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Abstract
Sewage effluent is known to be a major source of endocrine disrupting compounds 

entering the aquatic environment. More efficient wastewater treatment could reduce 

the environmental load but, in order to achieve this factors determining compound 

behaviour  must  be  understood. The knowledge  of  compound  fate  is  becoming 

increasingly  important  for  risk  assessments  and  to  allow  modifications  to 

wastewater treatment works to facilitate treatment of these compounds. This work 

illustrates that the removal of some endocrine disrupting compounds from sewage 

treatment works effluent is dependent on parameters such as sludge age, influent 

concentrations,  concentrations of  co-metabolites and hydraulic  retention time as 

well as physico-chemical compound properties. From this research it is apparent 

that the principle environmental risk of plybrominated diphenyl ether contamination 

after wastewater treatment is via sludge disposal routes. Treatment of wastewater 

containing nonylphenol  polyethoxylate  surfactants  poses environmental  risks  via 

two routes, some nonylphenolic compounds may pass through into receiving waters 

and  degradation  products  such  as  nonylphenol  and  short  chain  ethoxylate 

compounds will enter the environment via sludge disposal.
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Introduction
It is well documented that chemicals discharged into the environment can, through 

their  effects  on the  endocrine  system,  cause disruption  to  normal  physiological 

functions of  exposed organisms. The fate and affects of these chemicals in  the 

environment  are  of  increasing  concern  with  respect  to  the  affects  on  the 

environment, human health and reproduction. Endocrine disruption has become a 

topical issue over the last decade mainly due to concerns over the feminisation of 

fish. The increasing frequency of reports in the press and other media as well as in 

scientific  literature  are  raising  public  awareness  and  as  a  result  the  effects  of 

chemicals on the endocrine function is becoming a more important issue.

One  of  the  major  point  sources  of  organic  compounds,  including  endocrine 

disrupting  chemicals  (EDCs),  to  the  environment  are  discharges  from  sewage 

treatment works (STW). Effluent containing water soluble compounds is discharged 

to  the  aquatic  environment  and  sludge  containing  less  soluble  compounds  is 

recycled during land application, disposed of to landfill  or incineration. Whatever 

disposal route a compound follows its potential  impact on the environment is of 

concern,  therefore  an  understanding  of  its  fate  during  wastewater  treatment 

processes is important in assessing its environmental impact.

Due to detection of nonylphenol polyethoxylates (NPEOs) in influent and effluent, 

NPEO removal pathways are of increasing concern particularly as their breakdown 

can result in the formation of short chain NPEO compounds and nonylphenol (NP) 

which have demonstrated enhanced estrogenicity  and increased toxicity (Servos, 

1999).  Polybrominated  diphenyl  ether  (PBDE)  flame  retardants  are  also  of 

considerable  interest  due  their  endocrine  disrupting  properties   and  their 

bioaccumulation potential . In this study Husmann apparatus have been used for 

activated sludge simulation to assess the fate and behaviour of NPEOs and PBDEs 

during wastewater treatment.  Husmann apparatus have been used in  numerous 

degradation studies (). 

It is possible to control the fate of some compounds by controlling such factors as 

sludge age (Øc), hydraulic retention time (HRT) and dilution but in doing so relative 

cost benefits must be considered. Alleviating one environmental burden may simply 
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move it elsewhere, for example the environmental impact of extending a STW plant 

for greater treatment efficiency may be greater than the release of EDCs into the 

aquatic environment. 

Materials and methods
Husmann operation

The Husmann apparatus used in these experiments is represented schematically in 

Figure 1. A 3 l aerator and a 2 l settling tank were constructed from borosilicate 

glass. Air was diffused through a borosilicate glass sinter (Sinter Glass No. 2) in the 

bottom of the aeration chamber to aerate and also to mix the MLSS. The air was 

supplied at a rate of 3 l min-1 to provide a dissolved oxygen concentration of 2-2.5 

mg l-1. Sludge was continuously recycled from settler to the aerator at 975 ml h-1 

using a peristaltic  pump (Waton-Marlow Bredel  Pumps,  UK).  Depending on the 

required sludge age or MLSS concentration, sludge was automatically wasted at 24 

hour intervals. Effluent was decanted off continuously from the settling chamber. 

