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Abstract

Asset health monitoring application is critical to ensure structures are operating

in a healthy state and damages can be detected earlier for efficient maintenance

scheduling to save cost. RAC Foundations has reported that there were more than

three thousand bridges identified as substandard bridges in the United Kingdom in

2019. This is due to destructive damage such as deterioration, corrosion, overload-

ing and lack of maintenance etc. These factors have accelerated the deterioration

of bridges, reduced performance in normal operation and also potential hazard of

bridges at risk of collapse. A figure of an estimated £6.7 billion bill is required to

bring substandard bridges back to good condition. In order to improve the bridge

health monitoring process and save cost with well-planned inspection schedule, the

development of efficient damage detection algorithms is needed.

This study has investigated the current state-of-art in bridge health monitoring

applications in terms of types of signals, sensor development and signal processing

techniques to extract damage sensitive features. Based on the research outcome in

terms of accuracy and efficiency of applications, the author has proposed an ad-

vanced digital signal processing technical to develop a vibration-based fault analysis

algorithm for early damage detection using optimal filtering. A Spectral Kurtosis

(SK) based optimal filter is designed to extract frequencies that are generated by

damages. The proposed technique is validated by two applications to detect small

defects such as bolt looseness on bolted joint structures as well as applying the

technique on bearing fault detection.

The two applications has proved that the proposed technique can detect damages
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in both stationary infrastructure such as bridges and operating rotary machine to

show its versatility. The results provide confidence that Spectral Kurotsis is capable

of detecting non-linear and non-stationary components buried in noisy signal. The

outcome has contributed a method to detect small defects that are hard to find and

therefore early repair and better maintenance schedule can be achieved to save the

cost and ensure structures are operating in a healthy status.

Apart from that, the developed algorithm can also be used to extract features

for an automated damage detection application; for instance, feeding the damage

sensitive features into machine learning models such as support vector machine and

random forest to classify damages. This combined method will reduce the chance

of false alarm.
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Chapter 1

Introduction

Asset health monitoring involves observation of the overall healthiness of a structure

that also applies to machinery with condition monitoring on moving components

such as gears and bearings. Structural health monitoring (SHM) is defined as a

process of implementing a damage identification strategy for various infrastructures

such as aerospace, civil and mechanical engineering. The general objectives of the

process are to detect structural damage, estimate the remaining service life of a

structure and optimise the decision making process for maintenance efforts to reduce

replacement costs based on measured data. The need for bridge health monitoring

is one such application, and it is discussed in detail below.

Over three thousands bridges were identified at substandard status in the United

Kingdom and this has been rising per year reported by RAC Foundations in 2019

[1]. There are several reasons behind; for instance, destructive damages such as

deterioration, corrosion, overloading and lack of maintenance etc that accelerated

the deterioration of bridges. Resulting in reduced performance in bridge as well as

potential hazed of bridges at risk of collapse.

The Genoa tragedy happened in 2018 [2] has raised public concern of need of

appropriately planned inspection and maintenance schedule for bridges especially

those that have been operating more than few decades. RAC Foundations has also

published a figure of an estimated £6.7 billion bill was required to bring substan-

dard bridges back to good condition in 2018 [3]. In order to improve the bridge

health monitoring process and save cost with well-planned inspection schedule, the
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development of efficient damage detection algorithms is needed.

Currently there are different practices of data acquisition and deployment tech-

nologies in both industrial and academic sectors [4, 5]. Vibration-based monitoring

is one of the most popular methods for analysis, followed by fibre-optic technologies

and the popular wireless sensor network for SHM deployments [6, 7, 8]. By defini-

tion, monitoring comprises certain procedures that need to be implemented. First,

data acquisition is performed to collect data depending on the use of an application.

For instance, amplitude, velocity and acceleration are data that describe the char-

acteristic of vibration. Signal processing is then implemented to extract useful data

and filter out undesired noise; for instance, time series models, fourier transform and

wavelet transform etc. After the processing is completed, different data interpreta-

tions (artificial neural network, support vector machine and bayesian classifier etc.,)

can then be applied for further feature extraction. Eventually, damage detection of

an SHM system can then be established to detect defects in a structure based on

measured data comparing to baseline data from previous training data.

Cabling system is widely used in conventional SHM monitoring applications for

integrating sensor networks, thanks to their durability and robustness. However,

due to the high cost of the cabling system and the lack of flexibility in adding

new sensors in the wired SHM systems, there is a need to boost the development

of the wireless sensor networks. Due to the massive amount of measurement data

on an asset, an advanced signal processing technique is required to increase the

computation efficiency as the data analysis will consume a lot of time. This can be

achieved by integrating an automated damage detection algorithm into the SHM

application for smart monitoring.

1.1 Need for Bridge Monitoring

RAC Foundations has reported in 2019 there are more than three thousand bridges

were identified at substandard that could leads to potential risk of collapse and

the cost required to bring the bridges back to healthy condition is up to 6 billion

Chapter 1 Siu Ki Ho 13
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pounds [1]. The condition of substandard is defined as if a structure is unable to

carry the heaviest vehicles including a lorry of up to 44 tonnes. This is subjected

to destructive effects of material aging, deterioration, widespread corrosion in metal

structures, increasing traffic volume and overloading. Apart from these factors, an

accident caused damage, poorly designed structures and lack of maintenance also

accelerates the deterioration of bridges resulting loss of load-carrying capacity.

Highways England has reported over 8,600 bridges with an average age of 37

years old are showing a significant number of structures that need strengthening,

rehabilitation or replacement to ensure safety measures for public use [9]. These

factors have caught the public interest and numerous news agency have reflected

the concern of bridges at risk of collapse [10, 11, 12]. A nearby section of the M4

motorway was urgently closed in 2013 following the discovery of cracks in the 1960s

steel structure’s welds. The defects were identified on the bearings [13] that were

designed to ensure forces can be transmitted through the supporting structure into

the foundations and failure can occur if they are not in good condition.

1.2 Bridge Repair and Maintenance Cost

The annual bridge maintenance data published by RAC Foundations has recorded a

massive increment that a £6.7 billion bill of the backlog was estimated to bring the

stock to a good condition in 2017, and this was double the amount in the previous

year [3, 14]. Apart from the figures in the UK, the ACSE (American Society of

Civil Engineers) have published a study in regards to the age of bridges and the

percentage of structurally deficient bridges in 2017 [14]. Figure 1.1 and Figure 1.2

show that the U.S. has almost 240,000 bridges were over 50 years old and 9.1% of the

nation’s bridges were structurally deficient in 2016. Considering this is a relatively

large number of bridges that requires significant maintenance, rehabilitation or re-

placement, an estimated backlog of bridge rehabilitation was required for US$123

billion. Due to the poor condition of the critical load-carrying elements induced by

deterioration, these bridges are required to be inspected annually.
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Figure 1.1: America’s Bridge by Age
[14]

Figure 1.2: Structurally Deficient Bridges in
America (2017) [14]

1.3 Bridge Inspection

Bridge inspection is a crucial task to validate the healthy state of the structure

which also helps to determine the maintenance plan. After the Genoa tragedy that

happened in Italy in 2018 has killed 43 people and left 600 homeless (Figure 1.3)

[2], Highways England has urged the need to review bridge inspections in England

[15].

Figure 1.3: The Morandi Bridge (Genoa Bridge) Tragedy [15]

RSSB (Rail Safety and Standards Board) [16] has reviewed the current practice

for scheduled bridge inspection are subjected to an annual visual examination and

a detailed examination by every six years. Despite the frequently scheduled inspec-

tions, damages could be hard to detect that the structure suffers from the risk of
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failure through deterioration in more or less time. Accidents happened to the struc-

ture can also accelerate the growth of a defect, and the severity of damages will vary

from one structure to another. Consequently, the board has proposed the exami-

nation regime to an annual visual examination with a detailed examination every

3/6/9/12/15/18-year period. The interval of detailed examination is determined by

the growth time of defect between detectable during examinations and subsequently

becoming notifiable depending on working conditions. The proposed regime should

enable defects to be identified sooner during regular inspections.

