
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

CEModule: A Computation Efficient Module
for Lightweight Convolutional Neural Networks

Yu Liang, Maozhen Li, Changjun Jiang, and Guanjun Liu, Senior Member, IEEE

Abstract—Lightweight convolutional neural networks (CNNs)
rely heavily on the design of lightweight convolutional modules
(LCMs). For a LCM, lightweight design based on repetitive fea-
ture maps (LoR) is currently one of the most effective approaches.
A LoR mainly involves an extraction of feature maps from
convolutional layers (CE) and feature map regeneration through
cheap operations (RO). However, existing LoR approaches carry
out lightweight improvements only from the aspect of RO, but
ignore the problems of poor generalization, low stability and
high computation workload incurred in the CE part. To alleviate
these problems, this paper introduces the concept of key features
from a CNN model interpretation perspective. Subsequently,
it presents a novel LCM, namely CEModule, focusing on the
CE part. CEModule increases the number of key features
to maintain a high level of accuracy in classification. In the
meantime, CEModule employs a group convolution strategy to
reduce floating-point operations (FLOPs) incurred in the training
process. Finally, this paper brings forth a dynamic adaptation
algorithm (𝛼-DAM) to enhance generalization of CEModule
enabled lightweight CNN models including the developed CENet
in dealing with datasets of different scales. Comparing with the
state-of-the-art results, CEModule reduces FLOPs by up to 54%
on CIFAR-10 while maintaining a similar level of accuracy in
classification. On ImageNet, CENet increases accuracy by 1.2%
following the same FLOPs and training strategies.

Index Terms—Lightweight, convolutional neural networks,
neural network interpretation, hyper-parameter optimization,
feature map regeneration, automated machine learning.

I. INTRODUCTION

THE past few years have seen a growing interest in em-
ploying deep learning techniques such as convolutional

neural networks (CNNs) in mobile and embedded systems.
However, a general development trend of deep neural networks
is to build deeper and more complex networks [1]–[4]. These
complex models require a large number of parameters and
floating-point operations (FLOPs) while satisfying a certain
level of accuracy in classification tasks, which is not conducive
to deploying the corresponding CNN models on mobile and
embedded terminals. How to further reduce the computa-
tional complexity of CNNs has gradually become one of
the important issues that need to be addressed during model
design. Although a number of works such as pruning [5]–
[7] and knowledge distillation [8]–[10] have been proposed

Yu Liang, Changjun Jiang, Guanjun Liu are with the Key Laboratory of
Ministry of Education on Embedded System and Service Computing and also
with the Department of Computer Science and Technology, Tongji Univer-
sity, Shanghai 201804, China(1910660@tongji.edu.cn; cjjiang@tongji.edu.cn;
liuguanjun@tongji.edu.cn).

Maozhen Li is with the Department of Electronic and Electrical Engineer-
ing, Brunel University London, Uxbridge, UB8 3PH, UK. He is also associ-
ated with the Key Laboratory at Tongji University (maozhen.li@brunel.ac.uk).

in making CNN models lightweight, they mainly follow a
post-hoc approach to optimizing a model structure only after
the training process is completed. In 2016, the Google team
first proposed the concept of lightweight CNN networks [11],
making it possible to directly train deep neural networks on
mobile terminals.

(c)

Fig. 1. Types of convolution: (a) normal convolution, (b) depthwise convo-
lution, (c) LoR convolution.

The basic idea of a lightweight CNN is to reduce the com-
putational complexity of convolution operations. Therefore,
the key to a lightweight CNN is the design of lightweight
convolutional modules (LCMs). Existing LCMs mainly fol-
low depthwise convolution and lightweight design based on

Copyright © 2021 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by
sending a request to pubs-permissions@ieee.org. For more information, see https://www.ieee.org/publications/rights/rights-policies.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

repetitive feature maps (LoR). Depthwise convolution is a
widely used lightweight operation of LCMs which exists in
most popular lightweight CNNs [11]–[15]. As shown in Fig.
1(a), each kernel in a normal convolution operates on all
the input channels simultaneously. Different from the normal
convolution, each kernel in a depthwise convolution operates
only on one channel as shown in Fig. 1(b).

LoR is a new idea introduced in 2020, and the most recent
work is GhostNet [16] which represents one of the best
lightweight works. As shown in Fig. 1(c), a LoR mainly
involves an extraction of feature maps from convolutional
layers (CE) and feature map regeneration through cheap
operations (RO). The main function of CE is to extract
feature maps from the original convolutional layer to provide
a basis for RO operations, which make the convolutional layer
lightweight through low computation cost operations such as
linear transformations [17].

Although LoR has achieved encouraging results, there is
still room for improvement. Cheap linear transformations have
become an optimal solution for RO. However, current work on
CE in GhostModule only extracts a small number of feature
maps with an aim to achieve low FLOPs but a high level of
accuracy cannot be always maintained which leads to poor
stability. In addition, existing lightweight CNN models do not
effectively scale in dealing with new datasets resulting in poor
generalizability in application scenarios.

To address these limitations, this paper introduces the con-
cept of key features from a CNN model interpretation perspec-
tive which forms the basis of the proposed LoR. A relationship
between key features and feature maps is established with
an aim to extract sufficient key features to maintain a high
level of accuracy. In the meantime, a lightweight strategy
is employed to reduce FLOPs in computation. Considering
the width multiplier (𝛼) [11] that has an impact on the
overall computation complexity of a CNN model, we scale
a CNN model through a dynamic adaptation of the value
of 𝛼. Specifically, the main contributions of the paper are
summarized as follows:
(1) Based on the concept of key features in feature ex-

traction, this paper presents a CNN model performance
approximation approach. The approximation turns an
unexplainable feature extraction process of a black box
CNN model into an explainable process in the form of
key features which can be analyzed through an underlying
interpretation method.

(2) Based on the established relationship between key fea-
tures and feature maps, this paper presents a LCM module
(i.e. CEModule). The novelty of CEModule lies in two-
fold. On one hand, CEModule employs sufficient feature
maps with an aim to extract a large number of key
features to achieve a high level of accuracy. On the other
hand, it builds on a group convolution strategy to reduce
FLOPs in computation. A new lightweight CNN model
namely CENet is subsequently developed to potentially
meet the needs in deploying deep neural networks on
mobile and embedded terminals.

(3) To improve model generalizability, this paper introduces
𝛼-DAM, a method that dynamically adapts the value of

the hyperparameter 𝛼 to make a CEModule enabled CNN
model scalable to the size of an input dataset.

(4) Comparing with the state-of-the-art results, CEModule
reduces FLOPs by up to 54% on CIFAR-10 dataset while
maintaining a similar level of accuracy. On ImageNet
dataset, CENet increases the accuracy by 1.2% following
the same FLOPs and training strategies.

The remainder of this work is organized as follows. Section
II reviews related work on lightweight CNN models. Section
III introduces the concept of key features based on which the
specific structure of CEModule is presented. It also introduces
𝛼-DAM to dynamically adapt the scale of a CNN model
based on the size of an input dataset. Section IV conducts
comprehensive experiments and validates the performance of
both CEModule and CENet in comparison with state-of-the-
art results. Section V concludes the paper and points out some
future work.

II. RELATED WORK

This section reviews related work from the aspects of
lightweight CNN module design and hyperparameter opti-
mization.

