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Compounding is the dominant morphological type inmodern Chinese words; however, its brainmechanisms remain unspecified.
Here, we aim to address this issue by manipulating three common morphological structures in Chinese disyllabic words in an
fMRI study: parallel, biased, and monomorphemic. Behavioral analyses show no significant difference in reaction times and error
rates among these three conditions. No difference in neural activation was observed in direct contrasts among these conditions in
univariate contrast analyses. A support vector machine categorization analysis reveals that the left inferior frontal gyrus (LIFG) is
the only region in the frontotemporal network that can differentiate the parallel from the biased disyllabic words in neural
activation patterns. 1is finding indicates that the LIFG is the core region responsible for morphological representation uni-
versally across different language modalities and morphological structures.

1. Introduction

Morphology is a linguistic branch that studies the internal
structures and syntax of morphemes. Morphemes are the
minimal meaning-bearing linguistic elements which convey
semantic and syntactic cues of written or spoken words.
1ere are three major morphological structures across
different languages: inflectional, derivational, and com-
pound. Previous research predominately focused on in-
flectional and derivational morphology which is prevalent in
Indo-European languages. For isolating languages like
Chinese, however, compounding is the predominant mor-
phological structure, and this remains relatively neglected in
the literature. To fill this gap, here we aim to shed light on the
brain mechanisms of compound morphological processing
in Chinese written word recognition.

Inflectional morphology is composed of one stem and one
or more inflectional affixes, such as regular past tense (e.g.,
“jumped� jump+ ed”) and regular noun plurals

(“dogs� dog+ s”). Connectionist models claim that regular
inflected forms are not decomposable and rather are pro-
cessed as overlapping whole forms [1, 2]. Other researchers
argue that stem morphemes (e.g., “jump” and “dog”) are
processed differently from regular inflectional morphemes
(”-ed” and “-s”), since morphophonological parsing of the
complex word form is needed in order to access the pho-
nological and semantic properties from the stem only [3].
Morphological decomposition is underpinned by a neural
network connecting the left inferior frontal regions with left
posterior superior and middle temporal regions via the ar-
cuate fasciculus, as greater activation was observed in these
regions in processing regularly inflected words than irregular
words [4]. Better behavioral scores in processing regular past
tense significantly correlate with higher grey matter density in
the left frontotemporal cortex, particularly the left inferior
frontal gyrus (LIFG) in brain-damaged patients [5]. Mor-
phophonological parsing is early and automatic on all possible
word forms including derivational complex morphemes (e.g.,
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happiness� happy +ness, builder� build + er) and pseudo-
derived words (e.g., corner� corn+ er; “corner” actually has
no morphological affix of “er”) [6, 7].

Different from Indo-European languages, Chinese has
almost no inflectional or derivational morphology, and
over 70% of all Chinese words are compounds with two or
more constituent morphemes [8]. Chinese morphemes can
stand alone as monomorphemic words. Syllables are the
phonological forms of Chinese morphemes.1ere are more
than 5000 morphemes and around 1300 syllables (with four
tones taken into account) in Chinese, so every syllable
corresponds to about four different morphemes on average
[9]. 1e orthographic forms of Chinese morphemes, i.e.,
characters, can differentiate different homophonic mor-
phemes. Word meaning is not a simple combination of
meanings of constituent morphemes; rather, it is the result
of interactions between them. Previous behavioural studies
have demonstrated that morphological parsing in com-
pound words is early and automatic, and the activated
morphological information facilitates the recognition
process of Chinese words [10–13]. However, the neural
mechanisms of compound morphology remain under-
specified since this has rarely been investigated in the
research literature.