1.4 Aim

The aim of this MPhil research is to develop an advanced signal processing tech-

nique focused on bridge health monitoring to extract meaningful features to evaluate

state of structure. The data analytic technique is implemented as a fault analysis

algorithm for early damage detection.

1.5 Specific Objectives

The research work consists of

• Implementation of literature review on asset health monitoring to investigate

the current state-of-the-art, emerging technology and technology gap that is

how this research will be able to address the problem of bridge health moni-

toring;

• Investigation of existing signal processing techniques in asset health monitoring

and focus on selection of sensors (e.g. vibration, temperature and pressure

etc.,) [17, 18];

• Development of feature extraction algorithms to obtain damage sensitive fea-

tures [19, 20];

• Establish experiment setup to test and verify the proposed technique to detect

small defects such as bolt looseness on bolted joint structures and bearing fault
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detection

• Demonstrate the proposed technique is capable of detecting small damage in

both stationary and operating structures for early damage detection

1.6 Research Pathway

The pathway of this research study is displayed in Figure 1.4 that consists of three

parts of works as literature review of asset monitoring to investigate the current

approach of bridge health monitoring and exploring potential damages such as bolt

looseness; investigate methodologies to prove the proposed signal processing tech-

nique; validate applications results with designed experiments.

This includes six chapters which covers Chapter 1. Introduction of need in asset

health monitoring, Chapter 2. Literature review of state-of-the-art health moni-

toring techniques including cause of damages. Then Chapter 3. Methodology of

proposed advanced signal processing technique for two applications of bolt looseness

detection and bearing fault detection, Chapter 4. Experimental Results and lastly

Chapter 5. Conclusion and recommendations for future works.

Figure 1.4: Schematic diagram of the research pathway
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Chapter 2

Literature Review

2.1 Bridge Health Monitoring

In bridge health monitoring, the inspections normally start from the key components

as structure is likely to fail due to the deterioration or damage to key components

that support the bridge. Cristian et al. [21] have implemented a study to understand

the deterioration characteristics of bridges that aims to help bridge stakeholders

better prioritise bridge maintenance, repairs and rehabilitation. In general, the

majority of bridges use steel and concrete as material type of its superstructure.

The study has investigated different types of material that superstructure-deficient

steel bridges has accounted for over 50% of all types. Due to the long history and

popularity of metallic bridges, steel bridges will be focused on in this project.

2.2 Operating Conditions of a Steel Bridge

2.2.1 Bridge Type

Applications of steel bridges can be classified into two main categories from the type

of traffic carried and further investigated to the type of structural system. It is used

in three main traffic types namely trains, vehicles and pedestrians as well as the

type of structural system such as beam, truss and suspension bridge (Figure 2.1).

The illustration of structures is presented in Figure 2.2.
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Figure 2.1: Types of Steel Bridge Figure 2.2: Form of Bridge Struc-
tures [14]

2.2.2 Bridge Loadings

A bridge is used to form a path to connect places together. During the initial stage

to design structures, loading is one of the factors that must take into consideration.

The loading describes how the bridge supports its own weight as static load and

live load represents moving objects on the bridge such as vehicles, pedestrians and

trains. And dynamic load indicates environmental factors such as wind, vibrations

and thermal stresses. Figure 2.3 shows a summary of bridge loading and the framed

factors introduce vibrational excitation to bridge structure which can be used as a

response for structural health monitoring (SHM) purposes.

2.2.3 Bridge Key Components

Bridges are assembled from various core elements which forms the support, allows

movement from material expanding and provides a platform for users. These are

classified into superstructure, substructure, bearings and connection joints. In con-

vention, concrete is used to form the deck and stone is used to build the piers and

abutments due to their characteristic of strong strength. The connection joints for
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Figure 2.3: Bridge Loading Categories

assembly normally use bolt or rivet as they are easy to assemble and can be replaced

if damaged. In order to distribute stress evenly when the bridge is under pressure,

bridge bearing is used to provide a resting surface between piers and the deck which

allows controlled movements. The key components illustration is presented in Figure

2.4.

Figure 2.4: Bridge Elements [22]

2.2.4 Environmental Conditions

Bridges are designed to withstand all weather conditions. However, this does not

include extreme conditions such as earthquakes and temperature fluctuation. These

harsh conditions can introduce damages to the structure; for instance, cracks, cor-

rosion and melting concrete that change structural properties resulting in weaker
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stiffness and strength of the structure. Furthermore, that also increases the safety

hazard for road users. Highways England has published a report on climate adap-

tion risk assessment progress update in 2016 [23], a brief summary of climate change

impacts is shown and provides a measure of importance how the hazards affect the

road users.

2.3 Bridge Failure Mode

2.3.1 Damage Types

Damage is defined as the deviation in original material or geometric properties of

a structure due to cracks, corrosion, loosen bolts, fatigue or broken welds causing

displacements, vibrations or undesirable stresses [24]. Research by Cook and Barr

[25] have analysed the trend of bridge failure in New York between 1992 and 2014.

They have examined 17,460 bridges in their data set and 98 bridges are collapsed.

Nearly 50% of the collapsed bridges are classed as structurally deficient which implies

weakened structure is prone to failure.

Imhof has gathered a bridge collapse database of 347 failure cases of worldwide

metallic bridges in his PhD study on risk assessment of existing structures [26]. The

study consists of a time of failure, causes of the bridge collapse, type of failed bridges

and stage of failure etc. Imam and Chryssanthopoulos [27] have further investigated

Imhof’s work to analyse the causes and consequences of bridge failures.

They have classified the causes into seven categories where natural hazards,

limited knowledge and design errors are the most commonly encountered causes of

collapse in metallic bridges followed by human errors and accidents (Figure 2.5).

Aside from the causes, Figure 2.6 illustrates the distribution of failure modes that

most frequently found defects are scouring of piers, buckling, fatigue, impact and

fracture.

SHM is a vital task for valuable assets. Although bridges are designed to main-

tain their service and function for a long period of time, defects and damages are

inevitable. This could be due to many influences during the service life, such as
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Figure 2.5: Failure Causes Leading to
Metallic Bridge Collapses [27]

Figure 2.6: Failure Modes Associated
with Metallic Bridge Collapses [27]

Table 2.1: Root Cause of Steel Bridge Defects

Root Cause

Corrosion
Inadequate steel coatings
Chloride ingress
Water ingress

Crack / Fatigue
Overloading
Structural movement / vibration
Earthquake impact

Buckling

Overloading
Insufficient support
Design errors
Joint eccentricities & welding deformations

loading flotation, vibration, extreme weather conditions and presence of chlorides in

de-icing salts and cycles of freezes and thaw. Table 2.1 shows a summary the type

of the major defects in steel bridge with its root causes.

In addition to classifying the failure modes, researchers in Japan have published

an article to analyse the deterioration characteristics of steel highway bridges [28].

The inspection was conducted using a new approach for segmental data acquisition

which puts structural components and elements into various subdivisions depending

on the damage type. The damage type was characterised by material which bolt

loosening/loss happens to be one of the major problems in steel members and so

bearing malfunctioning and joint spacing malfunctioning as the bolt is used for

mounting purposes.
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Figure 2.7: Defect Types and Occur-
rence Rate in Steel Bridge [29]

Figure 2.8: Causes of Bolt Defect in
Steel Bridge [29]

In the last decade, bolt loosening problem in structural health monitoring has

caught interest from both industry and academia and there is a rising trend of

commercial products launch and publications. Bolt loosening or missing plays an

important role as key member of steel bridge since bolts are used heavily in con-

nection joints and bearings. Park et al. [29] have referred to structural defects

report released by Korea Expressway Corporation in 2013, bolt defects were identi-

fied in 33.3% of their operating bridges which the major cause was investigated as

insufficient preload and vibration (Figure 2.7, 2.8). In accordance to the reported

defects, they have developed novel techniques using image processing to detect bolt

looseness for bolt joints in steel bridges; however, this approach is limited to local

detection and the location of bolts may not be reachable by the camera thus reduces

practicality.

