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Abstract

Genetic Algorithms typically invoke crossover operators to produce offsprings that are
a “mixture” of two parents x and y. On strings, k-point crossover breaks parental geno-
types at at most k corresponding positions and concatenates alternating fragments for the

∗This work was supported in part by the Department of Science and Technology of India (SERB project file no.
MTR/2017/000238 “Axiomatics of betweenness in discrete structures” to MC), and the German Academic Ex-
change Service (DAAD) through the bilateral Slovenian-German project “Mathematical Foundations of Selected
Topics in Science”.

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7257-6031
https://orcid.org/0000-0002-5850-5410
https://orcid.org/0000-0001-9473-7545
https://orcid.org/0000-0003-3378-2339
https://orcid.org/0000-0003-2778-5584
https://orcid.org/0000-0002-5016-5191


2 Art Discrete Appl. Math. 4 (2021) #P1.09

two parents. The transit set Rk(x, y) comprises all offsprings of this form. It forms the
tope set of an uniform oriented matroid with Vapnik-Chervonenkis dimension k + 1. The
Topological Representation Theorem for oriented matroids thus implies a representation in
terms of pseudosphere arrangements. This makes it possible to study 2-point crossover in
detail and to characterize the partial cubes defined by the transit sets of two-point cross-
over.

Keywords: Genetic algorithms, recombination, transit functions, oriented matroids, Vapnik-Chervo-
nenkis dimension.

Math. Subj. Class.: 05C62, 05C75

1 Introduction
Genetic Algorithms, Evolutionary Algorithms, and Genetic Programming are heuristics
commonly employed to solve complex optimization problems. A key component are cross-
over operators, which generate offsprings that are a mixture of two parents [16, 18, 22, 25].
Here we consider crossover operators on the set X = An strings with a fixed length n over
some alphabet A. A k-mask m is a binary string of length n with a most k break points
between consecutive runs of 0s and 1s. That is, there are 0 ≤ h ≤ k < n “break points”
0 < i1 < i2 < · · · < ih < n, such that (with i0 := 0 and ih+1 = n) m satisfies mi = 0

for ij < i ≤ ij+1 for even j and mi = 1 for ij < i ≤ ij+1 for odd j. By definition, every
k-mask starts with 0. For example, for n = 15 and i1 = 3, i2 = 5, i3 = 8, i4 = 12, we
have the 4-mask

m = 000110001111000.

Note that m is also a k-mask for 4 ≤ k ≤ 15. A k-mask thus is a binary string with at most
k + 1 alternating runs of 0s and 1.

Definition 1.1. A string z ∈ X is a k-point crossover offspring of x, y ∈ X if there is
k-mask m such that either zi = xi if mi = 0 and zi = yi if mi = 1 for 1 ≤ i ≤ n, or
zi = yi if mi = 0 and zi = xi if mi = 1 for 1 ≤ i ≤ n.

For instance, given two parents x and y, as well as the 4-mask m, we obtain the two
offsprings z1 and z2 as follows:

x =++-++-++-++-+++
y =-+--++--++--+--
m =000110001111000
z1 =++--+-++++--+++

x =++-++-++-++-+++
y =-+--++--++--+--

m =000110001111000

z2 =-+-+++---++-+--

Intuitively, k-point crossover subdivides the parents x and y into at most k+ 1 consec-
utive fragments that alternate in the offspring z. There is a rich literature on various aspects
of k-point crossover operators. Algebraic properties are the focus of [7, 21, 24], disruption
analysis is studied in [5], the relation between search spaces of crossover and mutation is
discussed in [4, 23], coordinate transformation are explored in [8, 15]. The recombination
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setsRk(x, y) of possible crossover offsprings z of two parents x and y under k-point cross-
over. The function Rk : X × X → 2X satisfies, for all x, y ∈ X , (T1) x, y ∈ Rk(x, y),
(T2) Rk(x, y) = Rk(y, x), and (T3) Rk(x, x) = {x} [14]. These three axioms define
transit functions [19], forming a common framework to describe intervals, convexities, and
betweenness. In [3], we studied properties of the transit functionsRk deriving from k-point
crossover. Convexity as a property of crossover operators is studied e.g. in [11, 12].

