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Abstract—With the rise of artificial intelligence, deep learn-
ing has become the main research method of pedestrian recog-
nition re-identification(re-id). However, most of the existing
researches usually just determine the retrieval order based on
the geographical location of cameras, which ignore the spatio-
temporal logic characteristics of pedestrian flow. Furthermore,
most of these methods rely on common object detection to
detect and match pedestrians directly, which will separate the
logical connection between videos from different cameras. In
this research, a novel pedestrian re-identification model assisted
by logical topological inference is proposed, which includes:(1)
A joint optimization mechanism of pedestrian re-identification
and multi-camera logical topology inference which makes the
multi-camera logical topology provide the retrieval order and
the confidence for re-identification. And meanwhile, the results
of pedestrian re-identification as a feedback modify logical
topological inference. (2) A dynamic spatio-temporal infor-
mation driving logical topology inference method via con-
ditional probability graph convolution(CPGCN) with forest-
based transition activation mechanism(RF-TAM) is proposed,
which focuses on the pedestrian’s walking direction at different
moments. (3) A pedestrian group cluster graph convolution
network(GC-GCN) is designed to measure the correlation
between embedded pedestrian features. Some experimental
analysis and real scene experiments on datasets CUHK-SYSU,
PRW, SLP and UJS-reID indicate that the designed model
can achieve a better logical topology inference with accuracy
of 87.3%, and achieve the top-1 accuracy of 77.4% and the
mAP accuracy of 74.3% for pedestrian re-identification.

Index Terms—pedestrian re-identification, graph convolu-
tion network, logical topology inference.

I. Introduction

PEDESTRIAN re-identification(re-ID) is a research
focusing on computer vision technology. It aims to es-

tablish identity correspondences across different cameras.
Although many researchers have made explorations in the
field of pedestrian re-ID and got some achievements, it is
still very hard to do re-identify pedestrian in a large-scale
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Fig. 1. The multi-cameras logical topology refers to the inherent
pedestrian logical relationship among multi-cameras. The task of
pedestrian re-identification is to search a specific pedestrian in
non-overlapping cameras. The logical topology information between
multi-cameras can effectively assist pedestrian re-identification.

surveillance system. Because there are serious external
factors such as occlusion and illumination change which
will reduce the robustness of pedestrian features.
For the pedestrian re-identification problem, it is usu-

ally considered as a metric learning task [3]. In some
methods, the pedestrian in the pedestrian gallery are
simply matched, and the error of the target pedestrian
in the complex multi-camera scene is ignored. In other
words, the logical topology information between multi-
camera network is ignored. In fact, as shown in Fig. 1,
the logical topology information between multi-cameras
can effectively assist pedestrian re-ID. The multi-camera
logical topology is a representation of inherent pedestrian-
based spatial-temporal correlation between multi-cameras
and the task of pedestrian re-identification is to search a
selected pedestrian in variable cameras.
To discover the spatial-temporal correlation between

cameras, many researchers have proposed effective meth-
ods to predict the logical topology between multi-cameras.
In the early years, some methods [24], [26] inferred the
multi-camera topology via simple occurrence correlation
between special events of people. Such methods need some
prior knowledge which is related to the camera entering
and exiting point, and make too much false matching.
In recent years, some novel approaches [30], [38] infer-
ring topology based on pedestrian appearance have been
proposed. This type of methods have greatly improved
the re-identification accuracy. Furthermore, some methods
[8], [9] apply the multi-camera topology to pedestrian
re-identification to optimize the retrieval order of the
multi-camera. As a result, the efficiency of pedestrian re-
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identification is also improved.
Although the above work has make great efforts to

address the mentioned problems, these research works
totally have weaknesses as below: 1)Most of the work sepa-
rate the logical topology inference of the non-overlapping
cameras from re-identification. Although these methods
obviously improve the results of re-identification in same
ways, the effect of such methods will be greatly reduced in
multi-camera scene. 2) Most of the existing camera logical
topology inference methods model correlation based on the
video sub-area where the pedestrian appeared or based on
the pedestrian appearance. They ignore people’s behavior
tends changing dynamically over time throughout the
day. The logical topology of the camera in different time
periods should change dynamically.

To address these deficiencies, an novel pedestrian re-
identification model assisted by logical topological infer-
ence is proposed in this paper. The relationship of the
multi-camera videos is considered in the proposed model
to provide retrieval order and confidence for pedestrian
re-identification, not just based on the distance between
the cameras. And then the results of pedestrian re-
identification will update the score of the logical topolog-
ical inference. And the group cluster graph convolution
network(GC-GCN) is provided to measure the distance of
a cluster of pedestrian features, and can obviously improve
the accurate of pedestrian re-identification. In general, it
can provide more efficient and accurate pedestrian re-
identification directly to the surveillance video environ-
ment.

The main contributions of this work are as below:
1) A joint optimization mechanism of pedestrian re-

identification and multi-camera logical topology in-
ference is designed. The multi-camera logical topol-
ogy provides the retrieval order and the confidence
of pedestrian re-identification. Meanwhile, the re-
sults of re-identification as a feedback will modify
logical topological inference. The logical topological
structure of the camera system can be discovered
precisely by the joint optimization mechanism, so
that the results of pedestrian re-identification will
be re-ranked according to the multi-camera logical
topology, thereby the accuracy of pedestrian re-
identification can be improved.

2) A dynamic spatio-temporal information driving
logical topology inference method via conditional
probability graph convolution(CPGCN) is proposed,
which focuses on four view directions of one video at
different times. A forest-based transition activation
mechanism(RF-TAM) is proposed to measure the
inherent spatial-temporal and causal relationships
within and across non-overlapping multi-cameras.

3) A pedestrian group cluster graph convolution
network(GC-GCN) is designed to measure the cor-
relation between embedded pedestrian features in
multi-camera system. In generally speaking, pedes-
trians tend to walk in groups among different
cameras. Most members of a group appearing in

the video of a camera will appear in the video
of another logically related camera with a high
probability. Therefore, a GC-GCN is designed to
model this process, the group pedestrian matching is
used to assist pedestrian re-identification with single
pedestrian.

There is a simple summary of the relationship between
the three contributions: First, the first item proposes a
joint optimization mechanism to jointly learn pedestrian
re-identification and logical topological inference, so that
the two can promote each other. Secondly, within the joint
optimization mechanism, the logical topology inference
method driven by the dynamic spatiotemporal information
described in the second item and the pedestrian re-
identification method based on the GC-GCN described in
the third item are proposed. That is, the second and third
items are the two sub-components of the joint optimization
mechanism in the first item about logical topological
inference and pedestrian re-identification.
The structure of this paper is described as below:

The research motivation and innovation of this paper
are introduced in the first section(Sec. I), The existing
research results in this research field are introduced in
the second section(Sec. II), the proposed model of logical
topology inference is described in the third section(Sec.
III). The settings and the results of the experiments and
the analyses of the proposed method are shown in the
fourth section(Sec. IV). The last section(Sec. V) is a
conclusion of this paper.

