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Abstract—Convolutional neural networks (CNNs)
have achieved significant success in medical image
segmentation. However, they also suffer from the
requirement of a large number of parameters, leading
to a difficulty of deploying CNNs to low-source hardwares,
e.g., embedded systems and mobile devices. Although
some compacted or small memory-hungry models have
been reported, most of them may cause degradation in
segmentation accuracy. To address this issue, we propose
a shape-guided ultralight network (SGU-Net) with extremely
low computational costs. The proposed SGU-Net includes
two main contributions: it first presents an ultralight
convolution that is able to implement double separable
convolutions simultaneously, i.e., asymmetric convolution
and depthwise separable convolution. The proposed
ultralight convolution not only effectively reduces the
number of parameters but also enhances the robustness
of SGU-Net. Secondly, our SGU-Net employs an additional
adversarial shape-constraint to let the network learn shape
representation of targets, which can significantly improve
the segmentation accuracy for abdomen medical images
using self-supervision. The SGU-Net is extensively tested
on four public benchmark datasets, LiTS, CHAOS, NIH-TCIA
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and 3Dircbdb. Experimental results show that SGU-Net
achieves higher segmentation accuracy using lower
memory costs, and outperforms state-of-the-art networks.
Moreover, we apply our ultralight convolution into a 3D
volume segmentation network, which obtains a comparable
performance with fewer parameters and memory usage.

Index Terms—Medical image segmentation, deep lear-
ning, ultralight convolution, adversarial shape-constraint.

I. INTRODUCTION

M EDICAL image segmentation aims to make anatomical
or pathological structures changes clearer in images and

it often plays a key role in computer-aided diagnosis and smart
medicine due to the great improvement in diagnostic efficiency
and accuracy. To help clinicians make accurate diagnosis, it
is necessary to segment some crucial organs and targets in
abdomen medical images and extract features from segmented
targets [1]. In particular, it is more difficult to extract discrimi-
nating features from medical images than normal RGB images
since the former usually suffers from problems of blur, noise,
low contrast, etc. In recent years, deep learning, especially the
U-shaped encoder-decoder network [2], has been widely used in
medical image segmentation due to its excellent performance.
As the encoder of U-shaped network [2] used for feature learning
are insensitive to image noise, blur, low contrast, etc., many
improved U-shaped networks such as U-Net++ [3], mU-Net [4],
Attention U-Net [5], TransUNet [6], Swin-Unet [7], etc. can
provide excellent segmentation results for medical images. Al-
though these networks gain high segmentation accuracy, they
are complex due to a large number of parameters and high
memory usage thus leading to the difficulty of deployment on
mobile devices. How to balance the complexity of networks and
segmentation accuracy is a challenge.

Fig. 1 shows the Dice value and the number of parameters
of different networks on the CHAOS-CT [8] dataset. We can
see that some medical image segmentation models have a huge
number of parameters, e. g. R2U-Net [9] of 39.09 M, Attention
U-Net [5] of 34.88 M and V-Net [10] of 65.17 M. It is clear
that most of these high-accuracy networks are unsuitable to
be deployed on mobile devices. Although some lightweight
networks [3] have been reported, they may suffer from serious
performance degradation when under the low computing re-
sources. To address the above issues, we present a shape-guided

The available code of SGU-Net is released at https://github.com/SUST-
reynole/SGUNet
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Fig. 1. The Dice value and the number of parameters of different
frameworks on CHAOS-CT datasets. Blue points: 3D CNNs. Red points:
2D CNNs. Compared with methods of small memory footprint, the pro-
posed SGU-Net locates in the left-top indicating fewer parameters. while
achieving higher performance.

ultralight network (SGU-Net) with extremely low computational
costs for medical image segmentation.

To improve computational efficiency and reduce the number
of parameters, we propose an ultralight convolution (UC) that is
a plug-and-play operation and can be used in arbitrary networks.
Compared with the popular asymmetric convolution [11] and
depthwise separable convolution [12], ultralight convolution
has obvious advantages in reducing the number of parameters
and improving feature representation ability. Specifically, for
the input feature maps, the ultralight convolution first performs
depthwise asymmetric convolution that consist of the cascade of
1× k and k × 1 convolution. Then, the pointwise convolution
is utilized to obtain the output feature maps.

To improve segmentation accurancy, we present a shape
adversarial autoencoder (SAAE) that is an additional self-
supervision strategy to raise the performance of our segmenta-
tion network by alternating training SAAE and the segmentation
network. The proposed SAAE has a completely different and
novel working mode from popular autoencoder-based shape
constraint methods [13], [14]. Specifically, we try to use an
autoencoder to explore the ability of CNNs on shape represen-
tation of predicted targets in low-dimensional manifold. It is
worth mentioning that the proposed SAAE and segmentation
network are trained cooperatively, which not only forces the
proposed segmentation network to output targets with more real
shape information but also is a costless supervision operation
for the segmentation network.

The experimental results show that SGU-Net not only ob-
tains higher segmentation performance but also provides better
target shape prediction. Besides, the SGU-Net requires fewer
parameters and lower computational costs with 4.99 M and
4.98 GFLOPs, respectively.

II. RELATED WORK

Medical Segmentation Networks: Currently, most of medical
image segmentation networks are based on U-shape architecture.
These networks can be roughly grouped two categories that are
often used for 2D images and 3D volumetric data, respectively.