2.3.2 Critical Components

Bolts in bearing joints are designed to meet two main criteria: a) yielding and b)

fracture. These two examples are presented in Figure 2.9 of both cases which yielding

is an inelastic deformation and fracture is a failure of the joint. This failure also

applies to the material that the bolt bears against if the stress applied is overloaded.

Bridge maintenance and inspection are normally scheduled regularly depending
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Figure 2.9: Bolted Joint Failure Modes [30]

on the current health state of the structure. However, defects could have developed

and grown to an extent that could harm the integrity before inspection or not

detectable and it often depends on the experience of the inspector. In order to

tackle that, LeBeau et al. [31] have developed a fault tree model to estimate the

deterioration rate of bridge element that they calculated the probability of the basic

event to occur. Their result shows that bolted joint damage is a major cause and

is likely to make a structure to be substandard. Furthermore, Attoh-Okine et al.

[32] have implemented an improved version of the fault tree model to estimate the

deterioration characteristic of bridge element with Bayesian belief network model.

They have developed a more sensitive tool to investigate which components of a

bridge have the greatest influence on deterioration. Referring to the two research

outcome [31, 32], bolt related elements are found to have a higher probability of

contributing to deterioration owing to the consequence of vibration.

2.4 Bolt Looseness Detection Techniques

Bolted Structures

Structural bolting is a popular choice utilised in industrial structures and equipment

due to the advantage it can be carried out in a timely manner than welding and with

less interrupt during construction. A bolt acts as a fastener which is normally used

with a nut to bind materials or objects together with a washer in between to aid

distribute stress and force evenly. This tensile force is called preload that generates

a compressive force in the bolted joint. If the tension is not maintained, this could

pose a problem for common flaws or damages such as fatigue failure, joint separation
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and self-loosening from vibration in bolted structure.

Bolt looseness

Bolt looseness is a scenario where its tension, axial stress/force are reduced. This can

be due to the self-loosening of the nut because of the transverse movement produced

by vibration. Apart from vibration, there are other causes of the loose bolt; for

instance, 1) under-tightening, 2) embedding, 3) gasket creep, 4) differential thermal

expansion and 5) shock. As a result, measurement and estimation of this force can

contribute to healthy performance of the structure. The example of preloaded bolts

and in the loosened state is presented in Figure 2.10.

Figure 2.10: Preloaded and Loosened Bolting [29, 33]

With regards to the statement from LeBeau et al. [31] and Attoh-Okine et al.

[32], bolt looseness is prone to be considerable damage to bolted structure. Their

study could have been more persuasive if the researchers had included the variation

in stiffness change. A group of researchers in Korea [34] has analysed the contri-

bution of bolt loosening failure to the behaviour of bolted steel plate girder in the

lower flange and quantified the structural stiffness has been reduced by approxi-

mately 15%-17%. In contrast, to monitor the stiffness change caused by axial force

losses, Anginthaya et al. [35] and Xianlong et al. [36] have implemented a para-

metric study to evaluate the effectiveness of different parameters in bolt looseness

detection.

In structural health monitoring and asset monitoring, there are several factors

known to determine the healthy performance of a structure. For instance, natural

frequency, modal damping ratio and mode shape are popular choices. However,

these parameters suffer from some serious shortcomings as they are insensitive to

small defects such as the bolt loosening case. In this section, numerous techniques
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are introduced to improve the effectiveness in bolt looseness detection by extracting

meaningful damage sensitive features.

Wang et al. [37] and Nikravesh et al. [38] have reviewed methods for monitoring

bolt looseness for the last decade, they have categorised the techniques on the basis of

sensing method namely direct and non-direct measurement types. This classification

system helps to distinguish the nature of technique and can be broadened to include

signal types. Despite most of the reviewed methods are old-fashioned, they are still

widely utilised in various industries.

Direct Measurement

Direct measurement means the signal can be analysed without any processing such

as direct tension indicator, strain gauges and torque control. The cost of these

methods is low and easy to implement with simple theory. The key problem with

this method is it possesses low accuracy and is not suitable for situ monitoring.

Indirect Measurement

In contrast, the nature of signals varies from indirect measurement are ranging from

impedance, displacement, velocity and acceleration. These signals can be analysed in

different domains such as time, frequency and time-frequency depending on applica-

tions. This method requires signal processing for analysis and produces acceptable

accuracy. Although the classification is easy to understand, it has limited utility

with respect to nature of signal as most of structural health monitoring technique

requires excessive processing nowadays. Thus, this project has proposed to classify

techniques by contact and non-contact type.

2.4.1 Contact Type Techniques

Vibration-based Monitoring

Vibration-based monitoring is one of the most common techniques used for struc-

tural health monitoring, especially on monitoring changes to modal parameters.

Looseness is a result of a reduction in firmness of joints and structures such that mon-

itoring vibrations and fluctuations of structure’s vibration parameter can achieve

detection of its occurrence. Referring to Nikravesh et al. [38], structures that pos-
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sess nonlinear vibration responses are likely to suffer from looseness owing to the

existence of flaws and variation in vibrational and dynamic parameters.

One of the advantages of vibration-based monitoring technique is that the recorded

signal can be analysed in a variety of domains such as time, frequency and time-

frequency. This flexibility makes the technique capable to detect dynamic parameter

changes due to flaws. Normally, this is estimated by a damage index to evaluate the

severity.

Type of sensors

Displacement sensor

A strain gauge-based relative displacement sensor has been developed to mon-

itor joint conditions in steel truss bridges by Li et al. [39]. It is based on a

feasibility analysis to detect bolt looseness by displacement measurements un-

der ambient vibration; however, this technique has a relatively low sensitivity

as the detective range is about 1 meter. Apart from that, the sensor may fail

to detect other damages that occurred in the structure if they do not emit

relative displacement.

Accelerometer

An accelerometer is one of the popular sensor choices in structural health mon-

itoring due to its performance in providing an accurate vibrational response.

There are two types of excitation that can be used to evoke and measure the

structural response: forced excitation and ambient excitation. By analysing

the vibrational feedback of the structure, the information embedded in the

signal can then be extracted to show its healthy performance. Furthermore,

observation of changes in structural properties is also one of the methods.

Forced excitation

In general, forced excitation is implemented by roving an impact hammer to

structure. A pulse is then generated and propagated to the structure to evoke

a vibration response. A demonstration is conducted to study the character-

istic of bolt looseness in both laboratory and field environments [40]. Sun
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et al. [41] and He et al. [42] have implemented a modal analysis to detect

bolt looseness by loosening bolts on a structure and predict the damping ratio

by evaluating its pretension force and changes in natural frequencies to iden-

tify damages. However, this approach is insensitive to local damage of bolt

looseness since changes in modal parameters correlate to variety in structural

properties. Therefore, small damage will have a very minor effect contributes

to the parameters. This analysis is also called as an input-output method as

the processing algorithm requires both the input from the impact hammer and

the vibration response from the structure.

Ambient excitation

While performing forced excitation being able to contribute a clear difference

in signal when the bolt is loosened, this technique has a huge drawback. It

requires stopping the normal operation of bridges so clear evoked response

can be measured with less noise. However, it is not practical and not eco-

nomically efficient in real life. Although the ambient excitation method has

the advantage to not disrupt the normal operation of bridges when measur-

ing response, the measured signal is likely to be noisy thus pre-processing is

required to filter out the noise and environmental effects. Since the environ-

mental excitation is random and not predictable, it can be treated as white

noise. Thus, an output-only signal processing algorithm has been developed

to extract features.

Dong et al. [43] and Tanner et al. [44] have implemented studies to monitor

bolt group looseness using time-domain analysis to predict damage character-

istic parameters. Their approach is capable to provide an estimation of level of

looseness by monitoring the bolt’s looseness position with amplitude changes

in the extracted damage sensitive parameter. Despite joints on bridges, bolting

is also popular in wind turbine construction.