Here, we focus on the transit sets Rk(x, y) themselves. Since Rk(x, y) depends only
on the positions in which x and y differ, it suffices to consider a two-letter alphabet A =
{+,−} and thus X = {+,−}n. We therefore interpret X as the vertex set of the n-
dimensional Boolean Hypercube, andRk(x, y) as an induced subgraph ofX . It is shown in
[3, Cor. 4.2] thatRk(x, y) is a partial cube, that is, an isometric subgraph of n-dimensional
Boolean Hypercube [6].

The Hamming distance onX is the number d(x, y) of positions in which x and y differ.
Any two vertices x and y span a sub-hypercube Q(x, y) of X with dimension d(x, y),
which coincides with the set of all crossover offsprings Rk(x, y) whenever d(x, y) ≤ k.
Otherwise, Rk(x, y) is an induced subgraph of Q(x, y). Its cardinality

|Rk(x, y)| =

{
2t if t ≤ k
2Φk(t− 1) if t > k

(1.1)

depends only on the Hamming distance t := d(x, y) and the parameter k [3, 14], where
Φh(n) :=

∑h
i=0

(
n
i

)
. In fact, the graphs Rk(x, y) depend only on k and the Hamming

distance d(x, y):

Lemma 1.2. Let x, y ∈ {+,−}n and x′, y′ ∈ {+,−}n′
. Then Rk(x, y) and Rk(x′, y′)

are isomorphic if and only if d(x, y) = d(x′, y′).

Proof. Since every coordinate i for which xi = yi is constant in Rk(x, y) we know that
Rk(x, y) is an isometric subgraph of the subcube spanned by the d := d(x, y) coordinates i
with xi 6= yi. Relabeling the coordinates on {+,−}d is an isomorphism, henceRk(x, y) is
isomorphic toRk(−d,+d), where−d and +d are the strings of length dwith all coordinates
being − and +, respectively. Thus Rk(x, y) and Rk(x′, y′) are isomorphic if d(x, y) =
d(x′, y′). On the other hand,Rk(−d,+d) andRk(−d′

,+d′
) cannot be isomorphic if d 6= d′

since the diameter of the graphs differs.

In this contribution, we show that the transit set of k-point forms the tope set of an
uniform oriented matroid, which provides a means of gaining further insight into their
structure and allows a characterization of the transit sets of two-point crossover.

2 VC-Dimension of Recombination Sets Rk(x, y)

The Vapnik-Chervonenkis dimension (VC-dimension) quantifies the complexity of set sys-
tems [26, 27]. Given some base set Y of cardinality n := |Y |, a family H ⊆ 2Y forms
an induced subgraph G of the Boolean hypercube {+,−}n: for A ∈ H, we identify
y ∈ A ⊆ Y with the y-coordinate of the corresponding point being +, while y /∈ A
corresponds to −. A set C ⊆ Y is said to be shattered by H if {Q ∩ C|Q ∈ H} = 2C .
The V C-dimension of H is the largest integer dV C such that there is a set C ⊆ Y of car-
dinality dV C shattered by H. By convention, dV C = −1 for H = ∅. Clearly, Y is always
shattered byH = 2Y . Thus the VC-dimension of the Boolean hypercube {+,−}n itself is
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n. Analogously, every subset Y ′ ⊆ Y is shattered by 2Y
′

and thus the VC-dimension of a
sub-hypercube of dimensions |Y | = n′ is dV C = n′.

As noted in [14], the 1-point crossover recombination set R1(x, y) is an isometrically
embedded cycle C2t for t ≥ 2. It is not hard to check that dV C = 2 in this case. For
a partial cube G with d cuts the VC-dimension equals the dimension of the largest cube-
minor in G, i.e., the largest cardinality of a set of coordinates shattered by the set of all d
cuts of G. Here, a partial cube minor is either a contraction of cuts or the restriction to one
of its sides, i.e., a specialization of the standard notion of graph minors [17]. Moreover, the
cube-minor of a partial cube G is a graph isomorphic to a hypercube that can be obtained
from G by a series of contractions and restrictions. Note that contractions can be seen as
simply ignoring a coordinate.