For 2D medical image segmentation, residual and dense
connections are popular for improving network performance,
such as ResUNet [15], mU-Net [4], and DenseUNet [16]. The
improved networks replace each submodule of U-Net in the
form of residual and dense connections, respectively. This im-
provement can accelerate the model convergence and improve
the feature reuse such as U-Net++ [3] and R2UNet [9]. It has
been demonstrated that the attention mechanism is very useful
for improving the feature representation ability of networks.
Inspired by this, Attention U-Net [5] with spatial attention, Re-
sUNet++ [17] with channel attention, and Non-local U-Net [18]
with self-attention mechanism are proposed and used for dif-
ferent segmentation tasks to overcome the drawback of feature
utilization in U-Net. Compared to attention mechanism, multi-
scale feature fusion, for example, the atrous spatial pyramid
pooling module (ASPP) [19], is also a useful way for improv-
ing network performance. By integrating ASPP into U-shape
networks, both CE-Net [20] and DefED-Net [21] achieve better
target segmentation in medical images.

For medical volumetric data, 2D CNNs are often limited
since they ignore the temporal information of volumetric data.
To overcome this drawback, 3D CNN-based models such as
3DU-Net [22] and V-net [10] have been proposed. Although
these 3D networks can simultaneously explore the temporal
information of inter-slice and spatial information of inner-slice,
they suffer from some new problems such as more parameters,
much memory usage, and much narrow reception fields than 2D
networks [23].

As human organs usually have a fixed shape and position,
the incorporation of the prior-knowledge about target shape and
position is crucial for improving medical image segmentation
effect. Mosinska et al. [24] used a pre-trained model to constrain
the shape of segmentation targets. Li et al. [25] proposed a shape
perception strategy based on generative adversarial networks
(GANs). Lei et al. [26] proposed a network based on adversarial
consistency learning and dynamic convolution. Al Arif et al. [27]
used symbolic distance functions (SDFs) generated by modi-
fied U-Net instead of partition maps to obtain better topology
prediction results. Furthermore, some researchers [28], [29]
used autoencoder to constrain the shape of segmented targets.
However, the interpretability of priori information utilization is
insufficient in above methods.

Lightweight Segmentation Networks: Small medical image
segmentation models require a good trade-off between segmen-
tation accuracy and model szies for clinical mobile devices. The
methods used for lightweight network design can be roughly
categorized into two groups, model compression and model
compacting. For a given model, the purpose of model compres-
sion is to reduce the computational costs as well as the number
of parameters. Common model compression methods can be di-
vided into three categories. The first is model pruning [30], [31],
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Fig. 2. The overall architecture of SGU-Net. The SGU-Net consists of two parts: the segmentation network on the left and the shape adversarial
autoencoder (SAAE) on the right. SAAE encodes both segmentation results and labels into low-dimensional manifold, aiming to constrain their
shape representation in low-dimensional manifold. The performance of the segmentation network is improved by adversarial training between
SAAE and the segmentation network. It is worth mentioning that SAAE is an additional network that is only used in the training stage, once the
training is over, the SAAE will be removed from the testing stage.

[32], and it aims to cut off unnecessary connections between
different neurons for further speedup in practice. In medical
image segmentation tasks, for example, U-Net++ [3] uses model
pruning to reduce the number of parameters. Secondly, model
quantization [33], [34] focuses on the reduction of the number of
bits required on each weight to compress the original network,
for example, binarization methods with only 1-bit value can
greatly accelerate the model inference by efficient binary ma-
nipulation. In addition, knowledge distillation [35], [36], [37],
[38] uses larger models to teach smaller models, which improves
the performance of smaller models. The performance of these
methods usually depends on the given pre-trained models. As
for the model compaction, a lot of work has been reported
in recent years. MobileNets [12], [39] proposes the depthwise
separable convolution that decomposes a vanilla convolution
into a depthwise convolution and a pointwise convolution. Lei
et al. [40] and Zhang et al. [41] extended the depthwise sep-
arable convolution to 3D networks and applied it to medical
image segmentation, effectively reducing the number of model
parameters and computational costs. In addition, GhostNet [42]
proposes a Ghost module to generate more feature maps from
cheap operations. Lo et al. [11] and Szegedy et al. [43] used
the strategy of decomposing the standard 3× 3 convolution into
3× 1 and1× 3 convolutions to reduce the number of parameters
and computational costs at the expense of slight performance
degradation. ShuffleNet [44] divides the convolutions into mul-
tiple groups in a similar way to [12], which leads to a significant
reduction in FLOPs with a rather small decrease on accuracy.
By combining asymmetric convolution and dilation convolution,
researchers [45], [46] further designed a depthwise asymmetric
dilation convolution to reduce the number of parameters of
models.

Compared to previous work such as asymmetric convolu-
tion [12] and depthwise separable convolution [47], our ul-
tralight convolution not only achieves a higher model compres-
sion ratio but also provides better feature representation ability.
Compared with the current autoencoder-based shape constraint
methods [13], [14], our SAAE is considered as an additional

self-supervision to explore a more accurate representation of
shapes in low-dimensional manifold. SAAE can provide cost-
free accuracy gains since the segmentation network employed
by our SGU-Net can work independently from SAAE during
the testing stage.

III. METHOD

The overall architecture of SGU-Net is shown in Fig. 2 and
that consists of two parts: the segmentation network and the
shape adversarial autoencoder (SAAE). Compared to U-Net,
on the one hand, the segmentation network uses the ultralight
convolutional groups instead of the vanilla convolutional groups
in the encoding stage. On the other hand, since the deconvolution
may cause grid effect [48], which is unfavorable to pixel-level
segmentation, the deconvolution in the vanilla U-Net is replaced
by a combination of upsampling and ultralight convolutional
groups. The shape-guide module adds additional shape con-
straints to the segmentation network, which encourages the
predictions of segmentation network to be consistent with the
shape of the organ by encoding shape information into low-
dimensional manifold.