A hybrid technique using vibration and impedance responses has been de-

veloped to combine global and local damage detection in wind turbine towers
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Table 2.2: Comparison between Forced and Ambient Vibration Test

Forced Vibration Test Ambient Vibration Test

Pros
Provide wide-band input that is
able to stimulate different modes
of vibration

Can be implemented without af-
fecting operation

Can apply a large variety of input
signals

Low cost

Non-destructive testing

Cons
Required to stop operation for
testing

Strongly depends on the type and
characteristic of the equipment
used

Relatively low frequency resolu-
tion of the spectral estimates

Suffer from influence of environ-
mental and operational noise

Requires extremely heavy and ex-
pensive equipment for very large
and flexible structure

[45]. The technique detects frequency variation extracted from acceleration re-

sponse to monitor the structural integrity and classifies damage that occurred

at critical components (bolted joints) by analysing the difference in impedance

signal. By combining multiple damage detection techniques, efficient methods

can be developed in damage detection. This method is also tested to detect

bolt looseness in steel girder connections [46]. Table 2.2 is a comparison table

stating the advantages and disadvantages of the two techniques.

Deformation-based Monitoring

Load Cell

The load cell is a type of force transducer which converts forces such as tension,

compression, pressure or torque into electrical signals that can be analysed.

The transducer will output different electrical signal when there is a change

of measured force thus able to contribute to damage detection. BoltSafe [47]

is a commercial product in the market used to monitor bolt tension force that

measures the change of magnetic field. It is installed between the bolt and

joint lap surface and reading can be observed in a handheld device (Figure

2.11). This approach can produce accurate tensile force monitoring for each

bolt however this might not be cost-effective as it requires one load cell for each
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bolt and is costly. Alternatively, a patent-pending tension controlled washer

[48] has been released to the market which similarly uses a washer with a

built-in sensor as a typical contact load cell to estimate changes to the load.

However, the contact-based sensing could result in failure due to corrosion,

limited load capability.

Figure 2.11: Illustration of BoltSafe Tension Monitoring Application [47]

Tension Sensor

Apart from installing sensors to the structure for measurement, the industry

has come up with a novel idea to visualise the preload applied to the bolt

by using colour. SmartBolts (Figure 2.12) [49] has a direct tension indication

system on the bolt head that shows the tensile force by using different ranges

of colours ranging from vivid red to gradually turn into black which represents

loose and tight respectively. This technique helps inspectors to perform the

visual checks for routine maintenance and local monitoring, but this cannot

be used for remote monitoring. Similar product Maxbolt (Figure 2.13) [50]

has a similar indication system that has a cartridge with a needle embedded

in the bolt to show the variation of stress.

Optical-based Monitoring

Fibre Bragg-Grating Sensor

FBG (Fibre Bragg-Grating) is a relatively new material used for tension moni-

toring that delivers accurate results with a small package size using fibre optic.

The sensor provides an indirect fundamental parameter as wavelength to in-

dicate variation in stress using light level and is immune to electromagnetic

Chapter 2 Siu Ki Ho 31



Advanced digital signal processing technique for asset health monitoring

Figure 2.12: SmartBolts Tension Indi-
cation System [49]

Figure 2.13: Maxbolt Ten-
sion Indication System [50]

interference. Since FBGs can output high sensitivity result, it is very appealing

for non-destructive evaluation (NDE) applications; for instance, temperature,

strain and vibration measurements. However, FBGs are expensive compared

to other sensor and requires calibration before usage.

In 2016, researchers from the USA have developed a bolt tension monitor that

has embedded FBG sensor in a bolt shaft [51] (Figure 2.14). Their research

recommended this bolt can be used for SHM application and defect detection

in joints and structures and can be optimised to for higher clamping load with

longer duration of time. Similar to a load cell, FBG can also be embedded to

a washer for preload measurement [52] (Figure 2.15).

Figure 2.14: FBG Bolt Tension Moni-
tor (a) Cross Section (b) Prototype [51]

Figure 2.15: FBG-based Smart Washer
Prototype [52]

Acoustic-based Monitoring

The concept of acoustic-based monitoring technique relies on a wave propagation
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approach. Waves are delivered to a structure and the changes indicated in the

feedback is evaluated as an index for existence of defect. There are different types

of waves can be used either in pulse-echo or transmission methods depending on

the application. When there is defect in a structure, the ultrasonic signal will vary

from the original. Consequently, by analysing the phenomena such as reflection,

scattering of the waves, modulation of signal and energy wastage etc., can identify

the location and severity of damage.

Conventional Ultrasound

A novel ultrasonic technique has been developed for stress measurement to

estimate the axial force in high-tension bolts [53]. The method analyse the

acoustic wave velocity and evaluate the time of flight (TOF) of waves in bolts

for stress monitoring. The result is within 5% of error in predicting the axial

force in bolts. Apart from scientific study, there are also patents for monitoring

bolted joints using ultrasonic waves [54, 55]. Figure 2.16 and Figure 2.17 have

illustrated the use cases to detect bolt looseness using bolt displacement and

phased array surface acoustic wave (SAW) sensor respectively.

Figure 2.16: Ultrasonic Sensor for
Tightness Evaluation [54]

Figure 2.17: Illustration of Ul-
trasonic Bolt Looseness Detection
[55]

Although ultrasonic technique has been a popular choice in SHM application,

it poses disadvantages as there is no alerting system available and contact-

based ultrasound requires couplant to facilitates the transmission of ultrasonic
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waves from transducers to structure. This raises problem such as contact cor-

rosion and difficulty for remote monitoring application. In order to ease off the

couplant problem, there has been a new sensor called electromagnetic acous-

tic transducer (EMAT) [56] which generates and detects ultrasound through

electromagnetic field and does not require couplant or contact with specimen

for axial force measurement.

Guided Waves

The propagation of guided waves is reliant upon the geometry of the testing

specimen, and the travel direction of waves is guided by the boundaries of

parts or structure. It has the ability to travel long distance inside the struc-

ture and cover greater depth in the structure comparing to the conventional

ultrasound detection technique. The technique is popularly exploited in on-

site inspections for instantaneous monitoring of structure conditions and the

low-requency range for stimulation purposes ease of need for high sampling

rate equipment which can be costly.

Nevertheless, it has a drawback that it is always subject to energy attenuation

as the surface in structure and joints are rough. Researchers in Poland have

developed an experimental investigation of damage detection in bolted lap

joints using guided waves [57]. However, the results were only observable in

the initial time period to show changes of amplitude or phase shift related to

different bolt load values.

Impedance-based Monitoring

Considering a system has a fixed value of impedance when the same condition re-

mains, the impedance is dependent on dynamic features and parameters. The ap-

pearance of defects such as cracks, decay, corrosion and looseness etc., can affect

the value of these parameters and induce variation in the impedance. By utilis-

ing the impedance fluctuation, it enables the possibility to diagnose and evaluate

the tightness of joints and to estimate the effective axial force in structure. In

general, the mechanism of sensors is electrical impedance and electromechanical
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impedance-based that expose high sensitivity to contact-related defects. However,

this technique requires lots of sensor and demonstrates unsatisfactory performance

in system with thermal fluctuations or loading.

Piezoelectric sensor

The use of PZT (Piezoelectric) sensor approach is similar to the acoustic-

based monitoring method as the impedance change is analysed by comparing

the input and output from the actuator and sensor (Figure 2.18). Tao et al.

and other researchers have reported studies on using this technique for residual

torque estimation in bolted structures [58, 59, 60]. Parvasi et al. [58] have

developed a time-reversal technique for bolt preload monitoring that can be

used to obtain a simple and practical tightness index (Figure 2.19). However,

this technique cannot be used with ambient excitation as external excitation

is required thus not possible for remote monitoring as well.

Figure 2.18: Bolted Joint with
PZT Sensors [58]

Figure 2.19: Recorded Voltage Response (a)
PZT2 in Forward Analysis (b) PZT1 in Re-
versed Analysis [58]

Figure 2.20: Seabed Ball Valve (left) Value (right) Cross-section [61]

A wearable sensor device has been developed for real-time bolted joint moni-

toring for a flanged valves in oil and gas pipelines [61]. Due to the cylindrical
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geometry of pipeline, the bolts installed on the connection flange were arranged

as a ring. Such that embedding PZT transducers to a collar can achieve ten-

sion monitoring if there were any displacement of bolt occurred due to defect

or looseness. Photographs of the experimented valve, developed prototype and

installed sensor are presented in Figure 2.20, Figure 2.21 and Figure 2.22.