A. Lightweight CNN Networks

A lightweight CNN network refers to a deep neural network
that can be deployed on mobile and embedded terminals. The
first work on lightweight networks was MobileNet_V1 [11],
which is based on depthwise separable convolution, a way of
decomposing standard convolution into depthwise convolution
and pointwise convolution. This decomposition can effec-
tively reduce the amount of calculations and the size of the
model. Compared with MobileNet_V1, MobileNet_V2 [12]
introduces two changes, i.e., inverted residuals and linear bot-
tlenecks. These two new changes greatly improve the accuracy
of the model. MobileNet_V3 [13] further employs automated
machine learning [18], [19] to search for better lightweight
models. Xception [20] mainly draws on depthwise separable
convolution to replace the original convolution operation in
Inception_V3 [21]. ShuffleNet_V1 [14] proposes a ShuffleNet
unit that includes two operations: pointwise group convolution
and channel shuffle. ShuffleNet_V2 [15] further considers the
actual speed of the target hardware in the compact model
design. Although these works have their characteristics, the
main ideas on lightweight CNN networks are inseparable from
the depthwise convolution operation.

Unlike the aforementioned works that mainly rely on depth-
wise convolution operations, GhostNet is the latest lightweight
CNN structure presented at CVPR 2020. GhostNet provides a
LCM module, namely GhostModule, with an aim to generate
feature maps through cheap linear transformation operations.
GhostModule selects a portion of the original feature maps and
based on which it applies a series of linear transformations to
regenerate Ghost feature maps at a low cost in computation.
However, GhostModule is not stable in maintaining a high
level of accuracy due to the quality of the selected feature
maps varies in terms of the number of key features.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

B. Hyper-parameter Optimization

Hyper-parameter optimization (HPO) refers to a type of
methods that does not rely on manual parameter adjustments
[22]–[24] instead employs certain algorithms to find an opti-
mal or a near optimal hyperparameter setting in deep learning.
The essence to hyperparameter optimization methods is to
generate multiple sets of hyperparameters, and adjust them
according to the obtained evaluation indicators. Traditional
hyper-parameter optimization methods are mainly based on
brute force search and heuristic search. With the development
of deep learning, these hyper-parameter optimization methods
are gradually integrated into automated machine learning
(AutoML) [19].

AutoML has powerful generalization and learning functions
for a given dataset and task. For AutoML, network architecture
search (NAS) [18], [25] is the most important part. Generally
speaking, NAS first defines a search space, then finds a can-
didate network structure through search strategies. In addition
to searching for a pure network structure, many recent works
[26]–[28] combine NAS and HPO to form a better network.

The width multiplier 𝛼 is a key hyperparameter in the field
of lightweight models and it has an impact on the overall
computation complexity of a CNN model. However, it has
been a challenge in dynamically setting the value of 𝛼. The
existing NAS and HPO methods mainly use the brute force
search strategy in adaptation of 𝛼 which is undoubtedly not
an efficient way. To solve this problem, the proposed 𝛼-DAM
establishes a heuristic relationship between an input dataset
and a CNN model to adapt 𝛼 to make a CNN model scalable.

A lightweight CNN model relies heavily on the design of
a lightweight CNN module. However, in view of different ap-
plication backgrounds and resource constraints, a lightweight
CNN model can be further optimized through hyperparam-
eter optimization methods. As a result, a combination of
hyperparameter optimization with lightweight CNN module
design would generate an optimal solution for lightweight
CNN models.

III. METHODOLOGY

In this section, we first introduce the concept of key
features from the perspective of CNN model interpretation
based on which we approximate the performance of a CNN
model. By analyzing the relationship between feature maps
and key features, we then present the specific structure of
CEModule. Finally, 𝛼-DAM is introduced and the flexibility
in incorporating 𝛼-DAM in a CNN model is discussed.

A. Model Approximation

Key features are valuable contents learned by CNN during
a training process. Due to the black-box nature of CNN in
training, key features cannot be directly expressed through
rigorous mathematical reasoning. However, as we have re-
viewed in [29], many local interpretation methods [30]–[33]
can indirectly show the valuable learning results of a CNN.
A local interpretation method checks individual predictions
trying to figure out how a CNN model makes a decision [34],
[35]. Following [32], we can learn that feature maps play a

role in extracting image features. The works presented in [30],
[31], [33] calculate the scores of feature maps to explore what
a CNN has learned. Fig. 2 shows an output generated by Grad-
CAM [33], a local interpretation method. The output image is
reproduced from a pre-trained ResNet [36]. The test image
is taken from Wikimedia Commons, a global resource sharing
website. The red part of a heat map on Fig. 2(a) represents the
most valuable areas that the pre-trained ResNet has learned.

Fig. 2. A reproduced CNN model interpretation output: (a) key feature areas,
(b) quantified key features in squares.

Although a local interpretation method can show the key
areas learned during a CNN training process, the interpretation
is usually represented by a fuzzy area, which is not conducive
to a further analysis of the training process in CNN. To depict
the role of feature maps in a training process more clearly,
interpretation can be visualized into multiple areas such as
small squares based on approximation rules as shown in Fig.
2(b), and each area approximately represents a feature. Among
these features, a feature that covers a critical area is referred
to as a key feature.

For a target category c in the training process, each feature
map extracts part of the features in the input image. The
feature maps that contain key features can get a much higher
score than other feature maps without key features. The higher
the cumulative score of feature maps, the higher the probabil-
ity that the classification result is c. Therefore, the feature
extraction process of a CNN model can be approximated as a
process of extracting m key features as shown in Eq. (1).

Ψ(𝐼) ≈ Ψ𝑟 (
𝑚∑︁
𝑥=1

𝑥) (1)

where
• I is an input.
• r is an approximation rule.
• Ψ represents the feature extraction process of a CNN

model.
• m is the number of key features.
• 𝑥 is a key feature.

The core of model approximation lies in the selection of ap-
proximation rules which can be set independently according to
different needs. The smaller the feature size obtained based on
approximation rules is, the more accurate the model approx-
imation produces. We mainly introduce two approximation
rules in this work which are based on small squares and image
segmentation respectively. The approximation rule based on
image segmentation refers to the use of image segmentation
technology to determine features. The approximation rule

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

based on small squares is to visualize interpretation into a
large number of small square pixel matrices to improve the
flexibility of approximate feature representation.

As shown in Fig. 3(a), an input image is transformed into
a number of feature maps through a CNN where 𝑛𝑡 is the
total number of feature maps in the entire model, and each
feature map can extract random features. For a well performed
CNN, the ideal situation would be to have all the key features
extracted from the generated feature maps.

Input image

Training
Model

approximation

Total m key features

(a)

(b) (c)

nt nt

P(m) Acc.

Fig. 3. The relationship between feature maps and key features.

Fig. 3(b) and Fig. 3(c) show the impact of feature maps
on key features and accuracy respectively, where P(m) in
Fig. 3(b) represents the probability of obtaining all the key
features. If a CNN is expected to learn all the key features, it
means that 𝑛𝑡 must be large enough. As shown in Fig. 3(b),
an increase of feature maps pushes P(m) higher gradually.
Similarly, as P(m) increases, the corresponding accuracy level
will go up. However, as shown in Fig. 3(c), when the number
of feature maps initially increases, the accuracy of a CNN
model increases at an accelerated rate. As the model learns
a sufficient number of key features, the accuracy level will
gradually increase until the CNN model is saturated. It is worth
noting that the relationships depicted in Fig. 3(b) and Fig. 3(c)
are in line with the experimental results presented in Section
IV-B.