A. Ultralight Convolution

Overview: The proposed ultralight convolution tries to in-
tegrate the advantages of both asymmetric convolution and
depthwise separable convolution. We factorize vanilla convo-
lution into depthwise asymmetric convolution and pointwise
convolution. For SGU-Net, depthwise asymmetric convolution
applies asymmetric convolution to each input channel, and then
pointwise convolution is used for channel information merging.
The vanilla convolution simultaneously performs filtering on the
channel and spatial dimension and merges inputs to form a new
output, while the proposed ultralight convolution divides itself
into three layers, namely the horizontal and vertical convolution
layers for filtering and a separate layer for merging. This decom-
position has a significant effect in reducing computational costs
and model size.
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Fig. 3. The comparison between ultralight convolution and popular convolution strategies.

Fig. 3 shows the comparison between ultralight convolution
and popular convolution strategies including vanilla convolu-
tion, asymmetric convolution and depthwise separable convo-
lution. According to Fig. 3, we can see that both asymmetric
convolution and depthwise separable convolution can reduce
the number of parameters and computational costs compared to
vanilla convolution. However, depthwise separable convolution
is superior to asymmetric convolution since it achieves the
decouple operation between spatial convolution and channel
convolution operation leading to more lightweight networks.
Compared to asymmetric convolution and depthwise separable
convolution, our proposed ultralight convolution has the follow-
ing advantages:

a) Compared with asymmetric convolution as shown in
Fig. 3(a), our ultralight convolution includes two stages
namely depthwise asymmetric convolution and pointwise
convolution, it can effectively decouple the spatial and
channel dimensions of convolution operation, leading to
more efficient model compression.

b) Compared with depthwise separable convolution as
shown in Fig. 3(b), our ultralight convolution imple-
ments depthwise asymmetric convolution while the for-
mer implements standard depthwise convolution, which
achieves the spatial decomposition of convolution kernels
and is especially helpful for improving feature extraction
of irregular organs in abdominal image segmentation.

Complexity Analysis: The vanilla convolution takes the fea-
ture map X of size Hx ×Wx ×M as input and outputs the
feature map Y of size Hy ×Wy ×N , where Hx and Wx are
the spatial height and width of X , M is the number of channels
of X , Hy and Wy are the spatial height and width of Y , and N is
the number of channels ofY . A vanilla convolution layer usually
employs a convolutional kernels of size Dk ×Dk × M × N ,
where Dk is the size of the convolution kernel, M is the number
of input channels, and N is the number of output channels.
Consequently, the computational cost of the vanilla convolution
is Dk ×Dk × M × N ×Hy ×Wy .

In fact, the vanilla convolution directly output feature maps
by implementing a complex convolution operation. However, the
proposed ultralight convolution factorizes a vanilla convolution
into two processes. First, the input feature maps are filtered

channel-by-channel using asymmetric convolution. Secondly,
a pointwise convolution (1× 1 convolution) is used to create
a linear combination output. It is worth mentioning that both
normalization and activation are also implemented in these two
steps.

It is clear that the computational cost of the k × k depthwise
convolution is Dk ×Dk × M ×Hy ×Wy . In our ultralight
convolution, we factorize the k × k depthwise convolution ker-
nel into a k × 1 kernel and a 1× k kernel. As a result, the com-
putational cost of the k × k depthwise asymmetric convolution
denoted by Cda is

Cda=Dk × 1×M×Hy ×Wy + 1×Dk ×M ×Hy ×Wy,
(1)

we can see that the further factorization of depthwise convolution
can reduce the computational complexity.

As the computational cost of a pointwise convolution (1× 1
convolution) is M ×N ×Hy ×Wy , the computational cost of
the ultralight convolution denoted by Cuc is

Cuc = 2×Dk × M ×Hy ×Wy +M ×N ×Hy ×Wy,
(2)

Although the basic ultralight convolution requires a small
number of parameters and low computational costs, it may
suffers from difficulties in some specific scenarios due to the
requirement of smaller and faster models to mobile devices.
To assure the flexibility of the proposed ultralight convolution,
we introduce a hyperparameter called thinning exponent δ. The
thinning exponent δ is important to compress further the model
from the channel dimension and thus controls the overall size
and computational efficiency of the model. When there are
specific scenarios requiring smaller models and faster inference
speed, we can make the models better by adjusting the thinning
exponent δ. Therefore, δ is an important hyperparameter to
balance model size and segmentation accuracy. In this case, the
number of input channels M changes to δM and the number of
output channels N changes to δN . The computational cost of
an ultralight convolution with a thinning exponent δ denoted by
Ĉuc is

Ĉuc = 2×Dk × δM ×Hy ×Wy + δM × δN ×Hy ×Wy,
(3)



LEI et al.: SGU-NET: SHAPE-GUIDED ULTRALIGHT NETWORK FOR ABDOMINAL IMAGE SEGMENTATION 1435

where δ ∈ (0, 1], δ = 1 is the original ultralight network and
δ < 1 is the skinny ultralight network. The thinning exponent is
a hyperparameter that can be adjusted for any model according
to the desired number of parameters and segmentation accuracy.

Asymmetric convolutional validity analysis: In fact, the
asymmetric convolution is often used for existing square kernel
convolution layers for compression and acceleration. However,
it may cause the performance degradation by factorizing the
k × k convolution directly into k × 1 and 1× k convolutions.
One main reason is the weak extraction capability of asymmetric
convolution for channel features in the case of multiple channels,
as the factorization destroys the feature space extracted by
the square convolution kernel leading to the loss of channel
information. Unlike previous work [11], [47], our proposed
ultralight convolution applies asymmetric convolution for the
channel-by-channel of X , thus avoiding this drawback. Also,
performing asymmetric convolution operation on each channel
can better enhance the robustness of the model to prevent ro-
tational distortions. Especially in medical images, as the shape
of organ is usually irregular, the asymmetric convolution can
better accommodate irregular shapes and extract more effective
features for abdominal organ segmentation than a vanilla con-
volution.