Furthermore, researchers from Japan have invented a smart piezoelectric bolt

sensor for bridge health monitoring [62]. The sensor prototype is presented in

Figure 2.23 that the piezoelectric cable sensor has used piezo film to wrap the

stranded mental wire and the sensor can record vibration response when there

is a change in stress level to the bolt body. This is similar to embedding FBG

sensor into bolt shaft.

Figure 2.21: Wearable
Sensor Device embedded
with PZT Transducers
[61]

Figure 2.22: Wearable
Sensor Device Mounted
on Value [61]

Figure 2.23: The Smart
Bolt Sensor [62]

A summary of the contact type techniques for bolt looseness detection can be

found in Table 2.3 where vibration-based monitoring has been most effective

in maintaining low cost with relatively high accuracy and is suitable to use for

remote monitoring applications.
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Table 2.3: Contact Type Techniques Comparison
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Nature of Signal Displacement,
Velocity,

Acceleration

Stress Ultrasonic
waves,
Guided
Waves

Impedance
change
affected

volt-
age/current

Cost Low Low High High

Accuracy High Low High Acceptable

Suitability for
remote monitoring Yes No No Yes

Practicality High Low High Low

2.4.2 Non-Contact Type Techniques

Optical-based Monitoring

Laser Doppler Vibrometer

Laser detection is known as one of the most accurate measuring technique that

gives promising performance in detecting small changes and immune to envi-

ronmental and operational condition effect. Siringoringo and Fujino have pub-

lished an experimental study regarding laser Doppler vibrometer for vibration-

based monitoring (Figure 2.24) [63]. Such application has presented that the

technique is capable of performing modal identification using ambient vibra-

tion measurement and a modal-based damage detection algorithm has been

developed to analyse bolt looseness. Despite the high precision measurement,

modal analysis is insensitive to bolt looseness as the modal parameter does

not change more than 10% when the bolt is loosened. This is a relatively high

cost and not practical as only the specific location of bolts can be scanned.
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Figure 2.24: Schematic Figure of Data Acquisition using LDV System [63]

Vision-based Monitoring

Washer-based indicator

In contrast to contact-based monitoring, visual inspection is also one of the

options for scheduled maintenance. A visual inspection involves a bridge in-

spector looks for a defect that is visible to eyes; for example, a large damage

that can be seen in a distance. Vision-based monitoring is implemented with-

out placing any sensor on the structure and evaluate if the structural integrity

is damaged. For instance, there are several patents that bolt looseness is in-

dicated by the deformation of a washer (Figure 2.25), colour indicators inside

washers and stress-sensitive sheet when the distance between bolt and joint is

increased implying bolt looseness [64, 65, 66].

Figure 2.25: Washer-based Indicator [64]

This washer-based indicator enables the inspector to perform the routine check

by looking at the bolts and does not require experienced worker that is crucial

for other technique to achieve reliable check. However, this technique requires

vigilance and is not practical when large numbers of components to be moni-

tored such as complex structures, and bolts are not visible from distance. The

application requires remote monitoring is also not achievable.
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Image-based technique

Digital signal processing is exploited heavily in recent trends for structural

health monitoring owing to its performance for extracting important damage

related features. Researchers started to explore the possibility of using image

processing techniques to detect bolt looseness by detecting the change of an-

gle and height of bolt [29, 67, 68]. This technique yields a quantitative and

tangible analysis of the investigation which is least affected by environmental

noises. And the cost is relatively low since the main cost is a camera or can

also be a smartphone. It could be difficult to detect changes of bolt due to

slight difference in length of bolts in a structure and camera shooting angle

requires being level with bolt thus being not practical for complex structure.

Radio Waves Processing-based Monitoring

RFID (Radio-Frequency Identification) Tag

In terms of non-contact type monitoring techniques, radio waves processing is

also considered by researchers. Owing to the fact that bolt looseness usually

involves rotating bolts and nuts, detection of looseness can then be achieved

by monitoring the rotation movement. An RFID tag-based indicator is devel-

oped based on the rotation angle of the bolt to enable radio frequency signal

propagation to a receiver unit [69].

Initially, the signal cannot be received by the reader if the tag is obscured by

a layer of tin foil paper that blocking its propagation. Whereas if the bolt is

loosened, such rotation enables the tag’s antenna to be exposed for successful

signal transmission. A radio frequency signal that carries the corresponding

bolt’s information is then transmitted to the RFID reader by the tag to identify

the location. However, due to the signal blockage by the tin foil, the system

fails to detect bolt looseness if the rotational angle does not exceed 20 degrees.

Three different types of non-contact bolt looseness detection techniques are dis-

cussed and a comparison is drawn in Table 2.4. It can be seen that the techniques
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Table 2.4: Non-Contact Type Techniques Comparison

Non-Contact Type
Techniques

Optical-based
Monitoring

Vision-based
Monitoring

Radio Waves
Processing-
based Moni-
toring

Nature of Signal Optical wave
length laser

Image Radio Signal

Velocity Tension level Guided Waves
Cost High Low Low
Accuracy High Low Low
Suitability for remote
monitoring

No No Yes

Practicality Low Adequate Low

have the potential to detect bolt looseness defects; however, it is not as effective

compared to the vibration-based contact type technique thus it is not pursued in

this study.

Summary

This section has summarised various types of technique for bolt looseness detection

into two categories depending on the sensing method as Contact and Non-Contact

type techniques. In contact type, there are four types of technique introduces; for in-

stance, vibration-based, deformation-based, acoustic sensing-based and impedance-

based. On the other hand, non-contact types have three types of techniques as

optical-based, vision-based and radio waves-based.

Amongst all these discussed methods, vibration-based technique will be focused

on in this study as it is the most commonly applied method with acceptable accuracy

and suitable for remote monitoring over other techniques. Two comparison tables

were presented to compare the techniques regards to their nature of signal, accu-

racy, cost and suitability for remote monitoring etc. For the recent research trend,

researchers are aiming to achieve real-time online monitoring as it is cost-effective

and efficient that the quality of monitoring result does not rely on experienced in-

spectors. In the next section, the data acquisition technique for vibration-based

monitoring will be discussed.
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2.5 Data Acquisition for Vibration-based Moni-

toring

Before proceeding to discuss signal processing techniques for bolt looseness detec-

tion, it is crucial to investigate how vibrational signals can be captured as good as

possible. In this section, data acquisition systems will be discussed in terms of sen-

sor, measurement unit, data resolution and sensitivity, sampling rate and frequency

range. Machine vibration is a key element for structural health monitoring so there

is massive interest in acquiring, analysing and quantifying this parameter for im-

proving reliability, life, quality control, productivity and safety against catastrophic

failure [70]. Vibration is characterised into three variables: Displacement, Velocity

and Acceleration. The performance of sensors are depending on the vibration sig-

nal frequency range where displacement sensors are used for low-frequency range,

velocity sensors to pick up middle range and accelerometers for higher-frequency

range.

Moreno-Gomez, Perez-Ramirez, Dominguez et al. have reviewed sensors used in

structural health monitoring in 2017 [4]. Reviewed sensors are grouped into three

categories as Kinematical (movement of structure), Mechanical (change of structural

properties) and Ambiental (environmental effect). Their study has summarised

accelerometer is a popular choice for damage detection and system identification

due to its advantage for easy installation to the structure and accuracy.

