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Abstract—Deep convolutional neural networks (CNNs) have
achieved much success in remote sensing image change detec-
tion (CD) but still suffer from two main problems. First, the
existing multiscale feature fusion methods often use redundant
feature extraction and fusion strategies, which often lead to
high computational costs and memory usage. Second, the regular
attention mechanism in CD is difficult to model spatial-spectral
features and generate 3-D attention weights at the same time,
ignoring the cooperation between spatial features and spectral
features. To address the above issues, an efficient ultralightweight
spatial-spectral feature cooperation network (USSFC-Net) is
proposed for CD in this article. The proposed USSFC-Net has
two main advantages. First, a multiscale decoupled convolution
(MSDConv) is designed, which is clearly different from the
popular atrous spatial pyramid pooling (ASPP) module and
its variants since it can flexibly capture the multiscale fea-
tures of changed objects using cyclic multiscale convolution.
Meanwhile, the design of MSDConv can greatly reduce the
number of parameters and computational redundancy. Second,
an efficient spatial-spectral feature cooperation (SSFC) strat-
egy is introduced to obtain richer features. The SSFC differs
from the existing 2-D attention mechanisms since it learns 3-D
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spatial-spectral attention weights without adding any parame-
ters. The experiments on three datasets for remote sensing image
CD demonstrate that the proposed USSFC-Net achieves better
CD accuracy than most CNNs-based methods and requires lower
computational costs and fewer parameters, even it is superior
to some Transformer-based methods. The code is available at
https://github.com/SUST-reynole/USSFC-Net.

Index Terms— Change detection (CD), convolutional neural
network (CNN), multiscale feature extraction, spatial-spectral
feature cooperation (SSFC).

I. INTRODUCTION

HE goal of remote sensing image change detection (CD)

is to identify differences between two images of the
same geographical location taken at different periods [1].
It is of great significance in many fields, including disaster
monitoring [2], urban planning [3], environmental investiga-
tion [4], to name a few. In recent years, these applications have
become more crucial due to the deterioration of the natural
environment. Therefore, a large number of CD methods have
emerged, which can be roughly categorized into two groups:
traditional methods and deep-learning-based methods.

Most of the traditional methods rely on manual fea-
ture extraction, such as principal component analysis
(PCA) [5], [6], Gabor filter [7], multivariate alteration detec-
tion (MAD) [8], and change vector analysis (CVA) [9]. These
methods can achieve CD to a certain extent, but they suffer
from the following weaknesses. On one hand, the image
features extracted by traditional methods are susceptible to
seasonal changes, lighting conditions, and satellite sensors,
making them less robust for achieving high CD accuracy.
On the other hand, although some methods [7], [10] can reduce
false detection by combining shape and texture features, such
strategies usually require intensive computation and have
many hyperparameters, leading to low robustness and high
computational cost. In addition, manually extracted features
rely heavily on prior domain knowledge, which limits the
generalization ability of models.

In recent years, increased interest has led to more appli-
cations of convolutional neural networks (CNNs) [11] to
remote sensing image CD. Compared with traditional meth-
ods, deep-learning-based methods require less human inter-
vention and can automatically learn features from annotated
data. In addition, deep-learning-based methods can better

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0002-2104-9298
https://orcid.org/0009-0007-0950-3957
https://orcid.org/0000-0001-8375-1181
https://orcid.org/0000-0003-2595-4794
https://orcid.org/0000-0002-0415-8556
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0001-6248-2875

4402114

understand complex scenes due to their excellent feature
extraction abilities, and they perform much better than tra-
ditional methods. Since CD can be regarded as an image
segmentation task, most of the current CD backbones based
on deep learning use encoder—decoder structures such as
fully convolutional network (FCN) [12] and U-shape networks
(U-Net) [13]. However, unlike the general image segmentation
task, the input of CD is a pair of bitemporal images. To fuse
effectively bitemporal images information, the Siamese struc-
ture is applied as the benchmark for CD in remote sensing
images [14].

Due to the scale variation and complex background in
remote sensing images, various multiscale feature fusion mod-
ules and attention mechanisms [65], [66] have been intro-
duced into deep neural networks for CD in remote sensing
images [16]. However, they still face the following challenges.
First, introducing the existing multiscale feature fusion module
directly may lead to a large amount of feature redundancy;
one of the reasons is that using multiple atrous convolutions
in parallel requires redundant learnable parameters. Second,
although both spatial attention and channel attention can
improve the CD accuracy to different extents, they ignore the
comodeling of spatial features and spectral features and cannot
reason 3-D attention weights directly. Since the spectral infor-
mation of the bitemporal remote sensing image is contained in
the feature maps of the multidimensional channels, the cascade
of spatial and channel attention is often used to model the
spatial-spectral dependence of changed objects, requiring a
lot of additional memory and computational costs [37].

To address the above issues, an ultralightweight spatial—
spectral feature cooperation network (USSFC-Net) is pro-
posed. This network takes a pseudo-Siamese U-Net [13]
as the backbone. It uses multiscale decoupled convolution
(MSDConv) instead of the vanilla convolution for feature
extraction. MSDConv has two advantages. First, it decouples
the convolution into the concatenation of the spatial and chan-
nel correlations, where the channel correlation is calculated
by point convolution and the spatial correlation is obtained by
depthwise convolution. This decoupling significantly reduces
the computational costs and parameter redundancy of the
convolution. Second, to capture changed objects with different
scales, MSDConv cyclically uses combination of dilation
rates for depthwise convolution to perform spatial correlation
expansion. This cyclic multiscale structure avoids increas-
ing additional parameters. Thus, MSDConv stands out as a
lightweight and efficient multiscale feature extraction module.
Besides, a spatial-spectral feature cooperation (SSFC) strategy
is designed to capture better change-related features. It is
implemented by generating spatial and spectral cooperation
3-D weights using Gaussian modeling. This strategy does
not require any additional learnable parameters and can be
efficiently embedded into the MSDConv to obtain richer
features in the feature extraction stage.

The main contributions of this article can be summarized
as follows.

1) An MSDConv is designed for CD networks. It can

effectively capture the multiscale features of changed
objects in remote sensing images using a compact design
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with decoupled spatial and channel correlations. Differ-
ent from popular multiscale feature extraction methods
such as Inception [18], atrous spatial pyramid pooling
(ASPP) [65], and feature pyramid network (FPN) [19],
the MSDConv is more lightweight and efficient.

An SSFC is introduced into the MSDConv to obtain
richer features. It is a low-cost yet high-performance
attention mechanism for CD. Compared with popular
2-D attention mechanisms such as spatial attention,
channel attention, and their variants, the SSFC achieves
spatial-spectral cooperation 3-D attention without any
additional parameters.