B. Shape-Guided Strategy

Overview: For medical image segmentation, the predicted
target contours are very important since these results are often
used for 3D organ reconstruction. However, it is difficult to
segment targets accurately due to the limitation of imaging
quality. Therefore, the strategy of adding higher-level shape
constraints to a segmentation network is a solution that can make
prediction results more consistent with prior anatomical knowl-
edge. Nevertheless, a ground truth usually involves structural
and high-dimensional information, and measuring the shape
similarity in a high-dimensional space is extremely difficult.
To solve the above problems, we present SAAE helping the
segmentation framework to explore the shape representation and
constraints, and to guide prediction results of the segmentation
network to be close to the ground truth. Specifically, SAAE is
a trainable neural network to capture the salient features of the
input shape and encodes them into low-dimensional manifold.
If SAAE can reconstruct the input shape well, the encoding
in low-dimensional manifold can be well approximated as a
representation of the shape features.

Training process: The overall training stage can be seen in
Fig. 2. The motivation of SAAE consists of two parts. The first
is to insert an additional shape guidance strategy into the seg-
mentation model to improve the segmentation accuracy without
increasing network parameters. The second is to make full use
of the rich prior knowledge of abdominal images to improve
the interpretability of model learning. Our SAAE explores the
representation of shape in a microscopic way, and minimizes
the difference between prediction results and labels through
the gradient backpropagation algorithm. This is because the
shape representation of abdominal organ is high-dimensional

information, it is difficult to directly measure the shape differ-
ence between the prediction results and the labels. To solve this
problem, our SAAE uses an autoencoder to explore the shape
representation abdominal organ in low-dimensional manifold.
At the same time, since the organ labels only contain shape
and position information, our SAAE can further encode the
shape and position information of organs after reconstructing
a large number of labels and prediction results. Moreover, the
constantly trained SAAE can capture the subtle difference be-
tween the segmentation result and the real organ shapes, which
can be used to monitor the segmentation network to output better
results.

SAAE is trained by reconstructing the prediction results and
labels from the segmentation network. It contains two loss
functions. The first loss function Lrl learns shape representation
by minimizing the difference between the reconstructed shape
and the input shape, and the second loss function Lsal tries to
distinguish the difference between the predicted shape and the
real shapes by maximizing the representation of the shape in
low-dimensional manifold. The two loss functions help SAAE
better to encode the predicted shape and the real shape of
organ, capture the subtle difference between them, and force
the segmentation network to segment the results close enough
to the real organ shape. The loss function of the segmentation
network is expressed asLseg . Therefore, the optimization objec-
tive of the overall segmentation networkG and shape adversarial
autoencoder D is

T = Min
G

Max
D

(Lseg + Lrl + θLsal). (4)

In fact, G and D are done by alternating training, and they are
like playing a game against each other. First, G is optimized by
fixing D and minimizing subsequent losses

T 1 = Min
G

(Lseg + θ1Lsal), (5)

G is encouraged to segment the image closer to the real label by
optimizing G. Then D is optimized by fixing G

T 2 = Max
D

(−Lrl + θ2Lsal). (6)

For our model training, G and D are implemented alternate
training. The segmentation network and SAAE is like playing
a minimum-maximum game. In low-dimensional manifold, the
segmentation network tries to get a result consistent with the
real shape to minimize the distance between output results and
labels, while SAAE tries to learn better encoding and feature
extraction methods to maximize the distance between output
results and labels. In other words, our SAAE needs to maximize
its ability to find the difference between labels and segmentation
results, while the segmentation network tries to cheat SAAE by
minimizing the difference. During the whole training process,
the organ contours predicted by the segmentation network G
will continuously approach the real organ contours. When our
SAAE cannot distinguish the difference between these contours,
D no longer provides effective supervision. At this time, the
segmentation network G can output better segmentation results
independently. Our SAAE thus has two advantages. First, it
can represent shapes in different ways and uses the gradient
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backpropagation algorithm to optimize the shape-guided seg-
mentation network. Second, our SAAE can distinguish the subtle
difference among different shapes, so that the shape predicted
by the segmentation network can be closer to the real organ
shape.

SAAE validity analysis: Previous work [24], [49] on shape
constraints typically use a pre-trained model to guide shape con-
straints or a classification discriminator to distinguish between
true and false labels. However, the parameters of the pre-trained
model are fixed and the model cannot serve to discriminate when
the predicted contours are close to the real shapes. Besides,
the classification discriminator cannot potentially encode the
contours and does not guide the segmentation network well
enough to constrain it by true or false signals. The SAAE is
able to represent contour information in a microscopic way and
can regularize the estimated target contours by minimizing the
difference between the predicted result and the ground truth.
In addition, the trained SAAE is able to distinguish subtle
difference between contours, and it still gives correct penalties
even if the result predicted by the segmentation network is closer
to the ground truth shape.

C. Loss Function

In our task, there are three loss functions that are segmen-
tation loss Lseg , reconstruction loss Lrl and shape adversarial
loss Lsal. First, the standard cross entropy loss Lcross and the
boundary loss Lbd [50] are used in Lseg . However, since the
boundary loss is unstable and easily leads to training difficulties,
the final loss function of segmentation network is defined as

Lseg = Lcross + αLbd. (7)

We define the reconstruction loss of SAAE as

Lrl = (Lcross + αLbd)
D(y)
y + (Lcross + αLbd)

D(G(x))
G(x) , (8)

where x is the input image, y is its corresponding ground truth,
G is the segmentation network, G(x) is the segmentation result
corresponding to x, D(y) and D(G(x)) are the reconstruction
results of SAAE corresponding to the ground truth y and the
predicted result G(x).

For shape adversarial loss, since it is a shape representation
in low-dimensional manifold, we define Lsal as

Lsal =

n∑

i=1

(E(y)− E(G(x)))2, (9)

where E(·) is the encoding of the predicted shape of the seg-
mentation network with the shape of ground truth.