2.5.1 Data Acquisition System

In order to enable remote monitoring applications for cost-effective and efficient

manner in structural health monitoring, researchers and industries have investigated

various data acquisition techniques. This can be grouped into two types: (1) sepa-

rated sensors connected to data acquisition system and (2) microelectromechanical

sensor chip embedded to data acquisition system circuit board. Different types have

their own advantages and disadvantages depending on the application and will be

discussed in the following:
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Table 2.5: Accelerometers Performance Criteria

Study Accelerometer Sensitivity Bandwidth
(Hz)

Yusa & Sawada [40] PCB 608A11 100 mV/g 0.5 - 10000
Sun & Liao [41] PCB 320C03 10 mV/g 1 - 6000
He & Zhu [42] PCB U352C66 100 mV/g 1 - 4000
Nguyen, Huynh et al.
[45]

PCB 333B52 1 V/g 0.5 - 3000

Abdeljaber, Avci et
al. [71]

PCB 393B04 1000 mV/g 0.06 - 450

Avci, Abdeljaber et
al. [72]

PCB 393B04 1000 mV/g 0.06 - 450

Integrated Circuit Piezoelectric (ICP)-based

Taking into account when selecting sensors for certain applications, sensitivity

and its relative frequency range are the top priority concerns as they dominate

the quality of the captured signal. The ICP-based accelerometer has a built-in

microelectronic that converts a high-impedance charge signal by a piezoelectric

sensing element into processor-readable low-impedance voltage signal. Table

2.5 has summarised the used accelerometers in the reviewed studies regarding

their performance in signal sensitivity and frequency bandwidth. What stands

out in the table is the frequency have a wide range with a relatively low-

pass band as low as 0.06 Hz, as a large structure has low natural frequencies

identified and observing such changes can correlate to existing defect modified

its structural properties. When considering the data acquisition system, a

measurement unit is required to convert the electrical signal from analogue to

digital format that can be used by a processor. There are few criteria needs

to be considered:

– Data Resolution

– Sampling Rate

– Number of Channels available
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Table 2.6: Data Acquisition Systems

Study Data Acquisi-
tion System

Data Resolu-
tion

Sampling
Rate

Num.
of Ch.

Yusa &
Sawada [40]

NI-9233-USB 24-bit 25 kS/s 4

Sun & Liao
[41]

VTI EMX
(4251)

24-bit 204.8 kS/s 8

He & Zhu [42] LMS 36-Ch
Spectral Anal-
yser

24-bit 204.8 kS/s 4

Nguyen,
Huynh et
al. [45]

HBM’s
QuantumX-
MX840A

24-bit 40 kS/s 8

Abdeljaber,
Avci et al.
[71]

ME’scopeVES 24-bit 250 kS/s 32

Avci, Abdel-
jaber et al.
[72]

TROMINO
ENGY Wireless
Sensing Unit

24-bit 250 kS/s 3

These parameters are crucial when capturing data in vibration signal as the

data resolution dominates how much detail can be captured, and the sampling

rate should be at least double the signal frequency to qualify for aliasing effect.

As such, the higher the sampling rate the finer signal can be recorded and more

channels available can ease of synchronisation problem for different sensor

channels. As discussed, Table 2.6 shows different data acquisition system used

in other studies and all of them are capable to achieve high resolution of 24-bit

data with a relatively high sampling rate.

Microelectromechanical (MEMS)-based

In contrast to the ICP-based data acquisition system, the MEMS-based sys-

tem has the advantage of arranging sensing units with the acquisition system

integrated into a portable sensor node enabling a wireless senor network for

structural health monitoring applications.

MEMS is a microelectromechanical sensor device fabricated using microelec-

tronic techniques that form a micro-meter range mechanical sensing structure

using silicon to measure physical parameters such as acceleration. Over the
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two decades, researchers have investigated the feasibility of a wireless sensor

network by building a modular sensor node [44, 46, 73].

A module consists of a MEMS-based accelerometer board, processing board

and a battery pack to power the unit. The monitoring system uses a sen-

sor board to detect bolt looseness and report alert to the processing board

wirelessly when an event is triggered. This sensor technology enables the de-

ployment of a dense array of sensors feasible and affordable at the cost of

producing a sizable sensor network for large and complex structures. Sabato,

Niezrecki and Fortino have published a review paper on wireless MEMS-based

accelerometer sensor boards for structural vibration monitoring [5].

Figure 2.26: Summary of Wireless MEMS-based Accelerometer Sensor Board be-
tween 2006 & 2016 [5]

Figure 2.26 presents a summary on wireless MEMS-based developed sensor

board over the decades between 2006 and 2016. It has presented majority of

developed boards have a relatively low sensitivity (∼20mV/g VS 100mV/g)

and 8-bit less resolution compared to ICP-based accelerometers. However, the

performance should be adequate since the device is designed as a portable

sensor unit with an embedded microprocessor thus energy-consuming high-

performance components is not preferred.
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Table 2.7: Signal Processing Techniques for Structural Health Monitoring

Techniques
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Statistical
Time Series (TS) Y

Fast Fourier
Transform (FFT) Y Y

Short-Time Fourier
Transform (STFT) Y Y Y

Wavelet
Transform (WT) Y Y Y Y Y

Hilbert-Huang
Transform (HHT) Y Y Y Y

Spectral Kurtosis (SK) Y Y Y Y Y

2.6 Signal Processing Techniques

So far this study has focused on the background of bridge health monitor, techniques

and sensors used for data acquisition. The following section will discuss how useful

information can be extracted by implementing digital signal processing and utilise it

for damage detection. In regards to the development of signal processing techniques

used for structural health monitoring, there are review papers published recently to

analyse their advantages and disadvantages [70, 19, 74].

2.6.1 Feature Extraction Criteria

Table 2.7 summarises some of the popular signal processing techniques and compared

their performance in some of the key aspects which is important. The key areas are

as follows:
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Key Aspects Description
Good SNR
Ratio

Assess the level of the desired signal to the level of back-
ground noise

Good Resolu-
tion (T-F Do-
main)

A view of the signal represented over time and frequency
that provides location of frequency at the time domain

Computational
Efficiency

Taking into account the resources required to implement
the algorithm in the processor

No Calibra-
tion

Input parameter required to calibrate algorithm for perfor-
mance

Nonlinear Sig-
nal Analysis

Ability to analyse nonlinear signal that does not obey su-
perposition and scaling properties

Ambient Exci-
tation Input

Able to analyse response evoked by ambient excitation and
qualified as an output-only algorithm

With respect to the developed techniques, it can be categorised into two types as

feature extraction and pattern recognition that focus on filtering useful information

and investigate the correlation between data and gather them together respectively.

Fast Fourier Transform (FFT) is the oldest technique used in digital signal pro-

cessing to convert discrete samples from the time domain to the frequency domain.

The quality of the digitising conversion process is highly dependent on the sampling

rate of the recorded signal due to the aliasing effect resulting in false frequency

components takes place. However, since FFT detect the variation in frequency sig-

nals content over time. It cannot be used to analyse nonlinear signals and monitor

structures subjected to dynamic excitations. Therefore, there is a need to develop

advanced digital processing technique to extract useful information. A brief intro-

duction of the aforementioned techniques will be discussed in this section.

2.6.2 Signal Processing Techniques for Bolt Looseness De-
tection

The concept of structural health monitoring is to perform system identification

to estimate its modal parameters such as natural frequencies, modal shape and

damping ratio from data measurement. The estimation has a close relationship to

structural properties and can be used as a baseline reference. Any damage that

changes the integrity of the structure can be detected by observing variation in the
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parameters.

The key problem with this approach is that system response to local damage

has relatively low sensitivity, for example, bolt looseness issues in large structures

can hardly be detected. The failure can also be owing to poor data quality, sig-

nal processing techniques have difficulties in handling non-stationary signals and

low sensitivity of modal parameters to present structural damage that suffers from

fluctuations in environmental conditions. The following part will focus on how re-

searchers developed different techniques to detect bolt looseness by monitoring the

loss of preload on the bolt.

Time Series Analysis

Time Series (TS) Analysis is an approximately mathematical model based on a set

of input–output measurements characterised into linear and nonlinear statistical TS

models. It is the one of the earliest models used for structural condition assessment.

In time series analysis, it is normally based on evaluating the variant in time-domain

features; for instance, standard deviation, peak, mean and root mean square of signal

to detect damage. It is often to combine features with a statistical analysis approach.

Researchers have simulated structure damage using cantilever metal beam or truss

structure representing bolted joint of the bridge with tightened and loosened case

[48, 75, 76]. The developed technique is based on the residual error of auto regression

model from its standard deviation as a damage sensitive feature (DSF).

Another study has implemented a two-stage damage detection algorithm that

monitors signal correlation between sensors for global damage detection. Once an

alert is triggered, a local damage detection algorithm that combines time series

analysis and statistical hypothesis testing is used for damage localisation. However,

the mentioned techniques only focus on simple damage cases for bolt looseness.

