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Abstract— Pathology imaging is routinely used to detect
the underlying effects and causes of diseases or injuries.
Pathology visual question answering (PathVQA) aims to
enable computers to answer questions about clinical visual
findings from pathology images. Prior work on PathVQA
has focused on directly analyzing the image content using
conventional pretrained encoders without utilizing relevant
external information when the image content is inadequate.
In this paper, we present a knowledge-driven PathVQA (K-
PathVQA), which uses a medical knowledge graph (KG)
from a complementary external structured knowledge base
to infer answers for the PathVQA task. K-PathVQA im-
proves the question representation with external medi-
cal knowledge and then aggregates vision, language, and
knowledge embeddings to learn a joint knowledge-image-
question representation. Our experiments using a publicly
available PathVQA dataset showed that our K-PathVQA
outperformed the best baseline method with an increase of
4.15% in accuracy for the overall task, an increase of 4.40%
in open-ended question type and an absolute increase of
1.03% in closed-ended question types. Ablation testing
shows the impact of each of the contributions. General-
izability of the method is demonstrated with a separate
medical VQA dataset.

Index Terms— Pathology Images, Medical Visual Ques-
tion Answering, Multimodal Representation

I. INTRODUCTION

MEDICAL visual question answering (MedVQA) task
aims to correctly answer a question related to a medical

image and related text-based clinical reports and can help
in diagnosis and training [1], [2]. Pathology visual question
answering (PathVQA) is a domain-specific MedVQA task,
specifically for pathology images, and involves comprehend-
ing medical-related concepts while considering the pathology
images and text information.

Existing works on PathVQA focus on individually com-
puting a question representation using language models and
image features using pre-trained convolutional neural networks
(CNN)-based models; these features are then combined and
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forwarded to another separate network to train a model [3]–
[8]. However, all these works relied on language models
that were trained for the general field, and therefore did not
account for the large differences in the language model that is
necessary for the medical field, e.g., with the use of acronyms
and domain-specific medical terminologies. Therefore, exist-
ing PathVQA benchmarks often performed well only when
the visual contents were the distinct feature of the query.
Despite this, with PathVQA, it requires the use of medical
knowledge other than the images/text information to answer
difficult compositional questions involving inquiries such as
“the location of a disease”, “the treatment of a disease”, “the
cause and symptom of a disease”, or “the functionality of an
organ”, as exemplified in Fig. 1.

To address this, PathVQA needs to incorporate domain-
specific knowledge bases (KBs) [9] with graphical represen-
tation where entities are represented by nodes and directed
edges connecting the nodes represent their relationships.e.g.,
(Gastrointestinal, Location, Stomach). Apart from reliance on
non-domain specific language models, these existing PathVQA
approaches [3]–[8], [10]–[12] also relied exclusively on the
information within the image, and this caused wide failures
when the visual content of a medical image was insufficient to
answer the questions. There is a need for external knowledge
other than the image content to answer complex questions.
Recently, Naseem et al. [8] presented Trap-VQA that fused
the image and text features extracted using ResNet [13] and
BioELMO [14], a domain-specific language model respec-
tively to the transformers’ encoder layers for PathVQA. Trap-
VQA increased the performance compared to the previous
models; however, it was unable to answer questions when
the image content was limited and required external medical
knowledge.

This study presents a novel PathVQA model that effectively
integrates image, question, and knowledge representations, that
captures knowledge-image-question-specific interactions. Our
model goes beyond conventional approaches for PathVQA by
incorporating external medical knowledge into the PathVQA
task. This is achieved by fusing visual and question features
with representations of external medical knowledge.

To realize this integration, we propose a comprehensive
framework consisting of image, question, and knowledge
representation modules. The Image-Question representation
module enhances both the image and question representations
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Fig. 1. Examples of an image-question pair from the PathVQA dataset that requires external medical knowledge (right) to correctly answer a
question (related to ”Cholecystitis”) associated with a pathology image (left).

by mutually enriching contextual information. Additionally,
the Knowledge-Question representation module leverages a
medical knowledge graph embedding to incorporate relevant
external information into the question embedding.

The final step involves aggregating the representations from
the Image-Question and Knowledge-Question modules using
the Knowledge-Image-Question representation module. This
module combines the enhanced image and question repre-
sentations with the incorporated external medical knowledge,
resulting in a comprehensive representation that captures the
intricate interactions between knowledge, image, and question.
Our key contributions are as follows:
• We present a novel end-to-end trainable method, namely

knowledge-PathVQA (K-PathVQA), that incorporates med-
ical knowledge to PathVQA by introducing a knowledge
graph constructed from complementary medical factual
knowledge from external structured contents to answer
questions that require information beyond visual content.

• We introduce a multimodal representation that jointly learns
a Knowledge-Image-Question representation that aggregates
the representations from Image-Question and Knowledge-
Question modules without requiring additional knowledge
annotations or search queries for PathVQA.