II. Related Work
A. Pedestrian re-identification
As a research hotspot in the field of artificial intelli-

gence, pedestrian re-identification has been proposed for
many years, and has numerous research results. Tradi-
tional pedestrian re-identification research treat the re-
identification as a metric learning problem. Many re-
searchers have proposed various pedestrian identification
methods such as [6], [19], [21], [22], [32], [42], [45] based
on metric learning. Most methods combine pedestrian
attribute classification with ID classification to measure
the distance of pedestrian features. Miraj et al. [1] use
hypothesis transfer learning to measure the metric be-
tween multi-cameras. The main idea of this method is
transfer the prior knowledge from the existing models
and just using the original models and limited annotation
dataset. Kaiwei et al. [49] propose a fully unsupervised
method: HCT, which only uses the unannotated labels.
They regard the samples with different labels as a cluster,
and then combine a fixed number of clusters according
to the cluster distance. Then, after all the clusters are
merged, the pseudo label will be reset. Finally, the model
is optimized by the triplet loss. The experiment shows
that their unsupervised method reaches a good perform
on the mission of re-identification.
In these few years, there are some researchers have be-

gun to consider combining detection and re-identification
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Fig. 2. A diagram illustrating the approach for the joint optimization mechanism of pedestrian re-identification and multi-camera logical
topology inference.

into a whole identification problem named as pedestrian
search. During these works, Xiao et al. [44] design the
original person search network. Different from the con-
ventional ID classifier, they design a pedestrian feature
matrix to save the ID of each batch in the training process.
Munjal et al. [28] propose a new query-based person
search network which extracts the global information from
the dataset and then outputs a query-based context re-
identification score. Chen et al. [4] propose a feasible
pedestrian re-identification model, which uses two separate
CNN streams to extract foreground information and fea-
tures patches, respectively. The method not only extracts
robust features for each person ID but also considers
the information complementarity of the background. Yao
et al. [47] introduce an OR similarity indicator, which
includes an objectness branch and a exclusion branch.
The objectness branch can slow down the impact of noisy
features, and improve the accuracy of person search in a
way of ranking samples.

Although the existing methods have made great
progress in accuracy, the multi-camera logical topology
is not applyed to the re-ID task. Therefore, the existing
methods are not suitable to the complex distributed multi-
camera system directly.

B. Multi-camera logical topology inference

To discover the spatio-temporal correlations of multi-
cameras, many researchers have tried to build multi-
camera topology and camera coordinate. Some researches
[2], [31], [34]–[37] directly define the logical topology of
multi-camera. But in fact, in most cases, the logical
topology of multi-camera is unknown. Thus, it is nec-
essary to design a method to obtain the multi-camera
logical topology. Many methods for estimating the logical
topology of non-overlapping multi-camera system have
been proposed. According to different research strategies,
these methods can be sorted into two categories: one
is unsupervised method of inherent pattern matching
through a specified area in camera view and another is

relying on calibrated cameras and inter-camera object
tracking such as person tracking.
1) Inherent pattern matching with specified regions of

camera view: Loy et al. [24] propose an unsupervised
method which divides the camera view into multiple
sub-areas, and then calculates the similarity within the
corresponding sub-active area in view of the two cameras.
His method successfully solves the problem that the
camera needs to be calibrated, and achieves the purpose
of calculating correlation by matching the patterns of
multiple dynamic regions in camera view. However, this
mode ignores the walking directions of pedestrians, and
the resulting logical topology is the absolute positional
relationship between the cameras. Li et al. [17] divide
the camera view into some sub-areas and try to find the
co-occurrence of sub-areas. This method achieves good
results to a certain extent, but it is not suitable for
distributed multi-camera system. Therefore, this method
can not model the transition delay between cameras.
2) Relying on calibrated cameras and inter-camera

person tracking: Javed et al. [34] firstly propose a model
using the object tracking methods within the camera
views to obtain correlations. Their method can determine
the correlation between cameras through pedestrian tra-
jectories, but this treat is easily affected by occlusion,
camera orientation, and dynamic appearance of clothing.
The problem of person tracking is still unsolved. Nam
et al. [29] introduce a model to estimate multi-camera
logical topology which based on the results of object
tracking. Although their method is taken into account
the change in orientation of pedestrians during walking,
they still rely on the color model to identify and match
pedestrians. Some proposed methods [15], [40] calculate
correlation by building the transition time which is de-
tected in different camera views. Makris et al. [27] define
and observe the activity of person and build the multi-
camera logical topology according to the activity between
cameras. Their method can effectively avoid solving the
correspondence problem. However, their method requires
camera calibration in advance and is not suitable for
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complex and large surveillance systems. In recent years,
more advanced methods have been designed. Cho et al.
[9] joint the pedestrian re-identification and multi-camera
logical topology into a model for training. In their method,
the random forest is applied to re-identify pedestrian in an
unknown multi-camera system. However, the disadvantage
is that the logical topology inferred by their method
can not be updated dynamicly. As we all know, people’s
walking directions tends to change dynamically over time
throughout the day. Therefore, the logical topology of
the camera in different time periods should also change
dynamically.

III. Method
In this section, the proposed joint optimization mech-

anism of pedestrian re-identification and multi-camera
logical topology inference will be introduced in detail. In
the method, the multi-camera logical topology provides
the retrieval order and the confidence of pedestrian re-
identification. Moreover, the results of pedestrian re-
identification as a feedback will modify logical topological
inference. After several iterative trainings, the inferred
logical topology tends to be a stable state. It can provide
accurate retrieval order and confidence for pedestrian re-
identification. The Fig. 2 is the framework of the proposed
mechanism. In order to describe the operation process of
the whole model in details, we use an abstract formula 1 to
express the mutual promotion between the pedestrian re-
identification model and the logical topological structure
inference model.

ρCA,CB
(target) =

[argmin(||Xi
CA

− Y j
CB

||)] ∗ P (CB |ParG(CB))
(1)

where ρCA,CB
(target) refers to the similarity of the pedes-

trian target between cameras CA and CB . Assume that
camera CA is the camera where the target pedestrian
first appears, and CB is any camera in the multi-camera
system. The formula argmin||Xi

CA
−Y j

CB
|| is mainly solved

by the deep learning model GC-GCN(Sec.III-B). Xi and
Y j represents the i− th pedestrian feature and the j− th
pedestrian feature in cameras CA and CB , respectively.
P (CB |ParG(CB)) represents the weight of camera CB

in the multi-camera system, and the weight is obtained
through logical topology inference(Sec.III-A3).