Dong et al. [43] have implemented an experimental study to monitor bolt group

looseness where multiple damage cases are investigated and showed effective results

for detecting damages. One major drawback of these time series analysis techniques

is that they rely on threshold-based detection to distinguish health and damage
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cases and the looseness of the bolt cannot be quantified.

Wavelet Transform

Wavelet Transform (WT) is a technique that provides time-frequency analysis of sig-

nals that consists of a collection of elementary scale functions called wavelets. The

wavelets collection consists of different discrete–time low and high-pass filters that

can be dilated and shifted individually. Owing to its advantages in computational

efficiency and time localisation, WT is utilised extensively in SHM applications. It

is a relatively new technique that has caught loads of interest in the civil and me-

chanical engineering field due to its ability in delivering time-frequency analysis with

good resolution. Academic researchers have utilised wavelet analysis for damage de-

tection of a steel frame structure with bolted joints [77]. The vibration responses

of joints is utilised to calculate wavelet coefficients to represent health and loosened

connection structure and damage can be detected by observing differences between

them. Zhang, Yan, Yang et al. [68] have proposed to use Daubechies (DB) wavelet,

an orthogonal wavelet to detect bolt looseness with an assembly tightness quanti-

tative index. This quantitative index is used to detect different assembly tightness

degrees of the bolted rotor and it can accurately detect six different damage cases.

However, the authors failed to quantify the energy distribution to the actual re-

maining torque of the bolts which is essential in evaluating the severity of damage

caused by looseness.

Another weakness is that only a specific spectrum is analysed therefore events

that occurred in other bandwidth will be missed to detect. Apart from using

wavelets for structural health monitoring, Nayak and Panigrahi have present a novel

technique called S-Transform by implementing modifications of Short-Time Fourier

Transform (STFT) and wavelet for feature extraction in data mining [78]. STFT

is an extension of FFT that is capable of analysing non-stationary signals by seg-

menting signals into small windows where each window is analysed with FFT. This

segmentation approach enables STFT capable to represent the variation of signal

frequency contents as signal changes in time. This technique provides a broadband
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analysis which focuses on both low and high frequency transient signal by offering

a variable window that is inversely proportional to frequency.

Combinational of Different Techniques

Empirical Mode Decomposition, Hilbert Transform and Wavelet

Hilbert-Huang Transform (HHT) is an adaptive signal processing technique ca-

pable of analysing stationary, nonstationary and transient signals. The technique

is implemented based on two stages that use empirical mode decomposition (EMD)

with the Hilbert spectral transform (HT). This helps to separate different frequency

components in a noisy signal which is useful to detect damage. Owing EMD’s ability

to analyse the non-stationary signals, Xu et al. [79] have utilised the technique and

extended its application to detect damage in bolted joints. Their approach has eval-

uated the structural dynamic response to identify the nonlinear system behaviour

induced by bolt looseness. The technique is a combination of techniques such as

Hilbert transform and wavelet analysis to decompose a measured signal into intrin-

sic mode functions (IMF) that represents a hidden oscillation mode with its own

characteristic time scale. These IMF can then be used as damage feature indices for

bolt looseness detection that correspond to looseness level by torque.

Another example uses a similar approach with the combination of these tech-

niques whereas the application is developed to detect damage of cracks with trav-

elling loads applied [80]. Although the technique is targeted to analyse the non-

stationary and nonlinear signal, the processed result is insensitive to crack depth

and suffers from operational and environmental noise. Apart from monitoring bolted

joints on bridges, pedestal looseness is one of the issues that introduce damage to

the wind turbines. An et al. [81] have established a technique that based on en-

semble empirical mode decomposition (EEMD) and Hilbert transform to analyse

vibration signals using IMFs. The presented technique shows the effective results to

detect looseness whereas it is insensitive to the location of defects. Other drawbacks

are it does not quantify the state of damage and high-frequency component is not

noticeable.
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Spectral Kurtosis

Spectral Kurtosis (SK) is a statistical spectral analysis technique that can be used

to characterise non-stationary time signals. This is based on the spectral analysis

of the time series analysis feature Kurtosis and is an enhancement to the classic

power spectrum density (PSD). Antoni has introduced the concept of the technique

and formalised it by giving it a theoretical definition [82]. Although there are other

definitions of SK [83], they agree that the technique is capable of detecting non-

stationary components in noisy transient signals by finding a closed-form relationship

in regards to noise-to-signal ratio.

The technique has caught much interests in the past decade due to its perfor-

mance in identifying non-stationary components induced by damage, most of the

applications are focused on the health diagnosis of rotating machines in respect to

bearing damage that has a noisy periodic operational effect [84, 85, 86]. However,

there is currently no report of use in application for detecting bolt looseness and

can be investigated.

2.6.3 Common Techniques to Bearing Fault

In conventional asset condition and health monitoring applications, it is aimed to

extract defect sensitive features for damage detection. The extracted features are

then used to compare to baseline operational data to distinguish the severity of

detected damage. This is also a common approach used for bearing fault detection

as defect tends to omit abnormal patterns in the periodic operational signal.

During normal operation, non-stationary components are often found buried in

time-series vibrational signals that are generated by the abnormal patterns [87].

However, it is a challenging task to extract the non-stationary components. Given

these components are unknown, there is a demand for efficient algorithms that are

capable to distinguish the abnormal vibrational pattern and classify the cause of

damage.

Despite multiple researchers have reported that SK is effective in detecting bear-
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ing faults and characterising the induced vibrational responses, there are few gaps

that remain unsolved; for instance, fault alarm caused by spikes in signal, scalability

of SK estimates and the high noise level. Siu et al. [88] have proposed a novel blind

feature extraction technique to address these problems and provide an early damage

detection solution to optimise the efficiency of maintenance cost. The detail of this

work is described in the later chapter as an additional application to bolt looseness

detection.

2.7 Machine Learning for Bridge Health Monitor-

ing

2.7.1 Overview of Machine Learning Algorithms

Machine learning applications have received massive interest in the recent decades

due to its effective and intelligence approach to solve problems associated with un-

certainties and complex problems. Researchers from academia have investigated the

possibility to emerge artificial intelligence (AI) algorithms with existing signal pro-

cessing techniques to aid structural health monitoring. The following section focus

on an overview of machine learning methods utilised for bridge health monitoring.

Figure 2.27 illustrates a flow chart of machine learning practice in SHM with

five stages. Machine learning requires massive amount of data to train a model

in learning features and result prediction. Therefore, the first stage is to acquire

vibration data from sensors and it is important to implement pre-processing since

noisy signal can affect accuracy of model and normalisation to adapt dynamic range

amplitude. After that, the aforementioned digital signal processing techniques such

as WT, HHT and SK are implemented to extract damage sensitive feature for use

with AI algorithms for damage detection. And finally, the predicted result are used

for decision making.

There are many machine learning techniques exists and been tested to prove

feasibility in predicting damage in structures. This section will briefly introduce the

key methods reviewed in machine fault predictions and structural damage monitor-
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Figure 2.27: Flow Chart of Machine Learning Approach of SHM

ing and the summary is shown in Figure 2.28. AI algorithms can be categorised as

feature extraction by analysis correlations between data and put them into different

buckets where classifier relies on labelled data to output result into different types

according to input data. Apart from this approach, algorithms can also be grouped

as unsupervised and supervised learning where algorithms requires data labelling

or not to output result. For instance, feature extraction algorithm is unsupervised

learning and classifier requires labelled data to distribute data to different types of

output.