An efficient USSFC-Net is proposed based on the
use of MSDConv and SSFC. Extensive experiments
are conducted, and the results show that the proposed
USSFC-Net achieves higher CD accuracy and requires
fewer parameters than most popular CD networks.

The rest of this article is organized as follows. The related
work is reviewed in Section II. A detailed description of the
proposed method is provided in Section III. The experimental
results are reported in Section IV. Discussions of key issues
are given in Section V. Conclusions are included in Section VI.

2)

3)

II. RELATED WORK
A. Backbone Network for Remote Sensing Image CD

Owing to the development of deep learning and computer
vision, more and more deep learning methods are used for
remote sensing image CD. These methods can be roughly
categorized into two groups. The first group learns the changed
features directly from the difference images that are generated
by pretemporal and posttemporal images [14], [29]. However,
they do not consider the specific characteristic of CD task and
simply use generic CNNs to achieve CD, which leads to low
detection accuracy.

The second group of methods performs feature extraction
on bitemporal images separately, and then fully compares and
fuses different spatial-temporal features at different stages of
the network to obtain difference images. Daudt et al. [14] first
applied the Siamese network [20] to remote sensing image CD.
The Siamese network usually consists of two weight-sharing
branches for feature extraction on pretemporal and posttem-
poral images, separately. When applying the Siamese network
to bitemporal remote sensing images, the bitemporal features
are extracted and used to generate changed images, which is
more conducive to improving the CD accuracy. Besides, more
improved CD frameworks based on the Siamese structure can
be seen in [15], [21], [22], [23], [24], [25], [26], [27], and
[28]. However, as many application scenarios are constrained
by computing resources, more and more compact networks
are designed to achieve CD in a low-cost manner. Wang et al.
[61] used bottleneck and dilated convolutions to replace the
vanilla convolutional layers, which effectively reduced the
parameters and computational costs. To obtain rich contextual
information, Han et al. [62] introduced an artificial padding
convolution and designed a new loss function for CD in
optical remote sensing imagery. By introducing the vision
Transformer into CD, Dai et al. [63] used MobileViT to
achieve high-precision CD at a faster inference speed.
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The advantage of the Siamese network is that it has fewer
parameters. However, a weight-sharing encoder may lead to
weak feature extraction ability, thereby affecting the classifica-
tion accuracy for changed objects. Using a nonweight-sharing
encoder may address this problem, but this usually leads to an
increase in the number of parameters. To address this problem,
it is necessary to design a ultralightweight network for CD
tasks.

B. Multiscale Feature Fusion for Remote Sensing Image CD

Among the current popular neural networks, CNN has
two distinct advantages over multilayer perceptron and Trans-
former: parameter-sharing and sparse connectivity. Such com-
putational characteristics lead to the fact that the size of
the receptive field determines the performance of feature
extraction [64]. Therefore, designing an effective receptive
field scale for convolutional layers is crucial to CNN-based
CD methods. To solve this problem, researchers have designed
multiscale fusion modules to extend efficiently the receptive
field. A more intuitive method to extend the receptive field is to
simply increase the size of convolution kernels. Lei et al. [29]
proposed the pyramid pooling module to extract deep features
and fuse them using three different sizes of convolution
kernels for difference images, which can effectively capture
the multiscale features of remote sensing images. Shen et al.
[30] used a similar multiscale feature extraction strategy and
applied point convolution to dimensionality reduction before
multiscale feature fusion. Hou et al. [31] proposed the dynamic
inception module, which introduces dynamic convolution into
a multiscale feature fusion module to improve the feature
representation ability of networks.

Although the above methods can solve the problem of
extending the receptive field using large kernel sizes or mul-
tiscale feature fusion, these strategies will cause the increase
in parameters and computational cost. To address this prob-
lem, the asymmetric convolution [32] reduces the number of
parameters by decomposing the convolution kernels of size
k x k into a superposition of two 1-D convolution kernels
of size 1 x k and size k x 1. However, this operation
leads to offset of pixels in feature maps. To achieve receptive
field extension more efficiently, the atrous convolution [33]
extends the receptive field using irregular convolutional kernels
with null values. This approach is widely used for dense
prediction tasks such as image semantic segmentation, e.g.,
DeepLab V2-V3+ [34], [52], [65] achieved efficient multiscale
feature fusion by designing the ASPP module. Besides the
design of multiscale convolution kernels, the structure of
FPN [19] is also popular for feature fusion. Inspired by FPN
and nonlocal [35], Chen et al. proposed NL-FPN [36] for
remote sensing image CD, which can effectively fuse mul-
tiscale features while capturing the long-range dependence of
image.

However, these aforementioned methods need to reuse a
large number of convolution or pooling operations at different
scales, which results in abundant feature redundancy and
computational burden. So far, there is almost no single method
that can capture and fuse image multiscale features with a
more efficient way.
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C. Attention Mechanism for Remote Sensing Image CD

In recent years, attention mechanisms have been proven
to be effective in capturing important differences in feature
spatial and channel for various computer vision tasks [37].
In particular, self-attention [38] and its variants can model
global spatial relationship, which can effectively help networks
identify changed and unchanged objected.

Inspired by cognitive science, attention mechanisms in neu-
ral networks can usually be categorized into two types, channel
attention and spatial attention. Channel attention [66] first uses
the fully connected layer on feature maps to model channel
relationship, and then applies channel attention weights to the
original feature maps to obtain feature maps with different
importance. On this basis, Li et al. [39] reapplied the attention
weights from squeeze-and-excitation (SE) module to convo-
lutional kernels to select autonomously suitable convolutional
kernels of different sizes. To simply the computation of the SE
module, Wang et al. [40] captured local cross-channel inter-
actions by considering each channel and its nearest neighbors,
and then improved the efficiency of channel attention. Besides
channel attention, many methods focus more on the local and
global relationships on feature maps. The convolution block
attention module (CBAM) [37] initially realizes the coopera-
tion of spatial and channel attention by sequentially cascading
them. Zhang et al. [24] and Shi et al. [28] introduced CBAM
to remote sensing image CD. They fused spatial attention
and channel attention to reconstruct difference images, thus
achieving higher CD accuracy. The nonlocal [35] made a
network pay more attention to the long-range dependence of
spatial features. Based on this idea, Chen et al. [16] introduced
a dual attention module to capture long-range dependence, thus
improving the feature representation of network. Lei et al. [27]
propose a spatial-spectral nonlocal (SSN) strategy for remote
sensing image CD. It is different from the vanilla nonlocal
module, because spatial multiscale features are incorporated to
model the large-scale variation in objects during the process of
CD. The module can be used to strengthen the edge integrity
and internal tightness of changed objects.