IV. EXPERIMENTS

A. Datasets and Pre-Processing

In our experiments, the Combined (CT-MR) healthy abdom-
inal organ segmentation (CHAOS) [8] and the Liver Tumor
Segmentation Challenge (LiTS) [51] are considered as exper-
imental datasets. The CHAOS from the CHAOS challenge is
collected by the Department of Radiology, Dokuz Eylul Univer-
sity Hospital, Izmir, Turkey. It contains a total of 80 cases, in
which 40 cases are abdominal CT scans containing ground truth

of liver segmentation, and the other 40 cases are T1-DUAL in
phase (T1-DUALin). Three radiologists (10, 12 and 28 years of
experience) are involved in the manual segmentation. The final
masks are obtained by using majority vote, which ensures the
accuracy of the ground truth. We divided the CT and MR images
into training set, validation set and testing set in a ratio of 6:2:2,
respectively. The MR images are 256× 256 or 288× 288 in
size with axial slice numbers ranging from 26 to 50 and layer
thicknesses between 4.4 and 8.0 mm, and the CT images are
512× 512 in size with axial slice number ranging from 78 to
294 and layer thickness between 2.0 mm and 3.2 mm. Training
data are subjected to random scaling, rotation, cropping and
shifting operations. In our experiments, the given models are
dedicated to a single modality (T2-SPIR, CT) and a single
organ (liver, right kidney, left kidney, spleen). Thus, each model
performs binary rather than multiclass segmentation to extract
robust organ-specific features.

The LiTS includes 131 labeled 3D CT scans, where the
resolution in-plane ranges from 0.55 mm to 1.0 mm and slice
spacing ranges from 0.45 mm to 6.0 mm. We constructed the
training set and validation set using 90 patients (total 43,219
images) and 10 patients (total 1,500 images), respectively. Then
the other 30 patients (total 15,419 images) are considered as the
testing set. It is worth mentioning that the LiTS dataset does not
use data augmentation techniques.

Medical CT images are different from natural images, the
former is able to obtain wider range of values from -1000 to
3000 than the latter from 0 to 255. To remove interferences and
enhance liver areas, we truncated the image intensity values of
all scans of [−200, 250] HU.

B. Experimental Setup and Evaluation Metrics

All models are trained by the framework of Pytorch 1.3.0 and
implemented on a desktop PC with double NVIDIA GeForce
RTX 2080 Ti with 11 GB RAM. The initial learning rate (lr) is
set to 0.001, and then decays according to the poly schedule lr =
lr × (1− iterations/totaliterations)0.9. We used the Adam
gradient descent with momentum to optimize all models.

The hyperparameters in SGU-Net are set as follows: the
thinning exponent δ is set to 0.25 since we aim to obtain an
ultralight network as soon as possible, where 0 < δ ≤ 1. If the
value of δ is too large, then the model size will be also large. We
presented more details on the set of the value of δ in the section
of our discussion. θ1 in (5) is set to 5, θ2 in (6) is set to 0.01 and
α in (7) is set to 0.5.

We denoted the segmentation result by S and the ground truth
by G. Dice value is estimated by 2(S ∩G)/(|S|+ |G|), where
the Dice value of in the interval [0,1]. A perfect segmentation
yields the Dice value is 1. In addition, average/maximum sym-
metric surface distances (ASSD/MSSD) [51] corresponds to the
average/maximum Hausdorff distance between border voxels in
S and G. Dice generates an overlap measure while ASSD and
MSSD are surface distance measures. The former focuses more
on the interior of segmentation targets, while the latter focuses
more on the shape similarity of segmentation targets. It is worth
noticing that we calculated the above metrics in the binary slice
segmentation results.
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TABLE I
COMPARISON OF ABLATION EXPERIMENTS OF UC AND SAAE ON THE

CHAOS-CT TESTING SET

C. Ablation Studies

In this paper, two contributions are highlighted, one is the
replacement of vanilla convolution by ultralight convolution,
and the other is the design of a shape adversarial autoencoder
to impose additional shape constraints on the segmentation
network. To demonstrate the effectiveness of our contributions,
we performed ablation experiments on the CHAOS liver dataset
and the NIH-TCIA pancreas dataset.

The results in Table I demonstrate the validity of our contri-
butions. For simplicity, AC represents asymmetric convolution
[43], and DC denotes depthwise separable convolution [12].
From the experimental results, compared with the vanilla U-Net,
U-Net+AC and U-Net+DC, the U-Net+UC can significantly
reduce the number of parameters while improving the Dice
value. The vanilla U-Net achieves mean Dice value of 94.04%,
ASSD value of 1.70 mm, and MSSD value of 29.52 mm. After
replacing the vanilla convolution with ultralight convolution,
the parameters of U-Net decrease by 29.54 M, the Dice value
increases by 0.08%, the value of ASSD and MSSD decrease
by 0.03 mm and 1.46 mm, respectively. This shows that our
ultralight convolution not only effectively reduces the number
of parameters, but also improves the segmentation accuracy due
to the fact that the asymmetric convolution can better adapt to
irregular organ shapes in abdominal images.

To show the validity of SAAE, we compared U-Net with U-
Net+SAAE, and compared U-Net+UC with U-Net+UC+SAAE.
We can see that the Dice value increases by 0.52% and 0.56%,
ASSD value decreases by 0.13 mm and 0.24 mm, and MSSD
value decreases by 2.5 mm and 2.34 mm, respectively. By using
SAAE with U-Net, it not only provides better shape guidance,
but also significantly reduces the ASSD and MSSD values.