To summarize, the number of feature maps directly deter-
mines the number of key features to be extracted for model
performance approximation. Therefore, fewer feature maps
would have a higher probability of losing some key features
leading to a low accuracy level of a CNN model.

B. The Structure of CEModule

As a representative work of LoR, GhostNet observes that
feature maps have high repetitiveness which is reflected

through a visualization of multiple feature maps. Therefore,
the GhostModule in GhostNet performs a cheap linear trans-
formation on these repetitive feature maps which reduces the
overall computation complexity. GhostModule mainly contains
CE and RO, and these two operations are in a progressive
relationship. A CE operation extracts a number of feature maps
in a normal convolutional layer as the basis of RO. We set the
number of feature maps required for CE to 𝑛′ and the number
of feature maps in the normal convolutional layer to n where n
is usually divisible by 𝑛′. In order to keep the spatial size of the
feature maps consistent with that of the normal convolutional
layer, GhostModule supplements the missing (𝑛 − 𝑛′) feature
maps through RO operations.

Following the work of GhostNet, we formally define the
required FLOPs of GhostModule in computation.
Let

• k be the size of a convolution kernel.
• c be the number of input channels, i.e. the number of

intput feature maps.
• d be the kernel size of a linear transformation in RO

which is usually equal to k.
• H × W be the size of a new feature map generated by a

convolution layer.

For convolutional layers with bias, if a multiplication-
accumulation operation is counted as two FLOPs, the total
FLOPs incurred by GhostModule can be formally expressed
as:

Φ𝑔ℎ𝑜𝑠𝑡 = Φ
′

𝑔ℎ𝑜𝑠𝑡 +Φ
′′

𝑔ℎ𝑜𝑠𝑡

= 2 · 𝑐 · 𝐻 ·𝑊 · 𝑛′ · 𝑘2 + 2 · (𝑛 − 𝑛′) · 𝐻 ·𝑊 · 𝑑2 (2)

where
• Φ𝑔ℎ𝑜𝑠𝑡 represents the FLOPs of GhostModule in compu-

tation.
• Φ′

𝑔ℎ𝑜𝑠𝑡
represents the consumed FLOPs on CE opera-

tions.
• Φ

′′

𝑔ℎ𝑜𝑠𝑡
represents the consumed FLOPs on RO opera-

tions.
• (n-𝑛′) is the number of feature maps to be generated

through RO.

It should be pointed out that the ideal situation considered
by GhostNet may not always exist. GhostModule only extracts
𝑛′ feature maps in the process of CE, and 𝑛′ could be much
smaller than n. Therefore, some key features may not be
obtained. On one hand, it is not the case that sufficient key
features can always be obtained from feature maps generated
through linear transformations as GhostModule does. On the
other hand, even if a single GhostModule operation has a
low probability in losing key features, when considering all
the convolution operations in a CNN that are replaced with
GhostModule operations, the probability of the entire CNN in
losing key features would increase significantly, which leads
to an unstable CNN in maintaining a high level of accuracy.

RO performs a linear transformation on the output of CE,
and RO will also change accordingly when CE changes.
In view of the limitations of GhostModule, we believe that

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

increasing the number of feature maps required by CE is the
most direct and effective way to achieve a higher probability
in extracting all the key features to enhance CNN stability in
maintaining a high level of accuracy. Inevitably, the increase
of the number of feature maps will directly cause high FLOPs.
The key of CEModule is to extract sufficient key features
through the process of CE but without increasing FLOPs.

To generate more feature maps without incurring a higher
cost on FLOPs, CEModule employs group convolution, an
effective lightweight strategy that has been widely used in
CNNs. Group convolution can effectively reduce the amount
of calculations of CNNs [4], [14], [15], [20]. However, Ghost-
Module cannot directly incorporate group convolution. Unlike
traditional convolution that can be directly transformed to
group convolution, the RO part in GhostModule performs a
linear transformation which cannot directly incorporate group
convolution. In addition, adding the number of feature maps
in the CE part will also increase the FLOPs of the RO part in
GhostModule. In order to reduce the FLOPs required but in
the meantime to increase the number of convolution kernels,
CEModule incorporates group convolution only in the CE
part. Fig. 4 shows the difference between GhostModule and
CEModule. As shown in Fig. 4(b), CEModule first expands the
number of feature maps in the original convolutional layer with
an expansion ratio of 𝑔′. CEModule then performs a group
convolution operation on the extracted feature maps to reduce
the amount of calculation, and g is the number of groups in
CEModule. Therefore, the FLOPs incurred by CEModule can
be expressed as:

Φ𝑐𝑒 = Φ
′
𝑐𝑒 +Φ

′′
𝑐𝑒

=
2 · 𝑛′ · 𝑔′

𝑔
· 𝐻 ·𝑊 · 𝑐 · 𝑘2 + 2 · 𝑔′ · (𝑛 − 𝑛′) · 𝐻 ·𝑊 · 𝑑2

(3)

where
• Φ𝑐𝑒 represents the FLOPs of CEModule.
• Φ′

𝑐𝑒 represents the consumed FLOPs on CE operations.
• Φ

′′
𝑐𝑒 represents the consumed FLOPs on RO operations.

The value of c is the number of feature maps in the previous
layer which is usually set to 64∼1024 [3], [11]–[13], [16], [36],
[37]. Comparing with g, 𝑔′ and 𝑛−𝑛′

𝑛′ which are set less than
8, c is a significantly large value.

According to Eq. (2) and Eq. (3), we have:

Φ𝑐𝑒

Φ𝑔ℎ𝑜𝑠𝑡

=

𝑛′ ·𝑔′
𝑔

· 𝐻 ·𝑊 · 𝑐 · 𝑘2 + 𝑔′ · (𝑛 − 𝑛′) · 𝐻 ·𝑊 · 𝑑2

𝑛′ · 𝐻 ·𝑊 · 𝑐 · 𝑘2 + (𝑛 − 𝑛′) · 𝐻 ·𝑊 · 𝑑2

=

𝑛′ ·𝑔′
𝑔

· 𝑐 + 𝑔′ · (𝑛 − 𝑛′)
𝑛′ · 𝑐 + (𝑛 − 𝑛′)

(4)

where
• 𝑔 ∈ 𝑁∗ and c ≫ g.
• 𝑔′ ∈ 𝑁∗ and c ≫ 𝑔′.
• 𝑛−𝑛′

𝑛′ ∈ 𝑅+ and c ≫ 𝑛−𝑛′
𝑛′ .

The theoretical value of g only needs to satisfy the condition
that 𝑔 ∈ 𝑁∗, and 𝑔′ is a hyperparameter closely related to g.

To replace GhostModule with CEModule without increasing
the extra FLOPs, we aim to satisfy Φ𝑐𝑒 = Φ𝑔ℎ𝑜𝑠𝑡 , then the
value of 𝑔′ can be calculated with Eq. (5).