A. Dynamic logical topological inference
We fully consider the pedestrian’s walking direction and

build the spatiotemporal relationship between cameras.
Then, the logical topology between the cameras is inferred
based on the spatiotemporal and causal relationship,
so as to optimize pedestrian re-identification. In this
subsection, a dynamic logical topological inference ap-
proach is proposed. During the approach, a random forest
is utilized to establish the camera-to-camera transition
distribution and a random forest-based transition acti-
vation mechanism(RF-TAM) is proposed to active the

neighbor nodes with a probability. Then a spatiotemporal
information aggregation(STIA) model is proposed to infer
the dynamic logical topology. An diagram of our approach
is given in Fig. 3.

Pedestrian walking trajectories usually pass through
multiple cameras, so it is reasonable to count the occur-
rence of pedestrians among multiple cameras and estab-
lish correlations. The designed end-to-end pedestrian re-
identification framework is applied to detect pedestrians.
In order to model the walking directions of pedestrians
well, we establish observation points as shown in Fig. 4 for
the camera’s field of view: defining the observation points
O1, O2, O3, O4 along the directions of top, right, bottom
and left of the view field. During pedestrian detection
and re-identification, the entry and exit points of pedes-
trians at the sight observation points will be recorded.
The pedestrian similarity distribution is supposed that is
established between the two cameras CamA and CamB .
CamA is marked as the source camera and CamB is
marked as the target camera. The extracted pedestrian
features are stored in the s_gallery and t_gallery re-
spectively. s_gallery stores the pedestrian features of the
source camera CamA, and t_gallery stores the pedestrian
features of the target camera CamB .

1) Local camera-to-camera transition distribution es-
tablishment: Although there are many re-identification
models improving the re-identification performance, in the
complicated surveillance system, factors such as illumina-
tion and occlusion will do harm to the re-identification.
When handling the task of a large number of pedestrians
in surveillance system, we have tested several widely used
classifiers such as convolutional neural networks(CNN),
graph convolutional networks(GCN) and random for-
est(RF). Because of the strong interpretability of deci-
sion tree and random forest structure, we can clearly
understand the optimization process of the model, so
as to better adjust the performance of the model. The
RF can minimize the recognition error, which caused by
external factors on rough pedestrian re-identification task.
Therefore the RF is employed in our application finally.

A set of pedestrian features in a camera captured by a
object detection model is denoted as:

FCA =
{
(fCA

i,j , yi)|1 ≤ i ≤ NCA , 1 ≤ j ≤ MCA
i

}
(2)

where yi is the annotation of pedestrian i, MCA
i denotes

the number of features of person i in camera CA, and NCA

is the total number of pedesstrians. Moreover, a random
forest is trained according to the set FCA .
For a person j in the video captured by camera CB , the

transition distribution can be estimated by aggregating
outputs as:

PCA(y|vCB

j,l ) =
1

N

N∑
t=1

PCA
t (y|vvB

j,l ) (3)

where PCA represents the probability of the decision tree,
N represents the number of decision trees,v denotes the
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Fig. 4. Establish observation points in different directions for the
camera’s field of view.

features of pedestrian appearance, and vCA
j denotes the k-

th appearance of pedestrian i in camera CA , respectively.
To achieve a multiple target re-identification result,

we expand this case: the observation points are marked,
multiple features of person j are extracted and the results
are averaged as:

PC
AOp (y|vCBOq

j ) =
1

M
C

AOp

j

M
C
AOp

j∑
l=1

PC
AOp (y|vCBOq

j,l ) (4)

where MCA
j is the number of features of the person j.

CAOp and CBOq denote the observation point p in camera
A and the observation point q in camera B, respectively.
The whole transition establishment process is shown in
Fig. 3(b).

2) RF-based node transition activation mechanism: In
fact, not all the transition distribution is effective due to
some missing and false matches. In this case, a RF-based
transition activation mechanism(RF-TAM) is proposed.
As shown in Fig. 3(c), the multi-camera topology can
be formalized as a graph structure. Actually, it can be
defined as G(V,E), among then V denotes the cameras
and E denotes the inter-camera transition distribution.
In the graph, each camera node v has two status: active
or inactive. An active node set is defined as S0. Initially,
S0 only contains the camera node in which the pedestrian
appear firstly. For each neighbor node B, it has a threshold
θB defined as:

θB =
Din

Din +Dout
(5)

where Din and Dout denote the in-degree and out-degree
of node B respectively.

In the update process, each node in S0 has an opportu-
nity to activate neighbor nodes which in inactive status.
The neighbor node B will be activated if the following
conditions are met:

PC
AOp (y|vCBOq

j ) > θB (6)

The iterative update strategy as shown in the following
steps:

• Step 1: Given the initial set of active nodes S0, when
node A is activated at time t, it has a chance to affect
its neighbor node B. The condition for successfully
activating the neighbor node is PC

AOp (y|vCBOq

j ) >
θB .

• Step 2: If B has multiple neighbor nodes that are all
newly activated nodes, then these nodes will try to
activate node B. If node A successfully activates node
B, then at time t+1, node B will become active and
be added to the set of active node set S0.

• Step 3: At time t+1, the activated node B will have
an impact on other neighboring nodes, that is, it will
try to activate other neighboring nodes, and repeat
the above process of Step 1 and Step 2.

All activation processes are independent. When no node
can be activated, the activation process ends. Each node
has only one chance to activate its own neighbor nodes.
When the activation process is over, a final active nodes set
S0 is obtained. The overall process of RF-based transition
activation mechanism(RF-TAM) is shown in algorithm
1. The computational complexity of RF-based transition
activation mechanism(RF-TAM) is at the O(n2) level. RF-
TAM is essentially an influence propagation maximization
model. The fault tolerance of the model can be increased
by maximizing the correlation of the node to its neighbor
nodes.
3) Global multi-camera topology inference: In a multi-

camera system, the state of one camera is not only affected
by neighboring camera nodes, but also related to the state
of the previous cameras. Therefore, conditional probability
is used to model the global correlation of the camera and
the joint distribution in the graph is solved by Bayesian
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Algorithm 1: Framework of RF-based transition
activation mechanism(RF-TAM)
Input: N :Camera node collection
Output: G(N,W,A):a set of information graph

with influence maximization
1 for i ∈ N do
2 for j ∈ neighbour_node(Ni) do
3 Statistical pedestrian distribution:

Pi(X) = Nµu,
∑

u
(X),

Pj(Y ) = Nµv,
∑

v
(Y );

calculate information: Wi,j(t, Om, On);
4 end
5 Build information graph: G(N,W );

k=0,j=0,a set of activated nodes A;
assign threshold θj =

Din

Din+Dout
;

while k=0 or (Ak ̸= Ak, k ≥ 1) do
6 Ak+1 = Ak; inactive = N −Ak for all

j ∈ inactive do
7 if

∑
l connected toj,l∈Ai

Wl,j ≥ θj then
8 activate j; Ak+1 = Ak+1

∪
{j};

