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Ultimately Bounded PID Control For T-S Fuzzy
Systems Under FlexRay Communication Protocol

Yezheng Wang, Zidong Wang, Lei Zou, Lifeng Ma, and Hongli Dong

Abstract—This paper investigates the ultimately bounded
proportional-integral-derivative (PID) control problem for a
class of discrete-time Takagi-Sugeno fuzzy systems subject to
unknown-but-bounded noises and protocol constraints. The sig-
nal transmissions from sensors to the remote controller are real-
ized via a communication network, where the FlexRay protocol
is employed to flexibly schedule the information exchange. Such
FlexRay protocol is characterized by both the time- and event-
triggered mechanisms which are conducted in a cyclic manner. By
using a piecewise approach, the measurement outputs affected
by the FlexRay protocol are established based on a switching
model. Then, a fuzzy PID controller is proposed with a concise
and realizable structure. To evaluate the performance of the
controlled system, a special time-sequence is introduced that
accounts for the behavior of the FlexRay protocol. Subsequently,
a general framework is obtained to verify the boundedness of the
closed-loop system and then the controller gains are designed by
minimizing the bound of the concerned variables. In the end, a
simulation study is conducted to validate the effectiveness of the
developed control scheme.

Index Terms—Fuzzy systems, proportional-integral-derivative
control, FlexRay communication protocol, ultimately bounded
control, networked control systems.

I. INTRODUCTION

Networked control systems (NCSs) have now become in-
creasingly popular in engineering practice. Unlike tradition-
al point-to-point systems that use wire-based transmission
mechanisms, NCSs connect their components through shared
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communication networks to exchange information [1]–[8].
The utilization of these networks allows for remote signal
transmissions with low cost, feasible operation, and simple
maintenance, leading to successful applications of NCSs in
various fields such as regional exploration, smart homes, and
driverless cars [9]–[13]. Over the past few decades, many
researchers have devoted their attention to NCSs with focus on
remote control, filtering, and fault diagnosis issues [14]–[21].

With the increase of the system scale, fundamental concern
has been raised regarding restrained network resources (i.e.,
the limited bandwidth) because overloaded data transmissions
can cause congestion and further give rise to network-induced
phenomena (such as packet dropouts and time delays), which
pose threats to the system stability. To address such concern,
communication protocols are often employed in the industry
to schedule network resources at the cost of sacrificing certain
system performance [22], [23]. The commonly used protocols,
which tackle network traffic according to different scheduling
principles, include the try-once-discard protocol (TODP) [24],
Round-Robin protocol (RRP) [25], and stochastic communi-
cation protocol [26]. Specifically speaking, the TODP is an
event-based protocol that gives system node rights to access
networks based on a dynamic competition-based principle. The
RRP is a time-triggered protocol that selects system nodes
in terms of a fixed circular order. The SCP chooses nodes
randomly under some probability constraints. It should be
noted that the employed protocols change the traditional signal
transmission process and have great effects on NCSs, which
have aroused a rich body of research interests [19], [27]–[31].

In addition to the above-mentioned three protocols, special
attention has been recently given to the so-called FlexRay
protocol (FRP) owing to its prominent flexibility and reliabil-
ity. The FRP is essentially a hybrid protocol that orchestrates
network resources in terms of preset communication cycles
composed of static segments and dynamic segments. In the
static segment, some time-triggered rules are activated to deal
with data packets with a high real-time requirement. When
the dynamic segment is encountered, some event-triggered
rules are carried out based on data priority. Such features
achieve a desired network transmission performance and have
contributed to broad applications of the FRP [32]. Within
the academic communities, some seminal results have been
reported on control/filtering issues of NCSs with the FRPs,
see e.g., [33]–[37]. It is worth mentioning that most relevant
literature has focused on continuous-time systems, and few
results have dealt with discrete-time linear systems. Neverthe-
less, the corresponding control problem for nonlinear NCSs
with FRPs has not drawn enough attention.
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It is well known that nonlinearity exists widely in reality,
and the investigation on nonlinear NCSs has gradually become
a research hotspot in system science. Through a literature
review, it can be concluded that the methods of analyzing
nonlinear NCSs mainly include assumption (on nonlinearities)
based approaches [38], Takagi-Sugeno (T-S) fuzzy control
approaches [39], [40], adaptive control methods [41], and
linear-parameter-varying model approaches [42]. Among these
methods, the T-S fuzzy control is known for the desired
approximation capability of nonlinearity and the concise struc-
ture of the T-S fuzzy model, thereby attracting extensive
research attention in the past decades [43].

The main idea of T-S fuzzy control is to describe a nonlinear
plant via the T-S fuzzy model with linear submodels connected
by nonlinearity-dependent membership functions [44]. Then,
fuzzy controllers are designed according to some specific
performance requirements. Typical fuzzy controllers include
fuzzy state-feedback controllers [45], [46], fuzzy output-
feedback controllers [47], [48], fuzzy sliding-mode controllers
[49], fuzzy proportional-integral-derivative (PID) controllers,
and fuzzy observer-based controllers [50]. In particular, a
general event-triggering communication scheme was proposed,
for the first time, in [47] for facilitating the establishment of
an elegant T-S fuzzy control framework through co-designing
the fuzzy controller gain and the event-triggering threshold,
thereby making fundamental contributions to the fuzzy control
area. The fuzzy PID controller stands out because of its
robustness and prominent control performance. A fuzzy PID
controller can be regarded as a combination of several linear
PID ones with designed weights and thus enjoys advantages
of both fuzzy control and PID control [51]. Many kinds
of systems have been considered for the fuzzy PID control
problems, and some representative works have been published
[52]–[54].

Regarding the existing works relevant to NCSs with the
FRP, the following observations have been made: 1) most
results have been obtained for continuous-time systems with
or without external noises [34]–[36]; and 2) few results have
been concerned with linear discrete-time systems subject to
bounded noises, and the corresponding results are thus inap-
plicable to general nonlinear systems [33], [37]. In view of
these observations, it is concluded that the fuzzy PID control
problem has not received enough attention yet for discrete-time
nonlinear NCSs with unknown-but-bounded (UBB) noises and
the FRPs. In fact, the existing methods tackling the FRP (such
as the lifting method [33]) are no longer applicable to the
fuzzy control strategy due to the lack of considering effects of
membership functions. Thus, the main motivation is to narrow
such a gap.

Summarizing the discussions made so far, studying the
fuzzy PID control problem for nonlinear NCSs with FRPs and
UBB noises is of both theoretical significance and practical
importance. In doing so, the challenges faced are identified as
follows: 1) how to construct an appropriate transmission model
to reflect the FRP effects under the fuzzy control framework?
2) how to analyze the performance of the closed-loop system
with noises and FRP constraints? and 3) how to design the PID
controller such that the controlled fuzzy system is ultimately

bounded in the presence of the UBB noises? Corresponding
to these difficulties, the main contributions of this paper are
highlighted as follows: 1) for the first time, the fuzzy PID
control issue is investigated for nonlinear NCSs with FRPs
and UBB noises; 2) a novel model is proposed to characterize
the transmitted measurements affected by FRPs, which is
beneficial for the fuzzy controller to be implemented; and 3)
the desired gains of the fuzzy PID controller are derived via
feasible computational algorithms.