𝑔′ =
𝑔 · 𝑐 · 𝑛′ + 𝑔 · (𝑛 − 𝑛′)
𝑛′ · 𝑐 + 𝑔 · (𝑛 − 𝑛′) < 𝑔 (5)

C. 𝛼-DAM

In this section, we present 𝛼-DAM, a method that adapts 𝛼

according to an input image dataset to better initialize a CNN
model. The factors that affect 𝛼 are mainly the sizes of input
images.

The key to adapt 𝛼 is to establish a mapping between the
size of an input image and the number of feature maps. For
an input image, corner or edge detection methods [38], [39]
are normally employed to determine the number of corner
points or edges. For feature maps, the most representative
layer which is normally the first layer of a CNN model is
selected. In fact, for the existing mainstream CNN models such
as ResNet, VGGNet [37], MobileNet [11]–[13] and GhostNet,
the number of feature maps in all subsequent convolutional
layers is proportional to the number of feature maps in the
first layer.

Therefore, 𝛼-DAM is initialized with a corner (or edge)
detection method as well as the number of feature maps in the
first layer to establish a mapping relationship. We set the total
number of corner points or edges obtained from an individual
image as 𝛾(I). Considering the size variations of images in an
input dataset, we set h as the expected value of 𝛾(I):

ℎ =

∑𝑤
𝑖=1 𝛾(𝐼)
𝑤

(6)

where
• w is the number of images in an input dataset.
• I is an image in the dataset.

We set the number of feature maps in the first layer to ℎ′.
To establish the corresponding relationship between h and ℎ′,
we define a criterion point as (h, ℎ′) which can be obtained
through a process of pre-training an existing model on a
specific dataset. After getting multiple criterion points, we can
fit a function based on these criterion points through a linear
regression as shown in Fig. 5(a). Generally speaking, h is much
larger than ℎ′ and each black point represents a criterion point.

For a dataset D consisting of (h, ℎ′) criterion points, the
linear regression function aims to generate 𝑓 (ℎ) = 𝜂 · ℎ + 𝑏

which satisfies 𝑓 (ℎ) ≃ ℎ′. We can calculate the solution of 𝜂

and b through the following least square method:

(𝜂∗, 𝑏∗) = 𝑎𝑟𝑔𝑚𝑖𝑛
(𝜂,𝑏)

𝐷∑︁
𝑖=1

(ℎ′𝑖 − 𝜂 · ℎ𝑖 − 𝑏)2 (7)

where
• 𝜂 is the slope rate.
• b is a bias.
• (𝜂∗, 𝑏∗) represents the solution of 𝜂 and b.
• ℎ′

𝑖
represents the value of ℎ′ at the i-th point in D.

• ℎ𝑖 represents the value of ℎ at the i-th point in D.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

k

c

k

n'

k

k

H

n'

W

Input feature maps

Convolution kernels

H

W

n-n'

CE

RO (1×d ×d)

n

H

W

k

c

k

k

k H

g'× n'

W

Input feature maps

Convolution kernels

H

W

g'× (n-n')

CE

RO (1×d ×d)

g'×n

H

W

k

k

k

k

g

(a) (b)

Fig. 4. The structure difference between GhostModule and CEModule: (a) GhostModule, (b) CEModule.

The core idea of 𝛼-DAM is to generate the corresponding
regression equations based on criterion points. However, if the
model size is too small, the model will cause under-fitting. To
solve this problem, we set a low bound ℎ𝑚𝑖𝑛 for the regression
equation to avoid under-fitting as shown in Fig. 5(b).

h h

h'h'

h'min

(a) (b)

Fig. 5. The relationship between h and ℎ′.

The mapping strategy is reflected with a ReLU function in
Eq. (8).

ℎ′ = 𝑚𝑎𝑥(ℎ′𝑚𝑖𝑛, 𝑓 (ℎ)) (8)

where

• ℎ′
𝑚𝑖𝑛

is the minimum value of ℎ′.

𝛼-DAM is flexible when applying to the underlying CNN
models. The value of 𝛼 is adapted by ℎ′

ℎ′𝑜𝑟𝑔
where ℎ′𝑜𝑟𝑔

represents the number of feature maps in the first layer of
the CNN model. And the low bound is usually adapted based
on the specific type of CNN.

IV. EXPERIMENTAL RESULTS

This section validates the performance of both CEModule
and CENet through a set of experiments. It also analyzes the
effectiveness of 𝛼-DAM.

A. Exprerimental Setups

This section presents the experimental settings. First it
briefly introduces three widely used datasets for the experi-
ments conducted in this work.

1) Datasets: The MNIST dataset [40] has 60,000 training
images and 10,000 test images. Each sample is a 28 × 28
pixel grayscale handwritten digital image. The CIFAR-10
dataset [41] has 10 categories composed of 60,000 32×32
color images, each of which has 6,000 images. The ImageNet
dataset [42] has more than 14 million images, covering more
than 20,000 categories.

2) Performance Metrics: We evaluated the performance
from the aspects of accuracy and FLOPs. For classification
problems, we have true positive (TP), false positive (FP), true
negative (TN) and false negative (FN) and the corresponding
accuracy can be calculated with Eq. (9):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(9)

In CNN, the convolution operations account for the largest
portion of the total FLOPs. Therefore, we take a convolutional
operation as an example to depict the FLOPs incurred.

k

c

k

n

k

k

n

W

Input feature maps

Convolution kernels

Output feature maps

H

Fig. 6. A normal convolution operation.

As shown in Fig. 6 where the parameters are defined in
Section III-B, the total FLOPs incurred in a convolutional
operation equal to the FLOPs spent on a single pixel multiplied
by the number of pixels in the output feature maps. For a
single pixel, the convolution operation performs (𝑘 · 𝑘 · 𝑐)
multiplication and (𝑘 · 𝑘 · 𝑐 − 1) accumulation operations. The
total number of pixels in the output feature maps is (𝐻 ·𝑊 ·𝑛).
Therefore, the FLOPs spent on a convolution operation can be
expressed as follows without considering bias:

(2 · 𝑘 · 𝑘 · 𝑐 − 1) · (𝐻 ·𝑊 · 𝑛) (10)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

When bias is considered, the FLOPs incurred in a convolu-
tional operation can be expressed as:

(2 · 𝑘 · 𝑘 · 𝑐) · (𝐻 ·𝑊 · 𝑛) (11)

3) Parameter Settings: All the experiments were conducted
using the PyTorch [43] framework in Python 3.6 and a single
NVIDIA Tesla V100 GPU (16G RAM). To ensure fairness
in comparison, all the experiments were conducted following
the same training settings. CEModule and GhostModule were
compared on VGGNet [37] and ResNet [36] respectively.
CENet was evaluated in comparison with another 6 CNN
models using the official training file of PyTorch [44] as a
basis. The total number of epochs was set to 120, the weight
decay was 4𝑒−5, the batch size was 512 due to the limit of the
GPU RAM and the learning rate was 0.2.

B. Basic Validations

To validate the relationship of feature maps with accuracy
and key features as plotted in Fig. 3(b) and Fig. 3(c) respec-
tively, we constructed TestNet (TN), a testing CNN model
whose structure is shown in Table I. By varying the number
of feature maps, we modified TestNet into 8 models which are
represented by TN-x (x is between 1 and 8). For each TN-x
model, we set the number of feature maps in the first layer ℎ′

to 2𝑥 .

TABLE I
THE STRUCTURE OF TESTNET.