In the present study, we aim to shed light on this issue
by manipulating three typical morphological structures in
disyllabic Chinese words, i.e., parallel, biased, and
monomorphemic compounds. In each parallel compound,
the two constituent morphemes contribute to the meaning
of the whole-word equally, while the meaning of each
biased compound mainly comes from the second mor-
pheme with the first morpheme as a modifier. We also
include a group of monomorphemic words as a baseline
condition. With comparisons among these three condi-
tions, we aim to reveal the neural network engaged in
processing or representing different morphological struc-
tures and also investigate whether compound morpho-
logical parsing is underpinned by the same left
frontotemporal neural network for processing inflectional
and derivational morphology as shown in previous Indo-
European language research. Given the automatic feature
of morphological parsing, we hypothesize to observe a
weak or even null effect of morphological processing in our
canonical neuroimaging analysis. To address this potential
issue, we plan to adopt a machine learning approach, i.e.,
support vector machine (SVM) categorization analysis, to
further explore the neural basis of morphological parsing,
and would expect to find that neural activation patterns in
the left frontotemporal language network, particularly the
LIFG, might function to differentiate different morpho-
logical structures.

2. Materials and Methods

2.1. Participants. Twenty young healthy adults (20–36 years,
mean age� 24; 10 males) took part in this study. All were
right-handed (Edinburgh Handedness Inventory, Oldfield
[14]) undergraduates or postgraduates in Tongji University
and native speakers of Chinese. All participants’ vision was

normal or corrected to normal. None of the participants had
major medical conditions (e.g., heart disease, stroke), psy-
chological or neurological disorders, or were taking medi-
cine which might affect the brain function or neural activity
[15]. All participants gave consent and were compensated for
their time.1is study was approved by the Ethics committee,
Department of Medicine and Life Sciences, Tongji
University.

2.2. Stimuli. To understand the neural mechanisms of
morphological representation, we manipulated three types
of morphological structures in common Chinese real words
in three conditions: parallel bimorphemic (PB), biased bi-
morphemic (BB), and monomorphemic (MM). 1e
meaning of two constituent morphemes contributes equally
to the whole meaning of each PB word, for example, “父母”
(parents) is a combination of first morphem“父”(father) and
the second morpheme母(mother). In contrast, the meaning
of each BB word originates mainly from the second mor-
pheme (i.e., word head), for example, “红豆” (red bean)
emphasizes the bean), (豆) while red (红) is only a certain
feature. Each MM word also consisted of two characters but
only a single morpheme, e.g., “坦克” (tank) cannot be di-
vided into two morphemes “坦” and “克” grammatically.
1ere are 88 words in each condition with word frequency
and stroke matched in between them (Table 1). We also
chose 132 meaningless nonwords as experimental fillers and
60 nonlinguistic symbols “####” as visual fixation controls.

All stimuli in each type were divided equally into four
parts by word frequency and number of strokes and then
allocated to each experimental run, respectively. As a con-
sequence, there are four runs in this fMRI experiment, with
each run composed of 22 PB words, 22 BB words, 22MM
words, 33 nonwords, and 15 nonlinguistic symbols. Each
stimulus was displayed in the center of the screen for
1000ms, followed by a short period of blank screen (see
Figure 1 for the illustration of experimental procedures).
Participants were instructed to press either the left button for
each meaningful word or the right button for each mean-
ingless nonword and symbol. Participants were instructed to
respond as quickly and accurately as possible. 1ey were
instructed to practice for short time to get familiar with the
procedure before going into the scanner. Response time
(RT) was recorded and calculated from the start of each
stimulus to the press of a button.1e trials were randomized
in display order and jittered with inter-trial-intervals (ITI)
varying from 2 to 6 s, (M� 3.2 s) using the Optseq2 program
[16]. Four display orders of these four experimental runs
were created using Latin square randomization, and each
participant was allocated to receive one display order ran-
domly. All stimuli were displayed using the software
E-Prime (https://pstnet.com/products/e-prime/), and the
total duration of each run is 6 minutes.