The remainder of this paper is organized as follows. In
Section II, the considered fuzzy model, the FRP, the proposed
fuzzy PID controller, and the prescribed performance require-
ment are introduced. Section III analyzes the boundedness of
the controlled system and provides results of calculating con-
troller parameters. Section IV presents a simulation example
to verify the usefulness of the proposed fuzzy control scheme.
Finally, in Section V, the conclusion of this paper is drawn.

Notations: In this paper, Rn denotes n-dimensional Eu-
clidean space. N stands for the set of natural numbers. XT ,
X−1 and λmin(X) are used to represent the transposition,
inverse and minimum eigenvalue of a matrix X , respectively.
Y = diag{· · · } describes a diagonal-block matrix. The aster-
isk “∗” stands for the symmetric parts in a symmetric matrix.
δ(x) is a function that equals to 1 when x = 0 and equals to
0 otherwise. For two integers a and b, mod(a, b) denotes the
remainder of a/b.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Fuzzy Systems

The following T-S fuzzy models represent a class of non-
linear systems under consideration:

Plant Rule i: IF ϖ1(s) is Wi1 and ϖ2(s) is Wi2 and · · ·
and ϖι(s) is Wiι, THEN

x(s+ 1) =Aix(s) +Biu(s) + Eiω(s)

y(s) =Cx(s) + Fω(s)

z(s) =Nix(s), i ∈ T , {1, 2, · · · , r}
(1)

where x(s) ∈ Rnx is the system state; y(s) ,
[y1(s) y2(s) · · · yny (s)]

T ∈ Rny is the measurement output;
u(s) ∈ Rnu is the control input; z(s) ∈ Rnz is the signal
to be controlled; ω(s) ∈ Rnω with ωT (s)ω(s) ≤ ω̄2 is the
UBB noise where ω̄ is a known positive scalar; ϖ(s) ,
[ϖ1(s)ϖ2(s) · · · ϖι(s)]

T is the measurable premise variable;
Wi1, Wi2, · · · , Wiι are the fuzzy sets; Ai, Bi, Ei, Ni, C and
F are known constant matrices; and nx, ny , nu, nz and nω

are known positive integers.
The following compact form represents fuzzy system (1) by

using the standard fuzzy inference technique:

x(s+ 1) =
r∑

i=1

hi(ϖ(s))
(
Aix(s) +Biu(s) + Eiω(s)

)
y(s) =Cx(s) + Fω(s)

z(s) =

r∑
i=1

hi(ϖ(s))Nix(s)

(2)
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where

hi(ϖ(s)) , ai(ϖ(s))∑r
j=1 aj(ϖ(s))

, ai(ϖ(s)) ,
ι∏

j=1

Wij(ϖj(s)),

and Wij(ϖj(s)) represents the grade of membership of ϖj(s)
in fuzzy set Wij (i, j ∈ T). For ∀k ∈ N, we have that

hi(ϖ(s)) ≥ 0, i ∈ T,
r∑

i=1

hi(ϖ(s)) = 1.

B. Communication Network

It is assumed that the information transmissions from
sensors to the remote PID controller are achieved via a
constrained-communication network of limited capacity. To
avoid the underlying data congestion in the transmission
process, the FRP is employed to determine how the network
resources are used. Next, we will introduce the detailed mech-
anism of the FlexRay protocol and model the measurement
outputs after they are transmitted through the network.

... ...

Static Segment Dynamic Segment

Symbol 

Window

Network 

Idle Time

Data packets

...

Fig. 1: Communication cycle of the FlexRay protocol

Under the scheduling of the FRP, the network commu-
nication is divided into many preset communication cycles
in terms of the sampling instant. As shown in Fig. 1, each
communication cycle is composed of four specific parts [35]:
1) a static segment; 2) a dynamic segment; 3) a symbol
window; and 4) a network idle time. In the paper, we denote
the time length of these four parts as L1, L2, L3 and L4,
respectively. It is worth mentioning that, compared with the
static and dynamic segments, the time lengths of the latter
two parts are very short and are therefore negligible, i.e.,
L3 = L4 = 0 [33], [35], [36]. In addition, without loss of
generality, it is assumed that L1 = l ≤ ny − 2 (l ∈ N) and
L2 = κ with l + κ ≤ ny (κ ∈ N). Thus, the total time length
of one communication cycle is L1 + L2 + L3 + L4 = l + κ.

In this paper, the time intervals of static segments are
prescribed as follows:

S , {s| mod(s, l + κ) < l, s ∈ N}.

Correspondingly, the time intervals of dynamic segments are
denoted by D , N \ S.

Obviously, the static and dynamic segments play an impor-
tant role in determining the network behavior with the FRP.
Next, we will give a detailed description of the dynamics of the
static and dynamic segments. For this purpose, some auxiliary

vectors related to the measurement outputs are defined as
follows:

y(s) ,
[
y(1)(s)
y(2)(s)

]
, ȳ(s) ,

[
ȳ(1)(s)
ȳ(2)(s)

]
,

y(1)(s) ,


y1(s)
y2(s)

...
yl(s)

 , y(2)(s) ,


yl+1(s)
yl+2(s)

...
yny (s)

 ,

ȳ(1)(s) ,


ȳ1(s)
ȳ2(s)

...
ȳl(s)

 , ȳ(2)(s) ,


ȳl+1(s)
ȳl+2(s)

...
ȳny (s)


where ȳ(s) denotes the measurement output after they are
transmitted via the network. Here, the dimension of the partial
measurement output y(1)(s) is equal to the length of the static
segment in each communication cycle. The dimension of the
remaining parts of outputs (i.e., y(2)(s)) is ny − l.

In this paper, we consider the setting that the static rule
(RRP) and dynamic rule (TODP) are applied, respectively, to
the static segment and dynamic segment. As shown in Fig. 1,
for the first L1 time lengths in one communication cycle
(corresponding to the static segment, i.e., s ∈ S), the static
rule is activated. Then, when it runs into the last L2 time
lengths (corresponding to the dynamic segment, i.e., s ∈ D),
the static rule will be shut down and the dynamic rule will be
carried out immediately.

Under the protocol scheduling, only one sensor node can be
chosen to access the network for data transmissions at each
sampling instant. Without loss of generality, we assume that
the first l components of y(s) (i.e., y(1)(s)) are orchestrated
by the static rule, and the remaining components of y(s) (i.e.,
y(2)(s)) are scheduled by the dynamic rule. Correspondingly,
ȳ(1)(s) and ȳ(2)(s) are used to denote the signal after they
are transmitted. Furthermore, we denote σ(s) (or τ(s)) as the
selected node at time instant k according to the static rule
(or dynamic rule) which are characterized by the following
mechanisms.

