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Abstract: Fault diagnosis of bearings in rotating machinery is a critical task. Vibration signals are
a valuable source of information, but they can be complex and noisy. A transformer model can
capture distant relationships, which makes it a promising solution for fault diagnosis. However,
its application in this field has been limited. This study aims to contribute to this growing area
of research by proposing a novel deep-learning architecture that combines the strengths of CNNs
and transformer models for effective fault diagnosis in rotating machinery. Thus, it captures both
local and long-range temporal dependencies in the vibration signals. The architecture starts with
CNN-based feature extraction, followed by temporal relationship modelling using the transformer.
The transformed features are used for classification. Experimental evaluations are conducted on two
datasets with six and ten health conditions. In both case studies, the proposed model achieves high
accuracy, precision, recall, F1-score, and specificity all above 99% using different training dataset
sizes. The results demonstrate the effectiveness of the proposed method in diagnosing bearing faults.
The convolutional-transformer model proves to be a promising approach for bearing fault diagnosis.
The method shows great potential for improving the accuracy and efficiency of fault diagnosis in
rotating machinery.

Keywords: bearing fault diagnosis; vibration signals; deep-learning architecture; attention mechanism;
transformer model; long-range temporal dependencies; temporal relationships

1. Introduction

The presence of complex and costly machinery in critical business operations needs
effective condition monitoring and maintenance programs. Unforeseen failures can result
in downtime, accidents, and financial losses. Maintenance operating expenses can range
from 15% to 60% of production costs depending on the industry. To maintain a stable
and healthy rotating machine, essential components, such as motors, bearings, gearboxes,
etc., must operate effectively. Maintenance ensures their health condition by repairing,
modifying, or replacing them. Rolling bearings play a critical role in the smooth functioning
of rotating machinery by enabling motion between static and moving parts. Their failures
may lead to major issues, accounting for 40–90% of machine failures [1]. Maintenance
can be achieved through corrective and preventive approaches. Corrective maintenance
is expensive, especially for large-scale applications, and performed after machine failure.
Preventive maintenance incorporates time-based maintenance (TBM) and condition-based
maintenance (CBM) methods, such as localised CBM or remote CBM. While TBM is costly
and may not prevent failures, CBM is considered efficient, as 99% of equipment failures are
preceded by non-specific conditions. CBM relies on condition monitoring (CM) to detect
faults early, leading to accurate maintenance decisions. Vibration-based CM is extensively
used due to its capability to analyse machine health without physical involvement [1–4].
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CM for machinery usually includes both fault detection and diagnosis. Fault detection
in CM intends to recognise deviations from normal operating conditions or predefined
thresholds. It involves the comparison of measured data or signals with expected or
reference values. When a fault is detected, further analysis is conducted to diagnose
the root cause of the fault. Fault diagnosis in CM aims to identify the source of the
fault. It encompasses analysing the acquired data and using techniques, such as signal
processing, pattern recognition, statistical analysis, and machine learning algorithms, to
identify the fault type. Rolling bearing faults generate periodic impulses known as the
bearing fundamental defect frequency (BFDF). BFDF depends on fault location, bearing
geometry, and shaft speed. Figure 1 [5] illustrates this. BFDFs are categorised as bearing
pass frequency of the inner race (BPFI), bearing pass frequency of the outer race (BPFO),
ball spin frequency (BSF), and fundamental train frequency (FTF), which describe the
defects in the outer race, inner race, rolling element, and cage [6]. Equations that express
these frequencies are as follows.
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Here ϕ is the load angle, Dp is the pitch diameter, db is the rolling element diameter,
Ssh is the shaft speed, and Nb is the number of rolling elements. The vibration signal
frequency indicates the fault cause, while the amplitude reflects the fault severity.

Vibration-based machine fault diagnosis is a challenging task due to the presence of
noises and vibration signals from multiple sources within the collected data. Feature extrac-
tion methods are used to extract useful information from the raw vibration signals, which
can then be used to classify the health condition of the machine using machine learning
classifiers. The generalisability of the much-published research in this field has focused on
analysing specific characteristics of the collected vibration signals in three domains: time,
frequency, and time-frequency. Techniques within these domains can effectively obtain
the essential information of the signal. Machine learning methods can then be employed
to classify the health condition of a machine based on these computed features. The key
assumption is that by carefully formulating these features, a machine-learning model can
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be trained to achieve high accuracy in classifying the machine’s health condition. For exam-
ple, previous studies have proposed various techniques that use multiple statistical features
extracted from the time domain. These features include mean, crest factor, peak-to-peak value,
variance, root mean square (RMS), kurtosis, and skewness. Additionally, advanced techniques
such as autoregressive moving average (ARMA), time synchronous averaging (TSA), filtering
techniques, blind source separation (BSS), and stochastic parameters [1,7–12]. Also, numerous
research studies have confirmed that employing frequency domain techniques enables
the extraction of valuable insights from time series vibration signals by examining their
frequency characteristics, which may not be easily discernible in the time domain. The fast
Fourier transform (FFT) is a commonly used method of converting time-domain vibration
signals into the frequency domain [13]. Furthermore, different characteristics derived from
the vibration frequency spectrum have been employed to represent the health condition of
machines. These include high-frequency resonance, high-order spectra, arithmetic mean,
and the RMS of spectral difference techniques [14–16]. Additionally, several techniques
operating in the time-frequency domain have been employed for analysing non-stationary
vibration signals that often arise during machinery faults. These techniques comprise
the short-time Fourier transform (STFT), Hilbert-Huang transform (HHT), wavelet trans-
form (WT), empirical mode decomposition (EMD), local mean decomposition (LMD), and
others [16–21].