• Our experiments demonstrated that incorporating medical
knowledge into our model outperformed the previous state-
of-the-art methods on the benchmark PathVQA dataset and
is also generalizable on another medical VQA dataset.

II. RELATED WORK

A. Medical Visual Question Answering

Prior studies on MedVQA [22]–[27] have been an adapta-
tion of methods developed for general-domain VQA models
such as Bilinear Attention Networks (BAN) [15], Stacked
Attention Networks (SAN) [16], and Multi-modal Compact
Bilinear (MCB) [17], where attention mechanism and bilinear
pooling schemes are applied to capture cross-modal feature
fusion which captures the textual and visual relationship.
SAN locates question-related visual regions using multi-step
inference by extending the attention mechanism. The derived
features are used in the classifier to predict the answers. MCB,

on the other hand, introduced a multi-modal compact bilinear
pooling method that lowers the computation of feature fusion
by projecting the outer product to a lower dimensional space.
BAN is derived from the fusion of bilinear multi-modal in
MCB and uses the low-rank bilinear pooling to lower the rank
of weight, the outer product of several model vectors, to lower
the computation cost. Other VQA methods include Multimodal
Factorized High-order (MFH), and Multi-modal factorized
bilinear (MFB) [19], which are proposed to reduce compu-
tational cost and are built on a similar concept of generating
the bilinear pooling of two vectors computationally efficient
by decomposing the outer product projection matrix. These
methods also dominated the MedVQA’s ImageCLEF chal-
lenges. Pre-trained CNN-based methods such as ResNet [13]
or VGGNet [28] are usually used to obtain visual features.
For textual features, recurrent neural networks (RNNs) [29]
and transformer-based language models such as Bidirectional
Encoder Representations from Transformers (BERT) [30] are
used to derive text-based features.

Using ResNet and RNN for deriving features from image
and text, Peng et al. [26] adapted MFH to fuse the image-text
features in the first ImageCLEF challenge. Inception-Resnet
and BiLSTM were applied by Zhou et al. [27] to represent
visual and text features that are then combined to classify
answers. Abacha et al. [23] applied VGG and LSTM to obtain
visual, and text features before fusing the text and image
features using SAN. The best method [25] in the ImageCLEF
2019 challenge (2nd edition) used BERT and VGG for text
and visual features that are then fed to MFB for fusion
for prediction. The best method (AIML) [31] in the third
ImageCLEF 2020 competition first classified the question by
separating the question types as open-ended or closed-ended
and consequently modified the VQA to a multi-task image
classification task.

However, differences between medical and general ques-
tions mean that applying general domain VQA methods to
medical questions does not yield optimal results. Examples of
differences between the problems include limited datasets of
medical image and text data for training, specific need to be
able to detect and classify anatomical and functional structures
in medical images, and uniqueness of the medical knowledge
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TABLE I
COMPARISON OF ADVANTAGES AND DISADVANTAGES OF PREVIOUS METHODS

Method Advantages Disadvantages

BAN [15] Can capture cross-modal feature fusion.
Can learn the relationship between text and image features

Computationally expensive.
Unable to capture long-range dependencies between the image and the question.
Unable to generalize to new data.

SAN [16] Can locate question-related visual regions.
Can use multi-step inference to improve accuracy.

Computationally expensive.
Sensitive to the quality of the images.
Unable to generalize to new data.

MCB [17] Reduces computation of feature fusion.
Computationally less expensive than BAN and SAN

Unable to capture long-range dependencies between the image and the question.
Unable to handle multipel objects in an image.
Unable to handle opn-ended questions.

MFH [18] and MFB [19] Reduce computational cost.
Efficiently generate bilinear pooling of two vectors

Prone to overfitting.
Limited generalizibility
Sensitive to noisy data and require large amount of training data.

MEVF [20] Robust to nouse in the input images.
Efficient training

Coputationally expensive.
Can not generalize to other tasks.

CGMVQA [21] Integrates a classifier and a generator.
Uses a transformer’s multi-head self-attention

Unable to handle open-ended questions.
Require large amount of trainign data.
Dependency on pre-defined anaswer classes.

CMSSL [4] and 3LA [5]
Jointly captures image and language features for PathVQA.
Self-supervised pretraining and VQA fine-tuning.
Excludes noisy self-supervised samples

Require large amount of paried image-text data.
Computational complex.
May lead to overfitting.

MedFuseNet [6] Learnt essential components of a medical image and
effectively answered medVQA, including PathVQA

Rely on external data for transfer learning.
Metadata is not fully used.