1) The static rule gives the same opportunities to each
concerned sensor node for accessing the network, under which
σ(s) can be calculated by

σ(s) =

{
mod(s, l) + 1, s ∈ S
0, s ∈ D (3)

where σ(s) ∈ L1 , {1, · · · , l}. It implies from (3) that, at
time instant k, only the component yσ(s)(s) of y(s) is updated.
By means of the zero-order-holders (ZOHs) strategy, ȳϵ(s)
(ϵ ∈ L1) can be represented by

ȳϵ(s) =

 yϵ(s), ϵ = σ(s), s ∈ S
ȳϵ(s− 1), ϵ ̸= σ(s), s ∈ S
0, s ∈ D.

(4)

2) The dynamic rule is an event-based dynamic scheduling
algorithm, which selects sensor nodes according to node mea-
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surement outputs during two adjacent transmission instants.
Under the dynamic rule, τ(s) is determined by

τ(s) =

{
argmaxn=l+1,··· ,ny ỹ

T
n (s)Qnỹn(s), s ∈ D

0, s ∈ S
(5)

where ỹn(s) , yn(s) − ȳn(s − 1), τ(s) ∈ L2 , {l + 1, l +
2, · · · , ny} and Qn are given positive-definite matrices. In
terms of the ZOHs, ȳn(s) (n ∈ L2) can be represented by

ȳn(s) =

 yn(s), n = τ(s), s ∈ D
ȳn(s− 1), n ̸= τ(s), s ∈ D
0, s ∈ S.

(6)

Without loss of generality, it is assumed that the system
evolution starts from the static segment with the initial network
information σ(0) = 1.

Remark 1: Under the protocol scheduling, only one node
is allowed to transmit its real measurement and the latest
information of other nodes is held via the ZOH strategy.
By considering the switching features of the FRP, the ZOH
strategy used in this paper is segment-dependent. That is to
say, the ZOH in static segment is only activated when s ∈ S
and shut down when s ∈ D, which results in ȳϵ(s) = 0 for
ϵ ∈ L1 when s ∈ D. The same is true for the dynamic segment.
Such a scheme would better achieve the trade-off between data
transmission quality and resource consumption.

For the further analysis, we define two auxiliary matrices:

Φσ(s) , diag{δ(1− σ(s)), δ(2− σ(s)), · · · , δ(l − σ(s))},
Ωτ(s) , diag{δ(l + 1− τ(s)), δ(l + 2− τ(s)),

· · · , δ(ny − τ(s))}.

Based on (4) and (6), ȳ(1)(s) and ȳ(2)(s) are represented
as follows:

ȳ(1)(s) =

{
Φσ(s)y

(1)(s) + (I − Φσ(s))ȳ
(1)(s− 1), s ∈ S

0, s ∈ D

ȳ(2)(s) =

{
0, s ∈ S
Ωτ(s)y

(2)(s) + (I − Ωτ(s))ȳ
(2)(s− 1), s ∈ D.

(7)

Note that, there is a switching between the static segment
and dynamic segment in each transmission period. By intro-
ducing a switching signal ρ(s):

ρ(s) ,
{

0, s ∈ S
1, s ∈ D

and considering (7), the compact description of ȳ(s) is given
as follows:

ȳ(s) =
(
1− ρ(s)

)(
Ī1Φσ(s)y

(1)(s) + Ī1(I − Φσ(s))

× ȳ(1)(s− 1)
)
+ ρ(s)Ī2Ωτ(s)y

(2)(s)

+ ρ(s)Ī2(I − Ωτ(s))ȳ
(2)(s− 1)

=
((

1− ρ(s)
)
Ī1Φσ(s)Ī

T
1 + ρ(s)Ī2Ωτ(s)Ī

T
2

)
y(s)

+
((

1− ρ(s)
)
Ī1(I − Φσ(s))Ī

T
1

+ ρ(s)Ī2(I − Ωτ(s))Ī
T
2

)
ȳ(s− 1) (8)

where

Ī1 ,
[

Il
0(ny−l)×l

]
, Ī2 ,

[
0l×(ny−l)

I(ny−l)

]
.

C. PID Controller

Based on the available measurement ȳ(s), the following
fuzzy PID controller is adopted:

u(s) =

r∑
j=1

hj(ϖ̄(s))
(
KP

j ȳ(s) +KI
j

s−1∑
π=s−N

ȳ(π)

+KD
j (ȳ(s)− ȳ(s− 1))

)
(9)

where ϖ̄(s) is the premise variable of the controller; KP
j ,

KI
j and KD

j are controller gains; and N (N ≥ 2) is a given
positive integer which represents the length of the integral
(accumulative) time window.

Remark 2: The features of the proposed fuzzy PID controller
are highlighted as twofold: 1) in the integral (accumulative)
term, a time window is introduced to use the past information
with finite time length, which is helpful in improving the
calculation efficiency; and 2) due to the utilization of the FRP,
the premise variable ϖ(s) may not be available in real-time,
and thus, a different premise variable ϖ̄(s) is used to facilitate
the implementation of the fuzzy controller.

Now, we define two auxiliary vectors:

η(s) ,
[
xT (s) ȳT (s− 1)

]T
,

η̄(s) ,
[
ηT (s− 1) ηT (s− 2) · · · ηT (s−N + 1)

]T
.

In order to save space, we further denote

σ , σ(s), τ , τ(s).

Then, by considering (2), (8) and (9) simultaneously, the
closed-loop system is obtained as follows:

η(s+ 1) =
∑r

i=1

∑r
j=1 hi(ϖ(s))hj(ϖ̄(s))

(
Ai,j,σ,τ (s)η(s)

+ Bi,j η̄(s) + Ei,j,σ,τ (s)ω(s)
)

z(s) =
∑r

i=1 hi(ϖ(s))Niη(s)
(10)

where

Ai,j,σ,τ (s) ,
[
A(1,1)

i,j,σ,τ (s) A(1,2)
i,j,σ,τ (s)

Φ̂σ,τ (s)C Φ̄σ,τ (s)

]
,

A(1,1)
i,j,σ,τ (s) ,Ai +BiK

P
j Φ̂σ,τ (s)C +BiK

D
j Φ̂σ,τ (s)C,

A(1,2)
i,j,σ,τ (s) ,BiK

P
j Φ̄σ,τ (s) +BiK

D
j Φ̄σ,τ (s)

+BiK
I
j −BiK

D
j ,

Φ̂σ,τ (s) ,
(
1− ρ(s)

)
Ī1Φσ Ī

T
1 + ρ(s)Ī2Ωτ Ī

T
2 ,

Φ̄σ,τ (s) ,
(
1− ρ(s)

)
Ī1(I − Φσ)Ī

T
1

+ ρ(s)Ī2(I − Ωτ )Ī
T
2 ,

Bi,j ,
[
B̃i,j B̃i,j · · · B̃i,j︸ ︷︷ ︸

N−1

]
, Ni ,

[
Ni 0

]
,

B̃i,j ,
[
0 BiK

I
j

0 0

]
, Ei,j,σ,τ (s) ,

[
E(1,1)
i,j,σ,τ (s)

Φ̂σ,τ (s)F

]
,
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E(1,1)
i,jσ,τ (s) ,Ei +BiK

P
j Φ̂σ,τ (s)F +BiK

D
j Φ̂σ,τ (s)F.