Over the past two decades, there has been significant progress in the application of
feature-learning techniques for automatically deriving meaningful representations from
time series datasets. Previous studies in the field of vibration fault diagnosis have prin-
cipally focused on exploring deep-learning methods, specifically deep neural networks
(DNNs) and convolutional neural networks (CNNs), recurrent neural networks (RNNs),
autoencoders, generative-adversarial networks (GANs), deep-belief networks (DBNs), and
transfer learning for this purpose [22–31]. These techniques use hierarchical multi-layer
data processing architectures to learn representations of the data. Additionally, the appli-
cation of deep learning has initiated a renewed interest in transforming the 1D vibration
signal into a 2D image, as inspired by recent developments in computer vision. This con-
version allows for the exploration of discriminative characteristics present in the vibration
signal [32].

Furthermore, the attention mechanism (AM) has recently developed as an effective
tool in the field of intelligent fault diagnosis, bringing significant advantages through
its internal correlation and global information extraction capabilities. This technique has
been proposed to enhance the performance of various other models, contributing to their
overall effectiveness. According to [33], the utilisation of AM in the field of intelligent fault
diagnosis can be classified into three primary categories: recurrent-based, convolution-
based, and self-attention-based methods. For example, Li et al. proposed a fault diagnosis
method for rolling element bearings using deep learning with a bi-directional LSTM and an
attention mechanism. The method effectively identifies informative data segments, extracts
discriminative features, and visualises diagnostic knowledge. Experimental results on a
rolling bearing dataset demonstrate its effectiveness with limited training data [34]. In [35],
an approach using improved multi-scale coarse-grained convolutional neural networks
with feature attention is introduced. It enables accurate fault diagnosis of rolling bearings
in complex scenarios by directly processing raw vibration signals. Yang et al. propose a
method for enhancing interpretability in fault diagnosis of neural networks. It combines
multilayer bidirectional gated recurrent units, an attention mechanism, and convolution
neural networks. Experimental results on bearings demonstrate the effectiveness of the
model in localising discriminative information and understanding feature extraction in
neural networks, particularly for mechanical vibration signals [36]. In [37], a model called
AMMFN that combines a central network and multiple branch networks using inception
networks is presented. The proposed model automatically extracts deep features from
single-sensor data and enhances the information interaction and hierarchical fusion in
multi-sensor data.
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Additionally, an attention-based fusion strategy captures more correlation informa-
tion, leading to improved accuracy and generalisation ability compared to other methods.
Moreover, an early fault detection method for rolling bearings called MCNN-AGRU is
proposed. In this method, a multiscale convolutional neural network is used for data
processing and employs a gated recurrent unit network with an attention mechanism for
prediction. The method detects early faults by comparing actual and predicted values using
a reconstruction error [38]. In [39], a fault diagnosis technique called MSA-ResNet utilising
a multi-scale attention mechanism in a residual network is introduced. The technique
introduces an attention mechanism block for constructing new residual block combinations.
It also incorporates a multi-scale structure through appropriate convolution kernel sizes.
The MSA-ResNet algorithm enhances feature sensitivity, extracts multi-scale features from
complex mechanical vibration signals, and achieves an effective diagnosis of rolling bearing
faults. Experimental results on bearing datasets demonstrate the method’s advantages for
multi-scale feature extraction, noise immunity, and fault classification accuracy. Moreover,
a multi-scale attention-mechanism-based convolutional neural network (MSAM-CNN),
which is a 1D neural network with attention and convolutional layers for rolling bearing
fault diagnosis, is proposed. It processes vibration signals on various scales using parallel
branches, fusing complementary features, and utilising an attention mechanism for optimal
feature selection [40].

Moreover, recent research has highlighted the inherent capabilities of the transformer
model introduced in [41] to capture distant relationships. The transformer represents
a sequence transduction model that relies entirely on attention, thereby replacing the
conventional recurrent layers found in encoder-decoder architectures with multi-headed
self-attention. However, there have been few attempts to investigate the application
of the transformer model for fault diagnosis. For example, Hou et al. introduced a
diagnosisformer model, which is an attention-based multi-feature parallel fusion approach
for rolling bearing fault diagnosis. The model utilises the transformer architecture as its
fundamental network. The process begins by extracting frequency domain features from
the original data through an FFT. Subsequently, normalisation operations and embeddings
are applied to prepare the model input. Next, a multi-feature parallel fusion encoder is
employed to extract both local and global features from the bearing data. These extracted
features are then passed to a cross-flipped decoder, followed by a classification head
for fault classification [42]. In [43], a method for diagnosing bearing faults is presented.
The method combines the joint feature extraction of a transformer and a residual neural
network (ResNet) with transfer learning (TL). In this method, first, the data is fed into both
the transformer encoder and the ResNet architecture. The encoder extracts features and
word embeddings through a one-dimensional convolutional layer. The resulting feature
sequences from the encoder and ResNet are then combined and classified. Additionally, a
TL strategy with model fine-tuning is employed to alleviate the training complexity of the
proposed method for new tasks.

In [44], a transformer model based on mask self-supervised learning, for diagnosing
bearing faults in multistage centrifugal fans within petrochemical units with limited sam-
ples, is presented. The proposed method utilises mask self-supervised learning (SSL) to
extract robust representations of fault signals and discover potential relationships among
subsequences. This process allows for the pretraining of a model with well-generalised
parameters using unlabelled samples. Consequently, a small set of labelled samples is
employed for fine-tuning through supervised learning, enabling the proposed method
to possess the discriminative capability required for identifying various types of bearing
faults. Additionally, Wu et al. proposed a classifier based on the transformer architecture,
designed to effectively detect various known fault types and their severity levels, while
also identifying novel fault conditions. The proposed method involves transforming raw
vibration signals into time-frequency spectrograms, which are then used as input for the
classifier. In this method, using the classifier’s advanced feature extraction performance,
a technique based on Mahalanobis distance is employed to determine whether a fault
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originates from a previously unseen condition. In the event a novel fault is detected, the
model is retrained using the novel data following an incremental learning approach [45].