MMQ [7] Enhances metadata by auto-annotation
Handles noisy labels in the training stage Unable to capture the high and low-level interactions of data

Trap-VQA [8] Uses a transformer-based method for PathVQA Unable to answer medical questions when the image contents are insufficient

such as specialised medical terminologies.
Researchers in the MedVQA community have presented

several methods that are designed for medical images. For
instance, Nguyen et al. [20] introduced a Mixture of Enhanced
Visual Features (MEVF) to overcome limited medical data
by initializing the visual feature model weights. Extending on
the previous study (i.e., MEVF), Zhan et al. [32] introduced
two new modules that are conditioned on a question and
type reasoning that use the MEVF visual backbone to train
VQA models’ reasoning skills. In another study, Ren and
Zhou [21] introduced a classification and generating approach
for MedVQA (CGMVQA) that integrates a classifier and a
generator and uses a transformer’s multi-head self-attention; it
outperformed the method used by a VQA-Med-2019 challenge
winner.

Furthermore, despite the effectiveness of these methods on
various medical images for VQA tasks, their applicability
for PathVQA has not been tested. Also, current MedVQA
methods have shown promising results in answering questions
related to medical images. However, these methods are limited
in incorporating medical knowledge to answer questions accu-
rately, and therefore often fails to understand the context of the
question and the medical images, and thus leading to incorrect
answers. For instance, if a MedVQA model is asked to identify
a skin lesion, it may provide an answer based solely on the
appearance of the lesion. In contrast, a doctor may consider
the patient’s medical history, symptoms, and other relevant
information to make a more accurate diagnosis.

B. Pathology Visual Question Answering
Several works have been developed to specifically address

PathVQA tasks. For example, He et al. [3] proposed leveraging
cross-modal self-supervised learning to jointly capture image
and language features for PathVQA tasks. In another study, He
et al. [5] proposed a three-level approach for optimization that
performed self-supervised pretraining and VQA fine-tuning

to capture image and language features jointly and automati-
cally excluded noisy self-supervised samples from pretraining.
Sharma et al. [6] introduced MedFuseNet, an attention-based
multimodal-based method that learnt essential components of
a medical image and effectively answered medVQA, including
PathVQA. Another study by Do et al. [7] introduced multiple
meta-model quantifying (MMQ), which enhances meta-data
by auto-annotation and handles noisy labels in the training
stage by using the uncertainty of predicted results during
the meta-agnostic process to create meta-models with strong
features for PathVQA. Recently, Naseem et al. [8] proposed a
transformer-based method (Trap-VQA) for PathVQA. In Trap-
VQA, image and textual features are fused to transformers’
encoder layers for the final prediction.

One of the main limitations of the current PathVQA meth-
ods are their inability to accurately answer medical questions
when the image contents are insufficient to provide an answer.
This limitation can be attributed to the fact that current
PathVQA models mainly rely on visual features extracted from
the images without considering the vast amount of medical
knowledge required to answer medical questions accurately
(See Table I for detailed list of advantages and disadvantages
of previous methods).

Medical knowledge is crucial in PathVQA, as it can provide
additional information that may not be visible in the image
alone. For example, a medical expert may be able to infer
certain details about a patient’s condition based on their
medical history or other related factors that are not apparent
in the image. By incorporating medical knowledge into the
PathVQA task, a model can make more accurate predictions
and provide improved insights for doctors.

Therefore, by leveraging external medical knowledge facts,
our K-PathVQA model aims to address this limitation of
current PathVQA methods and provide more accurate answers
to medical questions. By doing so, we hope to improve the
utility of PathVQA to aid doctor’s make informed decisions.
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C. Language Models
Language models have been widely used in various natural

language processing (NLP) tasks, such as speech recognition,
machine translation, and sentiment analysis. Two types of
language models have been widely studied: general language
models and domain-specific language models.

General language models [33], [34] are pre-trained on large
amounts of text data from a variety of sources and can generate
coherent and contextually relevant text. They have been shown
to achieve state-of-the-art performance in various NLP tasks,
including text classification and language generation [35].
However, general language models may not perform as well
in domain-specific tasks as they lack the domain-specific
knowledge necessary to generate accurate predictions [36],
[37].

To address this issue, domain-specific language models have
been developed and used in various applications. For example,
BERT [33] is a domain-specific language model that has
been pre-trained on text data from the biomedical domain
and has been shown to improve performance on biomedical
NLP tasks [38], [39]. Similarly, PHS-BERT [37] is a domain-
specific language model trained on social media textual data
and shown to outperform general language models on tasks
related to public health surveillance on social media.

Despite the success of general and domain-specific language
models in various NLP tasks, their application to PathVQA
remains limited.

III. METHOD

Problem Formulation: Given a pathology image V ∈ V
associated with a related clinical question Q ∈ Q and a
knowledge graph G, we aim to produce an answer Â ∈ A. The
predicted answer Â of the proposed model is mathematically
expressed as:

Â = argmax
A∈A

pθ(A|V,Q,G) (1)

where θ symbolises the parameters of the model p that needs
to be trained. To correctly predict the correct, our goal is to
learn a joint representation z ∈ Rdz of V , Q, and G such that:

A∗ = Â = argmax
a∈A

pθ(a|z) (2)

where A∗ is the true answer. The dimension of the joint
space z is denoted by the hyperparameter dz , which is chosen
as a result of a trade-off between representation capability and
computational cost.