Since the boom of the Transformer-based networks in
computer vision tasks, more and more studies have introduced
self-attention into image classification and image semantic
segmentation [41], [42], [43]. Image semantic segmentation,
which is similar to CD, is a kind of dense classification
tasks. Based on self-attention, some excellent works have
also emerged in the field of remote sensing image CD.
Among them, Chen et al. [44] proposed an efficient modeling
of global semantic relationship in spatial-temporal, which
facilitates the feature representation of changed objects in
spatial interest area. Bandara and Patel [45] proposed a
Transformer-based Siamese CD framework to model effi-
ciently the long-range dependence required for changed
objects. Furthermore, Zhang et al. [59] used the popular Swin
Transformer [43] to model the global dependence of bitem-
poral features. To address the insensitivity of the Transformer
to position, Feng et al. [46] introduced depthwise convolu-
tional relative position coding and proposed a CD network
combining the Transformer and CNN using the strategy of
local and global feature fusion, achieving better CD results.



4402114

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

]
e ‘ N
|
|
|
| S
|
[
|
} Cyclic Multi-scale Conv ~ SSFC
| d=1 7|
|
|
| C
|
! 7
Output } ©
Decoder } cn s
|
1 | —
| Input Auxiliary Output
. 3 ] - T feature maps
D Upsampling —» Skip connection © Concatenation |
5 i Sub&Abs | i iplicati
S . e g D Max- poolmg. ) : & Matrix multiplication
Tl encoder . MSDConv with SSFC | C The number of channels
TO Pre-temporal image } d The dilation rate of atrous convolution
\_ (a) USSFC-Net T1 Post-temporal image I (b) MSDConv with SSFC J
Fig. 1. Architecture of the proposed USSFC-Net. (a) Overview architecture. A pair of bitemporal images are input into a nonweight-sharing encoder, and

the difference images at each stage are fused to the decoder. The MSDConv with SSFC strategy is proposed as the basic component of the feature extractor.
(b) Proposed MSDConv with SSFC. The MSDConv can capture multiscale feature representations of changed objects. The SSFC generates richer features

for MSDConv. Both of them can cooperatively improve the CD accuracy.

To model contextual dependence among feature maps at
different stages, Zhang et al. [60] proposed a multilevel
change-aware deformable attention.

The above attention-based CD networks can enhance the
semantic representation of networks by modeling spatial or
spectral relationships, respectively. But these methods not only
increase the complexity of models but also ignore the cooper-
ation between spatial and spectral information. It is clear that
the current attention-based CD networks cannot effectively
model spatial-spectral dependence at the same time.pt

I1I. METHODS

A. Overview

In this section, we first give a brief overview of the
proposed USSFC-Net. As shown in Fig. 1, the USSFC-Net
consists of a dual branch nonweight-sharing encoder and
decoder. We first put a set of bitemporal images into the dual
branch encoder which consists of MSDConv and SSFC for
feature extraction, respectively. In this stage, each MSDConv
block efficiently captures multiscale features of bitemporal
images. To enrich the features generated by MSDConv, we use
the SSFC strategy for feature enhancement in the spatial
correlation expansion phase. This is followed by a decoder
consisting of a deconvolutional upsampling layer and a feature
recovery layer using proposed MSDConv. At each stage of the
encoder, we acquire a difference image and connect it to the
corresponding position of the decoder to obtain richer feature
maps of changed objects. Finally, the network performs the
dimensionality reduction and normalization operations using
point convolution to output the final CD results.

As can be seen from Fig. 1(a), compared with other popular
CD networks, the proposed USSFC-Net makes the following
changes in the Siamese structure [14].

1) A nonweight-sharing pseudo-Siamese encoder is used
to achieve better feature extraction by increasing few
parameters.

The proposed MSDConv is introduced to replace the
vanilla convolution in the encoder—decoder structure.
It is a compact feature extraction module to obtain mul-
tiscale feature representations of changed objects. The

2)

main idea is to capture efficiently multiscale changed
objects by separable cyclic multiscale feature extrac-
tion while reducing the number of vanilla convolution
parameters.

The USSFC-Net introduces an SSFC strategy. It can
obtain 3-D attention weights without adding parameters
and effectively improve the feature representation abil-
ity of the network. The MSDConv preserves integrity
of changed objects from a multiscale perspective, and
the SSFC helps the MSDConv generate richer features
from an attention perspective. Clearly, by combining the
MSDConv with the SSFC, we can achieve better CD
results for remote sensing images.

3)

B. Efficient Spatial Correlation Extension Using MSDConv

As mentioned previously, we argue that the existing multi-
scale feature fusion methods reuse a large number of con-
volution kernels or pooling operations at different scales.
To improve the efficiency of multiscale feature extraction
and fusion, we propose the MSDConv that can effectively
capture multiscale features of images without adding any
additional parameters and computational costs. The structure
of MSDConv is shown in Fig. 1(b). The MSDConv is inspired
by Xception [17] but is different from it. The MSDConv
not only obeys the conclusion that the spatial and channel
correlation can be sufficiently decoupled as proposed in [17]
but also additionally implements an efficient spatial correlation
expansion strategy. Specifically, let X be input feature maps,
X € REHXW wwhere C, H, and W denote the number of
channels of the feature maps, the height of the feature maps,
and the width of the feature maps, respectively. The process
of generating feature maps using the vanilla convolution can
be expressed as

Yh,w,c’ = § wi,j,c,c’ X Xh+i71,w+j71,c

i,j.c

(1)

where Y € RE*H*W s the output feature map, and W €
REXKxCXC" denotes the vanilla convolution kernel. K denotes
the kernel size. C denotes the number of channels of the input
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feature maps. C’ denotes the number of channels of the output
feature maps. ¢ and ¢’ denote the index of one channel of one
input and output feature map, respectively. i and j denote the
spatial positions of convolution kernels. # and w denote the
spatial positions of input feature maps. According to (1), when
using the vanilla convolution to learn features, the number of
parameters denoted by P and the computational costs denoted
by Q are expressed as

P=KxKxCxC(
O=KxKxCxC'xHxW.