To date, the utilisation of the transformer model in the field of fault diagnosis is
currently in an early stage of investigation. This study aims to contribute to this growing
area of research by proposing a novel deep-learning architecture that combines the strengths
of CNNs and transformer models for effective fault diagnosis in rotating machinery. The
proposed method follows a sequential approach. It starts with extracting features from
the vibration signals utilising CNNs, followed by temporal relationship modelling using
the transformer model. The transformed features are used by the classifier to diagnose
bearing faults effectively. By incorporating local and long-range temporal dependencies
in vibration signals, this method successfully diagnoses bearing faults. The combination
of the CNN’s feature extraction and the transformer model classification improves their
strengths, leading to accurate fault diagnoses. The main contributions of this paper are
as follows:

1. Novel Deep-Learning Architecture: This method introduces a unique deep-learning
architecture that combines CNNs and transformer models to enhance fault diagnosis
in rotating machinery. This architecture contributes to this growing area of research
by utilising the strengths of both components.

2. Sequential Approach: The proposed method offers a systematic and sequential ap-
proach to fault diagnosis. It begins with the normalisation of vibration signals, effi-
ciently addressing scale differences. Then, CNNs are employed for feature extraction,
capturing important characteristics of the signals. Afterward, transformer models are
used to model temporal relationships. This systematic process ensures a comprehen-
sive analysis of the vibration signals.

3. Effective Feature Extraction and Temporal Relationship Modelling: Using CNNs, this
approach excels at extracting key features from vibration signals, enabling an accurate
diagnosis of bearing faults. Incorporating transformer models enables the modelling
of long-range temporal dependencies, capturing dynamic patterns, and relationships
over extended time intervals for a deeper understanding of fault behaviours and
improved diagnosis performance.

4. Incorporation of Local and Long-Range Temporal Dependencies: By incorporating
both local and long-range temporal dependencies in vibration signals, the method
successfully captures the complex patterns and variations associated with bearing
faults. This inclusion enhances the diagnostic accuracy and robustness of the model.

5. Improvement of CNN and Transformer Model Strengths: The combination of CNNs
for feature extraction and transformer models for the modelling of long-range tem-
poral dependencies improves their individual strengths. CNNs efficiently extract
discriminative features from the vibration signals, while transformer models excel at
modelling long-range temporal relationships. The fusion of these two components
enhances the overall performance of the fault diagnosis model, leading to precise
fault diagnoses.

The remainder of this paper is organised as follows. Section 2 describes the pro-
posed method. Section 3 is devoted to descriptions of the experimental study used to
validate the proposed method and presents comparison results. Finally, Section 4 offers
some conclusions.

2. The Proposed Method

In this section, we introduce the convolutional-transformer model with long-range
temporal dependencies for bearing fault classification. The proposed method is a novel
deep-learning architecture that combines the advantages of CNNs and the transformer
model. The architecture of the proposed method is shown in Figure 2. This architecture
represents the sequential steps involved in the proposed method. Starting with the vibration
signal, the proposed method applies the CNNs’ feature extraction to capture relevant
features. The extracted features are then processed by the transformer, which models
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the temporal relationships. The transformed features are fed into the classifier for fault
diagnosis. The proposed method aims to utilise both local and long-range temporal
dependencies in the bearing vibration signals, leading to efficient fault diagnosis in rotating
machinery. In this method, the combination of the CNN’s feature extraction and the
temporal transformer improves the strengths of both techniques to efficiently diagnose
bearing faults. The CNN is well-suited for extracting local features from vibration signals,
while the temporal transformer can capture long-range temporal dependencies and patterns
to make accurate fault diagnoses. The following sections provide a more detailed overview
of the proposed method.
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Figure 2. The architecture of the convolutional-transformer model with long-range temporal dependencies.

2.1. CNN Feature Extraction

The CNN, also referred to as a convNet, is a multi-stage neural network that typically
consists of an input layer, convolutional layers, sub-sampling (or pooling) layers, fully
connected layers, and an output layer. CNNs are designed to perform feature learning,
where they learn meaningful features by iteratively applying convolutional layers, activa-
tion layers, and pooling processes to the input data. These procedures enable the network
to learn distinctive characteristics from the provided data. The convolution layers perform
convolution operations by applying various local filters to the raw input data, resulting in
the generation of invariant local features. Simultaneously, the pooling layers extract the
most important features from the convolved data [27,46]. Mathematically, the convolution
computation can be expressed as follows:

hj = f (∑i Xi ∗Wij + bj), (5)

In this equation, we have hj as the j-th output feature map of the current convolutional
layer. Xi represents the i-th output feature of the previous convolutional layer. The symbol
∗ denotes the convolution operator. Wij is the mapping of the convolution kernel that
connects the c input feature map to the j-th output feature map in the current layer. The
term bj refers to the bias associated with the j-th feature kernel and f represents the
activation function. The widely utilised activation function in neural networks is the
rectified linear unit (ReLU), which can be mathematically represented as follows:

f (x) =
{

0, i f x < 0
x, i f x ≥ 0

, (6)
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The pooling layer is responsible for performing nonlinear down-sampling to decrease
the output dimensionality. It achieves this by employing various pooling techniques,
including maximum pooling, averaging pooling, and random pooling. Among these
techniques, maximum pooling is frequently used and can be mathematically described by
Equation (7).