Overview of the proposed method: Our proposed
Knowledge-Aware Multimodal Representation for Pathology
Visual Question Answering (K-PathVQA) comprises of three
main modules as illustrated in Fig. 2: (i) Input layer, which
comprises an image representation, a question representation,
and a knowledge representation; (ii) Image-Question repre-
sentation where we generate image-attended question fea-
tures; (iii) Knowledge-Question representation which gener-
ated question features conditioned on knowledge embeddings,
(iv) Knowledge-Image-Question representation module where
we aggregate outputs to predict an answer. Each of these
modules is discussed below in detail.

A. Input Layer

The input layer of K-PathVQA consists of an image
representation, a question representation, and a knowledge
representation. Below we explain each of these in detail.

Image representation: To extract image features (v ∈ Rdv ),
we adopted a transfer-learning approach by using a pre-trained
ResNet50. We reshaped an image to match the shape of
ResNet50 (224, 224, 3) - an input image with a height of 224
pixels, a width of 224 pixels, and three color channels (RGB)
and output features of 2048. We removed the last three fully
connected layers and kept the output from the last averaged
pooled layer to obtain image features.

Question representation: Given a question Q consisting
of nT tokens, we use pre-trained biomedical version of
ELMo [40] language model i.e., BioELMO [14] to generate
question representation q ∈ RnT xdq .

Knowledge representation: To obtain knowledge represen-
tation, we leveraged the medical knowledge graph [41] centred
on organs and related disorders. A set of 52.6K triplets (head,
relation, tail) comprising medical facts was collected from
OWNThink1, a large knowledge database based on Wikipedia
in the medical knowledge graph we used. In the KG, edges
represent the relationship between the entities, such as between
a function and its treatment, while the nodes are entities, such
as organs or diseases. Triplets are then made of two entities
and the relation between them. We refined triplets so that an
organ’s function or body system must be described in the
triplets that refer to it, and the symptoms, locations, causes,
and methods of treatment or prevention of disease must all be
described in triplets for that disease. We used 2,603 triplets in
the English language. Table II shows examples of the triples
and their relationship between entities in medical knowledge
(i.e., SLAKE) used in our experiments.

TABLE II
EXAMPLES OF A MEDICAL KNOWLEDGE GRAPH.

Organ
<Heart, Function, Promote blood flow>
<Kidney, Belong to, Urinary System>

<Duodenum, Length, 20-25cm>

Disease
<Pnuemonia, Location, Lung>
<Lung Cancer, Cause, Smoke>

<Brain Tumor, Symptom, visual impairment>

Our domain-specific knowledge representation consists of
knowledge retrieval and knowledge embedding generation.
In knowledge retrieval, we first extracted the entities, i.e.,
nouns, from the questions using SpaCy and then mapped those
extracted entities with entities present in our medical KG.
After this step, during knowledge embedding generation, we
feed these entities with their relation to biomedical version of
BERT, i.e., BioBERT [38], a domain-specific language model
to generate knowledge representation k ∈ RnT xdq .

B. Image-Question representation

To learn question q and image v representations jointly,
we extract image-question features V Q using our image-
question encoder module. Our image-question encoder module

1https://www.ownthink.com/knowledge.html
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Fig. 2. Overall architecture of the proposed K-PathVQA

is mainly based on two transformer encoder layers to image-
question features. Given input question features q and image
features v, Our model generates a V Q-representation as a final
result.

The input to the first layer of the transformer encoder of the
image-question encoder contains ‘values’ of image represen-
tations and ‘queries’ and ‘keys’ from question representations.
We employed multi-head attention in conjunction with a scaled
dot-product. As a result, we packed a set of v into a matrix
Vv , and q into a matrix Qq and Kq .

Att1(Qq,Kq, Vv) = softmax(
Qq.K

T
q√

dk
).Vv (3)

The final output, V Q, of the second transformers’ en-
coder block of the image-question encoder module, represents
image-attended question features. The final image-attended
question features represent high-level information of both
image and question features. The hyper-parameters have been
explained in Section IV-B (Experimental settings).

C. Knowledge-Question representation

We present the knowledge-question representation module
to extract question features conditioned on knowledge rep-
resentations. Knowledge-question representation module per-
forms knowledge-conditioned question attention by feeding
the question features q and the KG representations k to the
two-layered encoder layers of the original transformer. As a
result, the model can incorporate domain-specific, i.e., medical
knowledge, to the question and improve the understanding
of the question related to the knowledge contained in the
KG. The knowledge-question representation module outputs
the knowledge-enriched question representation referred as G.

The input to the first layer of the transformer’s encoder
of knowledge-question’s encoder contains ‘values’ of question
representations and ‘queries’ and ‘keys’ from KG representa-
tions. We employed multi-head attention in conjunction with

a scaled dot-product. As a result, we packed a set of q into a
matrix Vq , and k into a matrix QG and KG.