The  aerator  was  fitted  with  a  PTFE  scraping  blade  to  limit  the  occurrence  of 

bacterial growth on the sides of the glassware and a PTFE agitator was mounted in 

the settling tank to prevent blockages and to aid recycling by improving settling. 

Both  of  these were  rotated mechanically  at  10  rpm.  A concentrated solution  of 

synthetic sewage medium was prepared in a 10 l aspirator and autoclaved for 20 

minutes at 121 oC (Table 1). The medium was fed into the aeration vessel at a rate 

of 29 ml h-1 and diluted with tap water fed at a rate of 975 ml h-1.  The resulting 

influent properties are displayed in table 2 alongside the effluent properties. There 

were no deliberate bacterial inoculations; growth resulted from inoculation from the 

atmosphere.  Marked  shifts  in  bacterial  communities  have  been  observed 

particularly where sludge has been exposed to very different conditions such as 

removal from STW into laboratory based studies. Shifts in bacterial populations are 

less  when changes in  conditions  are  reduced,  therefore  allowing the Husmann 

apparatus to be inoculated from the atmosphere increased population stability as 

conditions  remained  constant  and  bacteria  present  are  already  adapted  to  the 

environment.
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For  spiking  the  Husmann  apparatus  an  additional  10  l  aspirator  was  prepared 

containing the commercial surfactant formulation Igepal CO520 (Sigma-Aldrich, UK) 

or the OcBDE commercial flame retardant formulation DE-79 (Donated by CEFAS, 

UK). 

The Husmann apparatus was operated for a 49 day test period with a constant 5 

day Øc at 19±0.5 oC with an influent Igepal CO520 concentration of 0.1 mg l-1. This 

enabled the pathway of NPEO degradation to be observed. After a period of 20 

days the influent concentration was doubled to 0.2 mg l-1 to observe any effects of 

shock loadings. Another system was operated under the same conditions for PBDE 

inoculation at 0.02 mg l-1.

The Husmann apparatus was then operated at  2 different  Øc  (3 and 7 days) to 

determine the impact  of  different  bacterial  numbers on NPEO degradation. Both 

Husmann apparatus were inoculated with the same concentration of Igepal CO520 

(0.2 mg l-1) at the same rate for comparable results. To observe competition effects, 

an additional Husmann apparatus was inoculated simultaneously with PBDEs (0.02 

mg l-1) and NPEOs (0.2 mg l-1). 

Methods of analysis

Sample aliquots were taken from the aeration chamber, settling chamber, influent 

and  effluent.  Methods  of  analysis  have  been  described  in  detail  elsewhere 

(Langford  et  al.,  2004).  Briefly,  aliquots  taken  for  the  analysis  of  PBDEs  were 

initially filtered (0.45 μm GF/C) under vacuum to separate the solid and aqueous 

phases. Filter papers and collected solids were extracted by soxhlet extraction for 4 

hours with 100 ml 50/50 hexane/acetone. Solvent extracts were cleaned up over 

deactivated neutral alumina columns for analysis by GC/MS and GC/ECD. Aqueous 

phase  samples  were  double  extracted  by  liquid-liquid  extraction  with  toluene. 

DeBDE  was  analysed  by  GC-ECD  with  a  10  m  column  to  reduce  compound 

degradation and all other PBDE congeners were analysed by GC/MS in NCI mode. 

For  the  extraction  of  NPEO  compounds,  samples  were  initially  centrifuged  to 

separate the solid and aqueous phases. The solid phase extraction used a shaker 

method with double extraction using ethyl acetate followed by DCM. Extracts were 
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cleaned over deactivated neutral alumina in preparation for LC/MS analysis. The 

aqueous  phase  samples  were  extracted  by  SPE  using  C18  cartridges.  All 

compounds were detected by LC/MS-ESI, in positive mode for NPEO analysis and 

NP was detected in negative mode.   