Xj = f (αjdown(X i)+bj
)
, (7)

Here, Xj denotes the j-th output obtained from the current pooling layer. The constant
αj is utilised to regulate the extent of data modification performed by the pooling layer. The
function down(X i) corresponds to the down-sampling process applied to the i-th output
originating from the preceding layer. bj signifies the bias associated with the j-th feature
kernel used in the present pooling layer. Lastly, the f represents the activation function.
The architecture of the proposed CNN feature extractor is presented in Figure 3.
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2.2. Temporal Transformer

The transformer architecture can be described as a combination of encoder and decoder
components, organised in a stacked manner [41]. Figure 4 illustrates the overall structure
of the transformer. On the left side, there is the encoder, which consists of multi-head
attention and a fully connected layer. Its purpose is to convert the input data into feature
vectors. On the right side, we have the decoder, which takes the output of the encoder
and the previously predicted results as inputs. The decoder comprises masked multi-head
attention, multi-head cross-attention, and a fully connected layer. These components work
together to generate the conditional probabilities for the results.

Our proposed technique employed the temporal transformer encoder part, which
is responsible for processing the input data and converting it into a set of meaningful
feature vectors. It consists of multiple layers of encoders, each containing two sub-layers:
multi-head self-attention and a position-wise fully connected feed-forward network. To
enhance the flow of information and alleviate the vanishing gradient problem, the trans-
former uses residual connections for each of the two sub-layers. This is accompanied
by layer normalisation. Accordingly, the output of each sub-layer can be represented as
LayerNorm(x + Sublayer(x)), where Sublayer(x) refers to the function performed by the
sub-layer itself. To enable smooth integration of these residual connections, all sub-layers in
the model, including the embedding layers, produce outputs with a dimensionality of dmodel .
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The attention function serves as a mechanism enabling a machine-learning model to
concentrate on specific segments of an input sequence. It takes a query vector and a set
of key-value pairs as inputs. The query vector signifies the current focus of the model,
while the key-value pairs represent distinct segments of the input sequence. The attention
function then estimates a weighted sum of the value vectors, where the weight assigned
to each value vector is determined by the compatibility between the query vector and the
corresponding key vector. In essence, the attention function enables the model to focus on
the most relevant parts of the input sequence based on the query. Here the query vector is
a representation of the model’s current focus, typically computed by the model’s encoder
and the key-value pairs are a collection of vectors that depict different segments of the
input sequence. The keys enable the calculation of compatibility between the query vector
and the value vectors, which contain information about various portions of the input
sequence. The assigned weights to the value vectors determine the impact of each segment
on the output. The output of the attention function is a weighted sum of the value vectors.
The weights are computed using a compatibility function, which measures the similarity
between the query vector and the key vectors.

Figure 5 illustrates the schematic representation of multi-head attention, which in-
cludes multiple parallel attention layers operating simultaneously. The main method used
for computing attention relationships is the scaled dot-product attention method, also
referred to as the self-attention computation technique [41]. The input includes queries
combined into a matrix Q and keys combined into a matrix K, both with a dimension of
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dk and values packed into a matrix V with a dimension of dv. The outputs matrix can be
computed using the following equation.

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (8)
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Instead of applying a single attention function that operates on dmodel-dimensional
keys, values, and queries, the multi-head attention employs h linear projections. These
projections transform the queries, keys, and values into dk, dk, and dv dimensions, respec-
tively, with each projection learned independently. Subsequently, the attention function is
performed on each of these projected versions simultaneously, producing dv-dimensional
output values. These values are then concatenated and subjected to another projection,
resulting in the final values, as illustrated in Figure 4. The introduction of multi-head
attention enables the model to effectively consider information from diverse representation
subspaces and various positions at once. This can be expressed mathematically as follows:

MultiHead(Q, K, V) = Concat(head1 , head2, . . . , headh)W0

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (9)

Here the projections are parameter matrices WQ
i ∈ Rdmodel xdk , WK

i ∈ Rdmodel xdk ,
WV

i ∈ Rdmodel xdv , and W0 ∈ Rhdvxdmodel [41].
As presented in Figure 6, the temporal transformer encoder module takes the extracted

features from the CNN feature extractor as input. The self-attention mechanism allows the
model to attend to different positions in the feature sequence, capturing the interactions
between different elements. The self-attention layers allow the encoder to learn long-range
dependencies between the features in the vibration signal. By attending to relevant context
across the entire sequence, the model gains a holistic understanding of the underlying
patterns and structures within the vibration data. This capability is particularly valuable
in obtaining temporal dependencies, as vibrations are fundamentally dynamic and show
complex relationships over time. The obtained features are then combined with the original
input features through residual connections and layer normalisation. Following the self-
attention step, the algorithm employs a feed-forward network to enable the model to
learn non-linear relationships between the input tokens. The feed-forward network uses a
combination of linear transformations, activation functions, and normalisation techniques
to enhance the representation of the input sequence. By introducing non-linearity and
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modelling complex interactions, the feed-forward network enables the extraction of high-
level features that are discriminative for the subsequent classification task.
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Finally, the algorithm produces a transformed representation of the input sequence,
which is subsequently applied for classification. The transformed representation is first fed
through a linear projection and normalised to ensure compatibility with the classification
layer. This step enhances the discriminative power of the representation and prepares
it for classification. The normalisation step, which utilises layer normalisation, helps in
reducing the impact of variations in scale and distribution among different features. For
the classification task, the transformed and normalised representation is passed through a
fully connected neural network, referred to as the classification layer. This layer maps the
transformed representation to a vector of class scores, where each class corresponds to a
specific category or label. To obtain the final classification probabilities, a Softmax layer is
applied to the class scores. The Softmax function converts the class scores into a probability
distribution over the classes, ensuring that the probabilities sum up to one. This enables
the model to provide a probabilistic interpretation of the predicted class labels.