Definition 1: [55] Exponentially ultimate boundedness of
the closed-loop system (10) is defined as the existence of
constants a ∈ [0, 1), b > 0, and c > 0 satisfying

∥η(s)∥2 ≤ asb+ c

where a and c denote the decay rate and the asymptotic upper
bound (AUB) of η(s), respectively.

This paper aims to design a fuzzy PID controller for
fuzzy system (2) that satisfies the following requirements
simultaneously.

R1) Ensure the ultimate boundedness of the closed-loop
system (10) subject to the noise ω(s).

R2) Minimize the AUB of the controlled output ∥z(s)∥ by
the designed controller gain matrices KP

j , KI
j , and KD

j .

III. MAIN RESULTS

The main focus of this section is on the performance
analysis for system (10) and the design of the fuzzy PID
controller under the effects of the FRP and UBB noises.

To obtain the protocol-affected boundedness results, let’s
define a new time-sequence according to the features of the
FRP:

t(ε) , ε(l + κ) + l, ε = 0, 1, 2, · · ·

where l and κ are, respectively, the time lengths of the static
and the dynamic segments in each communication cycle. That
is, t(ε) is the first time-instant in the dynamic segment in the
(ε+1)th communication cycle. An example with L1 = l = 3
and L2 = κ = 2 is given in Fig. 2 where t(0) = 3, t(1) = 8,
· · · .

0 1 2 3 4 5 6 7 8 9

...

...
s

t(0) t(1) ...

cycle 1 cycle 2

Static segment

Dynamic segment

Fig. 2: Time sequence of t(ε)

The introduction of t(ε) enables us to check the system
property in each communication cycle, and further discuss the
boundedness over the entire time domain.

The following theorem establishes sufficient conditions to
guarantee the boundedness of the system variables η(s) and
z(s) based on the switching-system theory and the newly
introduced time-sequence t(ε).

Theorem 1: Consider the closed-loop fuzzy system (10) with
the PID controller (9). Let the controller gains and scalars
µ1 > −1, µ2 > −1 be given. Then, the dynamics of the
closed-loop system (10) is ultimately bounded if, for i, j ∈ T,
d = 1, 2, · · · , N − 1, ϵ ∈ L1, n ∈ L2, there are positive

matrices P > 0, Rd > 0 and scalars o1,n > 0, o2,n > 0,
α1 > 0, α2 > 0 such that

Λn +ΘT
i,j,nP̄Θi,j,n < 0 (11)

Λn +ΘT
i,j,nPΘi,j,n < 0 (12)

Ξ + ΓT
i,j,ϵPΓi,j,ϵ < 0 (13)

Ξ + ΓT
i,j,ϵP̃Γi,j,ϵ < 0 (14)

(1 + µ1)
κ(1 + µ2)

l < 1 (15)
ny∑

n̄=l+1

o1,n̄ = 1 (16)

ny∑
n̄=l+1

o2,n̄ = 1 (17)

where

Λn , diag{Λ(1)
n ,−R̄,−α2I},

Λ(1)
n , − (1 + µ1)P − (1 + µ1)C̃

T Q⃗nC̃ + R̃,

R̃ ,
[∑N−1

d=1 Rd 0
0 −α1I

]
, Ξ(1) , −(1 + µ2)P + R̃,

R̄ , diag{µ̄R1, µ̄
2R2, · · · , µ̄N−1RN−1},

C̃ , ĪT2
[
C −I F

]
, µ̄ , min{1 + µ1, 1 + µ2},

Q⃗n , Q̄− Q̄Ωn, Q̄ , diag{Ql+1, Ql+2, · · · , Qny},

Θi,j,n ,
[
Āi,j,n Ēi,j,n Bi,j 0
0 0 0 I

]
,

Āi,j,n ,
[

Ā
(1,1)
i,j,n Ā

(1,2)
i,j,n

Ī2ΩnĪ
T
2 C Φ̃n

]
, Φ̃n , Ī2(I − Ωn)Ī

T
2 ,

Ā
(1,1)
i,j,n ,Ai +BiK

P
j Ī2ΩnĪ

T
2 C +BiK

D
j Ī2ΩnĪ

T
2 C,

Ā
(1,2)
i,j,n ,BiK

P
j Φ̃n +BiK

D
j Φ̃n +BiK

I
j −BiK

D
j ,

P̄ ,P +

ny∑
n̄=l+1

o1,n̄C̃
T Q⃗n̄C̃,

Ξ , diag{Ξ(1),−R̄,−α2I},

Γi,j,ϵ ,
[
Ǎi,j,ϵ Ěi,j,ϵ Bi,j 0
0 0 0 I

]
,

Ǎi,j,ϵ ,
[

Ǎ
(1,1)
i,j,ϵ Ǎ

(1,2)
i,j,ϵ

Ī1ΦϵĪ
T
1 C Φ⃗ϵ

]
, Φ⃗ϵ , Ī1(I − Φϵ)Ī

T
1 ,

Ǎ
(1,1)
i,j,ϵ ,Ai +BiK

P
j Ī1ΦϵĪ

T
1 C +BiK

D
j Ī1ΦϵĪ

T
1 C,

Ǎ
(1,2)
i,j,n ,BiK

P
j Φ⃗ϵ +BiK

D
j Φ⃗ϵ +BiK

I
j −BiK

D
j ,

P̃ ,P +

ny∑
n̄=l+1

o2,n̄C̃
T Q⃗n̄C̃,

Ēi,j,n ,
[

Ē
(1,1)
i,j,n

Ī2ΩnĪ
T
2 F

]
, Ěi,j,n ,

[
Ě

(1,1)
i,j,ϵ

Ī1ΦϵĪ
T
1 F

]
,

Ē
(1,1)
i,j,ϵ ,Ei +BiK

P
j Ī2ΩnĪ

T
2 F +BiK

D
j Ī2ΩnĪ

T
2 F,

Ě
(1,1)
i,j,ϵ ,Ei +BiK

P
j Ī1ΦϵĪ

T
1 F +BiK

D
j Ī1ΦϵĪ

T
1 F.

