This makes it possible to quickly calculate leave-one-
out estimators of a discrete probability distribution.

The epistemic uncertainty can be obtained as the difference between the
approximate predictive posterior entropy (or total entropy) and the average
uncertainty in predictions (i.e: aleatoric entropy):

I(y : ω) = He(y|x) = ĤJ (y|x) − Ha(y|x) = ĤJ(y|x) − Eq(ω|D)[ĤJ (y|x, ω)]

Therefore, the mutual information I(y : ω) i.e. as a measure of bias-corrected
epistemic uncertainty, represents the variability in the predictions made by the
neural network weight configurations drawn from approximate posteriors. It
derives an estimate of the finite sample bias from the leave-one-out estimators
of the entropy and reduces bias considerably down to O(n−2) [3].

The bias-corrected uncertainty estimation model explains regions of ambigu-
ous data space or difficult to classify, as data distribution with noise in the
inputs or model, which was trained with different domain data. Consequently,
these inputs should be assigned a higher aleatoric uncertainty. As a result, we
can expect high model uncertainty in these regions.

Following Gal [5], we define the stochastic versions of Bayesian uncertainty
using MC-Dropweights, where the class probabilities p(yxi

= c | xi, ωt,D) with
ωt ∼ q(ω | D) and W = (ωt)T

t=1 along with a set of independent and identically
distributed (i.i.d.) samples drawn from q(ω |,D), can be approximated by the
average over the MC-Dropweights forward pass.

We trained the multi-label classification network with all eight classes. We
dichotomised the network outputs using optimal threshold with Algorithm1 for
each cell type, with a 1000 MC-Dropweights forward passes at test time. In these
detection tasks, p(yxi

>= 0;OptimalThresholdi | xi, ωt,D), where 1 marks the
presence of cell type, is sufficient to indicate the most likely decision along with
estimated uncertainty.

3.2 Dataset

Our main dataset is taken from The Human Protein Atlas project, that maps the
distribution of all human proteins in human tissues and organs [15]. Here, we used
high-resolution digital images of immunohistochemically stained testes tissue
consisting of 8 cell types: spermatogonia, preleptotene spermatocytes, pachytene
spermatocytes, round/early spermatids, elongated/late spermatids, sertoli cells,
leydig cells, and peritubular cells, publicly available on the Human Protein Atlas
version 18 (v18.proteinatlas.org), as shown in Fig. 2:
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Fig. 2. Examples of proteins expressed only in one cell-type [10]

Fig. 3. Annotated heatmap of a correlation matrix between cell types

A relationship was observed between spermatogonia and preleptotene sper-
matocytes cell types and between round/early spermatids and elongated/late
spermatids cell types along with Pachytene spermatocytes cells. Figure 3 illus-
trates the correlation coefficients between cell types. The observable pattern is
that very few cell types are strongly correlated with each other.

3.3 Results and Discussions

We conducted the experiments on Human Protein Atlas datasets to validate the
proposed algorithm, MC-Dropweights in Multi-Label Classification.
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Multi-label Classification Model Performance: Model evaluation met-
rics for multi-label classification are different from those used in multi-class (or
binary) classification. The performance metrics of multi-label classifiers can be
classified as label-based (i.e.: it is assumed that labels are mutually exclusive)
and example-based [16]. In this work, example-based measures (Accuracy score,
Hamming-loss, F1-Score) and Rank-Loss are used to evaluate the performance
of the classifiers.

Table 1. Performance metrics

%Metrics BR CC PCC CFT CLEMS MC-
Dropout

MC-
Dropweights

Hamming loss 0.2445 0.2420 0.2420 0.2375 0.2370 0.207 0.1925

Rank loss 3.6700 3.5740 3.1580 3.2920 3.1120 2.862 2.626

F1 score 0.5038 0.5184 0.5733 0.5373 0.5902 0.6306 0.6627

Avg. accuracy score 0.4236 0.4389 0.4643 0.4573 0.5052 0.6150 0.7067

In the first experiment, we compared the MC-Dropweights neural network-
based method with five machine learning MLC algorithms introduced in Sect. 1:
binary relevance (BR), Classifier Chain (CC), Probabilistic Classifier Chain
(PCC) and Condensed Filter Tree (CFT), Cost-Sensitive Label Embedding
with Multi-dimensional Scaling (CLEMS) and the MC-Dropout neural network
model. Table 1 shows that MC-Dropweights exhibits considerably better perfor-
mance overall the algorithms, which demonstrates the importance of considering
the Dropweights in the neural network.

Cell Type-Specific Predictive Uncertainty: The relationship between
uncertainty and predictive accuracy grouped by correct and incorrect predic-
tions is shown in Fig. 4. It is interesting to note that, on average, the high-
est uncertainty is associated with Elongated/late Spermatids and Round/early
Spermatids. This indicates that there is some feature which contributes greater
uncertainty to the Spermatids class types than to the other cell types.

Cell Type Localization: Estimated uncertainty with Saliency Mapping is a
simple technique to uncover discriminative image regions that strongly influ-
ence the network prediction in identifying a specific class label in the image. It
highlights the most influential features in the image space that affect the pre-
dictions of the model [1] and visualises the contributions of individual pixels to
epistemic and aleatoric uncertainties separately. We calculated the class activa-
tion maps (CAM) [18] using the activations of the fully connected layer and the
weights from the prediction layer as shown in Fig. 5.
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Fig. 4. Distribution of uncertainty values for all protein images, grouped by correct
and incorrect predictions. Label assignment was based on optimal thresholding (Algo-
rithm 1). For an incorrect prediction, there is a strong likelihood that the predictive
uncertainty is also high in all cases except for Spermatids.
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Fig. 5. Saliency maps for some common methods towards model explanation

4 Conclusion and Discussion

In this study, a multi-label classification method was developed using deep learn-
ing architecture with Dropweights for the purposes of predicting cell types-
specific protein expression with estimated uncertainty, which can increase the
ability to interpret, with confidence and make models based on deep learning
more applicable in practice. The results show that a Deep Learning Model with
MC-Dropweights yields the best performance among all popular classifiers.

Building truly large-scale, fully-automated, high precision, very high dimen-
sional, image analysis system that can recognise various cell type-specific protein
expression, specifically for Elongated/Late Spermatids and Round/early Sper-
matids remains a strenuous task. The properties in the dataset such as label
correlations, label cardinality can strongly affect the uncertainty quantification
in predictive probability performance of a Bayesian Deep learning algorithm in
multi-label settings. There is no systematic study on how and why the perfor-
mance varies over different data properties; any such study would be of great
benefit in progressing multi-label algorithms.
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