2
3)

To reduce the parameter redundancy of the vanilla convolu-
tion operation, a novel convolution operation with decoupling
spatial and channel correlations is proposed. Specifically,
to obtain C’ feature maps, we first generate C’/2 native feature
maps using point convolution. Thus, the native feature maps
are generated without any mapping of spatial correlations, and
only to obtain tight channel correlations by dimensionality
reduction. In the second stage, we use a cyclic multiscale con-
volution to extend the spatial correlation of the native feature
maps, thus obtaining the auxiliary feature maps. As shown
in Fig. 1(b), the cyclic multiscale convolution is achieved by
atrous convolution with combination of dilation rates such as
(1, 3, 6). It is worth noting that cyclic multiscale convolution
expands different dilation rates to the corresponding convolu-
tion kernels at the same convolution layer. This ensures that
the MSDConv can capture the multiscale features of changed
objects through only one convolutional layer and fuse the
multiscale features through iterations of layers. Analogously
to (1), cyclic multiscale convolution with dilation rate d can
be expressed as

Y/

h,w,c’

~ /
= Zwi,j,c X Xptid—1,w+jd—1,¢

ij

“4)

where W e REXKX(C/D) g o cyclic multiscale convolution,
in which the cth convolution kernel is computed with the cth
channel of the feature map X to obtain the cth output feature
map Y. In fact, we use point convolution for aggregation
between channels and cyclic multiscale convolution to gen-
erate feature maps, and the number of parameters denoted by
P,, and the computational cost denoted by Q,, are expressed as
c’ o
P,=Cx —+KxKx— (@)
2 2
! !

szCx%xHxW~|—KxKx%xHxW (6)
where Q,, is the sum of the computations of 1 x 1 pointwise
convolution and cyclic multiscale convolution. Compared
with the vanilla convolution, the proposed MSDConv can
effectively reduce the number of parameters and computations
as follows:

c ol
_Cx7+KxKx7

"= KxKxCxC(C
1 1

T2K?2 T 2C
where r denotes the ratio of the number of parameters and
computations required for MSDConv and vanilla convolution.

(7
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From (7), the parameters of the proposed MSDConv are
only [1/(2K H+1 /(2C)] of the vanilla convolution. Mean-
while, the MSDConv can capture the multiscale features
of changed objects. As far as we know, this article is the
first study to capture and fuse the multiscale information of
changed objects by designing compact convolution kernels.

C. Spatial-Spectral Feature Cooperation

In Section III-B, we proposed MSDConv to obtain the
multiscale features of changed objects. However, if the aux-
iliary feature maps are directly fused with the native feature
maps, the spatial-spectral dependency will be ignored. As a
result, we design an SSFC strategy to model spatial-spectral
dependence to obtain richer features.

In cognitive science, the human brain generates attention
through intentional or unintentional focusing on an object. The
correspondence between intention and targets is based on three
elements in the attention mechanism: query, key, and value.
We can understand query as intention and key as a target.
The attention mechanism is to find the relationship between
query and key and map it into value to refine the feature
maps. To get the attention relationship between query and key,
we are inspired by Nadaraya—Watson kernel regression [56],
[57] and design a Gaussian-kernel-based SSFC strategy. The
Nadaraya—Watson kernel regression is expressed in terms of
three elements of the attention mechanism as

s _~_ FQ-K)
Y = E
= 2jn F(Q-K))

J

x Vi ®)

where Y denotes the output feature map of attention mech-
anism, n denotes the feature vector dimension, F(e) is the
kernel function, and Q, K, and V denote the query, key, and
value, respectively. If a Gaussian kernel function is adopted
here, the Nadaraya—Watson kernel regression can be expressed
as

x2

Fx)y=e¢ 7 )]

n Y
Y = ZSoftmax(—(Q_%) xVi.  (10)
i=1

According to (8)—(10), a more generalized model of atten-
tion mechanism is defined as

Y = N@(Q,K)) x V (1n

where @ (Q, K) denotes the attention weights obtained by
modeling the relationship between query and key, and N (e)
denotes the normalization function. Therefore, we can extend
the Nadaraya—Watson kernel regression to a higher dimen-
sional tensor and then design the SSFC strategy using the
Gaussian kernel function as follows:

=~ -K)? 1

In practical applications, both K and V are the input feature

maps X € RE*H*W where C, H, and W denote the number
of channels of the feature maps, the height of the feature
maps, and the width of the feature maps, respectively. Q
is the mean value of channel dimension X € RE**! and

12)
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different from the popular 2-D attention mechanism since it does not require
any learnable parameters and generates 3-D attention weights on feature maps
only through heuristic computation.

o? is the channel dimensional variance. The value of o
influences the richness of feature maps, and a larger value of
o2 means that the variance of the feature map is larger, which
corresponds to richer contextual information in the feature
map. To make the attention weights be positive facilitation,
we add 1/2 to the original attention score and normalize it
using Sigmoid function to obtain the attention weights. Finally,
the obtained attention weights are multiplied with input feature
maps X(value) to obtain the output feature maps Y. The SSFC
strategy is shown in Fig. 2.

Our proposed SSFC strategy can generate 3-D attention
weights using the idea of SSFC. By modeling spatial-spectral
dependence, the SSFC can enhance the edge and internal
details of changed objects in remote sensing images. Com-
pared with the existing attention mechanisms [37], [50], our
proposed SSFC does not add any learnable parameters, which
is simpler and more efficient. Finally, we embed the SSFC
into the MSDConv, as shown in Fig. 1(b).

D. Building Ultralightweight CD Network

1) Architecture: We improve the popular Siamese struc-
ture by building a nonweight-sharing pseudo-Siamese struc-
ture based on the U-shaped network. The nonweight-sharing
encoder allows more flexibility in learning feature coding
weights. Compared with the weight-sharing structure, our
network only increases parameters by 0.33 M. We con-
ducted a comparison experiment between pseudo-Siamese
and Siamese structure in Section V. Compared with other
complex network designs, a simple feature extraction using
the pseudo-Siamese structure is presented, relying only on dif-
ference images and skip-connections for temporal difference
information interaction.

2) Encoder: We use a pseudo-Siamese network to extract
bitemporal image features. Specifically, the encoder of
USSFC-Net uses five successive down sampling steps, i.e.,
stages 0—4. In stage 0, we use the vanilla convolution to ensure
adequate edge and texture information of changed objects.
In the range stages, we use the proposed MSDConv with
the SSFC to encode semantic information efficiently. We set
the number of feature map channels to 512 at stage 4 to
extract sufficient semantic information while maintaining the
lightweight of the network.