Results
Acclimation time

NPEO degradation was observed immediately and over a 49 day test period NP 

accumulated in mixed liquor suspended solids (MLSS), and proportionately more so 

in settled sludge. Figure 2 shows the total NP and NPEO concentrations detected. 

The effluent concentrations exhibited a steady increase with time irrespective of 

influent  concentration  as  the  more  hydrophilic  compounds  not  adsorbed  to  the 

MLSS were washed through the system.

PBDE degradation was not  observed in  the Husmann apparatus however,  they 

accumulated in the solid phase. The total concentrations of each PBDE congener 

throughout the system remained constant. Degradation would have resulted in the 

accumulation of less brominated compounds and the reduction of BDE-209 or BDE-

183. With a constant influent concentration the concentrations in the MLSS and the 

settled sludge increased, this occurred proportionately more so in the settled sludge 

where more solids were available for binding in comparison to MLSS (Figure 3). 

PBDE test  periods  were  shorter  than  for  NPEO due  to  the  adverse  effects  of 

PBDEs on the activated sludge bacteria. After a 25 day period the nature of the 

mixed liquor had changed, it had assumed a much deeper orange colour than was 

usually present, flocs were characterised under the microscope by being small and 

granular  inter  dispersed  with  fluffy  filamentous  aggregates.  The  bacterial 

composition also appeared to have changed and with this a concomitant change in 

surface properties and biochemical characteristics. Tests were stopped at this time 

as comparable data could not be obtained due to the potentially different bacterial 

surface properties. It is most likely that PBDE concentrations reached levels that 

were toxic to some bacterial species as a less diverse population appears to have 

developed when compared to unspiked Husmann MLSS (Figure 4). When PBDE 

influent  was  stopped  and  influent  containing  NPEOs  continued,  the  diverse 

population returned within 14 days. As there was no PBDE degradation observed it 
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is not possible that one species became dominant due to thriving on PBDEs and it 

is more likely one organism was resistant to toxicity. As exposure time to PBDEs 

increased the time to filter samples extended. With this increase in filter time there 

was a decrease in  stirred sludge volume index (SSVI) indicating a reduction in 

settlability and predominance of small flocs which generally causes an increase in 

effluent turbidity which was also seen in the Husmann apparatus.

Sludge Age

At a higher Øc (7 days) the accumulation of NP and short chain NPEO compounds 

in the MLSS was more rapid than at a 3 day Øc (Figure 5). The rate of production of 

shorter chain compounds in the system was also greater at 7 day Øc indicating 

more rapid losses of compounds with long chains. The biochemical oxygen demand 

(BOD) removal was greater at lower Øc as expected but this does however result in 

poorer quality effluent (3 day Øc BOD removal, 75%; 7 day Øc BOD removal, 62%). 

The higher F/M ratio at lower Øc (3 day Øc, F/M 321 and 7 day Øc, F/M 220) is also 

an indication of poorer treatment efficiency and resulted in poorer quality effluent 

with higher suspended solids concentration and therefore greater concentration of 

hydrophobic compounds that would be bound to the suspended solids discharged. 

Higher Øc results  in  less wash out  of  slow growing bacterial  species facilitating 

degradation of more hydrophobic compounds that are generally more difficult  to 

degrade and that may require a longer acclimation time. 

For PBDEs, as demonstrated in figure 6, greater partitioning to the solid phase was 

observed at a Øc of 7 days than at 3 days due to the higher solids concentration. As 

well  as the higher solids concentration, at  a higher Øc the mixed liquor is more 

hydrophobic  and  less  negatively  charged  therefore  facilitating  increased  PBDE 

adsorption. Competitive binding effects were also observed as partitioning to MLSS 

and sludge at Øc 3 days was less in the presence of NPEO compounds as some of 

the hydrophobic NPEO oligomers and NP competed for sorption sites on the solid 

phase.