2.3.MRIAcquisitionandStatisticalAnalysis. All participants
were scanned in a 3.0 Tesla GEMR 750 whole-body human
scanner (General Electric, MilwaukeeWisconsin, USA) with
an eight-channel head coil at Tongji University. We chose a
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gradient-echo EPI sequence to collect functional scans, each
of which consisted of 40 contiguous oblique axial slices with
no gap between adjacent slices, voxel size� 3× 3× 3mm,
field of view (FOV)� 19.2×19.2 cm, time of repetition
(TR)� 2 s, echo time (TE)� 23ms, and flip angle� 77°. 1e
acquisition of slices in each scan was interleaved and parallel
to the AC-PC line. 1ere were 248 brain volumes in each
functional run that last for 8 minutes and 16 seconds. We
also collected T1-weighted structural images using a 3D
fSPGR pulse sequence for anatomical localization with 162
contiguous slices, voxel size� 1× 1× 1mm, FOV� 25.6 cm2,
TR� 7.64 s, TE� 2.94ms, and flip angle� 12°.

We preformed preprocessing and statistical analysis on
the collected functional and structure images in SPM12
(Wellcome Institute of Cognitive Neurology, London, UK.
http://www.fil.ion.ucl.ac.uk), under MATLAB (Mathworks
Inc., Natick, MA, USA). 1ree lead-in EPI scans were re-
moved in each run, and the remaining images were realigned
to the first image to correct for head motion, followed by
slice timing correction. T1 structural images were coregis-
tered to the mean images of all functional images and then
segmented into grey matter, white matter, and cerebrospinal
fluid (CSF). All images were normalized to a standard
Montreal Neurological Institute (MNI) template, using a
cutoff of 25mm for the discrete cosine transform functions.
We performed further statistical analyses using the general
linear model, with an 8mm full-width half-maximal
(FWHM) Gaussian smoothing kernel.

In the fixed-effect analysis for each participant, all the
experimental stimuli were modeled in six independent events:

PB, BB,MM, nonwords, visual fixation, and errors. Trials in the
error event consisted of both trials with incorrect responses and
those with RTover 3000ms. Trials in the error event accounted
for 4.7% of all trials. A canonical hemodynamic response
function (HRF) was used to model each trial.1e onset of each
trial was calculated and inputted into the model with
duration� 0, in order to flexibly detect the peak activation for
each trial. 1e data for each run were first analyzed and then
averaged across the four runs for each participant, and the
activation maps for each contrast (e.g., PB minus null events,
BB minus null events, and MM minus null events) in each
participant were input into random effects analysis at the group
level. Significant activations were reported at p< 0.001, voxel-
level uncorrected, and p< 0.05, corrected at cluster level for
multiple comparisons. Coordinates of all peaks of significant
clusters in this studywere inMNI space. Accurate brain regions
of activations were identified using the Brodmann templates
and AAL Atlas [17] as implemented in MRIcron (http://www.
MRicro.com/MRicron) and verbally delineated in Section 3.

2.4.Regionsof Interest (ROIs). To performmachine learning
analysis, we defined four ROIs based on significant acti-
vation clusters in a major experimental contrast of real
words minus null events. Neural activity within each ROI
was extracted using Marsbar (region of interest toolbox for
SPM) for each contrast of interest and each participant.
Voxel activation values served as the input features to the
Support Vector Machine classifier. In the present study,
the dimension of the feature vector r was much larger than

Table 1: Characteristics of stimulus in each experimental condition with mean values.

Condition Word frequency Stroke First character frequency Second character frequency
PB 9.64 18.45 126.72 111.77
BB 9.64 16.29 502.23 314.88
MM 9.64 20.9 54.34 20.95
Non-words 0 17.92 231.79 144.82
Key: PB� parallel bimorphemic words, BB� biased bimorphemic words, MM�monomorphemic words.

Biased bi-morphemic
(1000ms)

Mono-morphemic
(1000ms)

Inter-stimulus-interval
(2000–6000ms)

(Ridiculous)

Fixation
(1000ms)

1

2

3

114

Inter-stimulus-interval
(2000–6000ms)

Nonword
(1000ms)

Time: 6min

(Field mouse)

(Dream
mysterious)

####

Figure 1: Illustration of the experimental procedure with examples of stimuli.
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the number of training samples, N. 1erefore, dimen-
sionality reduction was necessary to project samples into a
low-dimensional space, which also reduced the compu-
tational complexity of the classifier.