Meanwhile, we also compared the results of SAAE with the
standard generative adversal network (GAN) and autoencoder
(AE) actions in our ablation experiments of Table I, respec-
tively. Compared to the GAN constraint, the results provided by
SAAE are 0.04 mm and 1.1 mm lower in ASSD and MSSD,
respectively. This shows that using only the binary signal of the
discriminator in the GAN does not provide a good constraint.
Similarly, compared to the use of AE, the ASSD and MSSD
of the results provided by SAAE are reduced by 0.06 mm and
1.18 mm, respectively. This demonstrates that the encoding of

Fig. 4. Comparison of segmentation boundaries in ablation studies.
The green, red, blue and grey denote ground truth, the result provided
by U-Net, the result provided by U-Net+SAAE and the result provided by
SGU-Net, respectively.

TABLE II
ABLATION EXPERIMENTS OF SAAE ON THE CHAOS-CT TESTING SET

USING LIGHTWEIGHT U-NET

TABLE III
ABLATION EXPERIMENTS OF UC AND SAAE ON THE NIH-TCIA CT TESTING

SET (U-NET IS THE BACKBONE NETWORK)

labels and segmentation results in SAAE is important, and a
well-trained autoencoder can well encode the differences in
labels and segmentation results into the low-dimensional space
and use the difference Lsal in Fig. 2 between them to supervise
the segmentation network.

Fig. 4 shows the comparison of segmentation boundaries,
which further illustrates the ablation studies. As can be seen from
the results, the utilization of SAAE supervision can effectively
provide shape supervision and constraint without extra parame-
ters and computational costs. And the segmentation results are
further improved with the help of ultralight convolution.

To further verify the performance of SAAE, we performed
the lightweight U-Net network with four stages on the CHAOS
dataset. The experimental results are shown in Table II. We find
that our SAAE can improve segmentation accuracy by 1.24%
(Dice value). Therefore, our SAAE can obtain a clear improve-
ment in segmentation accuracy for low Dice segmentation tasks.
It is a general module that can be combined with different
backbone networks for different segmentation tasks.

In addition, we conducted an additional experiment on a
pancreatic dataset with a low Dice value to demonstrate further
our contributions. The NIH-TCIA CT dataset [52] comes from
the US National Institute of Health (NIH), which contains 82
abdominal enhanced 3D CT scans. In the direction of the axial
viewpoint, the CT slice size is 512× 512 pixels, and the number
of slices varies from 181 to 466 for different patients. The
experimental results are shown in Table III.
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TABLE IV
SEGMENTATION RESULTS OBTAINED BY SGU-NET WITH DIFFERENT

HYPERPARAMETERS ON THE CHAOS-CT DATASET

This experiment has two purposes. On the one hand, we aim
to show that our ultralight convolution module is effective and
universal. On the other hand, we want to demonstrate that our
SAAE module is effective for abdominal organ segmentation
whether organs are large or small. It can be seen in Table III
that ultralight convolution has a good universality, which can
effectively extract target features and plays an outstanding role.
It greatly reduces the complexity of the model and improves the
segmentation accuracy. For relatively fixed abdominal organs,
SAAE can achieve shape guidance and make full use of prior
knowledge to guide the segmentation network to obtain better
abdominal organ segmentation results.

In addition to conducting ablation experiments on our contri-
butions UC and SAAE, we also conducted additional ablation
experiments on three hyperparameters θ1, θ2, and α. In our
experiments, θ1 and θ2 are used to control the shape adversarial
loss function. Specifically, θ1 guides the segmentation network
to learn by minimizing the difference between the reconstruction
results and the labels, and θ2 optimizes SAAE by maximizing
the difference between the segmentation results and the labels.
α is used to control the boundary loss function.

According to Table IV, we found that our SGU-Net can
achieve the best performance on the abdominal organ segmen-
tation when θ1 = 5, θ2 = 0.01 and α = 0.5. It is noted that
δ = 0.25 in this experiment. The analysis of the set of δ can
be seen in the section of the discussion.

D. Experimental Comparison on Test Datasets

To validate the superiority of the proposed SGU-Net, eleven
state-of-the-art networks used for medical image segmentation
are considered as comparative approaches. These networks can
be roughly grouped into two categories: 2D networks including
U-Net [2], R2U-Net [9], Attention U-Net [5], DenseU-Net [16],
ResU-Net [15], ResU-Net++ [17], CE-Net [20], U-Net++ [3],
and Non-local U-Net [18], as well as 3D networks including 3D
U-Net [22] and V-Net [10].

CT liver segmentation: Quantitative metrics on the CHAOS
dataset are shown in Table V. We can see that one of the main
reasons is that the 3D convolutional architecture is too complex
to be used for small datasets. Also, the lower contrast and
resolution of the CT images in this dataset, combined with the
higher spacing make it difficult to extract the temporal domain
information better and may even have the opposite effect.

TABLE V
QUANTITATIVE RESULTS FOR LIVER SEGMENTATION ON THE CHAOS-CT

TESTING SET

TABLE VI
QUANTITATIVE RESULTS FOR LIVER SEGMENTATION ON THE LITS

TESTING SET

In terms of the segmentation performance of the 2D network,
CE-Net tends to be a better solution due to the adoption of
pre-trained encoder, and the Dice value improves by 0.52%
compared to U-Net. The strategies of residual connectivity,
dense connectivity, and recurrent connectivity are also useful,
and thus ResU-Net, DenseU-Net, and R2U-Net provide higer
segmentation accuracy than U-Net. The setting of attention
mechanism brings effective gains, both Attention U-Net as
well as ResU-Net++ use spatial attention and channel attention,
and the Dice metric is thus improved by 0.19% and 0.06%,
respectively, compared to U-Net. Non-local module can obtain
global attention by using a larger receptive field, so Non-local
U-net shows better performance. We note that SGU-Net obtains
the best values of Dice (94.68%), ASSD (1.43 mm), and MSSD
(26.26 mm). Similarly, Table VI shows quantitative results for
liver segmentation on the LiTS dataset.The LiTS is a larger 3D
dataset where a fair comparison with the methods of 3D CNNs
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TABLE VII
QUANTITATIVE RESULTS FOR MULTI-ORGAN MR T2 MODITY SEGMENTATION

baseline can be made. We can see that SGU-Net provides 1.8%
and 1.65% improvement in Dice compared to 3D U-Net and
V-Net, respectively. Also, SGU-Net provides finer segmenta-
tion contours, with the lowest ASSD (1.30 mm) and MSSD
(24.45 mm) compared to other networks.