Att2(Qq,KG, VG) = softmax(
Qq.K

T
G√

dk
).VG (4)

The final output, G, is extracted from the second trans-
former’s encoder block of the knowledge-question encoder
module, representing knowledge-attended question features.
The final set of knowledge-attended question features rep-
resents a new representation of the question, enhanced with
domain-specific medical knowledge extracted from the KG.

D. Knowledge-Image-Question Representation module
We concatenate the outputs of the image-question and

knowledge-question modules to produce a unified knowledge-
image-question representation. We generate a vector that
jointly represents the two features (V Q and G) and contains
both higher and low-level interactions.

z = V Q⊕G (5)

where element-wise symbol ⊕ represents a vector’s aggre-
gation and (V Q and G) are the embeddings generated by
image-question and knowledge-question representation mod-
ules. The output of the aggregator z is a joint knowledge-
image-question representation which is then forwarded to
predict the answer.

IV. EXPERIMENTS

A. Dataset
We used a publicly available PathVQA dataset [3] con-

taining 4,998 images and 32,799 questions (Table III). The
questions were categorized into 7 groups: 6 groups are open-
ended questions (what (40.9%), where (4.0%), when (0.9%),
whose (0.6%), how (3.0%), how much/how many (0.9%)) and
one group is closed-ended (yes/no (49.8%)) questions. We
used the standard training, validation, and test sets comparable
with earlier PathVQA works [3], [8] to evaluate our model.
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TABLE III
DATA STATISTICS: DIVISION OF TRAINING, VALIDATION AND TEST DATA

Dataset Training data Validation data Test data
# images 2,499 1,499 1,000

# QA pairs 17,325 9,462 6,012

B. Experimental settings
1) Implementation settings:

Question representation: We investigated different lan-
guage models to generate question representation (e.g.,
BioELMO, BERT, and BioBERT). From our empirical ex-
periments, we found that embedding generated by BioELMO
performed best as compared to others in our model. There-
fore, the input questions were embedded using a pre-trained
BioELMO language model. Each word was represented by
a 768-D word embedding (dq = 768). We set (nT = 16) so
that every question was split into 16-tokens beginning with
a [CLS] token and ending with a [SEP] token. These 16-
tokens were then represented as one-hot encoding. Appendix
contains experimental results (Table X).

Image representation: We tested different pre-trained
models to extract image features (e.g., VGG19, InceptNet,
DenseNet, and ResNet. We empirically found that ResNet50
performed the best compared to others. The input images
are embedded using pre-trained ResNet50. Appendix contains
experimental results (Table X).

Knowledge graph representation: In our experiments, we
used different methods (e.g., BERT, BioBERT, and BioELMo)
to generate knowledge embeddings. We found that embedding
generated by BioBERT worked best in our model (Table VII).

Transformer Encoder layers: In both of our encoder
modules, we tested with a different number of transformers’
encoder layers. We identified that using two transformers’
encoder layers performs better than others (Table VIII). Our
transformer encoder modules include two layers of transformer
blocks, six layers with eight attention heads, and concatenated
vector of both encoders results in a vector with dimension 512.

2) Hyperparameters settings: We used the Adam optimizer
with a learning rate scheduler according to the formula in [42]
with β1 = 0.9, β2 = 0.98 and ϵ = 109 to train our model. A
batch size of 64 for 50 epochs, 4000 warmup steps, and the
grid-search optimization was used to find the best settings. We
evaluated different layers of transformers and adopted various
image and question feature extraction methods. All results are
reported using the accuracy evaluation metric, the standard
metric used in similar previous works [3], [8].

C. Baselines
We evaluated the performance of our model with PathVQA

methods as well as general VQA and MedVQA methods,
including the state-of-the-art PathVQA methods. Details of our
comparison methods are as follows.
• General VQA methods:

– Bilinear Attention Networks (BAN) [15] encodes visual
and language features using a Gated Recurrent Unit and a
Faster R-CNN. It captures bilinear attention distributions
employing BAN and approximates the bilinear interaction

between question and image representations by employ-
ing the low-rank approximations.

– Multi-modal Compact Bilinear (MCB) [17]: A CNN is
employed to encode the image, while an LSTM is used
for textual features. An MCB pooling system is applied
to predict the answer via an attention method.

– Stacked Attention Networks (SAN) [16]: With CNN and
LSTM to encode textual and visual features, the SAN
incorporates a multiple-layer attention mechanism that
iteratively infers the answer by repeatedly querying an
image to identify the relevant image region.

– Multi-modal factorized bilinear (MFB) [19] encodes vi-
sual and textual features using CNN and LSTM and
employs MFB pooling to integrate textual and visual
features.

• Vision language methods: We also compared our results
with current state-of-the-art vision language pre-trained
models such as LXMERT [43], VisualBERT [44] and
UniTER [45] to fuse image and the textual features obtained
using CNN and LSTM.