By using self-attention, feed-forward networks, the classification layer, and the Soft-
max layer, the temporal encoder effectively captures the temporal dynamics and intricate
patterns in the CNN-based extracted vibration signal features. This facilitates accurate
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classification of the underlying bearing health condition by assigning higher probabilities
to the most relevant classes based on the learned representations.

3. Experimental Study

This section presents the validation of the proposed method through its application
to two cases of fault classification in rolling element bearings. The first case involves a
comprehensive validation of a bearing vibration dataset comprising six health conditions.
Additionally, an experimental study is conducted on a motor-bearing vibration dataset
from Case Western Reserve University (CWRU), which consists of ten health conditions
to further assess the generalisation capability of the proposed method. Various metrics
are employed to evaluate the diagnosed faults, and the obtained results are reported. The
subsequent sections provide detailed descriptions of these two case studies.

3.1. First Case Study

The vibration data utilised in this case study were gathered from experiments con-
ducted on a small test rig designed to replicate the operating environment of roller bearings.
A total of six conditions representing different states of roller bearings were recorded and
analysed. These conditions consist of two normal states: a brand-new condition (NO) and
a worn but undamaged condition (NW). Additionally, there are four fault conditions: inner
race (IR) fault, outer race (OR) fault, rolling element (RE) fault, and cage (CA) fault. Each
condition possesses its own distinct characteristics, which are described as follows:

1. The NO bearing corresponds to a brand-new bearing in perfect condition.
2. The NW bearing has been in service for a certain period but remains in good condition.
3. The IR fault is artificially created by removing the cage, shifting the elements to one

side, removing the inner race, and subsequently cutting a groove into the raceway of
the inner race using a small grinding stone. The bearing is then reassembled.

4. The OR fault is artificially created by removing the cage, pushing all the balls to one
side, and using a small grinding stone to cut a small groove in the outer raceway.

5. The RE fault is simulated by marking the surface of one of the balls using an electrical
etcher, imitating corrosion.

6. The CA fault is artificially created by removing the plastic cage from one of the
bearings and cutting away a section of the cage, thus allowing two of the balls to
move freely without being held at a regular spacing, as would normally be the case.

The data were recorded at 16 different speeds. Figure 7 illustrates representative
time series plots for the above-mentioned six conditions. Depending on the specific fault
condition, the defects introduce distinct patterns into the vibration signals. The inner and
outer race fault conditions exhibit relatively periodic signals, while the rolling element fault
may or may not display periodicity, depending on factors such as the extent of damage to
the rolling element, the bearing load, and the trajectory of the ball within the raceway. The
cage fault generates random distortions, the characteristics of which are also influenced by
the degree of damage and the load on the bearing.

Figure 8 illustrates the experimental setup employed for acquiring vibration data from
bearings. The setup comprises a DC motor that impels the shaft via a flexible coupling.
The shaft is supported by two Plummer bearing blocks. Within one of the Plummer blocks,
several damaged bearings were introduced, and the resulting vibrations were captured
using two accelerometers positioned in the horizontal and vertical planes. To process the
accelerometer outputs, they were routed through a charge amplifier to a Loughborough
Sound Images DSP32 ADC card. A low-pass filter with an 18 kHz cut-off frequency was
incorporated, and the signals were sampled at 48 kHz, providing a slight oversampling.
The experiment involved operating the machine at 16 known speeds spanning from 25 to
75 revolutions per second. For each speed, ten-time series were recorded, resulting in a
total of 160 instances for each condition and a cumulative collection of 960 raw data files. A
comprehensive summary of the dataset is presented in Table 1.
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Figure 7. Typical time series plots for the above-mentioned six conditions [5].
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Table 1. Description of bearing dataset.

Bearing Health
Condition

Number of
Samples

Number of
Data Points

Normal
NO 160 6000
NW 160 6000

Fault

IR 160 6000
OR 160 6000
RE 160 6000
CA 160 6000
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3.1.1. Experimental Results

To assess the effectiveness of the proposed method, we conducted multiple experi-
ments to acquire efficient local and long-range temporal dependencies of the vibration
signals for bearing fault classification using the above-described data. The experiments
were conducted using 3 different training sizes: 60%, 70%, and 80%. Each training size
was used for 30 trials. The training sets were randomly selected from the data, and the
remaining portions were used for testing. To apply our proposed method to this bearing
dataset, we started the process by obtaining the CNN-based features from the collected
vibration signals using the CNN feature extractor described above. Our algorithm employs
a series of CNN layers to extract hierarchical features from the input data, which consists
of 1D convolutional operations followed by non-linear activation functions. These layers
enable the algorithm to capture local patterns and spatial correlations within the input data.
To decrease computational complexity and improve the network’s translation invariance,
max-pooling layers are utilised for down-sampling the feature maps. The selection of
the parameters used in the CNN feature extractor was guided by an iterative process of
experimentation. The primary objective was to identify a combination of parameter values
that would facilitate the extraction of informative features from the vibration signals while
maintaining a reasonable level of computational complexity within the CNN. This iterative
approach allowed for the identification of parameter settings that attain a balance between
feature extraction capabilities and computational efficiency, finally leading to the selected
set of parameters in Table 2.

Table 2. The selected set of parameters in the CNN feature extraction process of the proposed method.