Shock Loadings

During shock loadings the removal of compounds with greater than 5 ethoxy units 

remains constant demonstrating that sufficient amounts of enzymes required for this 

process  are  present.  Biodegradation  of  more hydrophobic  compounds,  such as 
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NPEOs with  less  than  5  ethoxy  groups  and  NP,  is  controlled  by  the  interface 

between  the  compound  and  water.  The  more  hydrophobic  a  compound  is  the 

smaller the interface resulting in this being the likely rate limiting step under shock 

loading conditions. Bacteria were quickly adapted and despite continued elevated 

influent concentrations, the MLSS and settled sludge concentrations decreased 7 

days after the initial shock loading and remained at a constant concentration and 

the BOD removal increased (Table 3).

For PBDEs, on day 12 the influent concentration was doubled for a period of 4 

days. Figure 7 demonstrates that the additional PBDE load partitioned to the solid 

phase  rather  than  being  discharged  via  the  effluent.  However  the  increased 

partitioning to the mixed liquor remained high until the influent PBDE concentration 

reduced to the initial levels. Following this reduction in influent concentration, the 

PBDE concentrations in the solid phase reduced but remained higher than prior to 

the shock loading. As no degradation of PBDE occurred, these levels would remain 

elevated for one Øc until the biomass has been wasted from the system.  

Competition effects

The concentrations of NPEO degradation products in MLSS also inoculated PBDE 

compounds was significantly less than during only NPEO inoculation, indicating that 

competitive binding or bio-inhibition reduced the availability of NPEO compounds 

for degradation due to PBDE compounds being more hydrophobic and occupying 

more of the available binding sites (Figure 5). The rates of partitioning for PBDE 

congeners were greater than NPEO oligomers therefore the binding sites available 

will be rapidly exhausted by PBDEs resulting in the NPEOs and NP being detected 

in higher concentrations in the effluent than with an absence of PBDEs.

Discussion
At low Øc, the high mass flows of wasted sludge and the wash-out of slow growing 

specialised bacteria results in the major removal pathway being association with the 

solid phase, possibly as a result of high wastage resulting in high growth rates and 

rapid replenishment with new cells and relative abundance of unsaturated binding 
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sites. Increasing the Øc increases the MLSS concentration and reduces the amount 

of sludge wastage therefore results in a decrease in compound concentrations in 

the final effluent due to increased sorption and/or biodegradation by slower growing 

bacteria.  Bacterial  cells in the stationary phase of  growth are more hydrophobic 

than those growing exponentially and sludge surfaces also become less negatively 

charged with a higher sludge age. Within the extra cellular polymeric substances 

(EPS)  of  the  sludge  floc  the  ratio  of  protein  to  carbohydrate  increases  with 

increasing  Øc   corresponding  with  an  increase  in  partitioning  due  to  changing 

physico-chemical  properties  and  increased  solids  concentration.  Therefore,  Øc 

becomes  an  influential  treatment  process  variable  for  more  hydrophobic 

compounds  such  as  PBDEs,  short  chain  NPEOs  and  NP,  whose  predominant 

removal mechanism is through association with biological flocs. 

As the rate of compound removal of hydrophobic, lipophilic compounds generally 

correlates with the solids removal, if concentrations of effluent suspended solids are 

high  it  is  probable  that  concentrations  of  other  EDCs  in  effluent  will  also  be 

elevated, as compounds with high log Kow values will be associated with the non-

settlable solids. A low Øc leads to elevated effluent suspended solids and during the 

winter months when the temperature is lower the effluent suspended solids may be 

adversely affected with a concomitant impact on EDC removal . This agrees with 

other work where elevated PBDE concentrations were detected in effluent as well 

as sludge (North, 2004).