Proof: Choose the following Lyapunov-like functional:

V (s) ,V1(s) + V2(s)
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where

V1(s) ,
[
η(s)
ω(s)

]T (
P + ρ(s)C̃T Q⃗τ(s)C̃

)[
η(s)
ω(s)

]
,

V2(s) ,
N−1∑
d=1

s−1∑
p=s−d

µ̄s−p−1ηT (p)Rdη(p).

For n̄ ∈ L2, one can derive from the definition of Q⃗n and
the selection principle (5) that:[

η(s+ 1)
ω(s+ 1)

]T
C̃T Q⃗τ(s+1)C̃

[
η(s+ 1)
ω(s+ 1)

]
≤
[
η(s+ 1)
ω(s+ 1)

]T
C̃T Q⃗n̄C̃

[
η(s+ 1)
ω(s+ 1)

]
. (18)

Next, we will discuss four different cases according to the
time-sequence t(ε).

Case 1: For s ∈ {t(ε), t(ε)+1, · · · , t(ε)+κ−2} ∈ D, one
has that s + 1 ∈ {t(ε) + 1, t(ε) + 2, · · · , t(ε) + κ − 1} ∈ D
and

V1(s+ 1)− (1 + µ1)V1(s)

=

[
η(s+ 1)
ω(s+ 1)

]T (
P + ρ(s+ 1)C̃T Q⃗τ(s+1)C̃

)[
η(s+ 1)
ω(s+ 1)

]
− (1 + µ1)

[
η(s)
ω(s)

]T (
P + ρ(s)C̃T Q⃗τ(s)C̃

)[
η(s)
ω(s)

]
≤

[
η(s+ 1)
ω(s+ 1)

]T (
P +

ny∑
n̄=l+1

o1,n̄C̃
T Q⃗n̄C̃

)[
η(s+ 1)
ω(s+ 1)

]

− (1 + µ1)

[
η(s)
ω(s)

]T (
P + ρ(s)C̃T Q⃗τ(s)C̃

)[
η(s)
ω(s)

]
.

(19)

By considering (18) and the fact of

α1ω
T (s)ω(s) ≤ α1ω̄

2,

α2ω
T (s+ 1)ω(s+ 1) ≤ α2ω̄

2,

one obtains

V1(s+ 1)− (1 + µ1)V1(s)

≤
[
η(s+ 1)
ω(s+ 1)

]T (
P +

ny∑
n̄=l+1

o1,n̄C̃
T Q⃗n̄C̃

)[
η(s+ 1)
ω(s+ 1)

]

− (1 + µ1)

[
η(s)
ω(s)

]T (
P + ρ(s)C̃T Q⃗τ(s)C̃

)[
η(s)
ω(s)

]
+ (α1 + α2)ω̄

2 − α1ω
T (s)ω(s)

− α2ω
T (s+ 1)ω(s+ 1). (20)

Letting τ(s) = n (n ∈ L2), one has

V1(s+ 1)− (1 + µ1)V1(s)

≤
r∑

i=1

r∑
j=1

hi(ϖ(s))hj(ϖ̄(s))ξT (s)
(
ΘT

i,j,nP̄Θi,j,n + Λ̄n

)
× ξ(s) + (α1 + α2)ω̄

2 (21)

where

ᾱ1 ,
[
0 0
0 −α1I

]
,

ξ(s) ,
[
η(s) ω(s) η̄(s) ω(s+ 1)

]T
,

Λ̄n ,

−(1 + µ1)(P + C̃T Q⃗nC̃) + ᾱ1 0 0
0 0 0
0 0 −α2I

 .

For V2(s), we calculate that

V2(s+ 1)− (1 + µ1)V2(s)

≤V2(s+ 1)− µ̄V2(s)

=

N−1∑
d=1

s∑
p=s−d+1

µ̄s−pηT (p)Rdη(p)

−
N−1∑
d=1

s−1∑
p=s−d

µ̄s−pηT (p)Rdη(p)

=
N−1∑
d=1

ηT (s)Rdη(s)−
N−1∑
d=1

µ̄dηT (s− d)Rdη(s− d). (22)

Together (21) with (22), one obtains

V (s+ 1)− (1 + µ1)V (s)

≤
r∑

i=1

r∑
j=1

hi(ϖ(s))hj(ϖ̄(s))ξT (s)
(
ΘT

i,j,nP̄Θi,j,n + Λn

)
× ξ(s) + (α1 + α2)ω̄

2. (23)

The condition (11) implies

V (s+ 1)− (1 + µ1)V (s) ≤ (α1 + α2)ω̄
2. (24)

Case 2: For s = t(ε) + κ − 1 ∈ D, one has that s + 1 =
t(ε) + κ ∈ S and

V (s+ 1)− (1 + µ1)V (s)

=

[
η(s+ 1)
ω(s+ 1)

]T
P

[
η(s+ 1)
ω(s+ 1)

]
− (1 + µ1)

[
η(s)
ω(s)

]T
×
(
P + ρ(s)C̃T Q⃗τ(s)C̃

)[
η(s)
ω(s)

]
+ V2(s+ 1)

− (1 + µ1)V2(s). (25)

By following the similar analysis method and using the
condition (12), we arrive at

V (s+ 1)− (1 + µ1)V (s) ≤ (α1 + α2)ω̄
2. (26)

Thus, for s ∈ D and any scalar υ > 0, one has that

υs+1V (s+ 1)− υsV (s)

= υs+1
(
V (s+ 1)− V (s)

)
+ υs(υ − 1)V (s)

≤ υs+1
(
µ1V (s) + (α1 + α2)ω̄

2
)
+ υs(υ − 1)V (s)

= υs(µ1υ + υ − 1)V (s) + υs+1(α1 + α2)ω̄
2.

By letting ῡ , 1
1+µ1

, one derives

ῡs+1V (s+ 1)− ῡsV (s) ≤ ῡs+1(α1 + α2)ω̄
2.

Summing up both sides of the above inequality from s =
t(ε) to s = t(ε) + κ− 1, one infers

ῡt(ε)+κV (t(ε) + κ)− ῡt(ε)V (t(ε))

≤ ῡt(ε)+1 − ῡt(ε)+1+κ

1− ῡ
(α1 + α2)ω̄

2.
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Thus, it can be concluded that

V (t(ε) + κ) ≤ ῡ−κV (t(ε)) +
ῡ1−κ − ῡ

1− ῡ
(α1 + α2)ω̄

2. (27)

Case 3: For s ∈ {t(ε)+κ, t(ε)+κ+1, · · · , t(ε+1)−2} ∈ S,
one has that s + 1 ∈ {t(ε) + κ + 1, t(ε) + κ + 2, · · · , t(ε +
1)− 1} ∈ S and

V1(s+ 1)− (1 + µ2)V1(s)

=

[
η(s+ 1)
ω(s+ 1)

]T
P

[
η(s+ 1)
ω(s+ 1)

]
− (1 + µ2)

[
η(s)
ω(s)

]T
P

[
η(s)
ω(s)

]
,

and

V2(s+ 1)− (1 + µ2)V2(s)

≤V2(s+ 1)− µ̄V2(s)

=

N−1∑
d=1

s∑
p=s−d+1

µ̄s−pηT (p)Rdη(p)

−
N−1∑
d=1

s−1∑
p=s−d

µ̄s−pηT (p)Rdη(p)

=
N−1∑
d=1

ηT (s)Rdη(s)−
N−1∑
d=1

µ̄dηT (s− d)Rdη(s− d).