3) Decoder: To recover the semantic features generated by
the encoder, we design a simple yet efficient decoder to obtain
change maps. The decoder uses an approximately symmetric
structure with the encoder and requires four successive decon-
volutions to achieve feature maps upsampling. At the end of
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TABLE I

OVERALL ARCHITECTURE OF OUR USSFC-NET. THE OUT-CHS
DENOTES OUTPUT CHANNELS, THE C-BLOCK DENOTES DOUBLE 2-D
CONVOLUTIONS, THE M-BLOCK DENOTES DOUBLE MSDCONV
WITH SSFCS, THE MAXPOOL DENOTES MAX POOLING, AND
THE TRANSCONV DENOTES TRANSPOSE CONVOLUTION

Component Stage Input size Operator Out-chs
256x256x3  C-Block 3x3 32
256x256x32  MaxPool 2x2 32
128x128%x32 M-Block 3x3 64
1 128x128x64 MaxPool 2x2 64
Encoder 64x64x64  M-Block 3x3 128
2 64x64x128  MaxPool 2x2 128
32x32x128  M-Block 3x3 256
3 32x32%x256  MaxPool 2x2 256
4 16x16x256  M-Block 3x3 512
16x16x512 TransConv 2x2 256
5 32x32x256 M-Block 3x3 256
32x32x256 TransConv 2x2 128
6 64x64x128 M-Block 3x3 128
Decoder 64x64x128 TransConv 2x2 64
7 128x128x64 M-Block 3x3 64
128x128x64 TransConv 2x2 32
8  256x256x32 M-Block 3x3 32
Classifier 9 256x256x32 Conv 2d 1x1 1

each stage, we use the proposed MSDConv to recover the
feature of changed objects. Finally, the 1 x 1 convolution and
activation are used to obtain the predicted change map.

4) Details: According to the above settings, we build an
ultralightweight CD network with a Siamese U-Net as back-
bone. Different from the Siamese U-Net, we also make some
changes to it by considering the CD task. First, we use a
nonweight-sharing two-branch network as the encoder, which
makes feature extraction more flexible. Second, we halve the
number of channels of feature maps at each stage of the
network to make the network more compact. The specific
network structure is shown in Table I.

5) Loss Function: Remote sensing image CD is essentially
a pixel-level classification task. In the network training stage,
we use binary cross-entropy loss to optimize the network
weights. Formally, the loss function is defined as

1
L:——§ . - log x; 13
N, iy ogx (13)

where N, denotes the total number of training samples, y;
denotes the label of the ith sample, and x; denotes the
predicted value of the ith sample.

IV. EXPERIMENTS

We conduct a series of comparative experiments and abla-
tion studies to evaluate our proposed USSFC-Net for remote
sensing image CD. We analyze the effectiveness of the pro-
posed USSFC-Net according to the accuracy of CD and we
compare the efficiency of the proposed USSFC-Net and state-
of-the-art networks according to the number of parameters and
computational costs.
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A. Experimental Setup

The experiments are conducted on three remote sensing
image CD datasets. They are LEVIR-CD [25], CDD [51], and
DSIFN-CD [24].

LEVIR-CD is a large public CD dataset covering a vari-
ety of complex change features. It contains 637 pairs of
remote sensing images of size 1024 x 1024 with 0.5-m
resolution. To make full use of GPU memory and prevent
overfitting, we crop the images into 13072 patches of size
256 x 256. Finally, the dataset is divided into three parts:
10000/1024/2048 for training/validation/test, respectively.

CDD is a public CD dataset of seasonal changes in the
same area obtained from Google Earth. It contains 11 pairs
of multispectral images with resolutions ranging from 0.03 to
1 m. In all, 16000 patches of size 256 x 256 are obtained
from the original images by cropping and rotation operations.
The final dataset is divided into three parts: 10 000/3000/3000
for training/validation/test, respectively.

DSIFN-CD is a public CD dataset manually collected from
Google Earth. It consists of six high-resolution images from
different cities in China. The authors provide cropping the
Xi’an image pair into 48 patches of size 512 x 512 for
model testing. The other five city images were cropped into
3940 patches of the same size for training and validation. The
final obtained dataset is divided into three parts: 3600/340/48
for training/validation/test, respectively.

Evaluation Metrics: To evaluate the performance of the
proposed method, we mainly use three evaluation metrics
for comprehensive evaluation of the experimental results,
including Precision (Pre), Recall (Rec), and Fl-score (F1).
Specifically, Pre reflects the proportion of correct predictions
in the positive samples predicted by the model, Rec reflects
the correct proportion of model predictions in all the positive
samples, and F1 is the weighted harmonic mean of both.
In general, a higher F1 indicates a better detection accuracy
of model. These metrics are defined as

TP

Pre = ——— (14)
TP + FP
TP
Rec= —— (15)
TP + FN
P R
Fl =2 x =2 2¢¢ (16)
Pre + Rec

where TP, FP, and FN represent the number of true positive,
false positive, and false negative, respectively.

Implementation Details: The proposed USSFC-Net is
implemented by PyTorch and trained using NVIDIA GeForce
RTX 3090 GPU for 200 epochs. During the training process,
we apply Kaiming initialization [58] training from scratch and
use the Adam [53] optimization algorithm to optimize the
model, setting the momentum to 0.99. The weight decay is
set to 0.0005. The batch size is 32 and the initial learning rate
is 0.0001. For MSDConv, the combination of dilation rates is
(1, 3, 6) which proved to be optimal in Section V.

B. Comparison With State-of-the-Art Methods

To verify the superiority of our USSFC-Net, several
state-of-the-art methods for remote sensing image CD are
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adopted as comparative methods, including fully convolu-
tional early fusion network (FC-EF) [14], fully convolutional
Siamese-difference network (FC-Siam-Di) [14], fully convolu-
tional Siamese-concatenation network (FC-Siam-Conc) [14],
FCN with pyramid pooling (FCN-PP) [29], spatial-temporal
attention-based network (STANet) [25], deeply supervised
image fusion network (IFNet) [24], feature difference con-
volutional neural network (FDCNN) [55], densely connected
Siamese neasted U-shape network (SNUNet) [54], deeply
supervised attention metric-based network (DSAMNet) [28],
and bitemporal image transformer (BIT) [44].

FC-EF fuses bitemporal images at an early stage and then
performs CD using a FCN.

FC-Siam-Di uses the multilayer difference features of the
Siamese network to fuse the bitemporal information, and then
achieves the CD.

FC-Siam-Conc achieves feature long-range mapping by
fusing bitemporal features through skip-connections via a fully
convolutional Siamese network.

FCN-PP proposes a pyramid pooling module that uses
multiple convolutions to explore efficiently the context of
bitemporal remote sensing images.

STANet designs a multiscale attention mechanism to model
the spatial-temporal relationships of bitemporal remote sens-
ing images, generating better feature representations for
changed objects of different sizes.