The above experimental results indicate that SGU-Net can
make the prediction map achieve better contour and shape
consistency, and its ability to mimic expert annotations performs
significantly better.

Abdominal multi-organ MR segmentation: Table VII shows
quantitative results for multi-organ MR T2 modity segmenta-
tion. As for 3D networks, they do not provide the required
robustness for organ segmentation. The detailed reason has been
presented in the second paragraph of Section IV. D. experimental
comparison. For 2D networks, significant improvements can
be noticed using attention for right kidney, left kidney and
spleen. Attention U-Net (spatial attention), ResU-Net++ (chan-
nel attention), and Non-local U-Net (Non-local attention) clearly
provide similar effect on liver, left kidney, and right kidney
segmentation. On the basis of 89.32% Dice of U-Net, both
ResU-Net++ and Non-local U-Net show greater improvement
(+2.97%, +1.95%) on spleen segmentation than Attention U-Net
(+0.42%). DenseU-Net improves the value of Dice by 0.06%,
0.8%, 0.31% and 1.9% compared to ResU-Net on liver, left
kidney, right kidney and spleen, respectively.

It is easy to see that the contribution of CE-Net is clear. Using
pre-trained models can provide better underlying features and
multi-scale feature extraction blocks can extract richer features,
thus CE-Net provides better Dice, ASSD and MSSD values than
U-Net. Our proposed SGU-Net obtains the best segmentation
results, not only in the Dice metric, but also in the ASSD and
MSSD metrics for the four types of organs, which indicates that
our strategy is able to constrain the organ contour leading to
higher segmentation accuracy.

E. Efficiency Analysis

Table VIII reports a comparison of parameters, FLOPS (float-
ing point operations), model size and Dice of different models
on the CHAOS-CT. FLOPS and Memory are estimated with
an input size of 1× 256× 256. Compared to 2D networks, 3D
networks require more memory and higher computational costs
due to the use of 3D convolutional kernels. For 2D network,
depthwise separable convolution in mobileNet can effectively

TABLE VIII
COMPARISON OF THE EFFICIENCIES OF DIFFERENT NETWORKS

reduce the model parameters, and the number of model param-
eters decreases by 82.65% compared to that of U-Net. Further-
more, we can clearly see that SGU-Net is superior to comparative
models since it achieves the highest segmentation accuracy but
requires only 4.99 M parameters, 19.56 MB model size, and
4.98 GFLOPs of computation.

V. DISCUSSION

A. Compacting Model Design

The asymmetric convolution usually perform a direct factor-
ization of the k × k vanilla convolution into k × 1 and 1× k
convolutions. This direct factorization may cause the conse-
quence of significant information loss leading to performance
degration of models. There are two possible reasons. First, deep
neural networks usually have distributed eigenvalues in them,
and they usually rank higher than 1 in practical applications, so
the direct decomposition may cause information loss. Secondly,
since standard convolution in feature extraction usually uses
square convolutional kernels for spatial and channel features
co-extraction, asymmetric convolutional kernels may corrupt
feature extraction in channel dimension, resulting in chaotic
channel feature extraction and thus information loss. Therefore,
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the asymmetric convolution in [47] is fused into the square con-
volution kernel to enrich feature extraction and representation,
but the number of parameters remains unchanged.

Unlike the previous work, the proposed ultralight convolution
performs feature extraction in space and channel separately by
first performing asymmetric convolution channel-by-channel in
the spatial dimension, and then performing feature extraction
and combination in channels. This avoids to a certain extent the
problem of confusing channel feature extraction when asymmet-
ric convolution is directly operated on space and channel. In ad-
dition, the channel-by-channel asymmetric convolution allows
better feature extraction for abdominal organs with irregular
shapes information in space, which is helpful for improving
abdominal image segmentation.

B. Extension on 3D Volume Segmentation

To demonstrate the proposed UC is useful for different net-
works. we discussed the extension of UC to 3D networks. In
fact, there are some works [40], [41] that have extended the
depthwise separable convolution to 3D CNNs and applied it to
medical image segmentation to reduce the number of parame-
ters. The ultralight convolution integrates the advantages of both
asymmetric convolution and depthwise separable convolution
and thus can be extended to 3D CNNs to further reduce the
number of parameters. To evaluate the performance of ultralight
convolution on liver segmentation tasks, we consider the 3D Im-
age Reconstruction for Comparison of Algorithm and DataBase
(3Dircadb)1 as experimental data. The dataset is split into 17
patients for training and 5 patients for testing.

As for the experiments on 3D networks, we first pre-trained
our network on the LiTS dataset, and then fine-tuned the network
on the 3Dircadb dataset. There are two reasons for this. First, dif-
ferent datasets correspond to different collection environments
and parameter configurations, and training a network on datasets
of different scales can improve the robustness of the network.
Second, the LiTS is a large dataset while the 3Dircadb is a
small dataset. Using a large dataset for model training, and then
using a small dataset for fine-tuning will not only speed up the
training efficiency on the small dataset but also avoid the risk of
overfitting.

The 3D network consists of two stages namely encoder and
decoder. The volume data size used for 3D network input is fixed
to 128× 128× 64 voxels. The encoder consists of five stages,
each of which corresponds to a different image resolution. The
3D Ultralight V-Net network employs ultralight convolution to
achieve feature extraction, which is composed of 3× 3× 1,
3× 1× 3 depthwise asymmetric convolutions and 1× 1× 1
pointwise convolution. Following feature extraction, a2× 2× 2
transposed convolution is used for upsampling, and the output
image size of the last stage of the encoder is 8× 8× 4. The
decoder is an inverse process of the encoder. By using the
deconvolution operation, the final output feature map size is
the same as the input image size.