Layer Input Output Kernel size Pooling

Conv1 3 ℎ′ 5
Maxpooling

Conv2 ℎ′ ℎ′ 5
Fc1 ℎ′ 120 - -
Fc2 120 84 - -
Fc3 84 10 - -

The training loss reflects the ability of a CNN model in
extraction of key features. When a CNN model extracts more
key features, the loss value will become lower. To validate
the relationship of key features and feature maps as shown
in Fig. 3(b), Fig. 7 presents a series of observations on the
training loss of TN-x under different training epochs. It can
be observed that as the number of feature maps increases, the
model loss gradually becomes lower. It is worth noting that
when the number of feature maps reaches 64 (i.e. the case of
x being 6), increasing the number of feature maps does not
have much impact on training loss.

Table II shows that accuracy increases at an accelerated
rate initially with more feature maps. However, as the model
learns a sufficient number of key features, the accuracy level
gradually increases until the model is saturated which confirms
Fig. 3(c).

C. CEModule Validation

In this section, we first introduce the specific strategies in
applying CEModule to both VGGNet and ResNet. It is worth

0

0.5

1

1.5

2

1 10 20 30 40 50 60 80 100

TN-1

TN-2

TN-3

TN-4

TN-5

TN-6

TN-7

TN-8

Epochs

Loss

Fig. 7. Training loss of TN-x models.

TABLE II
ACCURACY OF TN-x MODELS.

Models ℎ′
Acc. Acc. Acc. Acc.

(Epoch=1) (Epoch=5) (Epoch=10) (Epoch=20)

TN-1 2 17.2% 44.8% 48.6% 48.8%
TN-2 4 21.4% 46.9% 57.0% 56.9%
TN-3 8 31.6% 52.7% 64.3% 62.7%
TN-4 16 34.7% 53.5% 62.7% 63.5%
TN-5 32 37.7% 58.3% 68.1% 68.3%
TN-6 64 38.3% 60.3% 68.8% 70.3%
TN-7 128 39.8% 61.9% 71.6% 71.9%
TN-8 256 39.5% 61.7% 72.0% 71.7%

noting that all the following experiments were conducted on
the CIFAR10 dataset.

1) BNlayer or No_BNlayer: CEModule replaces the normal
convolution layers in a CNN model to make the model
lightweight. However, compared to a traditional convolutional
layer, CE and RO need to be calculated separately during
the training process in CEModule which could cause under-
fitting due to a small number of parameters in the CE
part. To reduce over-fitting caused by lightweight operations,
CEModule employs a batch normalization (BN) layer [45]
as shown in Fig. 8 and the results are shown in Table III.
In CEModule, batch normalization not only alleviates the
possible gradient dispersion phenomenon, it also speeds up
training and convergence. Here C refers to the concat operation
which is mainly used to merge channels. Through the concat
operation, we can superimpose the number of feature maps in
a horizontal or vertical space.

In Table III, CE_ResNet56 is a lightweight ResNet56 model
using CEModule. No_BNlayer refers to the CEModule without
a BN layer. It can be observed that having a BN layer increases
the accuracy by 8.68% in CE_ResNet56.

2) All_CEModule or First_Layer Retaining: CEModule
also retains the first convolutional layer for performance im-
provement. As described in Section III-B, a LoR method like
CEModule is heavily dependent on the number of key features
extracted in the CE part. When the first convolutional layer is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

RO

C

Fig. 8. The implementation of CEModule.

TABLE III
ACCURACY OF CE_RESNET56 WITH BN LAYER.

Models Acc.

CE_ResNet56(No_BNlayer) 82.39 %
CE_ResNet56 91.07%

retained, CEModule obtains more information from multiple
feature maps, thereby reducing the probability of losing key
features and increasing the level of accuracy. Due to the
characteristics of LoR methods, retaining other convolutional
layers cannot have the same effect.

In a set of experiments as shown in Table IV, we replaced all
the convolutional layers in an original model with CEModule,
and subsequently retained the first convolutional layer.

TABLE IV
THE IMPACT OF RETAINING THE FIRST-LAYER ON BOTH RESNET56 AND

VGG16.

Models Acc.

CE_ResNet56(All_CEModule) 90.46 %
CE_ResNet56(First_Layer) 91.07%
CE_VGG16(All_CEModule) 91.50 %
CE_VGG16(First_layer) 92.37%

CE_VGG16 is a lightweight VGG16 model using CEMod-
ule. All_CEModule replaces all the convolutional layers with
CEModule. First_Layer retains the first convolutional layer. It
can be observed from Table IV that retaining the first layer
increases the accuracy by 0.61% on CE_ResNet56 and 0.87%
on CE_VGG16 respectively.

3) The Size of Convolution Kernel: The size of a convolu-
tional kernel also affects FLOPs and accuracy of a CEModule
enabled CNN model. Following the views of [46], [47], a small
kernel size like 3 is usually considered as a reasonable choice
for a normal convolutional layer. We conducted a number of
tests on the CE_VGG16 with the size of a kernel setting to 3, 5,
and 7 respectively. As shown in Table V, the CE_VGG16 using

a kernel size of 3 reduces nearly 70% of FLOPs in comparison
with the original VGG16, while maintaining a similar level of
accuracy. As a result, CEModule does not have an additional
impact on the setting of kernel size.

TABLE V
THE IMPACT OF KERNEL SIZE ON CE_VGG16.

Models FLOPs Acc.

VGG16 333.35M 92.82%
CE_VGG16(Kernel_Size=3) 101.15M 92.37%
CE_VGG16(Kernel_Size=5) 242.71M 89.49%
CE_VGG16(Kernel_Size=7) 455.05M -

4) Groups and Channel Shuffle: The number of groups g
is the most important parameter for CEModule which affects
both FLOPs and accuracy. As the g value increases, the
learning ability of the model also increases under the same
FLOPs. However, as shown in Fig. 3, with an increase of
feature maps, the model’s ability to extract key features has an
upper limit which means the linear increase in the number of
groups does not bring up a linear increase in the classification
accuracy, but can easily cause over-fitting. On the other hand, a
larger value of g also increases the calculations of both 𝑔′ and
Φ

′′
𝑐𝑒 when keeping the same FLOPs of CEModule. As a result,

the FLOPs of Φ
′
𝑐𝑒 in CEModule decreases which damages

the ability of the CE part in feature extraction. Under ∼50M
FLOPs in CE_ResNet56 and ∼100M FLOPs in CE_VGG16,
we validated the impact of the number of groups on both
CE_VGG16 and CE_ResNet56. It can be observed from Table
VI that setting g to 2 increases the accuracy at least by 0.34%
on CE_VGG16 and 0.13% on CE_ResNet56 respectively.

In addition to g, the shuffle operation [14] is also an
important operation that affects the performance of group
convolution. For a normal group convolution layer, shuffle
mainly solves the difficulty in channel interaction caused by a
large value of g. For CEModule, because channel interaction is
enhanced through a linear transformation in the RO part, we
do not need to add additional shuffle operations to improve
the performance of the module when g is 2. We further
tested whether the shuffle operation has a significant effect
on CEModule. It can be observed from Table VI that channel
shuffle does not have much effect on both CE_VGG16 and
CE_ResNet56 when g is set to 2.

TABLE VI
THE IMPACT OF GROUPS.

Models Acc.