IFNet proposes a deeply supervised difference network
for CD and reconstructs change maps using a strategy of
multiscale feature fusion.

FDCNN improves CD accuracy by generating multiscale
and multidepth difference maps.

SNUNet designs a densely connected U-shaped Siamese
network and refines features on different semantic informa-
tion using an integrated channel attention module. To be
fair, among the multiple networks provided by the authors,
we choose SNUNet-16, which has the same magnitude of the
number of parameters as the proposed USSFC-Net.

DSAMNet organically combines metric-based and
classification-based CD methods and introduces the deeply
supervised module to enhance the learning ability of the
feature extractor and generate more useful features.

BIT represents high-level semantic features by context-rich
tokens and introduces a Transformer-based encoder to model
context-based space-time.

The quantitative analysis of the experimental results on
the LEVIR-CD dataset is shown in Table II, where the best
values are in bold. Compared with CNN-based methods, our
proposed USSFC-Net obtains the best results with signifi-
cant advantages. For example, compared with SNUNet, our
method achieves 5.0%/1.1%/3.1% higher in Pre, Rec, and F1,
respectively. The experimental results on the CDD dataset are
shown in Table III, where our method is 1.8%/1.3%/1.5%
higher compared with DSAMNet. In addition to LEVIR-CD
and CDD, we test the proposed USSFC-Net on a smaller
public dataset DSIFN-CD, and the experimental results are
shown in Table IV. Compared with IFNet, our USSFC-Net is
12.4%/1.6% higher in Rec and F1, respectively.

In particular, compared with the latest Transformer-based
method BIT, our proposed USSFC-Net leads 0.5%/3.0%/1.7%
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TABLE I

COMPARISON RESULTS ON THE LEVIR-CD TEST SET. LARGER VALUES
OF BOTH PRE AND REC INDICATE A BETTER MODEL. F1 TAKES BOTH
INDICES INTO ACCOUNT. A LARGER VALUE OF F1 INDICATES
A BETTER MODEL. THE BEST VALUES ARE IN BOLD.
OUR USSFC-NET Is SUPERIOR TO BOTH CNN-BASED
METHODS AND TRANSFORMER-BASED METHOD

Pre (%) Rec (%) F1 (%)

Method Type Network

FC-EF [14] 74.96 90.53 82.01
FC-Siam-Di [14] 78.18 92.92 84.92
FC-Siam-Conc [14] 74.32 91.63 82.07

FCN-PP [29] 80.31 89.48 84.64

CNN STANet [25] 86.14 89.39 87.73
IFNet [24] 87.55 86.52 87.03

FDCNN [57] 82.99 88.71 85.76

SNUNet [56] 84.66 91.34 87.87
DSAMNet [29] 82.75 88.39 85.48
USSFC-Net (ours) 89.70 92.42 91.04
Transformer BIT [46] 89.24 89.37 89.31

TABLE III

COMPARISON RESULTS ON THE CDD TEST SET. LARGER VALUES OF
BOTH PRE AND REC INDICATE A BETTER MODEL. F1 TAKES BOTH
INDICES INTO ACCOUNT. A LARGER VALUE OF F1 INDICATES
A BETTER MODEL. THE BEST VALUES ARE IN BOLD.
OUR USSFC-NET Is SUPERIOR TO BOTH CNN-BASED
METHODS AND TRANSFORMER-BASED METHOD

Method Type Network Pre (%) Rec (%) F1 (%)

FC-EF [14] 52.67 8420 64.80
FC-Siam-Di [14] 61.85 76.69 68.48
FC-Siam-Conc [14]  44.07 80.44  56.94

FCN-PP [29] 81.69 90.31 85.78

CNN STANet [25] 88.98 93.11 91.00
IFNet [24] 85.33 91.76 88.43

FDCNN [57] 83.61 91.70 87.47

SNUNet [56] 90.92 94.75 92.79
DSAMNet [29] 91.67 94.83 93.22
USSFC-Net (ours) 93.45 96.08 94.74
Transformer BIT [46] 92.89 94.02 93.45

TABLE IV

COMPARISON RESULTS ON THE DSIFN-CD TEST SET. LARGER VALUES
OF BOTH PRE AND REC INDICATE A BETTER MODEL. F1 TAKES BOTH
INDICES INTO ACCOUNT. A LARGER VALUE OF F1 INDICATES
A BETTER MODEL. THE BEST VALUES ARE IN BOLD.
OUR USSFC-NET Is SUPERIOR TO BOTH CNN-BASED
METHODS AND TRANSFORMER-BASED METHOD

Pre (%) Rec (%) F1 (%)

Method Type Network

FC-EF [14] 50.01 55.99 52.84
FC-Siam-Di [14] 52.62 56.94 54.69
FC-Siam-Conc [14] 48.67 56.19 52.16

FCN-PP [29] 56.42 59.25 57.80

CNN STANet [25] 66.22 67.16 66.69
IFNet [24] 72.36 63.86 67.85

FDCNN [57] 64.42 68.38 66.34

SNUNet [56] 62.47 69.74 65.90
DSAMNet [29] 61.28 75.41 67.62
USSFC-Net (ours) 63.73 76.32 69.47
Transformer BIT [46] 68.36 70.18 69.26

on the LEVIR-CD dataset in Pre, Rec, and F1, respectively,
and 0.6%/2.1%/1.3% on the CDD dataset, and 6.1%/0.2% on
the DSIFN-CD dataset in Rec and F1. In addition, as shown in
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Table V, we compare the parameters and computational costs
of USSFC-Net and BIT. The results show that the proposed
USSFC-Net can reduce Params. by 78.1% and floating-point
operations (FLOPs) by 43.8%. We think this result can be
summarized as follows. First, convolution has an advantage in
the low-level visual feature extraction due to its localization
and translation invariance. Different from the concatenation
of attention and convolution layers, we embed both into the
one module to model spatial-spectral dependence. Second,
self-attention always tends to have a higher FLOPs than convo-
lution. It adds more extra computational costs to the model.pt

The quantitative results on three public datasets illustrate
that our proposed USSFC-Net can achieve the best accuracy
on CD datasets.

The visual analysis of the experimental results on the
LEVIR-CD, CDD, and DSIFN-CD datasets is shown in Fig. 3.
In the case of large-scale building detection, for instance, the
first row in LEVIR-CD, the boundaries of the detection result
of most comparative methods are not smooth enough, and
there is a lack of internal areas of the buildings. However, our
proposed USSFC-Net not only provides good results at the
edges of large buildings but also adequately detects interior
areas. In areas where change objects are dense, for example,
the second row in LEVIR-CD, our USSFC-Net provides more
complete areas in detection than the comparative methods,
without any missed or false detections. It is worth noting that
in the third row of CDD, our USSFC-Net accurately detects
changed inconspicuous objects, while most comparative meth-
ods fail to detect these inconspicuous objects, indicating their
poor robustness to shadows and noise contained in remote
sensing images. In brief, our proposed USSFC-Net shows
obvious advantages in handling marginally irregular and sparse
small changing objects, achieving the best performance for
remote sensing image CD.