9 end
10 end
11 i=i+1;
12 end
13 G(N,W,A) append Gi(Ni,Wi, Ai)
14 end
15 Return G(N,W,A)

network(BN). The BN means a joint distribution via the
chain rule for Bayesian networks:

BN = P (Cam1, ..., Camn) = ΠiP (Cami|ParG(Cami))
(7)

where Par(Cami) denotes the parent nodes of node i, and
Par(Cami) ∈ S0. For a specific node i, its conditional
probability can be expressed as:

P (Cami|ParG(Cami)) =
P (Cami ∪ ParG(Cami))

P (ParG(Cami))

=
P (ParG(Cami)|Cami) ∗ P (Cami)

P (ParG(Cami))

=
P (ParG(Cami)|Cami) ∗ P (Cami)∑n

j=1 P (Camj) ∗ P (P (ParG(Cami)|Camj)

(8)

At last, the spatio-temporal information aggrega-
tion(STIA) model is proposed to infer the dynamic logical
topology. The overall structure of the inference model can
be shown in Fig. 3(d). The entire model is an encoder-
decoder structure. For the encoder part, the time series
of the first M moments are encoded as the initial hidden
state in the decoder. And the state of the first M moments
and the state of the current moment jointly predict the
logical topology order of the future M moments in the
decoder part.

In GCNCell, a Conditional Probability Graph Convo-
lution Network(CPGCN) structure is used to aggregate
spatial features. G(C,A,CPG) represents this CPGCN

structure. C represents the set of camera nodes in the
multi-camera network, and C = {cam1, cam2, ..., camN}
while N denotes the number of camera nodes. A represents
the adjacency matrix in the camera system. A is a binary
matrix and A ∈ RN∗N . Aij = 1 when Aij is a connection
between node i and j, otherwise Aij = 0. CPG is a
matrix with N ∗N items, which represents the conditional
probability of the corresponding camera in the information
graph. The graph convolution process is described as
follows:

F = GCN(A,CPG) = σ(D̃− 1
2 ∗Ã∗D̃− 1

2 ∗CPG∗W ) (9)

where Ã denotes adjacency matrix with self circulation,
which is represented as Ã = A + I, D̃− 1

2 denotes degree
matrix, and CPG denotes the conditional probability. The
whole hidden layer structure is expressed as:

hl+1
v = ReLU(b(l) +

1

Nv

∑
u∈Nv

h(l)
u CPG(l)) (10)

B. Group correlation graph model for pedestrian re-
identification
During this section, a backbone model is applied to ex-

tract low-dimensional features and then a designed multi-
scale heatmap attention mechanism(MHAM) is used to
improve the coordinate box of the pedestrians. The center
point of features and coordinate box of the pedestrian are
iteratively optimized in training process. Moreover, the
pedestrian group cluster graph convolution netwotk(GC-
GCN) is designed to calculate the distance of features.
Fig. 5 shows the pedestrian detection and re-identification
framework.
1) Multi-scale heatmap attention and offset optimiza-

tion of pedestrian detection: As a backbone, the ResNet
is applied to extract low-dimensional pedestrian fea-
tures. Then a multi-scale heatmap attention mecha-
nism(MHAM) is designed to calculate the weight on low-
dimensional features and thus enhance its robustness. In
an uncropped image, except for foreground information
such as pedestrians, there are many noisy backgrounds
with rich texture information. These noise information
will have a great impact on the model. As a measure
to solve this problem, the MHAM will add weights to
the low-dimensional features and find the hot area of the
pedestrian in the features. Finally, the weighted features
will be sent into the detect head to do detect pedestrains.
Traditional object detection usually performs poorly on

datasets with only pedestrians, mainly due to mismatches
caused by similar appearances of pedestrians and inac-
curate coordinates obtained through regression. In order
to solve the problem of imbalanced classification within
class, the detection head part of MHAM relies on the
regression coordinates box as well as uses the center point
of the pedestrian feature as an auxiliary recognition. The
bounding box coordinate is calculated by optimizing the
offset between the center of the features and the detection
coordinate.
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Fig. 5. An overview of the end-to-end pedestrian re-identification framework.

For a image, each pedestrian bounding box is defined
as bi = (xi

1, y
i
1, x

i
2, y

i
2). The pedestrian center point(cix, ciy)

is assigned as cix =
xi
1+xi

2

2 and ciy =
yi
1+yi

2

2 , respec-
tively. (xi

1, y
i
1) and (xi

2, y
i
2) are the top left point and

the down right point of the pedestrian coordinate, re-
spectively. The position of the bounding box can be
calculated by (c̃ix, c̃

i
y) = (⌊ cix

4 ⌋, ⌊ ciy
4 ⌋). Meanwhile, the

heatmap of the position (x, y) can be defined as Mxy =∑N
i=1 exp

−
(x− ˜

cix)2+(y− ˜
ciy)2

2σ2
c . Among them, N and σc is the

number of pedestrians and the standard deviation, respec-
tively. The model is trained with focal loss and in a form of
pixel-wise regression. The training focal loss can be shown
as below:
Lh =

− 1

N

∑
xy

{
(1− M̂xy)

αlg(M̂xy) if Mxy = 1;

(1− M̂xy)
β(M̂xy)

αlg(1− M̂xy) otherwise

(11)

where M̂ denotes the heatmap of the image, and α, β are
the parameters.

The size of the bounding box is defined as Ŝ ∈ RW∗H∗2

and the offset between bounding box and center point is
defined as Ô = RW∗H∗2. Each ground truth of the image
is assumed as bi = (xi

1, y
i
1, x

i
2, y

i
2), then the size of the

ground truth can be calculated by si = (xi
2 − xi

1, y
i
2 − yi1).

Furthermore, the ground truth offset can be obtained by
oi = (

cix
4 ,

ciy
4 )− (⌊ cix

4 ⌋, ⌊ ciy
4 ⌋). The output size and offset of

the bounding box are defined as Ŝi and Ôi, respectively.
Then l1 loss is enforced for the two outputs:

Lbox =
N∑
i=1

||oi − ôi||1 + ||si − ŝi||1 (12)

The clipped pedestrians can be obtained by a spatial
transformer networks(STN) with the MHAM and the
pedestrian head detection. Usually in the real world, when
multiple pedestrians wear similar clothing, the appearance
of a single pedestrian is very similar to other pedestrians,
which has a great impact on pedestrian re-identification.
So in this model, a group of pedestrian features is clustered
and applied to calculate pedestrian similarity by the
multi-block features. A positive feature pairs means that
the pedestrians who appear on both query library and

search gallery. In the task of re-identification, the distance
between two features is used to judge whether they belong
to the same ID or not. xr

i , x
r
j are the r − th block of

pedestrian feature i and j. Finally, as shown in Fig. 5,
the final similarity dist(i, j) between pedestrian features
can be defined as a weighted average of the similarities of
different body parts as the below formula:

dist(i, j) =
R∑

r=1

wr ∗ d(xr
i , x

r
j) (13)

where d is the distance between xr
i and xr

j ,usually the
Euclidean distance is applied as the distance. R represents
the number of body part and in our model the number is
six. wr is denoted as the optimized weight of the r − th
feature part of the pedestrian.
The features of different pedestrian body parts often

have different contribute to pedestrian re-identification.
This is mainly because the proportions of body parts are
different and they are easily influenced by environmental
factors such as occlusion and illumination. Thus, the
model will output the weights wr by a classifier which after
the fully connected layers. For a pair of person ID(i, j),
the training annotation y will be set to 1 if these two
samples are the same pedestrian, otherwise y = −1. the
model is trained and optimized according to the following
formula:

LID =

{
1− dist(i, j) y = 1

max(0, dist(i, j) + β) y = −1
(14)

The formula takes a gap parameter β between positive
samples and negative samples to enhance the discrmina-
tiveness of the pedestrian features.
2) Pedestrian group cluster graph convolution for

pedestrian re-identification: For a pair of imagesA and B,
it is captured from two non-overlapping cameras. Based
on daily experience, if a group of pedestrians appear in
two images, the target pedestrian in the crowd will also
appear in both images with a high probability. According
to this assumption, the similarity of the crowd will be used
to assist in the task of re-identification.
Assuming that group pedestrian features are defined

as (Ai, Bi), i ∈ {1, ..,K}, each group has K pedestrians.
As shown in Fig. 6, the K groups of pedestrian feature
pairs and the remaining single pedestrian features are
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Fig. 6. The pipeline of the proposed model GC-GCN of re-
identification.

abstracted into nodes, and the relationship between the
nodes is formed to be a graph. The graph is defined as
G(V,E), where parameter V is pedestrian features, and
E represents the relationship between the cameras. Each
node in the graph is assigned with a pair of pedestrian
features (XAj

, XBj
), and j ∈ 0, ...,K. In order to ef-

fectively spread and aggregate the information between
graph nodes, the data in each node is calculated in the
form of graph convolution. Assuming that the input of
the graph convolution is X ∈ RN∗2d, where N = K + 1
and d denotes the pedestrian feature dimension. The
parameter A is the adjacency matrix of graph convolution.
Ai,j = 1 if the feature pairs are belong to the same
people, otherwise Ai,j = 0. To simplify the processing
of the model, the adjacency matrix A is normalized
and can be regard as a feature stack of {A1, ..., AT }.
Each At will be optimized symmetrically by the following
forluma: At = Λ

− 1
2

t ∗ Ât ∗ Λ
− 1

2
t , where Ât = At + I

and Λt is the optimized degree matrix of Ât. Â, Λ are
the column of Ât and Λt,respectively. To maintain the
structure of the pedestrian group features, a pedestrian
group cluster graph convolution network(GC-GCN) is
provided to aggregate node information and update the
weights of nodes. As shown in Fig. 6, the propagation
process of the GC-GCN is as below formula:

GCN(V h, A)h+1 = RuLU(Λ− 1
2 ∗ Â ∗ Λ− 1

2 ∗ V (h) ∗W (h))
(15)

where V (h) denotes the output of the h− th hidden layer
features, W (h) denotes the optimizable weights and RuLU
is the activation function applied in our model. A classifier
is used at the end of the model for output
3) Iterative update strategy for joint pedestrian re-

identification and topology inference training: For the
entire model, the final result of re-identification is not
solely dependent on the output of the GC-GCN model,
but is affected by both GC-GCN and the logical topology
of the multi-camera. For the output of GC-GCN model,
the features will be reranked again according to the search
order provided by the logical topology of multi-camera and
then as a result of the re-identification.
In the training process of GCNCell, there have an

initial logical topolog in the multi-camera system. The
initial logical topology provides the initial weight W
in GCN(A,CPG). However, the initial weight is not
accurate, because it is obtained by the rough pedestrian re-

identification results. During the iterative training process
of the strategy, the results of pedestrian re-identification
will be re-ranked according to the logical topology, and
pedestrian re-identification as a feedback will also update
the features of logical topology inference model. Moreover,
to comprehensively understand the process of the re-
identification and logical topology inference, an optimized
iterative update strategy can be expressed as below:

• Step 1: The end-to-end pedestrian re-identification
framework is trained 10 epochs firstly. At this stage,
the re-ranking of the topology search order will not
be performed.

• Step 2: In the next 10 epochs, the pedestrian features
will be sent to the random forest model and the
similarity socre of every pair of pedestrian in pairs
camera will be sent to the GCNCell as the initial
weight W .

• Step 3: In each epoch in Step 2, there are 60 mini-
batches for the STIA training. In each mini-batch,
the weight of GCNCell will be updated iteratively.
After iteration training with 60 mini-batches, the
STIA model will be able to output a more reliable
camera logical topology and the logical topology will
be added into the GC-GCN model.

• Step 4: Repeat the above Step 2 and Step 3 until
the camera logical topology converges or all training
batches are completed.

When the iterative training process is over, the multi-
camera logical topology can be inferred and the results of
re-identification can be obtained well, moreover the results
of re-identification can to be helpful the multi-camera
logical topology inference. The overall process of iterative
training is shown in algorithm 2. It can be seen from the
pseudo-code structure that the computational complexity
of our joint optimization mechanism is at the O(n2)
level. The total loss function of the joint optimization
mechanism can be expressed by the formula 16, where
LSTIA is a common cross-entropy loss function and α, β, γ
is assigned as 0.2, 0.2, 0.6, respectively.

Ltotal = αLbox + βLID + γLSTIA (16)

IV. Experimental Analysis and Discussion
In this part, firstly, the dataset employed and the imple-

mentation of our approach will be introduced in details.
Then some ablation studies and comparative experiments
which include some quantitative and qualitative analysis
of the method will be performed.

A. Datasets
1) SLP [8]: The SLP is a fully labeled large-scale pedes-

trian re-identification dataset with logical topology
information of the multi-camera. The dataset con-
tains a total of 2632 pedestrians and each pedestrian
is fully labeled. There are a total of nine cameras
in the dataset and the logical topology correlation
between the cameras is also fully labeled.
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Fig. 7. Correlation analysis and comparison of inferred transition distributions among multiple cameras.

Algorithm 2: Process of joint pedestrian re-
identification and logical topology inference train-
ing
Input: Video sequence data
Output: Multi-camera logical topology and

pedestrian re-identification results
1 for Joint optimization mechanism training for 60

epoches do
2 if First 10 epoches then
3 The end-to-end pedestrian re-identification

framework in training.
4 end
5 else
6 for 60 mini batches do
7 The STIA in training.
8 end
9 The whole joint optimization mechanism is

trained. The weight of GCNCell will be
updated and multi-camera logical topology
is inferred.

10 end
11 end
12 Return Multi-camera logical topology and

pedestrian re-identification results.