CE_VGG16(g=2) 92.37%
CE_VGG16(g=4) 91.87%
CE_VGG16(g=2&shuffle) 92.03%
CE_VGG16(g=4&shuffle) 91.86%
CE_VGG16(g=8&shuffle) 88.68%

CE_ResNet56(g=2) 91.07%
CE_ResNet56(g=2&shuffle) 90.94%
CE_ResNet56(g=3&shuffle) 90.30%

Last but not least, a large value of g will increase the com-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

putation latency of CEModule. The latency in the lightweight
model refers to the time required to perform a training process
in single-threaded mode with a batch size of one. As the scale
of the model becomes larger, the latency increases accordingly.
We conducted multiple latency experiments with different g
values (2, 4, 8) under different model scales. Fig. 9 shows the
impact of the groups on computation latency, with the case of
g being 2 again performing the best.

0.7

1.2

1.7

2.2

2.7

0 50 100 150 200 250 300

La
te

n
cy

 (
m

s)

FLOPs (M)

g=2

g=4

g=8

Fig. 9. Computation latency of CEMoule with different groups.

5) Comparison with GhostModule: Based on the best set-
tings of CEModule parameters, we conducted another set
of experiments in comparison with GhostModule. First, we
incorporated CEModule and GhostModule into VGG16 and
ResNet56 models respectively. The comparison results are
shown in Table VII.

TABLE VII
A COMPARISON OF CEMODULE WITH GHOSTMODULE.

Models FLOPs ℎ′ Acc.

VGG16 333.35M 64 92.82%
Ghost_VGG16 179.01M 64 92.26%
CE_VGG16 101.15M 80 92.37%
ResNet56 125M 16 93.2%
Ghost_ResNet56 62.28M 16 90.68%
CE_ResNet56 50.92M 20 91.07%

It can be observed that both GhostModule and CEModule
lighten the original VGG16 and ResNet56 models in reducing
FLOPs significantly while having a similar level of accuracy.
Notably, CE_VGG16 reduces the amount of FLOPs by 54%
compared to Ghost_VGG16 and increase the level of accuracy
by 0.11%. Compared with Ghost_ResNet56, CE_ResNet56
still achieves higher accuracy but with lower FLOPs.

CEModule has a better generalization ability than Ghost-
Module on small CNN models. For validation, we designed
two more lightweight models, one is a small model of ∼30M
FLOPs and the other is a tiny model of ∼10M FLOPs. Table
VIII and Table IX show the experimental results confirming
CEModule is far more scalable than GhostModule on small
models.

We finally tested the stability of both CEModule and Ghost-
Module. We employed TN, LeNet and AlexNet as the baseline
models and deleted the fully connected layer to highlight the
feature extraction capabilities of CEModule and GhostModule.

TABLE VIII
SMALL MODEL PERFORMANCE.

Models FLOPs ℎ′ Acc.

Ghost_ResNet56 35.78M 12 89.22%
CE_ResNet56 33.12M 16 90.15%
Ghost_VGG16 34.05M 20 88.30%
CE_VGG16 33.56M 26 89.67%

TABLE IX
TINY MODEL PERFORMANCE.

Models FLOPs ℎ′ Acc.
Ghost_VGG16 12.02M 8 86.89%

CE_VGG16 11.54M 10 87.59%

The FLOPs of the three baseline models were set to 820K,
900K and 1.5M. The stability is mainly determined by the
median of accuracy, and the interval between the maximum
accuracy and the minimum accuracy. We conducted 60 sets of
tests on the three baseline models. Fig. 10 shows the stability
of CEModule in maintaining a higher level of accuracy in
comparison with GhostModule.

Ghost-TN
（820K）

CE-TN
(820K)

Ghost-LeNet
（900K）

CE-LeNet
（900K）

(a) (b) (c)

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

A
c
c
u
ra
c
y

Fig. 10. A comparison of stability between CEModule and GhostModule.

D. CENet on ImageNet Dateset

Following the works of [12], [13], [16], [48], we have also
designed CENet, a new lightweight CNN model based on
CEModule and validated it on ImageNet. CENet is mainly
composed of CE_bottleneck as shown in Fig. 11. A normal
CE_bottleneck contains two CEModules with the correspond-
ing BN layer and ReLU layer. The dashed area in Fig.
11 indicates the additional changes. Here ‘+’ refers to the
common add operation in skip connection. The function of
add operation is mainly to increase the amount of information
in each feature map to improve the classification performance,
but the horizontal or vertical dimension itself does not in-
crease. When stride equals to 2, we need to introduce an
additional depthwise layer [12], [16] to further reduce FLOPs.
Squeeze & excitation layer [48] is also included to improve
the accuracy of CENet as shown in Table X.

ReLUCE Module Depthwise

Squeeze &

Excitation

Fig. 11. The implementation of CE_bottleneck.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

The structure of CENet basically follows the framework on
AutoML search [13] and replaces the corresponding bottleneck
block with CE_bottleneck. In Table X, 𝐼𝑐 is the number of
input channels, 𝑂𝑐 is the number of output channels, SE
represents the case of adding a squeeze and excitation (SE)
layer to CE_Bottleneck, and 𝐼 is the size of input feature maps,
𝑘 is the kernel size of CE_Bottleneck, and 𝑠 is the number of
strides.

TABLE X
THE STRUCTURE OF CENET.

Operators 𝐼𝑐 𝑂𝑐 SE 𝐼 𝑘 𝑠

Conv2d 3 20 - 2242 × 3 3 -

CE_Bottleneck 20 20 - 1122 × 20 3 1
CE_Bottleneck 60 30 - 1122 × 20 3 2
CE_Bottleneck 90 30 - 562 × 30 3 1
CE_Bottleneck 90 50 SE 562 × 30 5 2
CE_Bottleneck 150 50 SE 282 × 50 5 1
CE_Bottleneck 300 100 - 282 × 50 3 2
CE_Bottleneck 250 100 - 142 × 100 3 1
CE_Bottleneck 230 100 - 142 × 100 3 1
CE_Bottleneck 230 100 - 142 × 100 3 1
CE_Bottleneck 600 140 SE 142 × 100 3 1
CE_Bottleneck 840 140 SE 142 × 140 3 1
CE_Bottleneck 840 200 SE 142 × 140 5 2
CE_Bottleneck 1200 200 - 72 × 200 5 1
CE_Bottleneck 1200 200 SE 72 × 200 5 1
CE_Bottleneck 1200 200 - 72 × 200 5 1
CE_Bottleneck 1200 200 SE 72 × 200 5 1

Conv2d - 1200 - 72 × 200 1 -
Avg_Pool - - - 72 × 1200 7 -
Conv2d - 1280 - 12 × 1200 1 -
FC - 1000 - 12 × 1280 - -

We selected the major works on lightweight CNN models
[11]–[16] in the past three years for comparison. Since Ghost-
Net and MobileNet_V3 are currently the best performing CNN
models, we compared the performance of CENet, GhostNet
and MobileNet_V3 using two training strategies. For fairness
and reproducibility, we first followed Pytorch’s official training
strategy for ImageNet [44] and the recommended training
parameter settings for CENet, GhostNet and MobileNet_V3.
Specifically, the weight decay was 4𝑒−5, the learning rate was
0.4, the batch size was 1024, the total number of epochs was
120 and the learning rate was reduced by 10 every 30 epochs.
We evaluated the accuracy under similar FLOPs. It can be
observed from Table XI that under ~150M FLOPs, CENet
increases the accuracy more than 0.8% on Top-1 and 0.7% on
Top-5 respectively.