• Medical/Pathology VQA methods:
– Mixture of Enhanced Visual Features (MEVF) [20] de-

rives visual and textual features using CNN and LSTM
and employs a MEVF with SAN and BAN to integrate
visual and textual features for MedVQA.

– Cross-modal self-supervised learning (CMSSL) [4] iden-
tifies and disregards noisy self-supervised samples to train
PathVQA with visual and textual features.

– Multiple meta-model quantifying (MMQ) [7] increases
the meta-data by auto-annotation, deals with noisy la-
bels in the training stage by utilising the uncertainty of
predicted results during the meta-agnostic method and
generates meta-models with robust features for MedVQA
including PathVQA.

– MedFuseNet [6] is an attention-based method that learns
the essential features of a medical image and efficiently
answers the questions. MedFuseNet has been evaluated
on medical images, including PathVQA.

– Trap-VQA [8], a recent state-of-the-art method for
PathVQA that fuses the image and text features to the
transformers’ encoder layers for PathVQA.

D. Results

Table IV compares the performance of K-PathVQA to the
state-of-the-art baseline methods. Compared to the best per-
forming baseline method (Trap-VQA), K-PathVQA resulted
in an increase of 4.15% in performance for the overall task
(68.97%), an increase of 4.40% in open-ended question type
(42.12%) and an increase of 1.03% in closed-ended question
types (94.60). The results demonstrate that medical/pathology
VQA methods like MEVF+BAN and MEVF+SAN outper-
formed the general VQA methods, including BAN and
SAN methods; however, the performance is less compared
to transformer-based methods like LXMERT, VisualBERT,
UniTER, LXMERT+CMSSL and Trap-VQA. These results
highlight the importance of transformers to capture global
relationships. Our experiments in Table IV show that our K-
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TABLE IV
COMPARISON: K-PATHVQA (PROPOSED) V/S THE BASELINES.

Task Model Overall Open-ended Close-ended

General
VQA

MFB [19] 39.85 20.15 53.77
SAN [16] 42.43 23.40 59.40
MCB [17] 57.04 29.03 57.60
BAN [15] 55.10 33.50 68.20

MedVQA MEVF +SAN [20] 57.10 25.87 86.90
MEVF +BAN [20] 57.90 26.75 87.50

Vision Language
LXMERT [43] 60.00 35.33 83.00

VisualBERT [44] 60.08 33.03 86.99
UniTER [45] 60.33 33.79 87.70

PathVQA

MMQ [7] 48.80 13.40 84.00
MedFuseNet [6] 38.10 15.80 63.60

LXMERT+CMSSL [4] 60.10 34.50 87.10
BAN+CMSSL [4] 58.40 33.50 87.20

Trap-VQA [8] 64.82 37.72 93.57

K-PathVQA (proposed) 68.97 42.12 94.60

PathVQA outperforms the baselines and the state-of-the-art
models for both open-ended and close-ended categories. In
the following sections, we discuss individual modules that
contribute to the overall performance.

E. Ablation analysis
To investigate the contributions of individual modules in our

K-PathVQA, we conducted three ablation analyses.
• Module wise Comparison: We compared the ablated in-

stances of K-PathVQA relative to its complete form. Table V
reports the overall accuracy in the following setting:
– L: Only question features q are fed to the classifier.
– VL: Only the outputs of the Image-Question represen-

tation module [V; Q] is concatenated and fed to the
classifier.

– KL: Only the output of the Knowledge-Question repre-
sentation module G is fed to the classifier

– K-PathVQA: the outputs of both Image-Question and
Knowledge-Question modules are fused and fed to the
decoder.

Comparison between L and KL instances demonstrate the
importance of incorporating external knowledge. Adding the
KL embeddings to the model led to a gain of 1.39% (overall),
1.07% (open-ended), and 4.48% (close-ended). As expected,
the VL model outperforms the KL model, where most of the
questions in the dataset are related to questions referring to
what is visible in the image.

Effectiveness of using medical knowledge and
knowledge-Image-Question representation: We performed
experiments to demonstrate the effectiveness of the proposed
knowledge-image-question representation module (Table VI).
First, we incorporated the same medical knowledge
representation used in our method to the best performing
baseline (Trap-VQA). Then we removed the knowledge
from our method and compared it with Trap-VQA. From
the results in Table VI, we can see that incorporating
knowledge to the Trap-VQA improves the performance by

TABLE V
ABLATION ANALYSIS

Model Overall Open-ended Close-ended

L 55.90 21.46 88.00
KL 57.29 22.53 92.48
VL 65.07 40.02 93.12

KVL (Proposed) 68.97 42.12 94.60

1.38% for an overall task (66.20%), an increase of 1.88%
in open-ended question type (39.60%) and an increase of
0.43% in closed-ended question types (94%) when compared
to the original Trap-VQA i.e., without knowledge. We also
observe from Table VI that even with the removal of the
knowledge from our method, our model still achieved the best
performance on all three tasks compared to the Trap-VQA.
From these results, we can imply that both the knowledge and
the proposed multimodal representation that jointly learns a
knowledge-image-question representation adds to the overall
performance for PathVQA.