Parameter Value Description

Number of convolutional layers 2 The number of convolutional layers in the CNN feature extractor.
Number of filters per convolutional layer 64,128 The number of filters in each convolutional layer.
Kernel size 3 × 3 The size of the kernels used in the convolutional layers.
Stride 1 The stride used in the convolutional layers.
Padding 1 The padding used in the convolutional layers.
Number of max pooling layers 2 The number of max pooling layers in the CNN feature extractor.
Kernel size 2 × 2 The size of the kernel used in the max pooling layers.
Stride 2 The stride used in the max pooling layers.
Fully connected layers 256 The size of the fully connected layers in the CNN feature extractor.
Activation function ReLU The activation function used after each convolutional layer.

Reduced dimensionality 2× The factor by which the dimensionality of the output from the
convolutional layers is reduced by the max pooling layer.

The extracted features are then processed by the transformer, which models the tem-
poral relationships. As described in Figure 5, our algorithm contains multiple transformer
encoder layers that apply self-attention mechanisms to capture long-range temporal depen-
dencies in the input features. It also includes a self-attention layer that performs attention
between the target and source inputs. The model incorporates layer normalisation and
dropout regularisation for improved generalisation. Additionally, a feed-forward network
with linear layers and activation functions is employed to process the transformed features.
The final linear layer maps the hidden representations to the number of output classes, and
a Softmax layer generates class probabilities. By applying these transformations and com-
putations, the model produces predictions for the input samples based on their temporal
relationships and the extracted features. The model’s parameters were carefully selected
through iterative experimentation, and they were discovered to produce highly efficient
outcomes. Table 3 shows the selected set of parameters in the temporal transformer encoder
part of our method.
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Table 3. The selected set of parameters in the temporal transformer encoder part of the proposed method.

Parameter Value Description

Hidden size 128 The size of the hidden layer.
Number of layers 6 The number of transformer encoder layers.
Number of heads 8 The number of heads in the multi-head attention layers.

Number of classes 6 The number of the output classes in the bearing data of
the first case study.

Activation function ReLU The activation function used after the linear layers.

Table 4 provides an overview of the training options used for training classification
models using our proposed method. It also lists the evaluation metrics used to assess the
performance of the classification models. A description of these metrics and their formulas
is presented in Table 5. Here, TP represents a true positive, which signifies the count of
correctly predicted positive instances. TN represents a true negative, denoting the count of
correctly predicted negative instances. FP stands for a false positive, indicating the count of
incorrectly predicted positive instances. Lastly, FN represents a false negative, representing
the count of incorrectly predicted negative instances [1].

Table 4. The training options and evaluation metrics utilised for assessing the performance of the
classification models.

Training Option Value

Loss function Cross Entropy Loss
Optimizer Adam
Learning rate 0.0001
Number of epochs 300
Evaluation metrics Classification accuracy, precision, recall, F1-score, and specificity

Table 5. A description of the evaluation metrics used for assessing the performance of the classifica-
tion models.

Metric Definition Formula

Accuracy The proportion of instances that were
correctly classified by the model. Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision The proportion of instances that were
classified as positive that were positive. Precision = TP/(TP + FP)

Recall The proportion of positive instances that
were correctly classified by the model. Recall = TP/(TP + FN)

F1 score A weighted average of the precision and
recall metrics. F1 score = 2 ∗ (precision ∗ recall)/(precision + recall)

Specificity The proportion of negative instances that
were correctly classified by the model. Specificity = TN/(TN + FP)

We have conducted thorough experiments on a consistent hardware setup to obtain
reliable measurements. The hardware setup consisted of a 12th Gen Intel(R) Core (TM) i7-
1260P processor running at a frequency of 2.10 GHz, with 16.0 GB of RAM (15.7 GB usable)
and powered by Intel(R) Iris® Xe Graphics. Table 6 shows the overall testing classification
accuracy, precision, recall, F-score, specificity results, and their corresponding standard
deviations for bearing faults using the first case study vibration dataset. It is apparent
from this table that as the training size increased, the model demonstrated significant
improvements in all measured metrics. When trained with 60% of the available data, the
model achieved an accuracy, precision, recall, and F1-score of 99.43%. This indicates that the
model was able to correctly classify instances with a high degree of accuracy. Additionally,
the model demonstrated perfect specificity, accurately identifying negative instances. The
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standard deviation of 0.5 indicates that the model’s performance was consistent. As the
training size increased to 70% and 80%, the model’s performance improved even further.
With the 70% training size, the model achieved an accuracy, precision, recall, and F1-score
of 99.87%. This suggests that the model was able to correctly classify instances with an
even higher degree of accuracy. Furthermore, the model showed perfect specificity and
a significantly reduced standard deviation of 0.1. This highlights the model’s consistent
and reliable performance. Finally, when trained with 80% of the available data, the model
achieved perfect scores across all metrics, which shows the high efficiency of the model.
The average training time for all 300 epochs, using the 80% training dataset for 30 trials,
was 867 s, which equates to an average of 2.89 s per epoch

Table 6. The overall testing classification accuracy, precision, recall, F-score results, and their corre-
sponding standard deviations for bearing faults using the first case study vibration dataset.

Training
Size

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) Std. Dev

60% 99.43 99.41 99.43 99.43 100 0.5
70% 99.87 99.85 99.87 99.87 100 0.1
80% 100 100 100 100 100 0.0

Figure 9 illustrates the sample confusion matrix, depicting the classification results
obtained from testing the model with 20%, 30%, and 40% of the available data. From
the data in Figure 9, the model demonstrates a high rate of correct classifications across
the testing datasets, although there are some misclassifications, particularly involving the
CA and NW classes. In the confusion matrix representing the 20% testing dataset, all
classes (NO, NW, IR, OR, RE, and CA) show 32 instances that were correctly classified.
This indicates the model’s ability to achieve accurate predictions. Moving to the matrix
corresponding to the 30% testing dataset, we observe one misclassification of NW as CA,
along with two misclassifications of CA as NW. Also, in the matrix associated with the
60% testing dataset, four instances of CA are misclassified as NW, while eight instances of
NW are misclassified as CA. Taken together, the confusion matrices reveal that the model
achieves a high level of accuracy on the tested datasets, but encounters difficulties when
classifying CA instances and NW. Moreover, we conducted a feature visualisation for the
six conditions in three feature spaces: the original data, the CNN feature extraction, and the
features derived from our proposed method, as depicted in Figure 10. Our observations
revealed a substantial reduction in the overlap between different conditions within the
feature space of our proposed method compared to the feature spaces of the original data
and the CNN-based extracted features.