Proposition 2.1. dV C(Rk(x, y)) =

{
k + 1 if d(x, y) > k

d(x, y) if d(x, y) ≤ k

Proof. By Lemma 1.2 it suffices to consider Rk(−n,+n). From the definition of k-point
crossover it straightforwardly follows that Rk(x, y) = {+,−}n, when k = n − 1, since
there is a break point between any two coordinates. Now suppose k < n− 1. If the break
points are consecutive, i.e., ij = j for 1 ≤ j ≤ k, then Rk(x, y) induces {+,−}k+1 on
the first k + 1 coordinates. The same holds if the break points are not consecutive and we
contract consecutive coordinates j and j + 1 that do not have a break point between them.
On the other hand, with k break points we can only “crossover” at most k + 1 coordinates,
whence dV C(Rk(x, y)) ≤ k + 1.

3 Oriented matroids and 2-point recombination sets
Oriented matroids [1] are an axiomatic abstraction of geometric and topological struc-
tures including convex polytopes, vector configurations, (pseudo)hyperplane arrangements,
point configurations in the Euclidean space, directed graphs, and linear programs. They re-
flect properties such as linear dependencies, facial relationship, convexity, duality, and have
bearing on solutions of associated optimization problems. Among several equivalent ax-
iomatizations of oriented matroids, the face or covector axioms best captures the geometric
flavour and thus is the most convenient one for our purposes.

Let E be a finite set. A sign vector X on E is a vector (Xe : e ∈ E) with coordinates
Xe ∈ {+, 0,−}. The support of a sign vector X is the set X = {e ∈ E |Xe 6= 0}. The
compositionX◦Y of two sign vectorsX and Y is defined coordinate-wisely as (X◦Y )e =
Xe, if Xe 6= 0, and (X ◦ Y )e = Ye otherwise. Their difference set is D(X,Y ) = {e ∈
E |Xe = −Ye}. We denote by ≤ the product (partial) order on {−, 0,+}E implied by the
standard ordering − < 0 < + of signs.

An oriented matroid M is ordered pair (E,F) of a finite set E and a set of covectors
F ⊆ {+,−, 0}E satisfying, for all X,Y ∈ F , the following (face or covector) axioms:

(F0) 0 = (0, 0, . . . , 0) ∈ F .

(F1) −X ∈ F .

(F2) X ◦ Y ∈ F .

(F3) There is Z ∈ F with Ze = 0 for e ∈ D(X,Y ) and Zf = (X ◦ Y )f for f ∈
E \D(X,Y ).
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Figure 1: The rhombododecahedral graph R2(----,++++) (top) with the binary labeling
corresponding to the isometric embedding into 4-dimensional hypercube. Below we show
its big face lattice generated using SageMath (www.sagemath.org).

Consider a subspace V ⊆ R|E|, define, for every v ∈ V , its sign vector s(v) coordinate-
wise by se(v) = sgn(ve) for all e ∈ E, and denote by F the set of all sign vectors of V .
Oriented matroids obtained from a vector space in this manner are called representable or
linear.

The set C ⊂ F of cocircuits or vertices ofM consists of the non-zero covectors that are
minimal with respect to the partial order ≤. The set T ⊂ F of topes of M comprises the
covectors that are maximal with respect to≤. The cocircuits determine the set of covectors:
every covector X ∈ F \{0} has a representation of the form X = V1 ◦V2 ◦ . . .◦Vk, where
V1, V2, . . . Vk are cocircuits, and V1, V2, . . . Vk ≤ X . Similarly, the topes determine the
oriented matroid: F = {X ∈ {+,−, 0}E | ∀T ∈ T : X ◦ T ∈ T }.

M = (E,F) is uniform of rank r if |X| = r + 1 for all cocircuits. The big face lattice
F̂ is a lattice obtained by adding the unique maximal element 1̂ to the partial order ≤ on
F . The rank of a covector X is defined as its height in F̂ . The rank rk(M) of M is the
maximal rank of its covectors. The corank of M is |E| − rk(M).

As an example consider R2(x, y) with d(x, y) = 4. It can be verified that the elements
of R2(----,++++) are exactly the topes of the oriented matroid corresponding to the
Rhombododecahedron. It is shown together with its big face lattice in Figure 1. This
observation can be generalized with the help of the following result:

Proposition 3.1 ([13]). A set T ⊆ {+,−}X of VC-dimension d is the set of topes of a
uniform oriented matroid M on X if and only if T = −T and |T | = 2Φd−1(|X| − 1).