C. Model Efficiency

We tested and analyzed the computational efficiency of the
proposed USSFC-Net and comparative methods for remote
sensing image CD from different perspectives. Three met-
rics are included: F1, number of parameters (Params.), and
FLOPs. The detailed results are shown in Table V and
Fig. 4. Since the methods [14] use fewer layers of feature
extraction and their detection accuracy is low, we do not
compare with them. It is obvious that our method with the
highest F1 requires the lowest parameters and computational
costs.

D. Ablation Studies

To validate the effectiveness of the proposed MSDConv and
SSFC, we conduct ablation experiments for these two compo-
nents separately. Due to the comprehensive consideration of
the dataset size and the number of changed objects, the abla-
tion experiments are conducted on LEVIR-CD, and the results
are shown in Table VI. Our method uses the nonweight-sharing
Siamese U-Net as the baseline. It can be seen from the
experimental results that the proposed MSDConv, by fully
capturing and fusing the multiscale information of changed
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Fig. 3. Visualization comparison of results on the LEVIR-CD, CDD, and DSIFN-CD test sets. White is true positive and black is true negative. (a) Pretemporal
image. (b) Posttemporal image. (¢) Ground truth. (d) Our USSFC-Net. (¢) FC-EF. (f) FC-Siam-Di. (g) FC-Siam-Conc. (h) FCN-PP. (i) STANet. (j) IFNet.
(k) FDCNN. (1) SNUNet. (m) DSAMNet. (n) BIT.

TABLE V

COMPARISON RESULTS OF COMPUTATIONAL EFFICIENCY. WE REPORT PARAMETERS (PARAMS.) AND FLOPS, As WELL AS F1 ON THREE CD TEST
SETS. A LARGER VALUE OF F1 INDICATES A BETTER MODEL. THE BEST VALUES ARE IN BOLD

F1 (%)
Method Type Network LEVIR-CD CDD DSIFN-CD Params. (M) FLOPs (G)
FC-EF [14] 82.01 64.80 52.84 0.85 3.34
FC-Siam-Di [14] 84.92 68.48 54.69 0.85 3.33
FC-Siam-Conc [14] 82.07 56.94 52.16 1.07 4.08
FCN-PP [29] 84.64 85.78 57.80 28.13 34.65
STANet [25] 87.73 91.00 66.69 16.93 6.58
CNN IFNet [24] 87.03 88.43 67.85 50.71 41.18
FDCNN [57] 85.76 87.47 66.34 1.86 32.40
SNUNet [56] 87.87 92.79 65.90 3.01 27.44
DSAMNet [29] 85.48 93.22 67.62 16.95 75.29
USSFC-Net (ours) 91.04 94.74 69.47 1.52 4.86
Transformer  BIT [46] 89.31 93.45 69.26 6.93 8.44

objects, can improve F1 by 1.2% on top of the baseline. After by the cooperation of the spatial-spectral features. Compared
we embed the SSFC into MSDConv, we can improve F1 by with other multiscale feature fusion and attention modules,
2.5% on top of the baseline due to the richer features obtained our method achieves significantly better detection accuracy.
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Fig. 4. Comparison of different methods on computational efficiency
(Params.) and accuracy (F1).

TABLE VI

ABLATION STUDY ON THE PROPOSED MSDCONV AND SSFC ON THE
LEVIR-CD TEST SET. WE REPORT PARAMETERS (PARAMS.) AND
FLOPSs, As WELL AS F1. A LARGER VALUE OF F1 INDICATES A
BETTER MODEL. THE BEST VALUES ARE IN BOLD

Network Params. (M) FLOPs (G) F'1 (%)
Siamese U-Net 12.48 18.06 88.50
+ PP [29] 22.71 20.48 89.10
+ ASPP [65] 16.94 19.17 89.42
+ MSDConv (ours) 1.52 4.86 89.68
+ MSDConv + SE [66] 1.56 4.87 90.37
+ MSDConv + CBAM [37] 1.57 4.89 90.27
+ MSDConv + SSFC (ours) 1.52 4.86 91.04
TABLE VII

COMPARISON OF DIFFERENT LIGHTWEIGHT CONVOLUTIONS ON THE
LEVIR-CD TEST SET. WE REPORT PARAMETERS (PARAMS.) AND
FLOPs, As WELL As F1. A LARGER VALUE OF F1 INDICATES A
BETTER MODEL. THE BEST VALUES ARE IN BOLD

Network F1 (%) Params. (M) FLOPs (G)
Siamese U-Net 88.50 12.48 18.06
+ SPConv [48] 89.96 7.92 12.52
+ Ghost [47] 90.02 1.40 4.44
+ MSDConv (ours) 91.04 1.52 4.86

The ablation experiments demonstrate the effectiveness of our
proposed MSDConv and SSFC.

V. DISCUSSION
A. Effectiveness of MSDConv

To verify that the proposed MSDConv contributes more to
the compression rate and accuracy of the network than the cur-
rently popular lightweight convolutional operations, we con-
duct experiments on the LEVIR-CD dataset, which includes
the performance comparison of the proposed MSDConv
with similar lightweight convolutional operations including
SPConv [48] and Ghost Module [47], as well as visualization
results for the abundance of generating features.

Table VII shows the Fl-score (F1), parameters (Params.),
and FLOPs using MSDConv, SPConv, and Ghost module on
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Fig. 5. Entropy of convolution layers of different networks on the LEVIR-CD
test set.

the LEVIR-CD test set. The Siamese U-Net is considered as a
backbone network, and we use MSDConv, SPConv, and Ghost
module instead of the vanilla convolution used by the Siamese
U-Net except the first stage of the network. The results show
that our proposed MSDConv performs significantly better
than SPConv and Ghost module. The proposed MSDConv
significantly improves F1 by 1.1% and 1.02% compared with
SPConv and Ghost module. Moreover, MSDConv has similar
performance with the Ghost module in reducing the network
parameters.