3.1.2. Comparisons of Results

In this subsection, we present a comparative analysis of different approaches using
the same vibration dataset of the rolling bearings, which was also utilised in the first
case study as presented in Table 7. In [11], a method involving a genetic programming
(GP) algorithm for feature extraction, followed by the implementation of ANN and SVM
is used for classifying the health conditions of the bearings. In [47], a framework that
combined compressive sensing (CS) with various feature ranking techniques, including
Fisher score, Laplacian score, Relief-F, Pearson correlation coefficients, and chi-square
(Chi-2) is proposed. The authors applied this framework to classify bearing faults using
compressively sampled vibration data with a sampling rate of 0.1 and a feature dimension
of 120. Finally, a multiple linear regression (MLR) classifier with the extracted features is
employed for fault classification. In [48], a hybrid model combining the fuzzy min-max
(FMM) neural network and random forest (RF) with features such as sample entropy
(SampEn) and power spectrum (PS) was employed to classify bearing health conditions.
Finally, three methods were employed for diagnosing bearing faults using support vector
machines (SVM). The first method utilised the complete set of collected vibration data.
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The second method employed compressively sampled datasets with α values of 0.25
and 0.5, while the third method used the reconstructed signals corresponding to these
compressively sampled data [49]. It can be seen from the data in Table 7 that our proposed
method achieves the highest average accuracy of 100% with the 20% testing data, and a
high average accuracy of 99.43% with the 40% testing data. This is significantly higher
than the accuracies of the other methods, which range from 84.6% to 99.8%. These results
suggest that our proposed method is a promising approach for bearing fault classification
with this dataset.
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Table 7. Comparison of classification results from the literature on vibration bearing dataset in the
first case study.

Ref. Method Testing Accuracy (%)

[11]

Genetic programming—based features
(unnormalised data)
ANN 96.5
SVM 97.1

[47]

CS-FS 99.7
CS-LS 99.5
CS-Relief 99.8
CS-PCC 99.8
CS-Chi-2 99.5

[48]

(FMM-RF)
SampEn 99.7
PS 99.7
SampEn + PS 99.8

[49]

SVM Classifier with:
Entropic features 98.9
Compressive sampling followed by signal
recovery:
α = 0.5 92.4
α = 0.25 84.6

Our proposed method
Highest average accuracy (with 20% testing data) 100
Lowest average accuracy (with 40% testing data) 99.43

3.2. Second Case Study

The vibration data for the second case study is obtained from the Bearing Data Center
at Case Western Reserve University (CWRU) [50]. Figure 11 illustrates the experimental
setup employed to capture this vibration data. The setup consists of a 2-horsepower
electric motor connected to a shaft, which incorporates a torque transducer and encoder.
To apply torque to the shaft, a dynamometer and electronic control system are employed.
To introduce faults, electro-discharger machining was utilised on the drive end bearing,
specifically SKF deep-groove ball bearings 6205-2RS JEM. The seeded faults varied in
width from 0.18 to 0.71 mm (0.007 to 0.028 in). The faults introduced into the system
consisted of rolling elements, inner race, and outer race faults. Each bearing with a fault
was subjected to motor loads ranging from 0 to 3 horsepower while maintaining a constant
speed between 1720 and 1797 revolutions per minute. The data sampling process involved
using a sampling rate of 12 kHz for some of the acquired data, while the remaining data
was sampled at 48 kHz.

To capture the bearing vibration signals, measurements were taken under four different
conditions: normal operating condition (NO), inner race fault condition (IR), outer race
fault condition (OR), and rolling element fault condition (RE). These measurements were
taken at various speeds. For each speed, 100 sets of time-series data were collected for each
condition and load. In the case of the inner race (IR), outer race (OR), and rolling element
(RE) fault conditions, the vibration signals were recorded separately for four different
fault widths: 0.18 mm, 0.36 mm, 0.53 mm, and 0.71 mm. In this research, we employed
a dataset derived from recorded vibration signal data files that were sampled at a rate
of 48 kHz. These signals showed fault widths measuring 0.18, 0.36, and 0.53, and were
subjected to a constant load of 3 horsepower. The selected dataset comprised a total of
2000 examples, and each signal contained 2400 data points. The description of the utilised
bearing vibration dataset is given in Table 8. To classify the health conditions of the bearings
in the selected dataset, our proposed method was applied following the same steps as in
the first case study. The experiments comprised three distinct training sizes: 60%, 70%,
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and 80%. For each training size, a total of 30 trials were conducted. The training sets were
selected randomly from the available data, while the remaining portions were reserved for
testing purposes.
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Table 8. Description of bearing health conditions in the vibration dataset used for the second case study.