By Proposition 2.1, Equ.(1.1), and Theorem 3.1, this immediately implies

Theorem 3.2. For x, y ∈ {+,−}X , with d(x, y) = |X| = n the elements of Rk(x, y)
form the set of topes of a uniform oriented matroid M on X with VC-dimension dV C =
rk(M) = k + 1.
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Figure 2: The transit graph R2(-----,+++++).

Since many of the known results on oriented matroids depend on the corank, we note
that Rk(x, y) has corank n− k − 1.

One of the cornerstones of the theory of oriented matroids is the Topological Represen-
tation Theorem, which connects oriented matroids with pseudosphere arrangements, see
Appendix A for detailed definitions. Together with Theorem 3.2, it immediately implies
the following topological characterization of the recombination sets of k-point crossover:

Theorem 3.3. For x, y ∈ {+,−}X , with d(x, y) = |X| = n, the recombination set
Rk(x, y) can be topologically represented by a pseudosphere arrangement of dimension k,
where the minimal elements in the big face lattice correspond to the intersections of exactly
k pseudospheres, and there are 2

(
n

k−1
)

such intersections.

The significance of this result is that it provides a representation of crossover opera-
tors in terms of topological objects. As an illustration of the usefulness of Theorem 3.3,
we now turn to a full characterization of the transit graphs of 2-point crossover opera-
tors. The smallest non-trivial examples are the graphs R2(----,++++) in Figure 1 and
R2(-----,+++++) in Figure 2.

Theorem 3.4. R2(a, b) with d(a, b) = t > 3 induces antipodal planar quandrangulation,
that is, a partial cube of diameter twith t2−t+2 vertices, 2t2−2t edges, t2−t quadrangles,
and all cuts of size 2t− 2.

Proof. Let |V |, |E|, |Q| and |C| denote the number of vertices, edges, 4-faces, and edges
of a cut, respectively. From the definition of crossover operator, we can arbitrarily permute
coordinates, hence it follows that each cut has the same number of edges, this justifies that
we study |C|. From Theorem 3.2 it follows that vertices of R2(a, b) form the set of topes
of a uniform oriented matroid of rank 3 and corank t − 3. As shown by [10] and in the
book by [1], rank 3 oriented matroids can be represented by pseudocircle arrangement on
S2. The corresponding tope graph is therefore planar. Hence R2(a, b) induces in particular
a planar antipodal partial cube. Corank t−3 implies that each intersection of pseudocurves
is the intersection of exactly two of them. Hence all faces of the dual – the tope graph – are
4-cycles, therefore R2(a, b) induces planar quadrangulation. Moreover, each intersection
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Figure 3: Topological representation of rhombododecahedron (l.h.s.) in terms of its pseu-
docircle arrangement (doted curves) and the corresponding hyperplane arrangement (r.h.s.).

of two pseudocircles corresponds to cocircuit. In uniform oriented matroid of corank t− 3
there are exactly 2

(
t

t−2
)

cocircuits, which correspond to the 4-cycles in the dual graph.
Quadrangulations are maximal planar bipartite graphs – no edge can be added so that

graph remains planar and bipartite. Using Euler formula for planar graphs [20], we obtain
|E| = 2|V | − 4. Equ.(1.1) furthermore, implies |E| = 2t2 − 2t and thus |C| = |E|/t =
2t− 2.

As an example, Figure 3 shows the pseudocircle arrangement and the equivalent hyper-
plane arrangement of transit graph R2(----,++++) of Figure 1.

In order to get a better intuition on the structure of the 2-point crossover graphs we
derive their degree sequence.

Theorem 3.5. The degree sequence of R2(a, b) with t := d(a, b) > 3 equals
(t, t, 4, . . . , 4, 3, . . . , 3) with t2 − 3t vertices of degree 4 and 2t vertices of degree 3.