Compounds with a log Kow of  less than 2.5 such as long chain NPEOs, exhibit 

minimal  sorption  potential  and  the  major  removal  mechanism  is  degradation  if 

compounds are susceptible.  For compounds with log Kow values greater than 4, 

such  as  PBDEs,  NP  and  short  chain  NPEOs,  which  are  less  susceptible  to 

biodegradation, removal via association with solids is likely to be the major removal 

mechanism due to their high sorption potential and the higher rate of sorption as 

demonstrated in this and previous studies (Langford et al., 2005b). For this reason, 

biotransformations of susceptible compounds in the dissolved phase are governed 

by HRT and those in the solid phase are governed by Øc,  which supports work 

reported elsewhere (Cowan et al., 1995).
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Competitive binding during wastewater treatment is feasible due to the variety of 

organic compounds generally found in sludge and this study indicates competitive 

binding is a possibility as more hydrophobic PBDEs were observed to adsorb to a 

greater extent than NPEOs despite being present in lower concentrations. Other 

work also supports the possibility of competition effects looking at pesticides and 

estrogens in sediment . Competitive binding may have an important effect on STW 

treatment  efficiencies.  Loadings  from  industrial  sources  potentially  containing 

PBDEs  may  have  a  detrimental  impact  of  the  removal  of  hormones, 

pharmaceuticals or NPEOs for example as the available binding sites for these less 

hydrophobic  compounds  become  exhausted  due  the  partitioning  of  more 

hydrophobic  industrial  compounds  such  as  PBDEs.  Degradation  of  compounds 

more amenable to biodegradation will therefore be reduced as the initial important 

partitioning stage has been reduced.  

The effects  of  competitive binding increase with compound hydrophobicity   and 

could  be  useful  in  explaining  the  results  for  BDE-183  which  is  present  in  high 

concentrations in  DE-79 but  has shown results  that  do not  correlate with other 

compounds in  this  study.  An  additional  explanation  for  these  results  is  that  as 

PBDEs caused changes in the floc structure, they may prevent NPEOs from binding 

to the floc matrix as suggested elsewhere (Finlayson et al., 1998).

PBDE  congeners  exhibited  toxic  effects  on  bacteria  and  reduced  population 

diversity within one sludge age of exposure. It is thought that many of the naturally 

occurring organobromine compounds provide protection for organisms by acting as 

antibacterial  or  antifungal  agents,  although  it  is  only  confirmed  in  a  few cases 

(Gribble,  1999).  PBDE metabolites are found in  the Indonesian marine sponge, 

Dysidea herbacea, and may act as antibacterial agents (Gribble, 1999) therefore it 

is possible that PBDEs in activated sludge are also acting in the same way. An 

increase in filtration time for MLSS after exposure to PBDEs correlated (r2 = 0.91-

0.97) with a decrease in SSVI which was an indication of the dominance of small 

flocs and corresponded with an increase in effluent turbidity and a decrease in pH. 

The pH reduction would result in a lower dissociation constant with a concomitant 

increase in repulsive electrostatic interactions. However, at neutral pH, electrostatic 

interactions between positively charged groups on NPEOs (-OH or –COOH) and 
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the negatively charged microorganism surfaces are responsible for the majority of 

sorption (Liao et al., 2002). In the case of PBDEs which are not charged at neutral 

pH due to a lack of functional moieties, sorption is probably caused by non-specific 

sorption  interactions  (Ternes  et  al.,  2004).  As  a  consequence  of  reduced  pH 

resulting  from  PBDE  toxicity,  the  flocculating  ability  decreased  and  the  large 

numbers of fine floc worsened effluent quality and also would impair dewatering 

ability  (Liao  et  al., 2002).   In  studies  looking  at  NP10EO  a  shift  in  bacterial 

population  (Lozada  et  al.,  2004;  Barberio  et  al.,  2001)  was  observed  and  a 

reduction in SSVI (Lozada  et al., 2004). However, changing bacterial community 

composition does not necessarily mean a reduction of treatment efficiency. One 

study demonstrated no change in chemical oxygen demand (COD) removal despite 

marked changes in community structure (Kaewpipat and Grady, 2002). 