2) CUHK-SYSU [44]: This dataset is also a pedestrian
re-identification dataset, and this dataset is more
suitable for person search task. The images in
the dataset are all with uncropped camera views.
There are 8432 fully labeled pedestrian IDs and
96143 pedestrian bounding boxes in the dataset. The
camera viewpoint, illumination, and occlusion are
different among cameras in the dataset, and it is
very close to a real surveillance system.

3) PRW [52]: Similar with the CUHK-SYSU, the PRW
is also a person search dataset. It can be consid-
ered as an extension of the existing pedestrian re-
identification dataset Market1501 [51]. Market1501
provides pedestrian bounding box information of
each image.

4) Real scene dataset(UJS-reID): A UJS-reID dataset
is collected in campus with non-overlapping camera

views. The video is captured from multi-cameras
with a frame rate of 15 FPS and is an enclosed area
consisting of a laboratory, a student dormitory build-
ing, a cafeteria, and a library building. This is a typ-
ical scene on campus. With different times(8.30am.-
9.30am., 10.30am.-11.30pm. and 4.30pm.-5.30pm.),
the walking trajectory of students changes regularly.
The physical topology of the scene is shown in Fig.1.

B. Qualitative and quantitative analysis of dynamic log-
ical topology inference
1) Local camera-to-camera transition distribution es-

tablishment: The camera-to-camera transition distribu-
tion is measured by a random forest and then optimized
by RF-TAM. To verify the effectiveness of RF-TAM.
We compared RF-TAM with some advanced correlation
analysis methods: TIJS [18] and CnmCCA [48]. The Fig. 7
illustrate that the designed model RF-TAM method can
easily model the transition between two cameras, and
match the correlation patterns between different camera
pairs well. Although the TIJS [18] method can also
calculate the transition, the internal pattern between the
cameras are ignored, resulting in a poor final modeling
effect. The CnmCCA [48] method can calculate the
correlation between a single pair of cameras, but it cannot
achieve correlation pattern matching between multiple
pairs of cameras.
2) Global multi-camera logical topology inference: In

a large-scale surveillance system, there is a causal rela-
tionship between each camera. The CPGCN is proposed
to model the global correlation between all cameras and
SITA network is used to infer the dynamic logical topol-
ogy. The STIA network is implemented by the pyTorch
deep learning framework and trained on two GPUs:Tesla
P100*2. The initial learning rate of the model is 0.01 and
it will reduced by 10 times every 10 epochs. The total
number of training batches is 60 epochs.
To better verify this part, some ablation studies also

performed in the CPGCN and STIA network. In Table I,
the global correlation is modeled by the CPGCN and the
commom GCN model, respectively. The CPGCN takes the
conditional probability map as the input which contains
the causal relationship between cameras while the common
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Fig. 8. During the iterative training process, the logical logical topology in non-overlapping multi-camera network changes dynamically.
With the increase of iterative training, the logical topology structure sequence inferred is more closer to the real topology structure.

TABLE I
Ablation experiments of the CPGCN on real scene data.

Models 8.30am. 11.30am. 4.30pm.
LSTM+CPGCN 82.3 83 81.6
GLU+CPGCN 85.5 79 83
LSTM+GCN 68.5 772 65
GLU+GCN 79.5 83 82
GRU+GCN 81.5 76 73.4

GRU+CPGCN 88.5 87 85

GCN just takes the adjacency matrix as the input. In
addition, in order to eliminate the interference of other
factors, LSTM and GRU modules are also added to the
ablation experiment. It can be found from the experiment
that the CPGCN including causality has a much higher
accuracy than the common GCN model. Meanwhile, the
GRU + CPGCN achieves the highest accuracy on the
datasets of experiments.

The STIA network is applied to infer the dynamic
logical topology inference and the CPG is employed as the
input of STIA. In order to fully explain and demonstrate
the performance and effect of the STIA model, we visualize
the logical topology changes during the training process.
The real time topology is visualized every ten epochs.
The iterative training results can be shown in Fig. 8.
From the experimental results, it can be known that
as the training batches increases, the logical topology
inferred is getting closer to the real one. Meanwhile,
some more comparison experiments are conducted on the
datasets SLP and UJS-reID as shown in TABLE. IV.
Some methods [7], [11], [12], [33], [39], [53] are applied
to the comparative experiments on dataset UJS-reID
and SLP. The final inferred logical topology is shown in
Fig. 10. To better measure the similarity between every
two logical topologies, the similarity measurement method
of isomorphic graphs is used to measure the similarity of
two topological graphs. The similarity is in the form of
cut distance [23], which is shown as:

dist(G1, G2) = max(
|eG1

(U,W )− eG2
(U,W )|

|V |2
) (17)

where G1 and G2 represent the two logical topology graphs
respectively. G1 and G2 have the same node set V . U ,W

TABLE II
A comparison of the cut distance between the inferred logical

topology by various methods and the real logical topology.

8:30am 11:30am 4:30pm average
methods edges dist edges dist edges dist dist
Actual 5 - 4 - 2 - -
Distance-
based

3 0.125 1 0.1875 3 0.0625 0.125

ODPR 2 0.5 2 0.125 1 0.0625 0.229
ours 3 0.125 4 0.0 3 0.0625 0.06

are any two subsets of the camera set V and U,W ∈ V .
eG is the number of edges between U and W in G. It is
worth mentioning that the cut distance is more accurate
for dense graphs. Therefore, this indicator can effectively
measure the similarity between the logical topological
structures of large multi-cameras. TABLE. II records the
cut distance(the dist column of the table) between various
methods and the real logical topology. The results show
that the logical topology inferred by our method can fit
the actual dynamic logical topology in different time. That
means the proposed method in this paper is superior to
existing methods. Furthermore, in order to describe the
performance of the logical topology structure itself, we
define the normalized cue distance accuracy to measure
the accuracy performance of the logical topology structure:

ACC = 1− dist(G1, G2)− distmin(G1, G2)

distmax(G1, G2)− distmin(G1, G2)
(18)

where dist(G1, G2) represents the cut distance be-
tween logical topology G1 and G2, distmax(G1, G2) and
distmin(G1, G2) represent the minimum and maximum
cut distance in the logical topology structure sample re-
spectively. The Fig. 9 shows the interrelationship between
logical topological inference model and re-ID model during
the training process.
As can be found from the Fig. 11(a), a curve of

accuracy is drawn to show the performance of the inferred
multi-camera logical topology. Besides, the accuracy of
the proposed pedestrian re-identification framework com-
bained with multi-camera logical topology is presented in
Fig. 11(b).
The TABLE III shows the performance of several

methods in time cost. Among them, our method consumes
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Fig. 9. Interrelationship between topological inference model and
re-ID model.