Health Condition Fault Width (mm) Classification Label

NO 0 1
RE1 0.18 2
RE2 0.36 3
RE3 0.53 4
IR1 0.18 5
IR2 0.36 6
IR3 0.53 7
OR1 0.18 8
OR2 0.36 9
OR3 0.53 10

3.2.1. Experimental Results

To implement our proposed technique on the bearing dataset for the second case study,
first, we applied the procedure of the CNN-based features to extract features from the
collected vibration signals. The CNN feature extractor, as mentioned earlier, was employed
for this purpose. Then, the extracted features are fed into the transformer for temporal
relationship modelling. As previously mentioned, our algorithm incorporates several
transformer encoder layers, employing self-attention mechanisms to capture long-range
temporal dependencies within the extracted features. Additionally, there is a self-attention
layer dedicated to linking the target and source inputs. The model uses layer normalisation
and dropout regularisation to improve its ability to generalise to new data. It also uses a
feed-forward network with linear layers and activation functions to process the features.
The last linear layer maps the hidden representations to the number of output classes,
and a Softmax layer generates probabilities for each class. The model makes predictions
for input samples by considering their temporal relationships and the extracted features.
Table 9 presents the overall testing classification accuracy, precision, recall, F-score, and
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their corresponding standard deviations for bearing faults using the second case study
vibration dataset.

Table 9. The overall testing classification accuracy, precision, recall, F-score results, and their corre-
sponding standard deviations for bearing faults using the second case study vibration dataset.

Training Size Accuracy Precision Recall F1-Score Specificity Std. Dev

60% 99.18 99.14 99.18 98.98 100 0.6
70% 99.96 99.97 99.96 99.96 99.59 0.02
80% 100 100 100 100 100 0.0

As can be seen from the data in Table 9, the classification model for bearing faults
achieved a high performance with different training sizes. With the training size of 60%,
the model achieved an overall accuracy of 99.18%, with high precision, recall, and F1-Score
values of 99.14%, 99.18%, and 98.98%, respectively. As the training size increased to 70%,
the model’s performance improved significantly, reaching near-perfect accuracy, precision,
recall, and F1-Score scores of 99.96%. Finally, with the 80% training size, the model achieved
perfect scores across all performance metrics, demonstrating high classification accuracy,
precision, recall, and F1-Score values of 100%. These findings demonstrate the effectiveness
and robustness of the classification model in accurately identifying bearing faults, with
performance improving as the training size increases.

In Figure 12, we present a sample confusion matrix that showcases the classification
outcomes derived from testing the model using 20%, 30%, and 40% of the accessible data.
The confusion matrices in Figure 12 show that the model achieved a high rate of correct
classifications across the testing datasets. However, there were some misclassifications,
particularly involving the NO, OR1, and RE2 classes. The model misclassified four NO
instances as OR1, eight OR1 instances as NO, and two RE2 instances as NO. Taken together,
the confusion matrices reveal that the model achieves a high level of accuracy with the
tested datasets, but encounters difficulties when classifying NO, OR1 and RE2.
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3.2.2. Comparisons of Results

In this subsection, we perform a comparative analysis of different approaches using
the same vibration dataset for the rolling bearings, which is specifically detailed in Table 10.
Firstly, in reference [5], a CS-DNN technique is employed, which combines a deep neural
network (DNN) method with two hidden layers and a Haar wavelet-based CS technique to
classify rolling bearings from the same dataset, employing α = 0.1. Furthermore, ref. [51]
presents classification results for bearing fault classifications using two distinct methods
on the same dataset. The first method is based on a deep neural network (DNN), while
the second method utilises a backpropagation neural network (BPNN). Additionally, in
reference [52], classification results utilising a generic multi-layer perception (MLP) method
are reported, using the same dataset in the second case study. From the results presented
in the table, it is evident that our proposed method shows exceptional performance com-
pared to the other methods. The approach referenced in [5], which utilises CS-DNN with
α = 0.1, achieves a remarkable testing accuracy of 100%. In contrast, the methods [51]
and [52] using DNN and BPNN, and MLP, respectively, demonstrate lower testing accu-
racies of 99.74% and 69.82% for [51], and 99.4% for [52]. However, our proposed method
surpasses all others, achieving the highest average accuracy of 100% when tested with
the 20% testing data subset. Moreover, even when tested with the larger 40% testing data
subset, our proposed method still achieves a high accuracy of 99.43%. These findings
highlight the superior performance of our proposed method, outperforming or matching
the accuracy of other approaches on the given vibration dataset.

Table 10. Comparison of classification results from the literature on vibration bearing dataset in the
second case study.

Ref. Method Testing Accuracy (%)

[5] CS−DNN with α = 0.1 100

[51]
DNN 99.74
BPNN 69.82

[52] MLP 99.4

Our proposed method
Highest average accuracy (with 20% testing data) 100
Lowest average accuracy (with 40% testing data) 99.43

4. Conclusions

This study proposes a novel deep-learning architecture called the convolutional-
transformer model with long-range temporal dependencies for bearing fault diagnosis
using vibration signals. The model combines the strengths of convolutional neural networks
(CNNs) and the transformer model to diagnose effectively faults in rotating machinery.
The proposed method follows a sequential approach where CNNs are used for feature
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extraction from the vibration signals, and the transformer model is utilised to model the
temporal relationships. By incorporating both local and long-range temporal dependencies,
the proposed method achieves accurate fault diagnoses. The experimental results from
two case studies demonstrate the effectiveness of the proposed model. In the first case
study, using a bearing vibration dataset with six health conditions, the model achieves
high classification accuracy, precision, recall, F1-score, and specificity, with low standard
deviations. Similarly, in the second case study using a motor-bearing vibration dataset
with ten health conditions, the model achieves excellent performance across all evaluation
metrics. Taken together, the convolutional-transformer model proves to be an efficient
and promising approach for bearing fault diagnosis, using the advantages of CNNs for
local feature extraction and the transformer model for capturing long-range temporal
dependencies. Further research in this area can explore its application in other domains
and expand its potential for intelligent fault diagnosis.
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