A compounds affinity for the bacterial enzymes in activated sludge influences its 

degradation. The kinetics of biodegradation are dependent to a large extent on the 

adaptation of the bacterial population to the compound, either the selection of a 

specific bacterial species or the induction of enzymes within an existing species is 

necessary .  However,  in  this study no acclimation time was required for  NPEO 

degradation to occur, suggesting that the enzymes required were already present. 

This  is  not  the  case  however  for  NP,  which  accumulated  in  the  sludge  and 

demonstrated  no  degradation  suggesting  the  enzymes  necessary  for  its 

degradation were not induced within the 47 day test period. 

For synthetic organic compounds acclimation times increase at lower Øc and the 

extent of degradation is generally also less due to the low numbers of bacteria and 

concomitant low MLSS concentration . For compounds such as long chain NPEOs 

the  enzymes  required  for  breakdown  are  already  present  but  in  greater 

concentrations at a higher Øc because of high bacterial numbers as a consequence 

of the high MLSS. In addition, an increasing Øc also results in greater bacterial and 

enzyme diversity.  Therefore,  as  demonstrated in  this  work,  degradation  of  long 

chain compounds is more rapid at a higher sludge age. However, at a higher Øc a 

greater accumulation of shorter chain compounds was observed as a consequence 

of the higher degradation rates of compounds with greater than 7 ethoxy units. An 

exposure  time  of  47  days  did  not  ensure  induction  of  sufficient  enzymes  for 
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degradation of the higher concentrations of shorter chain compounds and their rate 

of production exceeded their rate of removal as degradation becomes more difficult 

as the ethoxy chain shortens due to the influence of the phenolic ring.

At the low concentrations, compared to other carbon sources, at which NPEOs, NP 

and PBDEs occur in STW, biological transformations or degradation only occur if a 

primary substrate is available for growth, therefore it is possible that cometabolism 

occurs. Accumulation of metabolites which characterises cometabolism results from 

the failure of an enzyme due to either expression of strict substrate specificity or 

inhibition by toxic enzyme products. The Øc still remains a relevant parameter even 

if the compound is only degraded as a co-substrate because the bacterial growth 

rate  and  population  diversity  remains  important  for  the  degradation  of  the 

compound.  It  is  also  possible  that  mixed-substrate  growth  takes  place  for 

compounds such as NPEOs and the bacteria use the trace NPEO concentrations 

as a carbon and energy source and may mineralise it  completely (Ternes  et al., 

2004). 

In the presence of more hydrophobic compounds such as PBDEs, a reduction in 

NPEO partitioning was observed; the subsequent result of this would be a reduction 

in the amount of degradation. If the long chain compounds are left intact there will 

be an increase in the total nonylphenolic compounds discharged via the effluent, as 

the long chain compounds will have a preference for the aqueous phase rather than 

partitioning  to  the  sludge.  In  STW competition  effects  are  likely  to  occur  more 

frequently  with  other  compounds  also  competing  for  binding  sites,  which  may 

further increase the concentrations of PBDE, NP and short chain NPEO congeners 

entering  water  courses.  Shock  loads  to  the  system  would  also  increase 

concentrations in the effluent. Increased loads of NPEO to the system resulted in 

elevated effluent and solid phase concentrations for 7 days after the increase while 

more enzymes were induced. 

As NP and short chain ethoxylate compounds are toxic it is possible that feedback 

inhibition mechanisms occurred to prevent the formation of toxic concentrations of 

NP. When levels of NP reach a toxic concentration enzyme inhibition may prevent 

further  degradation  of  longer  chain  compounds  to  prevent  production  of  NP 
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(Langford et al., 2005a). To investigate this hypothesis, increasing exposure times 

would have been required to determine whether further enzyme induction would 

enable  biodegradation  to  proceed or  whether  NP concentrations  were  too  high 

possibly resulting in feedback inhibition. 