Thus, we have

V (s+ 1)− (1 + µ2)V (s)

≤
r∑

i=1

r∑
j=1

hi(ϖ(s))hj(ϖ̄(s))ξT (s)
(
Ξ + ΓT

i,j,ϵPΓi,j,ϵ

)
ξ(s)

+ (α1 + α2)ω̄
2.

Under the condition (13), it is easy to see that

V (s+ 1)− (1 + µ2)V (s) ≤ (α1 + α2)ω̄
2.

Case 4: For s = t(ε + 1) − 1 ∈ S, one has that s + 1 =
t(ε+ 1) ∈ D and

V (s+ 1)− (1 + µ2)V (s)

=

[
η(s+ 1)
ω(s+ 1)

]T (
P + ρ(s+ 1)C̃T Q⃗τ(s+1)C̃

)[
η(s+ 1)
ω(s+ 1)

]
− (1 + µ2)

[
η(s)
ω(s)

]T
P

[
η(s)
ω(s)

]
+ V2(s+ 1)

− (1 + µ2)V2(s)

≤
[
η(s+ 1)
ω(s+ 1)

]T (
P +

ny∑
n̄=1

o2,n̄C̃
T Q⃗n̄C̃

)[
η(s+ 1)
ω(s+ 1)

]
− (1 + µ2)

[
η(s)
ω(s)

]T
P

[
η(s)
ω(s)

]
+ V2(s+ 1)− µ̄V2(s)

≤
r∑

i=1

r∑
j=1

hi(ϖ(s))hj(ϖ̄(s))ξT (s)
(
Ξ + ΓT

i,j,ϵP̃Γi,j,ϵ

)
ξ(s)

+ (α1 + α2)ω̄
2.

Based on the condition (14), we know that the following
holds:

V (s+ 1)− (1 + µ2)V (s) ≤ (α1 + α2)ω̄
2.

Therefore, for s ∈ S and any scalar ς > 0, one obtains that

ςs+1V (s+ 1)− ςsV (s)

= ςs+1
(
V (s+ 1)− V (s)

)
+ ςs(ς − 1)V (s)

≤ ςs+1
(
µ2V (s) + (α1 + α2)ω̄

2
)
+ ςs(ς − 1)V (s)

= ςs(µ2ς + ς − 1)V (s) + ςs+1(α1 + α2)ω̄
2.

By letting ς̄ , 1
µ2+1 , it can infer from the above formula

that

ς̄s+1V (s+ 1)− ς̄sV (s) ≤ ς̄s+1(α1 + α2)ω̄
2.

Summing up both sides of the above inequality from s =
t(ε) + κ to s = t(ε+ 1)− 1 gives that

ς̄t(ε+1)V (t(ε+ 1))− ς̄t(ε)+κV (t(ε) + κ)

≤ ς̄t(ε)+κ+1 − ς̄t(ε)+1+κ+l

1− ς̄
(α1 + α2)ω̄

2.

Thus, it can be concluded that

V (t(ε+ 1)) ≤ ς̄−lV (t(ε) + κ) +
ς̄1−l − ς̄

1− ς̄
(α1 + α2)ω̄

2.

(28)

In terms of (27) and (28), one gets

V (t(ε+ 1)) ≤ γV (t(ε)) + α̌ω̄2 (29)

where

γ , (1 + µ1)
κ(1 + µ2)

l,

α̌ ,
(
ς̄−lῡ1−κ − ς̄−lῡ

1− ῡ
+

ς̄1−l − ς̄

1− ς̄

)
(α1 + α2).

Thus, for any scalar π > 0, one has

πε+1V (t(ε+ 1))− πεV (t(ε))

≤πε(πγ − 1)V (t(ε)) + πε+1α̌ω̄2.

By letting π̄ , 1
γ and summing up both sides of the above

inequality from ε̄ = 0 to ε̄ = ε− 1, one has

V (t(ε)) ≤ π̄−εV (t(0)) +
π̄1−ε − π̄

1− π̄
α̌ω̄2.

Combining with (28), one knows

V (t(0)) ≤ ς̄−lV (0) + α⃗ω̄2 , V̄ (0)

where

α⃗ , ς̄1−l − ς̄

1− ς̄
(α1 + α2).

Thus, one has that

V (t(ε)) ≤ π̄−εV̄ (0) +
π̄1−ε − π̄

1− π̄
α̌ω̄2

= γε

(
V̄ (0) +

α̌ω̄2

γ − 1

)
+

α̌ω̄2

1− γ
.
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Under the condition (15), it is easy to see that V (t(ε)) →
α̌ω̄2

1−γ < ∞ as ε → ∞, which shows the boundedness of the
dynamics of V (t(ε)).

After discussing the dynamics of V (t(ε)), we are now in
a position to check the properties of dynamics of V (s) (for
s ∈ N). Note that the condition (15) implies three different
cases:

1) 1 + µ1 < 1 and 1 + µ2 > 1;
2) 1 + µ1 < 1 and 1 + µ2 < 1;
3) 1 + µ1 > 1 and 1 + µ2 < 1.
According to the values of µ1 and µ2, we next discuss the

boundedness of V (s) in three cases, respectively.
Case a: If 1 + µ1 < 1 and 1 + µ2 > 1, then for s ∈

{t(ε), t(ε) + 1, · · · , t(ε) + κ}, one has from (27) that

V (s) ≤ V (t(ε)) +
ῡ1−κ − ῡ

1− ῡ
(α1 + α2)ω̄

2.

For s ∈ {t(ε) + κ+ 1, t(ε) + κ+2, · · · , t(ε+ 1)− 1}, one
has from (28) and (29) that

V (s) ≤ ς̄1−lῡ−κV (t(ε)) + άω̄2

≤ ς̄−lῡ−κV (t(ε)) + άω̄2

≤V (t(ε)) + άω̄2

where

ά ,
(
ς̄1−lῡ1−κ − ς̄1−lῡ

1− ῡ
+

ς̄2−l − ς̄

1− ς̄

)
(α1 + α2).

Therefore, for s ∈ {t(ε), t(ε)+1, · · · , t(ε+1)−1}, it follows
from the above inequalities that

V (s) ≤V (t(ε)) + άω̄2.