TABLE VI
EFFECTIVENESS OF USING MEDICAL KNOWLEDGE AND

KNOWLEDGE-IMAGE-QUESTION REPRESENTATION

Methods Overall Open-ended Close-ended

Effectiveness of using a medical Knowledge

Proposed 68.97 42.12 94.60
K-Trap-VQA 66.20 39.60 94.00

Effectiveness of Knowledge-Image-Question representation

Proposed w/o K 65.07 40.02 93.12
Trap-VQA 64.82 37.72 93.57

Different knowledge type-wise Comparison: To analyze
the effect of using different language models to generate
knowledge embeddings, we replaced knowledge embeddings
generated by different language models while keeping the
same experimental settings as described in Section IV-B.
Table VII shows that BioBERT resulted in the best perfor-
mance in generating knowledge embeddings in all 3 tasks.
We attribute BioBERT’s performance to its domain-specific
language model trained on biomedical data. We also observed
that the performance of BERT on closed-ended question types
is less compared to both (BioELMO and BioBERT) domain-
specific language models. We postulate this due to the fact
that BERT is trained on general domain corpus whereas both
domain-specific language models are trained on biomedical
corpus that helps to extract better text representation compared
to BERT.

TABLE VII
COMPARISON WHEN TESTED ON USING DIFFERENT LANGUAGE MODELS

TO GENERATE KNOWLEDGE REPRESENTATIONS
KG Overall Open-ended Close-ended

BERT 68.94 40.82 86.42
BioBERT 68.97 42.12 94.60
BioELMO 68.74 38.57 92.92

Layer-wise Comparison: To analyze the effect of trans-
former layers in both Image-Question representation and
Knowledge-Question representation modules, we tested our
K-PathVQA with different transformer layers (ranging from
1 to 6). All experimental settings were the same as described
in Section IV-B. The results are presented in Table VIII where
in all 3 tasks, 2 layers of the transformer produced the best
results. This drop in performance when using more than 2
transformer layers is attributed to the loss of features’ infor-
mation when more layers are added. These results demonstrate
that using 2 layers of a transformer is the optimal number for
getting better accuracy for PathVQA.

Generalizability of K-PathVQA: There is no other public
pathology VQA dataset available. Therefore, to investigate the
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Fig. 3. Qualitative results: Proposed model outperforms answers predicted by VL model. Answers that are correct are highlighted in green, while
those that are wrong are highlighted in red.

Fig. 4. Qualitative results: proposed model predicts answers of the same type as the ground-truth answer compared with the VL model on the
question. Answers predicted by proposed model are indicated in blue, while answers predicted by VL model are shown in red.

TABLE VIII
COMPARISON WHEN TESTED ON DIFFERENT NUMBER OF LAYERS

No. of Layers Overall Open-ended Close-ended

Layer = 1 67.87 39.41 91.66
Layer = 2 68.97 42.12 94.60
Layer = 3 66.72 41.98 94.15
Layer = 4 66.67 41.64 93.87
Layer = 5 65.90 41.75 86.28
Layer = 6 67.25 40.16 91.18

generalizability and the effectiveness of medical knowledge
to other MedVQA datasets, we used SLAKE [41] – a Med-
VQA radiology images dataset, following a previous similar
study [8]. SLAKE contains 642 images that contain a variety
of modalities such as CT, MRI, and X-Ray, the coverage of
body parts such as the head, neck, and chest, and 14,028
question pairs. We used the same experimental settings as used
in [8] to train our model. In this experiment, we compared
the results of K-PathVQA with the Trap-VQA which is the
second-best method according to Table IV including the SOTA
method used in [41]. Our results shows that K-PathVQA
outperformed both SOTA results reported in [41] and Trap-
VQA on all three question types (Table IX). We attribute this
increase to the factual structured medical knowledge that helps
our model to learn better question representation for questions
related to radiology images. For example, to answer a question

“What organ belongs to the immune system?”, our method
leverages the following factual knowledge <Spleen, function,
improve the body’s immunity> to retrieve the correct answer.
These results indicate that leveraging a medical knowledge
not only improves the performance on PathVQA dataset but
also on other MedVQA dataset (i.e., SLAKE). This increase in
performance on SLAKE dataset that contains radiology images
shows that our model is generalizable and is not limited to only
pathology images.

TABLE IX
ACCURACY (%) COMPARISON OF PROPOSED METHOD V/S THE BEST

BASELINE (TRAP-VQA) ON OTHER MEDVQA (SLAKE) DATASETS. ↑
REPRESENTS THE INCREASE IN ACCURACY.