TABLE III
A comparison of the time performance which retrieve the target for

the first time in a camera.

times(seconds)
methods 8:30am 11:30am 4:30pm average
Distance-based(error
25%) [7]

22 19 25 22.0

Distance-based(error
50%) [7]

25 26 28 26.3

ODPR [12] 32 28 30 30.0
ours 18 14 15 15.7

the least time under the condition of obtaining the
same recognition results. The main reason is that we
search the cameras according to the cameras order which
provided by the logical topology. In this way, it can
greatly reduce the retrieval time of empty cameras(the
cameras without target pedestrian), thus the method can
decrease the retrieval time of the unified multi-camera
surveillance system. Moreover, we select the results of
the 10th, 20th, 40th, and 60th epochs in the training
process, and calculate the confusion matrix based on
the recognition results. This can more intuitively explore
the accuracy changes during the training process. The
confusion matrix is shown in Fig. 12. The figure presents
the errors with both the pedestrian re-ID predictions and
the labeled person IDs. The re-ID predictions is obtained
by the joint optimization mechanism of pedestrian re-
identification and multi-camera logical topology inference
model.From the Fig. 12, we can find that, with the
increase of training iterations, the accuracy of pedestrian
re-identification is getting higher and higher, and the
predicted pedestrian ID is getting closer to the ground
truth ID. When the difference between the re-ID results
and the ground truth ID is the smallest, the accuracy
of pedestrian re-identification reaches the highest, and
the model converges, which means that the problem
is well addressed by our joint optimization mechanism
of pedestrian re-identification and multi-camera logical
topology inference model.

C. Comparative and ablation experiments for pedestrian
re-ID with GC-GCN

The MHAM is mainly used to obtain the region of
interest of pedestrians in the non-cropped image, and

TABLE IV
The comparative re-ID test results on datasets SLP and UJS-reID.

SLP UJS-reID
methods mAP(%) R1(%) mAP(%) R1(%)
Db [7] 58.9 65.8 75.9 82.3

ODPR [12] 43.5 49.6 56.8 63.8
PCB [39] 47.3 48.1 54.1 60.0
IDE [53] 33.5 49.2 46.7 53.9

TriNet [11] 39.5 45.8 53.3 60.2
AWTL [33] 59.5 53.3 66.9 69.7
no topology 56.3 65.7 68.7 76.3

ours 63.4 68.5 78.0 85.1
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Fig. 10. Comparison of dynamic logical topological structures on
real scene data inferred from different models.
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Fig. 11. The experimental results of logical topology and pedestrian
re-identification accuracy change in multi-camera environment.
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Fig. 12. The effectiveness of our proposed joint optimization
mechanism of pedestrian re-identification and multi-camera logical
topology inference. The confusion matrix is in the form of 93 ∗ 93
grids. Each grid indicates a person ID. Totally summing up 93 IDs,
which approximates the number of person IDs in the full training
set of the real scene dataset.

increase the weight of the regional features, so as to
improve the robustness of the features. In order to verify
the effectiveness of the MHAM, a series of relevant
comparative experiments as well as ablation experiments
are performed. In some common object detection models,
the bounding boxes are proposed by anchors, which can be
called as anchor-based object detection. In addition, there
are some other one stage object detection methods called
anchor-free methods. In order to objectively reflect the ef-
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TABLE V
Comparative experiments of accuracy between the proposed

MHAM and traditional object detection models.

Accuracy(%)
Models AP AP50 AP60

Faster-RCNN [25] 27.0 47.1 37.1
RGB-DCNN [54] 36.4 60.0 39.1

FB-SSD [20] 44.9 63.5 47.0
CornerNet [16] 47.3 63.7 53.7
CenterNet [10] 52.5 64.8 56.5
MHAM(ours) 57.1 70.3 57.4

fectiveness of the model, the proposed MHAM is compared
with the above-mentioned two types of one-stage and two-
stage common object detection methods respectively. The
comparison experiments are conducted on the datasets
CUHK-SYSU. Moreover, RGB-DCNN [54], Faster-RCNN
[25] and FB-SSD [20] are adopted as the two stage object
detection method, while CornerNet [16] and CenterNet
[10] are adopted as the one stage method. As shown in
Table. V, the experimental performance of the proposed
MHAM is better than that of the common object detection
method. Because the common object detection model are
usually employed for a variety of objects. But for the scene
with only single pedestrian object, its performance will
suffer. That is to say, the common object detection model
can not well distinguish the gap within the classification.
The MHAM can effectively improve the discrimination of
intra class gaps.

As for the ablation studies, the performance of MHAM
is the most worthy of in-depth study. We decompose
MHAM into several structures with different depths and
conduct experiments separately. The 3-layer and 5-layer
MHAM are regarded as the shallow attention structure
and the deep attention structure, respectively. In addition,
as a comparison, we also eliminate the MHAM structure
and directly measure the accuracy of the original model
structure. The Fig. 13 shows the performance of the
ablation studies.As shown in the first row of the figure,
the pedestrian area that the model focuses on is very
rough. The area of interest contains too much background
information, and it is difficult to get accurate location
information of pedestrian in the whole image. This results
in a particularly large deviation of the bounding box
during pedestrian detection. After adding MHAM, the
pedestrian attention area is significantly more concen-
trated, which indicates that the robustness of the model
to extract features is significantly enhanced. Moreover,
compared with the shallow attention structure(3-layer),
the deep attention structure(5-layer) can more accurately
focus on the pedestrians. In other words, compared with
the original model structure, the MHAM structure can
effectively improve the robustness of pedestrian features.

In traditional machine learning, pedestrian features
are usually extracted manually, and then mathematical
distance calculation formulas such as Euclidean distance
are used to calculate similarity to determine whether they

without 

heatmap cascaded 

3 layers

 heatmap cascaded 

5 layers 

heatmap cascaded 

Fig. 13. Visualization of the effectiveness of the proposed method
MHAM. As the number of heatmap layers added, the model focuses
on the pedestrian area more concentrated. That is to say, the less
background information the feature contains, the better it is for
pedestrian detection.