To this end, it is concluded as s → +∞ that

∥η(s)∥2 ≤V1(s)/p̄

≤
(
V (t(ε)) + άω̄2

)
/p̄

≤ α̌ω̄2

(1− γ)p̄
+

άω̄2

p̄
< ∞ (30)

where p̄ , λmin(P ).
Case b: If 1+ µ1 < 1 and 1+ µ2 < 1, then by conducting

the similar analysis, one has as s → +∞ that

∥η(s)∥2 ≤ α̌ω̄2

(1− γ)p̄
+

ῡ1−κ − ῡ

(1− ῡ)p̄
(α1 + α2)ω̄

2

+
ς̄2−l − ς̄

(1− ς̄)p̄
(α1 + α2)ω̄

2 < ∞. (31)

Case c: If 1 + µ1 > 1 and 1 + µ2 < 1, then by conducting
the similar analysis again, one has as s → +∞ that

∥η(s)∥2 ≤ ῡ−κ α̌ω̄2

(1− γ)p̄
+

ῡ1−κ − ῡ

(1− ῡ)p̄
(α1 + α2)ω̄

2

+
ς̄2−l − ς̄

(1− ς̄)p̄
(α1 + α2)ω̄

2 < ∞. (32)

Thus, from (30)-(32) and Definition 1, we know that the
closed-loop system (10) is ultimately bounded. The proof is
now complete.

Remark 3: In Theorem 1, the boundedness has been
analyzed for the closed-loop system (10). Particularly, the
quadratic functions, which describe the scheduling behaviors
of protocols, have been incorporated into the Lyapunov-like
functional (LLF) to deal with the protocol-induced effects. In
addition, the delay effects induced by the integral-term are also
considered by constructing V2(k). Note that, when analyzing
the system boundedness, the LLF is considered to be common
for calculation convenience. To further reduce conservatism,
the fuzzy LLF or piecewise LLF can be applied at the cost of
increasing the calculation burden.

In terms of results presented in Theorem 1, the controller
design issues are handled in Theorem 2.

Theorem 2: Consider the closed-loop fuzzy system (10) and
the PID controller (9). Let scalars µ1 > −1 and µ2 > −1
be given. Then, the dynamics of the closed-loop system (10)
is ultimately bounded if, for i, j ∈ T, d = 1, 2, · · · , N − 1,
ϵ ∈ L1, n ∈ L2, n̄ = l+1, l+2, · · · , ny−1, there are positive
matrices P > 0, Rd > 0, matrices KP

j , KI
j , KD

j and scalars
o1,n̄ ≥ 0, o2,n̄ ≥ 0, α1 > 0, α2 > 0 such that[

Λn ∗
Θi,j,n P̄ − 2I

]
< 0 (33)[

Λn ∗
Θi,j,n P − 2I

]
< 0 (34)[

Ξ ∗
Γi,j,ϵ P − 2I

]
< 0 (35)[

Ξ ∗
Γi,j,ϵ P̃ − 2I

]
< 0 (36)

(1 + µ1)
l(1 + µ2)

κ < 1 (37)

1−
ny−1∑
n̄=l+1

o1,n̄ > 0 (38)

1−
ny−1∑
n̄=l+1

o2,n̄ > 0 (39)

N̄ T
i N̄i < P (40)

where N̄i ,
[
Ni 0nz×nω

]
and other variables are defined

in Theorem 1. Moreover, the minimum value of the AUB of
∥z(s)∥ can be obtained by solving the following minimization
problem: 

min

{(
ς̄−lυ⃗ + ς⃗

1− γ
+ ς̄1−lυ⃗ + ς̃

)
ᾱω̄2

}
if 1 + µ1 < 1 and 1 + µ2 > 1,

min

{(
ς̄−lυ⃗ + ς⃗

1− γ
+ υ⃗ + ς̃

)
ᾱω̄2

}
if 1 + µ1 < 1 and 1 + µ2 < 1,

min

{(
ῡ−κ ς̄

−lυ⃗ + ς⃗

1− γ
+ υ⃗ + ς̃

)
ᾱω̄2

}
if 1 + µ1 > 1 and 1 + µ2 < 1

(41)

subject to constraints (33)-(40) where

γ , (1 + µ1)
l(1 + µ2)

κ, ᾱ , α1 + α2,

ῡ , 1

1 + µ1
, ς̄ , 1

1 + µ2
,
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υ⃗ , ῡ1−κ − ῡ

1− ῡ
, ς⃗ , ς̄1−l − ς̄

1− ς̄
, ς̃ , ς̄2−l − ς̄

1− ς̄
.

Proof: The Schur Complement Lemma indicates that (11)
is valid if and only if the following inequality is satisfied:[

Λn ∗
Θi,j,n −P̄−1

]
< 0.

Furthermore, the fact of

(P̄ − I)P̄−1(P̄ − I) ≥ 0

implies
P̄ − 2I ≥ −P̄−1.

Thus, from the condition (33), one has that[
Λn ∗

Θi,j,n −P̄−1

]
≤

[
Λn ∗

Θi,j,n P̄ − 2I

]
< 0.

By conducting the similar matrix operations, the conditions
(12)-(14) in Theorem 1 are guaranteed via conditions (34)-
(36), respectively.

By setting

o1,ny = 1−
ny−1∑
n̄=l+1

o1,n̄, o2,ny = 1−
ny−1∑
n̄=l+1

o2,n̄,

the conditions (16)-(17) are ensured by (38)-(39), respectively.
From the above analysis, it follows from Theorem 1 that

the closed-loop system (10) is ultimately bounded. Next, by
means of the condition (41), one has that

zT (s)z(s) ≤
[
η(s)
ω(s)

]T
P

[
η(s)
ω(s)

]
≤ V (s).

Upon taking s → ∞, we can conclude from (30)-(32) that the
optimization problem (41) provides the minimum value of the
AUB of ∥z(s)∥, and this completes the proof.

Remark 4: In Theorem 2, we have proposed a convex
optimization approach to minimize the AUB under the given
system decay rate. Note that the decay rate of the closed-loop
system (10) is an important performance index in evaluating
the control performance. To further improve the algorithm’s
feasibility and reduce conservatism, the AUB and the decay
rate can be optimized jointly by using the well-known particle-
swarm-optimization algorithm [3], [5], [7], [55].

Remark 5: Thus far, we have addressed the ultimately
bounded fuzzy PID control problem for nonlinear NCSs
subject to UBB noises and effects of the FRPs. First, we have
modelled the transmitted outputs via a switching model and
constructed a fuzzy PID controller with a concise structure.
Then, in Theorem 1, sufficient conditions have been obtained
to check the boundedness of the controlled system and, in
Theorem 2, the desired controller gains have been derived.
Note that, in Theorems 1-2, the parameters quantifying the
system dynamics and the protocol effects have been adequately
included.