Table IX reports the comparison of the efficiency of different
networks on the 3Dircadb. Compared with 2D CNNs, 3D CNNs

1The dataset is available on http://ircad.fr/research/3d-ircadb-o1

TABLE IX
COMPARISON OF THE EFFICIENCY OF DIFFERENT NETWORKS ON THE

3DIRCADB DATASET

obtains a certain increase in segmentation performance, but
they require more memory usage and high computational costs.
Clearly, 3D ultralight convolution can effectively overcome the
shortcomings of 3D CNNs. By using ultralight convolution in
V-Net, the number of model parameters, computational costs,
and storage usage are drastically reduced. Moreover, the pro-
posed ultralight convolution provides more competitive results
than depthwise separable convolution. In addition, it is clear
that there is a slight loss in Dice compared to V-Net. Compared
to the reducing of training parameters of 98%, the Dice value
is only lost by 0.38%. On this basis, we can try to improve
segmentation accuracy by exploring some other means liking
deep supervision, like what was done in [40], [41], [53], [54].
This is a direction worth exploring.

C. Shape-Guided Exploration

For the design of the shape adversarial autoencoder (SAAE),
the inspiration comes mainly from [25], [28]. There are four
main types of methods used for shape constraint in medical
image segmentation.

The first is to use a discriminator [25] to perform binary
classification by determining whether the predicted image is a
label or not, which mainly constrains the segmentation network
by positive and negative signals. Although this approach is useful
for improving network performance, the constraint is insufficient
and lacks interpretability.

The second is to apply a pre-trained model [24] to feature
extraction and compute the difference between the predicted
results and the labels simultaneously and use the difference
to constrain the segmentation network. This approach mainly
depends on the suitability of the pre-trained model for extracting
information from medical images.

The third is to use the autoencoder to learn the reconstruction
of the prediction results with labels [28], which forces the
autoencoder to learn the features in medical images and use the
final reconstruction loss to constrain the segmentation network.
This approach is more explanatory compared to the first two
methods, but the constraints are limited.

The fourth is to use an autoencoder to improve the segmen-
tation results obtained by the segmentation network. Painchaud
et al. [13] used an autoencoder constrained by labels to improve
segmentation results, so that the final result can be close to the
real segmentation result. This postprocessing operation based on
the autoencoder actually helps and corrects the original segmen-
tation network, which cannot directly guide the segmentation
network to improve segmentation results.

http://ircad.fr/research/3d-ircadb-o1
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TABLE X
ABLATION EXPERIMENTS OF UC AND SAAE ON THE CHAOS-CT DATASET

USING DIFFERENT BACKBONE NETWORKS

The SAAE designed in this paper is based on the third
approach, which has been further explored. As the shape of
the organ contains high-dimensional information, it is diffi-
cult to measure the shape difference between the prediction
result and the label directly. To solve the problem, SAAE uses
the auto-encoder to explore the representation of the shape in
low-dimensional manifold. Since the organs in the labels only
contain shape and location information, the SAAE can better
encode the shape and location information of the organs after
reconstructing a large number of labels and prediction results.
As a result, the segmentation network is constrained by using
adversarial learning for the difference between prediction results
and labels in low-dimensional manifold. Obviously, SAAE is
more efficient and more explanatory.

D. UC and SAAE Adaptability

In this section, we performed ablation experiments of UC
and SAAE based on different backbone networks to show the
universality of our contributions. As shown in Table X, ultralight
convolution can reduce the number of model parameters by up
to 90% with no reduction in segmentation accuracy. SAAE can
further improve the segmentation accuracy without increasing
the model parameters. In other words, they greatly reduce the
model parameters while providing competitive segmentation
results. In conclusion, the two contributions presented in this
paper can be applied to different backbone networks as shown
in Table X to reduce the number of parameters, balancing the
model size and segmentation accuracy.

E. The Analysis of the Thinning Exponent

The hyperparameter δ is the thinning exponent in the proposed
SGU-Net. We evaluated the results obtained by SGU-Net using
different values of δ. As shown in Table XI, as the value of δ
increases, the number of model parameters becomes larger and

TABLE XI
ABLATION EXPERIMENTS OF THE HYPERPARAMETER δ IN SGU-NET ON THE

CHAOS-CT DATASET

the segmentation accuracy becomes higher than before. In this
paper, SGU-Net with δ = 0.25 can attain the most competitive
performance and achieves the best balance between model size
and segmentation accuracy.

In Table XI, we can see that although the larger value of δ
will lead to higher segmentation accuracy, the computational
efficiency of the network will be lower. Therefore, in practical
applications, we need to adjust the value of δ according to
different task requirements. If the network is deployed on low
resource devices, then we should choose a smaller value of δ
to improve computational efficiency. In contrast, if we do not
consider the problem of computational costs, we can choose a
larger value of δ to achieve higher segmentation accuracy.

VI. CONCLUSION

In this paper, we have proposed a shape-guided ultralight
network for medical image segmentation. First, an ultralight
convolution is presented to factorize vanilla convolution into
deepwise asymmetric convolution and pointwise convolution,
which integrates the advantages of both asymmetric convolution
and depthwise separable convolution. Secondly, a shape-guided
module is presented to use the priori knowledge of fixed organ
position and shape to constrain the segmentation network to
produce results that are closer to the true organ shape. Extensive
experiments on the LiTS and the CHAOS have shown that the
proposed SGU-Net provides a general and effective solution to
achieve high-quality segmentation results in the case of limited
memory and computation resources.
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