Type Trap-VQA K-PathVQA ↑ Accuracy (%)

Overall 78.6 84.99 6.39

Open-ended 77.8 83.07 5.27

Close-ended 79.8 82.41 2.61

Qualitative Analysis: Fig. 3 shows the qualitative results
of K-PathVQA compared to the VL model. We can observe
that the visual features influence the VL model in the image,
e.g., the left image (Fig. 3 (a)), although is a gallbladder, share
similar visual traits (red color, texture and shape) as a kidney,
whereas the middle image (Fig. 3 (b)), appears to be an image
of G-cell hyperplasia, and the right image (Fig. 3 (c)) looks
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similar to myocarditis from its appearance. However, our K-
PathVQA model can identify the correct answer by combining
the medical knowledge and the language information with the
visual features. For example, in the example in Fig. 3 (a), the
K-PathVQA model uses the fact that the gallbladder is located
in cholecystitis, and the description of cholecystitis from the
knowledge used describes that cholecystitis is an inflammatory
lesion of the gallbladder to find the correct answers. Similarly,
our model used knowledge of that hemosiderosis caused
by bleeding (Fig. 3 (b)) and ‘rocky mountain spotted’ is
associated with fever (Fig. 3 (c)), to derive the correct answers.

It is worth noting that the K-PathVQA answers remain
consistent from a language semantic perspective, even in the
case of incorrect answers. For example, the question in Fig. 4
(a) ‘’What is distinguished from nodular hyperplasia by its
solitary circumscribed nature?”, our model predicted ‘fibroma’
as an answer which means a tumour made up of fibrous tissue
. Fibroma is close to the ground truth ‘adenoma’ because it
refers to the tumour associated to a tissue , e.g., fibroma refers
to a tumour made up of fibrous tissue and adenoma refers to a
tumour of gland tissue. Another example in Fig. 4 (c), “What
have not yet formed?”, demonstrates that our proposed model
answered ‘the fibrous tissue’ which is close to the ground
truth (fibrin nets). Fibrin is defined as “fibrous, non-globular
protein involved in the clotting of blood.” From these results,
we observe that the medical knowledge representation helps
capturing of interactions between the image and the question.

V. DISCUSSION

In this study, we proposed a K-PathVQA that incorporates
external medical knowledge to improve the performance of
question answering in pathology images. We demonstrated the
importance of work in medical VQA, as it has the potential to
plays a crucial role in medical decision-making, computer-
aided diagnosis, and training. The experiments conducted
using a publicly available PathVQA dataset showed that K-
PathVQA outperformed the best baseline method, achieving
significant improvements in accuracy. These results highlight
the importance of leveraging external medical knowledge to
enhance the performance of PathVQA models.

A limitation of the work is that the model performance is
shown to be influenced by the quality of an external medical
knowledge graph. This may be a plausible reason for why the
performance is relatively low compared to non-medical VQA
and suggests future work in improving medical knowledge
graphs. A second limitation relates to the computational cost
and scalability, which we did not report on here, and warrants
further investigation.

VI. CONCLUSION

This paper presents the K-PathVQA architecture, a novel
knowledge-driven approach designed to enhance the perfor-
mance of PathVQA by incorporating external structured con-
tent. K-PathVQA employs medical knowledge to enrich the
question representation and then fuses the embeddings result-
ing from vision, language, and knowledge contents to learn a
joint knowledge-image-question representation. Such approach

was shown to overcome the lack of domain-specific knowledge
in PathVQA models that is instrumental in properly under-
standing the pathology images. Our method was evaluated
on a benchmark dataset of PathVQA, and the experimental
results demonstrated its effectiveness over existing state-of-
the-art approaches. Future works could focus on enhancing
the handling of knowledge noise caused by excessive incor-
poration of knowledge through the development of improved
knowledge distillation techniques. Additionally, incorporating
a preprocessing step to exclude healthy tissue and focus on
lesions could be explored to further improve accuracy.
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VII. APPENDIX A
TABLE X

COMPARISON OF DIFFERENT PRE-TRAINED CNNS AND LMS USED FOR

QUESTION AND IMAGE REPRESENTATION.
Overall

Image\Question BioELMo BioBERT BLUEBERT BERT

ResNet50 68.97 65.78 63.91 60.90
Inception 64.79 61.70 60.67 58.36
DenseNet 61.91 59.54 58.93 57.78
VGG19 60.64 58.64 56.52 56.64

Open-ended

Image\Question BioELMo BioBERT BLUEBERT BERT

ResNet50 42.12 41.13 40.20 39.52
Inception 37.87 36.86 35.63 34.59
DenseNet 36.83 35.59 34.38 33.98
VGG19 35.89 34.48 33.70 32.70

Closed-ended

Image\Question BioELMo BioBERT BLUEBERT BERT

ResNet50 94.60 90.10 87.76 86.43
Inception 93.14 89.56 87.42 85.64
DenseNet 92.86 88.94 85.51 84.03
VGG19 91.82 87.85 85.63 83.91
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