The removal  of  the long chain NPEOs and PBDEs from wastewater streams in 

efficient STW will generally be achieved. However, the problem arises due to the 

non-polar, hydrophobic nature of PBDEs, NP and short chain NPEOs and it would 

seem that the majority of these compounds would be removed from the aqueous 

phase  by  sorption  to  solids.  This  will  likely  result  in  accumulation  of  high 

concentrations of hydrophobic compounds in the sludge and have implications for 

sludge  disposal  routes.  For  high  loaded  systems  the  most  important  removal 

pathway from the aqueous phase is adsorption to sludge but when the HRT is lower 

than  the  time  required  for  the  adjustment  of  the  adsorption  equilibrium,  the 

maximum adsorption may not be attained (Kruezinger et al., 2004).

The primary function of STWs is the removal of nitrogen, phosphorus and ammonia 

and the discharge of effluent with a low BOD and low suspended solids. Treatment 

processes have been designed to consider these requirements, and the removal for 

EDCs  is  a  relatively  new  concept.  The  complex  mixtures  of  EDCs  and  other 

xenobiotic compounds occurring in wastewater influent may be difficult to eliminate 

due to widely different physcio-chemical properties. The PBDE flame retardants and 

NPEO surfactants assessed in this research cover the wide range of properties that 

may  be  found.  In  each  case,  an  increase  in  Øc  appears  to  be  an  important 

parameter  and will  also improve the removal  of  inorganic  compounds.  There  is 

likely to be an optimum Øc for STW operation (Clara et al., 2005), above which the 

benefits of EDC removal by increased degradation or partitioning will be outweighed 

by the increase in sludge production. A high sludge production resulting from an 

increased Øc leads to the problem of the disposal of sludge, which is likely to be 

contaminated with hydrophobic EDCs and other compounds. 

Conclusions
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• Sludge age is important for biodegradation. Greater MLSS concentrations and 

perhaps greater species diversity at a higher sludge age enabled more rapid 

degradation of long chain NPEOs. However,  an accumulation of  short  chain 

compounds and NP was observed as their rate of formation exceeded their rate 

of degradation at all sludge ages and particularly at a higher sludge age due to 

rapid long chain compound biodegradation.

• Bacteria adapt to NPEOs under conditions of shock loadings and degradation is 

observed within 7 days.

• No  degradation  of  PBDEs  was  observed.  Compounds  are  resistant  to 

degradation if  they fail  to  enter  the bacterial  cell  because of  an absence of 

suitable permeases or if their insolubility/adsorption renders them unavailable to 

microbial action or if there is no electron acceptor present.

• PBDE exhibited toxic effects on bacteria and reduced population diversity within 

one sludge retention time. 

• Competition  effects  had  an  impact  on  partitioning  and  therefore  also 

degradation. In the presence of PBDEs, less NPEO degradation was observed 

therefore  less  accumulation  of  short  chain  NPEOs  and  NP  occurred.  Less 

partitioning of PBDEs was also observed in the presence of NPEOs. The result 

of both would be an increase in hydrophobic endocrine disrupting compounds 

being discharged in effluent.

• More PBDE and NPEO removal was observed from influent at higher sludge 

age  resulting  in  greater  PBDE,  NP  and  short  chain  NPEO  compound 

accumulation in sludge. However, even at low sludge age accumulation of these 

compounds was observed. As the benzene rings were not degraded in either 

group of compounds at any sludge age, accumulation would be an inevitable 

consequence.

• From this research it is apparent that the principle environmental risk of PBDE 

contamination  after  wastewater  treatment  is  via  sludge  disposal  routes. 