TABLE XI
A COMPARISON WITH MOBILENET AND GHOSTNET.

Models FLOPs Top-1 Acc. Top-5 Acc.

MobileNetV3 (L&0.75×) [13] 155M 67.9% 88.1%
GhostNet (1.0×) [16] 151M 69.5% 88.7%
CENet (1.0×) 151M 70.3% 89.4%

We then compared CENet, GhostNet and MobileNet fol-

lowing the cosine annealing training strategy in 360 epochs.
Except CENet, GhostNet and MobileNet_V3, we also com-
pared with another 4 models following their published results,
and CENet performs best in accuracy while consuming similar
FLOPs as shown in Table XII. It can be observed from Table
XII that under ~150M FLOPs, CENet increases the accuracy
more than 1.2% on Top-1 and 0.3% on Top-5 respectively.

TABLE XII
A COMPARISON WITH GHOSTNET, MOBILENET AND SHUFFLENET.

Models FLOPs Top-1 Acc. Top-5 Acc.

MobileNetV1(0.5×) [11] 150M 63.3% 84.9%
MobileNetV2(0.6×) [12] 141M 66.7% -
ShuffleNetV1(1.0×) [14] 138M 67.8% 87.7%
ShuffleNetV2(1.0×) [15] 146M 69.4% 88.9%
MobileNetV3 (L&0.75×) [13] 155M 70.5% 89.7%
GhostNet (1.0×) [16] 151M 71.8% 90.5%
CENet (1.0×) 151M 73.0% 90.8%

E. Evaluation of 𝛼-DAM

As presented in Section III-C, 𝛼-DAM follows a linear
regression using multiple criterion points (h, ℎ′). In this set
of experiments, we evaluated 𝛼-DAM on both CE_ResNet
and ResNet models. MNIST, CIFAR-10 and ImageNet datasets
were employed as the basis of criterion points and FLOWER-
5 dataset [49], a dataset with labelled 4242 images of flowers
was selected for testing.

For ℎ′ in a criterion point (h, ℎ′), the best value of ℎ′

normally can be obtained from a pre-training model through
the tuning of parameter settings. Following the works [44],
[50] in setting the value of ℎ′ on ResNet, the value of ℎ′

was set to 16 for CIFAR-10, 64 for ImageNet. It is worth
noting that ResNet performs well on MNIST even when the
value of ℎ′ is 2. However, a small ℎ′ could cause a large error
in linear fitting. Having conducted multiple sets of low bound
tests and mainstream CNN design reviews [4], [13], [36], [37],
we found that when the convolution kernel of the first layer of
the model is lower than 8, the instability of the model will be
significantly improved. As a result, we set 8 as the minimum
value of ℎ′ following Eq. (7).

Images in a dataset like ImageNet have varied numbers of
corner or edge points as shown in Fig. 12. For fairness, the
value of h in a criterion point (h, ℎ′) is calculated following
Eq. (5) in this experiment.

In addition, the value of h is also affected by differ-
ent thresholds or detection methods. However, due to the
robustness of 𝛼-DAM in the adaptation process, the error
between the predicted values generated by different thresholds
and detection methods is relatively small. To validate the
robustness of 𝛼-DAM, we employed three Harris detection
methods. Table XIII shows three groups of h values using the
Harris corner detection method [51] but with a threshold value
of 0.04, 0.1 and 0.2 respectively.

To assess the impact of threshold values, we conducted a
linear regression adaptation. Through the number of corner
points h and the number of feature maps ℎ′, we can obtain

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) 352 corner points (b) 599 corner points (c) 229 corner points

(e) 247 corner points (f) 312 corner points (g) 425 corner points

(d) 364 corner points

(h) 278 corner points

Fig. 12. Examples of corner points extracted from ImageNet.

TABLE XIII
THREE SETS OF CORNER POINTS.

Datasets Image size h(0.04) h(0.1) h(0.2)

ImageNet 224×224 1196 706 230
CIFAR-10 32×32 202 120 36
MNIST 28×28 36 16 10
FLOWER-5 112×112 865 500 154

the criterion points as shown in Table XIV and fit three ReLU
functions in Eq. (12).

TABLE XIV
THREE SETS OF CRITERION POINTS.

Threshold
Criterion Points Criterion Points Criterion Points

(MNIST) (CIFAR-10) (ImageNet)

0.2 (10, 8) (36, 16) (230, 64)
0.1 (16, 8) (120, 16) (706, 64)
0.04 (36, 8) (202, 16) (1196, 64)

ℎ′ =


𝑚𝑎𝑥(8, [0.049ℎ + 6.1]) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.04
𝑚𝑎𝑥(8, [0.082ℎ + 6.2]) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.1
𝑚𝑎𝑥(8, [0.248ℎ + 7.1]) 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2

(12)

where
• 8 is the value of ℎ′

𝑚𝑖𝑛
.

Following the three ReLU functions in Eq. (12), the cor-
responding number of feature maps ℎ′ is 48, 47 and 45
respectively for the FLOWER-5 dataset. It can be concluded
that, following the adaptation of 𝛼-DAM, the numbers of the
generated feature maps are in a close range regardless of the
underlying corner detection method that is employed.

For the FLOWER-5 dataset, we selected an average value
of 46 as the final value of ℎ′. Table XV shows the validation
results of 𝛼-DAM. Following the existing mainstream works
[11], [12], [36], [44], [50], the number of feature maps in
the first layer of ResNet is usually set to a power of 2.
We performed a number of tests using a power of 2 feature
maps on FLOWER-5 dataset and conducted experiments on
ResNet20 and ResNet32 respectively. It was found that when
the number of feature maps was equal to 64, a similar level
of accuracy can be maintained but with the least FLOPs.

Since 𝛼-DAM is based on the prediction results generated
by the ResNet model in this experiment, for fairness, we
employed ResNet as a baseline. In addition to ResNet, the
prediction of 𝛼-DAM can also be used in the derivative model
of ResNet. In order to test the diversity, we verified ResNet,
ResNet32 and CE_ResNet20 respectively. Table XV shows a
comparison between 𝛼-DAM and the optimal solution using 64
feature maps generated through a manually pre-trained ResNet
model. It is observed that using the ℎ′ dynamically adapted
by 𝛼-DAM requires even less FLOPs but maintains a similar
level of accuracy.

TABLE XV
PERFORMANCE OF 𝛼-DAM.

Models
Acc. FLOPs Acc. FLOPs

(𝛼-DAM) (𝛼-DAM) (64) (64)

ResNet20 80.2% 4.09G 79.4% 7.91G
ResNet32 82.1% 6.96G 81.3% 13.46G
CE_ResNet20 81.9% 1.05G 82.4% 2.02G

V. CONCLUSION

In this paper, we have presented CEModule, a compu-
tation efficient module in making CNN models even more
lightweight in comparison with the state-of-the-art results. CE-
Module enabled CNN models including the developed CENet
can be potentially deployed on resource constrained mobile
and embedded devices. CEModule builds on the concept of
key features and group convolution to lighten the computation
workload in training and in the meantime achieve a stable
performance in maintaining a high level of accuracy in classi-
fication. The developed 𝛼-DAM further makes the CEModule
enabled CNN models scalable in dynamically dealing with
new datasets.