There are two main reasons why our proposed MSDConv
with SSFC can provide good experimental results. One is
that the MSDConv can adequately capture multiscale features
of objects and the other is the SSFC strategy generates
richer feature maps by modeling the spatial-spectral features.
To demonstrate this, we introduce information entropy to
estimating information stored in convolution layers. In general,
a higher information entropy means that the convolution
layer contains richer information. Since it is very difficult
to calculate the entropy of the continuous distribution in
a convolution layer, we divide the continuous distribution
into several different discrete zones and then calculate the
probability of each zone. Fig. 5 shows the comparison of
information entropy from each stage of the Siamese U-Net
encoder and the USSFC-Net encoder. We can see that our
USSFC-Net obtains higher entropy values than Siamese U-Net
at each stage, which means that our method can provide richer
features. Furthermore, we visualize the network interlayer
feature maps at the second convolutional layer as shown in
Fig. 6. The results show that the proposed MSDConv generates
richer features, which can effectively help networks improve
the CD accuracy.

The concatenation of multiple atrous convolutions can usu-
ally improve the feature representation ability of a network,
thereby improving the accuracy of CD in remote sensing
images. However, blindly increasing the value of dilation rates
may have an opposite effect on improving the network per-
formance. For example, Chen et al. [52] mentioned that when
the size of the feature map was similar to the dilation rate, the
atrous convolution would degenerate into a 1 x 1 convolution.
Experiments demonstrate that the best segmentation results
can be achieved when the multigrid size is (1, 2, 4). For the
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d

Fig. 6. Feature visualization of the proposed MSDConv on the LEVIR-CD
test set. (a) Pretemporal image. (b) Posttemporal image. (c) Ground truth.
(d) Siamese U-Net. (e) USSFC-Net.

TABLE VIII

COMPARISON OF DIFFERENT DILATION RATE COMBINATIONS IN
MSDCoONV ON THE LEVIR-CD TEST SET. LARGER VALUES OF BOTH
PRE AND REC INDICATE A BETTER MODEL. F1 TAKES BOTH
INDICES INTO ACCOUNT. A LARGER VALUE OF F1 INDICATES
A BETTER MODEL. THE BEST VALUES ARE IN BOLD

Network Pre (%) Rec (%) F'1 (%)

Siamese U-Net 87.26  89.77 88.50
+ MSDConv -dilation rates = (1) 89.92 88.31 89.11
+ MSDConv -dilation rates = (1, 2) 90.15 88.02 90.08
+ MSDConv -dilation rates = (1, 2, 4) 90.93 90.75 90.84
+ MSDConv -dilation rates = (1, 3, 6) 89.70 9242 91.04
+ MSDConv -dilation rates = (1, 4, 8) 8998 91.59 90.78
+ MSDConv -dilation rates = (1, 2, 4, 8) 89.26  90.27 90.16

CD task, we also conduct some experiments to choose the
dilation rate set of MSDConv more scientifically, as shown
in Table VIII. First, we set atrous convolution in MSDConv
to be a cyclic combination of dilation rates based on the
experience of previous works containing (1), (1, 2), (1, 2, 4),
and (1, 2, 4, 8). Second, according to the previous experimental
results, we find that the accuracy of the three dilation rates
is the highest. Therefore, we build a series of dilation rate
combinations containing (1, 2, 4), (1, 3, 6), and (1, 4, 8).
We conduct ablation experiments on different combinations,
from which the optimal dilation rate combination (1, 3, 6) is
finally selected.

B. Necessity of SSFC Strategy

As mentioned earlier, the SSFC strategy uses the
spatial-spectral feature to refine the feature maps. In fact,
the direct fusion of native feature maps and auxiliary feature
maps easily causes over-redundant features [47]. Therefore,
we adopt the SSFC strategy to suppress the redundancy of
the auxiliary feature maps and generate abundant features.
In addition, the SSFC strategy can efficiently model the
spatial-spectral dependence and guide the network learning
to focus on significantly changed objects without adding any
learnable parameters. Thus, the advantages of MSDConv and
SSFC complement each other. It is also demonstrated in
ablation studies. We demonstrate the interpretability of SSFC
by visualizing the feature activation of USSFC-Net. Fig. 7
shows the attention activation maps on the LEVIR-CD test
set.
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Fig. 7. Feature activation after SSFC on the LEVIR-CD test set. (a) Pretem-
poral image. (b) Posttemporal image. (c) Feature activation map. (d) Ground
truth. Red and yellow in (c) denote higher attention values.

TABLE IX

COMPARISONS OF SIAMESE USSFC-NET (SIAM) AND PSEUDO-SIAMESE
ONE (P-S1AM) ON THREE TEST SETS. THE BEST VALUES
(F1-SCORE) ARE IN BOLD

Network LEVIR-CD (%) CDD (%) DSIFN-CD (%) Params. (M)
Siam 89.58 94.06 57.80 1.19
P-Siam 91.04 94.74 69.47 1.52

C. Discussion on Siamese Network

The weight-sharing Siamese structure can map bitemporal
images to the same feature space, which has spatial-spectral
feature uniformity for metric-based CD methods. Since our
CD method is based on pixel-level classification, we consider
whether using a nonweight-sharing pseudo-Siamese structure
for bitemporal image feature extraction can improve the
detection accuracy. The pseudo-Siamese structure can inde-
pendently perform feature extraction for bitemporal images,
and the additional parameters introduced can achieve more
complex feature representation, which promotes the CD accu-
racy of the network. We train the weight-sharing Siamese
USSFC-Net (Siam) and the nonweight-sharing pseudo-
Siamese USSFC-Net (P-Siam) for the U-shaped network back-
bone, respectively. As shown in Table IX, the experiments
demonstrate that the P-Siam can obtain better detection accu-
racy. Thanks to our proposed MSDConv and SSFC strategies,
the pseudo-Siamese structure only increases the number of
parameters by 0.33 M.

VI. CONCLUSION

In this article, we have proposed a USSFC-Net for CD
in remote sensing images. The proposed USSFC-Net solves
the main problems of current CD by introducing MSDConv
and SSFC. Specifically, MSDConv can effectively extract
multiscale features of changed objects by designing a com-
pact structure. The SSFC strategy effectively captures global
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contextual information to refine features by comodeling spa-

tial

and spectral features and does not require any addi-

tional parameters. We tested USSFC-Net on three CD public
datasets. The experimental results indicate that our method
outperforms other competitive methods based on CNN or
Transformer in terms of CD accuracy, parameters, and FLOPs.

It is worth noting that with the popularity of deep learning
models, industrial deployments have become an important
challenge for the practical applications of current deep learn-
ing models. It is hoped that the proposed USSFC-Net can
effectively address the challenge of deployment of remote
sensing image CD on low-resource devices with improved CD
accuracy while achieving efficient simplification of the model.
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