Treatment  of  wastewater  containing  NPEO surfactants  poses  environmental 

risks via two routes, some NPEO compounds may pass through into receiving 

waters and degradation products such as NP, NP1EO and NP2EO will enter the 

environment via sludge disposal.
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Table 1. Synthetic sewage medium 

Compound (VWR, UK) Mass in 10 L aspirator (g) Influent concentration
 (g l-1 hr-1)

Bacterial peptone 93.6 0.26 
Meat extract 62.4 0.18 
Sodium chloride 3.8 0.01 
Calcium chloride 1.92 0.0055 
Magnesium  sulphate  -7-

hydrate

0.6 0.0017 

Ammonium chloride 28.8 0.08 
Potassium  dihydrogen 

orthophosphate

2.6 0.0075 
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Table 2. Characteristics of Husmann influent and effluent

Characteristic Influent (mg l-1) Effluent (mg l-1)

COD
350 46

BOD 186 25
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Table 3. BOD removal as a percentage before and after NPEO shock loadings

Test Day Number 1 7 15 20 shock load 22 24 27 31
BOD removal (%) 50 61 73 4 8 18 30 60
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A B C

Figure 4. Husmann bacterial composition (x 1000 magnification) A. After 7 days 

PBDE exposure. B and C. Unspiked samples.

23



B

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

0 5 1 0 1 5 2 0 2 5
D a y

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

 l-1
 

M
L

S
S

)

A

0

0 .0 5
0 .1

0 .1 5
0 .2

0 .2 5
0 .3

0 .3 5
0 .4

0 .4 5

0 5 1 0 1 5 2 0 2 5
D a y

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

 l-1
 

M
L

S
S

)

NP NP1EO

NP2EO NP3EO

NP4EO NP5EO

NP6EO NP7EO

C

0
0 .0 5

0 .1
0 .1 5

0 .2
0 .2 5

0 .3
0 .3 5

0 .4
0 .4 5

0 5 1 0 1 5 2 0 2 5

D a y

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

 l-

1 M
L

S
S )

Figure 5. Degradation of some NPEO compounds in Igepal CO520 in Husmann 

apparatus aeration vessel. A at Øc  3 days, B at Øc 7 days and C at Øc  3 days in 

presence of PBDE compounds.

24



0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12
Day

C
on

ce
nt

ra
tio

n 
(u

g l-1
)

MLSS high Øc

MLSS low Øc

Sludge high Øc

Sludge low Øc

MLSS low Øc + NPEO

Sludge low Øc + NPEO

Figure 6. Total PBDE concentrations in the Husmann apparatus at different Øc  (3 

and 7 days) in the presence of NPEO and with PBDE as sole spiked compound

25



B

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Day

C
o

n
c

e
n

tr
a

ti
o

n
 (

u
g

 l
-1

)

C

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0 5 1 0 1 5 2 0 2 5

D a y

C
o

n
c

e
n

tr
a

ti
o

n
 (

u
g

 l
-1

)

A

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

Day

C
o

n
c

n
e

tr
a

tio
n

 (
u

g
 l

-1
)

BDE-154
BDE_153
BDE-183
Oc ta1
Oc ta2
Oc ta3

Figure 7. Partitioning of PBDEs in Husmann apparatus with a 5 day Øc with shock 

loading. A. Influent B. MLSS C. Sludge

26



Parameter Change

A
cc

lim
at

io
n 

Ti
m

e

Re
m

ov
al

 E
ffi

ci
en

cy

0% 100%
0%

100%
0 Days

Max Days

Influent Concentration
Tem

per
atu

re

SRT

Influent Concentration
Temperature
Sludge Retention Time (SRT)

Figure  8.  Effects  of  changing  parameters  on  EDC  removal  efficiencies  and 

acclimation time (adapted from Langford and Lester, 2002).

27


	For spiking the Husmann apparatus an additional 10 l aspirator was prepared containing the commercial surfactant formulation Igepal CO520 (Sigma-Aldrich, UK) or the OcBDE commercial flame retardant formulation DE-79 (Donated by CEFAS, UK). 
	Table 1. Synthetic sewage medium 
	Influent concentration
	 (g l-1 hr-1)

	COD
	Figure 1 Schematic diagram of Husmann apparatus