are the same pedestrian. However, the performance of
manual features directly affects the distance calculation,
and also directly affects the pedestrian re-identification.
As deep learning method, the proposed GC-GCN com-
prehensively considers the similarity of group pedestrian
features in the form of graph convolution, and outputs
the similarity based on a group of pedestrians, thereby
improving the accuracy of pedestrian re-identification. In
this subsection, firstly, we make a comparison between
some traditional manual feature extraction methods such
as DSIFT [50], LOMO [13] and some related methods
such as IAN [43] and Dis-GCN [14] which also using
deep learning. The specific experimental data are shown in
Fig. 14. It can be found from the results that the accuracy
of the deep learning model is generally higher than the
artificial feature extraction method. More quantitative
experiment results are shown in Table VI. It is worth
mentioning that due to the different collection scenarios
of the CUHK-SYSU and PRW datasets, the pedestrians’
dresses and postures in the obtained data are different.
In addition, because the camera’s shooting angle and
light angle are different. The feature distribution of the
data set is different, which has a greater impact on the
robustness of the model to extract features, and ultimately
leads to a greater difference in the accuracy of pedestrian
re-recognition in different datasets. Finally, as described
in Table VII, the proposed model have compared with
the latest research methods of pedestrian re-recognition.
We have compared with the SOTA method from the
perspectives of the number of network layers, the amount
of parameters, and the accuracy of the model. It can be
concluded from the experimental results that although the
accuracy of our model is not the best one, our model is
better than other models with the same number of network
layers. In addition, in the case of comparable accuracy,
the number of parameters of our model is much reduced
compared to other methods. It means that our model is
more suitable for edge devices.
In the following part, the MHAM and GC-GCN are

regard as a whole framework and some more ablation
studies are performed to explore the performance of
the framework. As shown in the Table VIII, different
CNN backbone models and different feature extractor
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TABLE VI
Comparative experiments of accuracy between the proposed pedestrian detection method and the traditional pedestrian feature extraction

methods

Models
Accuracy(%) Datasets DSIFT [50]+Euclidean DSIFT [50]+KISSME LOMO [13]+XQDA IAN(Res34) [43] IAN(Res50) [43] Dis-GCN [14] MHAM(ours)

mAP

CUHK-SYSU

33.7 46.9 66.3 72.8 74.9 14.8 65.1
Rank-1 37.9 54.2 73.3 77.5 79.1 81.1 89.1
Rank-5 16.2 61.1 79.9 85.1 86.8 89.6 94.9
Rank-10 57.4 79.0 88.8 93.1 96.6 94.1 96.7

mAP

PRW

17.6 18.5 21.1 23.5 36.1 41.6 58.2
Rank-1 24.1 26.1 24.2 50.1 57.4 55.9 73.1
Rank-5 33.1 31.1 35.1 60.5 64.9 64.5 79.9
Rank-10 41.1 41.1 44.0 74.8 76.1 71.4 87.5

TABLE VII
Multi-dimensional comparative analysis results with some State-of-the-art methods.

Models dataset layers(estimated) parameters(estimated, Mb) mAP(%) Rank-1(%)
BUFF [46]

PRW

100+ 10M 44.4 82.4
TCTS [41] 100+ 10M 46.8 87.5
NAE+ [5] 50+ 5M 44.0 81.1

Ours 50+ 2M 62.4 79.1
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Fig. 14. Comparative experiments of different pedestrian re-
identification methods.

TABLE VIII
Ablation studies of vary backbones and distance measurement

methods on the re-ID dataset of CUHK-SYSU.

Models distance mAP(%) Rank-1(%)
Res34+MHAM GC-GCN 73 78.3
Res34+MHAM Euclidean 58.1 63
Res34+MHAM Cosine 56.3 59.8
Res50+MHAM GC-GCN 78.2 88.7
Res50+MHAM Euclidean 68.4 71.6
Res50+MHAM Cosine 65.3 70.9

including GC-GCN and mathematical distance calculation
formula such as Euclidean distance and consine distance
are employed in the ablation studies. Moreover, we test
the accuracy of pedestrian re-identification with different
group K. Curves in Fig. 15 and Fig. 16 show that the
value of K has a certain impact on the accuracy, and at
the peak, it can be found that the proposed GC-GCN
model can significantly improve the effect of pedestrian
re-identification. This is reasonable, because in daily life,
people usually walk in groups of four or five pedestrians,
rarely more than five people in a group. In other words
the proposed framework can give a more accuracy person
search result in crowded scenes.

2 4 6 8
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90
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Top-1
mAP

2 4 6 8
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)

PRW
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Fig. 15. Influence of different group number K on pedestrian re-
identification accuracy.

Fig. 16. Visualize the re-identification results of different numbers
of pedestrian groups. The red bounding box in the middle is the
selected pedestrian to be identified, the yellow bounding box is the
pedestrians that appear in pairs around the target pedestrian, and
the blue bounding box is the pedestrian that appears for the first
time.

D. Real scene application
This section mainly describes the experimental results

of the proposed model STIA in a real surveillance envi-
ronment. We conducted a pedestrian search experiment
on a set of surveillance video data on campus. We collect
actual video data through multiple cameras. The dataset
UJS-reID provided by this paper is captured at school
by five non-overlapping video cameras with a frame rate
of 15 FPS. The scene of the dataset is an enclosed area
consisting of a laboratory, a student dormitory building,
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Fig. 17. Pedestrian walking trajectories on the real scene video at different times.

a cafeteria, and a library building. This is a typical scene
on campus. At different times(8.30am.-9.30am., 10.30am.-
11.30pm. and 4.30pm.-5.30pm.), the walking trajectory of
students will change regularly. In this scene, in 8.30am.-
9.30am., most students leave the cafeteria area to the
teaching building area. In 10.30am.-11.30pm., many stu-
dents walk from the teaching building to the cafeteria
area. While in 4.30pm.-5.30pm., most students leave the
teaching building area to the canteen area or the dormitory
area, and almost no students walk from the dormitory
area to the teaching building area. This is a typical
application scenario on campus, and the logical topology
between cameras that captured video in these areas also
changes dynamically over time. This change is not only
a change in the correlation between cameras, but also a
change in the causality between two cameras with the
same correlation. Based on this, we try to capture this
logical structure and causality between multiple cameras,
and use the logical topology to promote the optimization
of the search sequence for pedestrian re-identification and
the final recognition confidence. From the Fig. 17, it
can be shown that the proposed method build a logical
topology as Cam4 − Cam2 − Cam1 in 8.30am.-9.30am,
Cam1−Cam2−Cam4−Cam3 in 10.30am.-11.30pm. and
Cam1 − Cam2 − Cam3 − Cam4 in 4.30pm.-5.30pm, and
the results of re-identification are improved significantly.

V. Conclusion
In this paper, we focus on the temporal and spatial

relationship of pedestrians in video frames from different
camera. And an novel pedestrian re-identification model
assisted by logical topological inference is proposed. The
multi-camera logical topology provides the retrieval or-
der and the confidence of pedestrian re-identification.
Meanwhile, the results of pedestrian re-identification as
a feedback will modify logical topological inference. A dy-
namic spatio-temporal information driving logical topol-
ogy inference method via conditional probability graph
convolution is proposed. A time-delayed Jensen-Shannon
divergence model is proposed to model causality in spatio
and temporal within and across camera views. For two
overlapping cameras, there is a time delay error between
pedestrians passing through multiple cameras. And a
pedestrian group cluster graph convolution network(GC-

GCN) is provided to measure the distance of group
features in multi-camera system. According to the deter-
mined logical topology information, when pedestrians walk
between cameras which is logically associated, there will
be a groups across cameras synchronously. Therefore, a
GC-GCN is designed to model this process, so as to make
full use of the group matching to enhance the re-ID of
single pedestrian.
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