2.5. SupportVectorMachine. Support VectorMachine (SVM)
is a machine learning method proposed and developed on the
basis of statistical learning theory. It has many unique ad-
vantages in nonlinear, small sample, and high-dimensional
pattern recognition, so it is widely used in solving machine
learning problems. For data that are linearly indivisible in N
dimensions, spaces above N+1 have a greater chance of be-
coming linearly separable. 1erefore, we can map linearly
indivisible data to a linearly separable new space and make
predictions in the new space with the hard interval SVM or the
soft interval SVM. In this way, we change the original problem
of differentiating between neural activation patterns for the
different stimulus classes to one where the patterns for each
class can be linearly separable in the new space.

In our current work, we use SVM for binomial classi-
fication. 1e basic model is defined as a linear classifier with
the largest interval in the feature space, and its learning
strategy is to maximize the interval, which can eventually
transform the problem into the solution of a convex qua-
dratic programming problem. 1e ultimate goal of this
analysis is to try to distinguish the difference in the acti-
vation patterns in the regions of interest of 20 subjects in two
conditions, which is essentially a binary classification
problem that the method of SVM can well meet for the
purpose of this experiment.

2.6. Classifier Performance. We evaluated the performance of
the classifier using cross-validation. For each cross-validation
run, 18 participants were chosen to train the classifier and the
two remaining participants were used for testing. 1is pro-
cedure was repeated 190 times, with all possible combinations
of two subjects considered in testing across the 190 cross-
validation runs. 1e classifier accuracy was measured by the
proportion of observations correctly classified.

3. Results

3.1. Behavioral Results. Response times and accuracy on all
trials were recorded and averaged for each experimental
condition (PB words: mean RT� 758ms, error rate� 3.7%; BB
words: RT� 739ms, error rate� 2.8%; MM words:
RT� 754ms, error rate� 3.5%). We performed an ANOVA
(Analysis of Variance) on RTs of correct trials among these
three conditions, but found no significant difference (F� 0.12,
p> 0.5). No further analysis was performed on the error trials
since the error rate in each condition was very low (all<5%).

3.2. Imaging Results. 1e first step in the neuroimaging
analysis was to test whether the task produced activations in
those cortices was typically engaged in written word rec-
ognition. We addressed this issue by comparing all words
against the fixation baseline. As shown in Figure 2 and

Table 2, Chinese word recognition produced greater acti-
vation than fixation primarily in the left inferior frontal
gyrus (LIFG), bilateral lateral occipital cortex (LOC), and
supplementary motor area (SMA). 1is is a typical neural
network for written word processing which has been widely
observed in the previous studies [18–20].

To explore the neural substrates of morphological rep-
resentation, we performed a one-way ANOVA with three
morphological conditions as input levels: PB words minus
null events, BB words minus null events, and MM words
minus null events. No significant difference was found
among these three conditions.

3.3. SVM Results. 1e null effects of morphological pro-
cessing in the above univariate analyses indicate that PB, BB,
and MM words might activate the left frontotemporal
network to the same amplitude level. To test whether the
neural activation patterns are the same across these three
conditions, we performed SVM binary classification analysis
which is sensitive to differences in pattern-information
rather than activation magnitude (see Figure 3 for the il-
lustration of the analysis steps). In a whole-brain analysis,
classification accuracy for three contrasts (PB
words–fixation vs. BB words–fixation; PB words–fixation vs.
MM words–fixation; BB words–fixation vs. MM
words–fixation) did not differ significantly from chance
levels (mean< 52%, significance test p< 0.005).

1e whole-brain analysis includes all voxels in the brain,
which might reduce detection sensitivity of SVM since some
brain regions included might not be involved in morpho-
logical processing. To solve this problem, we chose the four
significant clusters from the canonical contrast of words
minus fixation as regions of interest (ROIs) : LIFG (BA47),
left and right LOC (BA18/19), and SMA (BA6) and per-
formed the SVM analysis in each ROI (Table 2). In the LIFG
ROI, the accuracy of classification for the PB and BBwords is
75.8%, which is above chance (p< 0.001). However, the
LIFG cannot distinguish PB or BB words from MM words
(both accuracy< 70%). None of the other three ROIs (SMA
and left and right LOC) could distinguish between any of
these three conditions (all accuracy< 70%) (Table 3).