It is worth noting that a limitation of this research lies in
the inability of the proposed 𝛼-DAM in adaptation to the most
suitable scale when working on an unknown model. Neural
architecture search (NAS), as a hyperparameter optimization
technique, has been widely used in searching for unknown
models. As a result, one immediate future work will be to
combine 𝛼-DAM and NAS to further expand the search space
of unknown models to accurately search for an optimal model
according to different data scales. Another future work will
be to deploy the developed CENet on mobile devices and to
further optimize the performance of CENet in real life mobile
applications.

ACKNOWLEDGMENT

This research is supported by the National Key R&D
Project of China [grant number 2018YFB2100801], the Di-
rector Foundation Project of National Engineering Laboratory
for Public Safety Risk Perception and Control by Big Data
(PSRPC), the Fundamental Research Funds for the Central
Universities, the China Electronics Technology Group Cor-
poration (CETC) and the Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0100).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

REFERENCES

[1] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
arXiv preprint arXiv:1602.07261, 2016.

[3] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[6] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, pp. 1135–1143, 2015.

[7] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[8] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu,
and Q. Tian, “Data-free learning of student networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
3514–3522.

[9] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in Advances in neural information pro-
cessing systems, 2018, pp. 8527–8537.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[13] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1314–1324.

[14] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848–6856.

[15] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.

[16] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
1580–1589.

[17] X. Li, S. Liu, J. Kautz, and M.-H. Yang, “Learning linear transformations
for fast image and video style transfer,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3809–3817.

[18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[19] Q. Yao, M. Wang, Y. Chen, W. Dai, H. Yi-Qi, L. Yu-Feng, T. Wei-
Wei, Y. Qiang, and Y. Yang, “Taking human out of learning ap-
plications: A survey on automated machine learning,” arXiv preprint
arXiv:1810.13306, 2018.

[20] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[22] E. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter optimization
for convolutional neural network committees based on evolutionary
algorithms,” in 2017 IEEE international conference on image processing
(ICIP). IEEE, 2017, pp. 3924–3928.

[23] R. Andonie and A.-C. Florea, “Weighted random search for cnn hyper-
parameter optimization,” International Journal of Computers Communi-
cations and Control, 2020.

[24] W.-C. Yeh, Y.-P. Lin, Y.-C. Liang, and C.-M. Lai, “Convolution neural
network hyperparameter optimization using simplified swarm optimiza-
tion,” arXiv preprint arXiv:2103.03995, 2021.

[25] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[26] X. Dong, M. Tan, A. W. Yu, D. Peng, B. Gabrys, and Q. V. Le, “Autohas:
Differentiable hyper-parameter and architecture search,” arXiv preprint
arXiv:2006.03656, 2020.

[27] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian,
M. Yu, P. Vajda et al., “Fbnetv3: Joint architecture-recipe search using
neural acquisition function,” arXiv preprint arXiv:2006.02049, 2020.

[28] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
784–800.

[29] Y. Liang, S. Li, C. Yan, M. Li, and C. Jiang, “Explaining the black-
box model: A survey of local interpretation methods for deep neural
networks,” Neurocomputing, vol. 419, pp. 168–182, 2021.

[30] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?"
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[31] R. Fong, M. Patrick, and A. Vedaldi, “Understanding deep networks via
extremal perturbations and smooth masks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 2950–2958.

[32] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[33] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[34] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine
learning,” Communications of the ACM, vol. 63, no. 1, pp. 68–77, 2019.

[35] C. Molnar, Interpretable machine learning. Lulu. com, 2020.
[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[38] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P. Man-
neback, “A multi-resolution fpga-based architecture for real-time edge
and corner detection,” IEEE Transactions on Computers, vol. 63, no. 10,
pp. 2376–2388, 2013.

[39] P.-L. Shui and W.-C. Zhang, “Corner detection and classification using
anisotropic directional derivative representations,” IEEE Transactions on
Image Processing, vol. 22, no. 8, pp. 3204–3218, 2013.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[41] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[44] Facebook, “Pytorch,” https://github.com/pytorch/examples/tree/master/
imagenet.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[46] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 510–519.

[47] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of
tricks for image classification with convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 558–567.

[48] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[49] A. Mamaev, “Flower-5, a dataset using for flowers recognition,” https:
//www.kaggle.com/alxmamaev/flowers-recognition.

[50] Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100
in PyTorch,” https://github.com/akamaster/pytorch_resnet_cifar10.

[51] P.-Y. Hsiao, C.-L. Lu, and L.-C. Fu, “Multilayered image processing
for multiscale harris corner detection in digital realization,” IEEE
Transactions on Industrial Electronics, vol. 57, no. 5, pp. 1799–1805,
2010.

Yu Liang received the Bachelor degree in Computer
Science and Technology from Shandong Agricul-
tural University, China in 2015. He received the
Master degree in Software Engineering from Shan-
dong University of Science and Technology, China
in 2019. He is currently pursuing a Doctorate in the
Department of Computer Science and Technology,
Tongji University, Shanghai. His research interests
include lightweight deep neural networks (DNNs),
interpretation methods for DNNs and graph DNNs.

Maozhen Li is a Professor in the Department of
Electronic and Computer Engineering, Brunel Uni-
versity London, UK. He received the PhD from the
Institute of Software, Chinese Academy of Sciences
in 1997. His main research interests include high
performance computing, big data analytics and in-
telligent systems with applications to smart grid,
smart manufacturing and smart cities. He has over
180 research publications in these areas including 4
books. He has served over 30 IEEE conferences and
is on the editorial board of a number of journals.

He is a Fellow of the British Computer Society (BCS) and the Institute of
Engineering and Technology (IET).

Changjun Jiang is a Professor in the Department of
Computer Science and Technology, Tongji Univer-
sity, Shanghai, China. He is also the Director of the
Key Laboratory of the Ministry of Education on Em-
bedded System and Service Computing, Tongji Uni-
versity. His research interests include concurrency
theory, Petri nets, formal verification of software,
cluster, machine learning, intelligent transportation
systems, and service-oriented computing. He has
published more than 300 papers in journals and con-
ference proceedings in these areas. He has led over

30 research projects sponsored by the National Natural Science Foundation
of China, the National High Technology Research and Development Program
of China, and the National Basic Research Developing Program of China. He
is an Academician of the Chinese Academy of Engineering, a Fellow of the
Chinese Association for Artificial Intelligence (CAAI) and also a Fellow of
the Institute of Engineering and Technology (IET).

Guanjun Liu (M’16, SM’19) received the Ph.D.
degree in computer software and theory from Tongji
University, Shanghai, China, in 2011. He was a
Post-Doctoral Research Fellow with the Singapore
University of Technology and Design, Singapore,
from 2011 to 2013. He was a Post-Doctoral Research
Fellow with the Humboldt University of Berlin,
Berlin, Germany, from 2013 to 2014, supported by
the Alexander von Humboldt Foundation. He is cur-
rently a Professor with the Department of Computer
Science and Technology, Tongji University. He has

authored over 100 articles and two books. His research interests include Petri
net theory, model checking, machine learning, information security, real-time
concurrent system and multi-agent system.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TNNLS.2021.3133127, IEEE Transactions on Neural Networks and Learning Systems