Remark 6: In comparison to the existing literature on NCSs
and fuzzy control, our paper offers the following unique contri-
butions: 1) the investigated control problem is novel since the
impacts of FRPs are analyzed for general nonlinear NCSs with
UBB noises in discrete-time setting; 2) the proposed analysis

method for FRPs is innovative and simplifies the design of
the fuzzy PID controller; and 3) the utilized approach for
boundedness analysis is more versatile, enabling the handling
of various system decay rates within a unified framework.

IV. SIMULATION EXAMPLE

This section presents a simulation example that demon-
strates the effectiveness of the proposed fuzzy PID control
methodology.

Consider a fuzzy system in the form of (2) with two fuzzy
rules and the following parameters:

A1 =


1 0 0.1 0.1
0.7 0.2 0.1 0.1
0.3 0 0.1 0
0.1 0.1 0 0.1

 , B1 =


0.5
0.1
0.5
0.1

 ,

A2 =


1 0 0 0.1
0.1 0.2 0.1 a⃗
0.5 0 0 0.1
0.5 0 0 −0.2

 , B2 =


0.4
0
0.6
0.1

 ,

C =


0.8 0 0.1 0.1
0 0.4 0.1 0.1
0.1 0.1 0.1 0
0.1 0 0.1 0.1

 , F =


0.1
0

0.09
0

 ,

E1 =


0

0.02
0
0.1

 , E2 =


0

0.01
0

0.05

 , N1 =


0.1
0.1
0.1
0.2


T

,

N2 =
[
0.1 0.1 0.1 0.2

]
,

x(s) =


x1(s)
x2(s)
x3(s)
x4(s)

 , h1(ϖ(s)) = sin2(x1(s)),

y(s) =


y1(s)
y2(s)
y3(s)
y4(s)

 , h2(ϖ(s)) = 1− h1(ϖ(s)).

Here, the scalar a⃗ in matrix A2 is an adjustable parameter that
will be used for later comparison.

By utilizing the FRP, we set the time lengths of the static
segment and dynamic segment in each communication cycle as
l = 2 and κ = 2, respectively. It is prescribed that the first two
components of y(s) (i.e., y1(s) and y2(s)) are scheduled by
the static rules (3)-(4) in the static segment. Correspondingly,
the remaining outputs y3(s) and y4(s) are scheduled by the
dynamic rules (5)-(6) with Q3 = 1 and Q4 = 2 in the dynamic
segment. The bounded external noise is assumed to be ω(s) =
0.5 + mod(s, 2) which implies that ∥ω(s)∥2 ≤ ω̄2 = 2.25.

The goal of this example is to design a fuzzy PID controller
(9) that ensures the closed-loop system to be ultimately bound-
ed while minimizing the upper bound of ∥z(s)∥. Initially, we
set a⃗ = 0.4. The control gains obtained from Theorem 2 are
then used in simulations. The results are presented in Figs. 3-7,
where Figs. 3-6 depict the state evolution with and without the
proposed fuzzy PID control strategy, and Fig. 7 displays the
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Fig. 3: The dynamic trajectory of x1(s)
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Fig. 4: The dynamic trajectory of x2(s)
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Fig. 5: The dynamic trajectory of x3(s)

sensor node that has access to the network at each transmission
instant.

From the simulation results, it can be observed that 1)
the original open-loop system is unstable; and 2) with the
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Fig. 6: The dynamic trajectory of x4(s)
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Fig. 7: The node accessing the network

proposed fuzzy PID control method, the controlled system is
bounded as each component of state x(s) maintains within a
desired scope around the equilibrium point.

From (41), we know that the bound of the controlled signal
∥z(s)∥ is in direct proportion to the optimized parameter
ᾱ , α1 + α2. Thus, a smaller ᾱ means a smaller bound and
also a better control performance. To further demonstrate the
effectiveness of the proposed fuzzy PID controller, we present
a comparison with other methods in Table I and Table II.
Specifically, in Table I, the parameter ᾱ obtained in different
system parameters a⃗ is listed. Here, the fuzzy P-type control
means the traditional fuzzy static output-feedback control,
which is actually a special case of our proposed fuzzy PID
one (by setting KI

j = KD
j = 0). It is easy to see that the fuzzy

PID controller would provide a smaller bound as compared to
the traditional P-type one.

In Table II, we list the obtained xsum under different UBB
noises where

xsum ,
tf∑
ϱ=0

xT (ϱ)x(ϱ)

with tf being the termination time of the simulation. Obvi-
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ously, a smaller xsum reflects a better control performance.
It can be seen that our developed fuzzy PID controller is
superior to the P-type one in terms of the capability of noise
attenuation. Such performance improvement would benefit
from the introduction of the integral term and derivative term.

To compare the results obtained based on the FRP with
those derived using the TODP or RRP, we present the attained
xsum under three different communication protocols in Table
III. From Table III, we can see that the FRP is indeed effective
when dealing with the ultimately bounded fuzzy PID control
issues. Such a good performance would benefit from the great
flexibility of the FRP protocol. All simulation results show
that the designed controller performs very well.

TABLE I: The Attained ᾱ Using Fuzzy PID Control and Fuzzy
P-type Control with Varying System Parameters

scalar a⃗ 0.1 0.4 0.6 -0.1
ᾱ (fuzzy P-type) 1.7565 1.8106 6.2127 2.6546
ᾱ (fuzzy PID) 1.3071 1.3270 1.8342 1.6378

TABLE II: The Attained xsum Using Fuzzy PID Control and
Fuzzy P-type Control with Varying Noises

noise ω(s) 0.9 sin(s) 1.5 cos(s) 1.2
xsum (fuzzy P-type) 10.6440 29.1645 30.2807
xsum (fuzzy PID) 5.5439 14.9701 15.6469

TABLE III: The Attained xsum under The FRP, TODP and
RRP

scalar a⃗ 0.1 0.4 0.55 -0.1
xsum (FRP) 25.2431 25.1561 25.6193 25.6970
xsum (TODP) 26.2356 25.6593 26.0428 27.1070
xsum (RRP) infeasible infeasible infeasible infeasible

V. CONCLUSION

This paper has been concerned with the fuzzy PID controller
design issues for general nonlinear NCSs subject to UBB
noises. We have considered that sensors send data to the
remote fuzzy PID controller via a shared communication
network, where the FRP has been employed to schedule
network resources. The utilized FRP has been characterized
by time-triggered rules and event-triggered rules which are
activated alternately in the prescribed working period. By
using a switching model, the measurement outputs after being
transmitted have been described and then used as the con-
troller inputs. We have established a unified framework for
the boundedness analysis of the system using the switching-
system theory, and designed the controller gains accordingly.
The effectiveness of the proposed control method has been
demonstrated through a simulation example and comparison
results. The future research topics include the distributed fuzzy
PID control for large-scale systems with network-induced
complexities and the related applications [51], [56].
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