4. Discussion

In this study, we manipulated three morphological
structures in Chinese disyllabic words to explore the

0 4 8

Figure 2: Significant activation for the direct contrast of words minus
fixation at a threshold of p< 0.001, uncorrected at voxel-level, and
p< 0.005, corrected at cluster-level. Color bar shows t values of contrast.
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(a) (b)

(c) (d)

SB words minus MM words

PB words minus MM words

x1

x2

(e)

Figure 3: Four ROIs were selected based on the significant clusters in the contrast of all words minus fixation: (a) LIFG (pink), (b) SMA
(red), (c) LLOC (yellow), and (d) RLOC (purple). (e) SVM binary classification analysis: different activation patterns were extracted from
different conditions within each ROI, and voxel values were defined as the characteristics of the classification of each ROI.

Table 2: Areas of activity for the contrast of words minus fixation.

Regions BA Extent Max. Z
MNI

x y z
LIFG 47 61 3.87 −39 29 −16
LLOC 18,19 311 4.57 −36 −85 −7
RLOC 18,19 179 4.63 33 −88 −10
SMA 6 90 3.78 −6 23 −65
Key: LIFG� left inferior frontal gyrus, LLOC� left lateral occipital cortex, RLOC� right lateral occipital cortex, SMA� supplementary motor area.
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neural mechanisms of compounding morphology. We
did not observe significant differences among these three
conditions in canonical neuroimaging analyses but found
that LIFG can differentiate the parallel from the biased
morphological structures in an SVM analysis. 1is
finding is in line with previous studies in that morpho-
logical parsing or representation–irrespective of whether
it is inflectional, derivational, or compound–is supported
by a left frontotemporal network [3, 5, 6]. 1e commonly
activated LIFG across this study and many others indi-
cates that this region might be the core location for
morphological processing universally across different
morphological structures and different language mo-
dalities. In contrast, other activated regions, such as the
LOC and SMA, cannot differentiate different morpho-
logical structures. 1e LIFG has been widely reported in
many different levels of Chinese language representation,
such as phonological, semantic, syntactic, and morpho-
logical processes. A relevant study on Chinese word
recognition found that the morpheme-word incon-
gruency effect was weaker in left IFG in Chinese dyslexia
[21]. LIFG might be engaged in detecting and encoding
morphological information of Chinese words and also
constitute and parse the mental structures of various
constituent morphemes.

Compounding is a special morphological structure that
combines two morphemes directly together without explicit
changes in word form; therefore, decomposition of com-
pound words cannot rely on word form (i.e., affixes) as in
inflectional and derivational words but more likely depends
on the meaning of each constituent morpheme. 1e rela-
tively implicit morphological structure (without explicit
form changes) might explain, in part, the null effect of
contrasts between different morphological structures in
canonical fMRI analyses. Another possible explanation is
that we used a lexical decision task in this study rather than a
more explicit morphological priming paradigm as used in
the previous behavioral research. No difference was found
between disyllabic compounds andmonomorphemic words,
which could be interpreted partly by the explicit boundaries
of constituent Chinese characters. From the decomposition
point of view, the two constituent characters in a mono-
morphemic word might be processed separately and then
combined together as a single morpheme, in a process that is
very similar to that found for disyllabic compounds.

In contrast to the decomposition hypothesis on com-
pound word processing, there was another account in
support of representation of compounds as whole-word
units [12, 22] as there were no direct links between words

sharing the same morphemes at the lexical level. According
to the economic rule of cognitive processing, the affix in
inflectional and derivational words provides some regular-
ity, for example, “-ness” is an index of nouns, so it might be
more efficient to segment the word into stem+ affix than
create another new noun. However, there is no such reg-
ularity in Chinese compounds, so segmentation of con-
stituent morphemes is unlikely efficient and necessary. Our
experimental findings could also be interpreted under this
framework in that both disyllabic compounds and mono-
morphemic words are processed as whole-word units
without early segmentation, so there was no behavioral and
neural activation difference between these two conditions.
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