Proof. W.l.o.g., let a = 0 . . . 0 and b = 1 . . . 1. For any vertex c = x . . . xyx . . . x, x, y ∈
{0, 1} we have that c ∈ R2(a, b), hence deg(a) = deg(b) = t. Let c ∈ R2(a, b) \ {a, b}.
Then we have two cases:

Case 1. c = xx . . . xxyy . . . yy and {x, y} = {0, 1}. Then c has at most four neighbors
in R2(a, b): c1 = yx . . . xxyy . . . yy, c2 = xx . . . xxyy . . . yx, c3 = xx . . . xyyy . . . yy
and c4 = xx . . . xxxy . . . yy. Since t > 3 it follows that c also has at least three neighbors
in R2(a, b).

Case 2. c = x . . . xxyy . . . yyxx . . . x and {x, y} = {0, 1}. Then c has at most four
neighbors in R2(a, b): c1 = x . . . xxxy . . . yyxx . . . x, c2 = x . . . xyyy . . . yyxx . . . x,
c3 = x . . . xxyy . . . yxxx . . . x, and c4 = x . . . xxyy . . . yyyx . . . x. Since t > 3 it follows
that c also has at least three neighbors in R2(a, b).

Let x3 and x4 denote the number of vertices of degree 3 and 4 respectively. By the
handshaking lemma 2|E| =

∑
v∈V (G) deg(v). Therefore, it follows from arguments above
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and Theorem 3.4 that

4t2 − 4t = 2t+
∑

v∈V (G)\{a,b}

deg(v)

4t2 − 6t = 3x3 + 4x4

Theorem 3.4 also implies that t2 − t = x3 + x4. Solving this system of linear equations
yields x3 = 2t and x4 = t2 − 3t.

4 Concluding remarks
The recombination sets of 1-point crossover operators form isometric cycles in hypercube.
The partial cubes corresponding to k-point crossover operators have a VC-dimension of
k+1 unless they are smaller sub-hypercubes. We have considered here the uniform oriented
matroids that correspond to the k-point crossover operators and used this connection to
characterize the partial cubes of 2-point recombination sets. It remains an open question
for future research whether the connection with oriented matroids and their topological
representations can be utilized to better understand the structure of k-point recombination
graphs.
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Appendix A: Pseudosphere arrangements
Consider the d-dimensional sphere Sd in Rd+1 and the corresponding (d+ 1)-dimensional
ball Bd+1 = {(x1, . . . , xd+1) ∈ Rd+1 |x21 + . . .+ x2d+1 ≤ 1}, whose boundary surface is
Sd.

A pseudosphere S ⊂ Sd is a tame embedded (d − 1)-dimensional sphere. Its comple-
ment in Bd consist of exactly two regions, hence S can be oriented, by labeling one region
by S+

e and the other by S−e . A pseudosphere arrangement S = {Se | e ∈ E} in the Eu-
clidean space Rd is a collection of (d−1)-dimensional pseudospheres on the d-dimensional
unit sphere Sd, where the intersection of any number of spheres is again a sphere and the
intersection of an arbitrary collection of closed sides is either a sphere or a ball, i.e., for all
R ⊂ E holds

(i) SR = Sd ∩i∈R Si is empty or homeomorphic to a sphere.

(ii) If e ∈ E and SR 6⊂ Se then SR ∩ Se is a pseudosphere in SR, SR ∩ S+
e 6= ∅ and

SR ∩ S−e 6= ∅.

For a pseudosphere arrangement S, the position vector σ(x) of a point x ∈ Sd is defined
as σ(x)e = 0 for x ∈ Se, σ(x)e = + for x ∈ S+

e and σ(x)e = − for x ∈ S−e . The set of
all position vectors of S is denoted by σ(S). A famous theorem due to [9] establishes an
correspondence between oriented matroids and pseudosphere arrangement.
Topological Representation Theorem ([2, 9]). Let M = (E,F) be an oriented matroid
of rank d. Then there exists a pseudosphere arrangement S in Sd such that σ(S) = F .
Conversely, if S is a pseudosphere arrangement in Sd, then (E, σ(S)) is an oriented ma-
troid of rank d.

A pseudosphere arrangement naturally induces a cell complex on Sd, whose partial
order of faces corresponds precisely to the partial order≤ on covectors of the corresponding
oriented matroid. This fact served as motivation for the concept of covectors in the theory
of oriented matroids.
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