Figure 2.28: Overview of Machine Learning Algorithm in SHM

Due to the fact that machine health monitoring looks for nonstationary compo-

nent and its deviation from healthy and damaged states system response, machine

learning methods used for machine fault diagnosis can be applied to structural health

monitoring application as well. Zurita et al. have reviewed AI methods used for

vibrational machine diagnosis [89]. The review has briefly introduced feature extrac-

tion techniques such as principle component analysis (PCA) and genetic algorithm

(GA). Then extracted feature can be fed to different classification techniques for

fault diagnosis. Another review for AI in rotating machinery has also discussed sim-

ilar approached in addition to other techniques such as k-Nearest neighbour, Navie
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Bayes classifier with their theoretical background and their application [90]. The

authors summaries the performance amongst the techniques (Figure 2.29) that deep

learning shows a better all rounded performance in managing accuracy, robustness

to noise and dealing with overfitting problem. Han et al. [91] have evaluated the

performance of random forest (RF), artificial neural network (ANN) and support

vector machine (SVM) applications for machinery fault diagnosis and argues that

RF provides the best performance in terms of classification accuracy, stability and

robustness to features.

Figure 2.29: Performance Comparison of AI Algorithms Review [90]

2.7.2 Clustering-based Algorithm

As a data-driven machine learning approach, clustering-based algorithm is a tech-

nique used to extract and distribute features as pattern recognition. For instance,

bridge components deteriorate before damage become detectable. Thus researchers

have used Bayesian network approach to estimate deterioration of fatigue cracking

of girders and corrosion of bearings [32]. The model is developed for prognostic

health monitoring system that based on probability analysis to investigate the types

of bridge elements have largest influence on structure deterioration. Apart from

Bayesian network, there are also other choices such as K-means and Fuzzy cluster-

ing for bridge health monitoring [92, 93, 94]. Figure 2.30 is a flowchart showing the

approach of a clustering-based algorithm for SHM that involves five stages. This

starts from retrieving vibration data from bridge and a series of digital signal pro-

cessing to extract features, masking data with K-means envelop for outliner removal

and characterise system behaviour from estimated damage sensitive index. One of

the concern from these clustering algorithms is that damage state data might not
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be available from existing structure. However, the detection can be achieved by

estimating the density of feature vectors by assuming the structure is healthy and

evaluate consistency with new feature vectors.

Figure 2.30: Flowchart of Clustering Based Approach for SHM [92]

2.7.3 Convolutional Neural Network

Convolutional neural network (CNN) is one of the advancement in deep learning

applications which received lots of interest and achieved outstanding result in the

domain of computer vision. It has been utilised for applications such as image

analysis classification, image video recognition and natural language processing.

Figure 2.31 is an illustration of CNN showing the information processing procedures

consists of input images, feature learning and classification. The algorithm analyse

input images with a kernel to assign importance to different objects in image and

distinguish variation from one to other. During the feature learning process, the

convolution layer goes deeper to extract high level features such as edges, colours and

gradient orientation. Meanwhile, the convolved feature is reduced in dimensionality

compared to input and is feed to normal neural network to implement classification

process to distribute output to different classes.

Figure 2.31: Illusration of Convolutional Neural Network [95]
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In regards to bolt looseness detection using deep learning, researchers have es-

tablished an application using image detection technique to monitor loosening angle

with CNN [96]. Although the application achieved good result with 91.4% of accu-

racy, the minimum recognition rotation angle of bolt has to be greater than 10°. In

addition, the same group of researchers have developed an autonomous monitoring

technique by detecting variation of bolt looseness by the angel and height with im-

ages [68]. The deployed real-time application is presented in Figure 2.32. Despite

the good result of model, this technique requires image position correction and suffer

from contrast level of image if environment lighting is dark.

Figure 2.32: CNN Deployed Real-time Bolt Looseness Detection Algorithm [68]

2.7.4 Combination of AI Techniques

Owing to the fact that every machine learning technique has their own charac-

teristics, researchers have started to investigate the possibility in merging various

approach together to achieve better performance to predict damage in structures.

For instance, Bandara et al. [97] have implemented frequency response function

(FRF) based damage identification using PCA and pattern recognition. Due to fact

that FRF suffers from requirement of large amount of data and complexity, the use

of PCA could reduce dimension of data and remains important information. And

damage sensitive features are feed to pattern recognition algorithm for damage de-

tection. However, this approach cannot be used for ambient excitation monitoring

technique as FRF requires input and output signal to detect defect. Another ex-

ample uses combination of Bayesian, NN and SVM to apply supervised learning

method to extract features from raw data and detect damages [98].
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2.8 Emerging Technologies

2.8.1 Artificial Intelligence in SHM

In the recent decades, AI algorithms have received lots of interest from academia

and industry coming up with the idea of industry 4.0 applied to health monitor-

ing applications for machines and structures. Eraliev et al. [99] have developed

a vibration-based bolt looseness detection application using machine learning algo-

rithms such as Random Forest, Decision Tree, SVM and K Neighbours Classifier

etc.

Although their findings has provided an insight how artificial intelligence can be

used to detect bolt looseness, the experiment is limited to controlled experiment as

excitation is delivered by AC motor and the used signal processing technique STFT

might not extract transients buried in noisy signal effectively.

Salehi and Burgueno have reviewed the emerging technologies used in structural

health monitoring and focused on machine learning methods [100]. They have anal-

ysed the trend and diversity of different techniques and their population between

2009 and 2017. In the study, the research trend based on publications is diversi-

fied into two categories as learning & recognition based and stochastic optimisation

and reasoning respectively which Machine Learning and Neural Network occupy the

most population than Fuzzy Logic and Decision Tree.

For a better understanding of how AI is used in different applications, Figure

2.33 has presented that both pattern recognition and machine learning methods

are utilised in SHM heavily for damage detection due to their ability in spotting

deviation in features caused by damage. The authors have summarised the emerging

applications would be Data-driven SHM and IoT (Internet of Things) SHM (Figure

2.34).
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Figure 2.33: Research Publications on Use of Machine Learning and Pattern Recog-
nition [100]

Figure 2.34: Artificial Intelligent Application in Structural Engineering [100]

2.8.2 Internet of Things – Wireless Sensor Network

In order to achieve Industry 4.0 with digital twin real-time remote monitoring, it

is important not to neglect the hardware required for data acquisition and wireless

communications between devices. In general, there are two types of the communi-

cation protocol for SHM applications used for data acquisition as wired and wireless

networks that measurements are transmitted through cables or radio frequencies re-
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spectively. Although wired sensor network has been proved to have better tolerance

in noise and better quality of signal with faster speed, the cost of system equipment

such as cable and acquisition unit is costly and difficult to perform maintenance

tasks. Consequently, industry and academia have started to investigate the feasibil-

ity of wireless sensor networks to enable remote structural health monitoring with

IoT technology [72, 73, 101].

These wireless SHM applications have emerged many sensor nodes with the em-

bedded systems running damage detection algorithm onsite with a lower cost and

ease of manpower of inspection task. In addition to IoT enabled SHM, there is also

the new trend of sensing devices predicted for health monitoring that researchers

suggested that smartphones can be utilised due to their advantages for development-

friendly software platforms, real-time monitoring with internet & cloud storage and

affordable for big-data collection [102].

2.9 Technology Gap

Figure 2.35: Autonomous Bolt Check Roadmap [103]

Having discussed the emerging technologies in bridge health monitoring, the final

section of this literature review addresses the existing technology gaps in damage
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detection. A case study and review regarding the deployment of smart SHM has

pointed out that it is a challenge to retrieve a damaged structural model in real life

unless simulated and it is vital to develop advanced sensors to solve the problem

[74].

In addition, wireless sensing technologies with the high sampling rates and ac-

curacy should also be developed. Referring to the data-driven SHM trend, the de-

velopment of machine learning algorithms is crucial with advanced signal processing

techniques is required. Consequently, a journal article has explored the possibility

of feature extraction using domain knowledge [104]. It is recommended that the

selection of feature extraction should depend on the nature of the signal.

In bolt looseness detection, it is also predicted that microcontroller based sensing

devices for data pre- and post-processing and local decision making for alerts (use

of ML algorithms) will be the trend [105]. Offshore Wind Innovation Hub has

released an innovation roadmap that also stated there is a need for enabling remote

monitoring for repetitive bolt check or inspection tasks where a human operator is

only informed in the event that requires their attention within the duration of 2020

and 2027 (Figure 2.35) [103].

To summarise the findings in this literature review, it has presented the need of

sensor advancement to contribute high quality recorded data from structure, effec-

tive pre- and post data processing to remove noise, efficient digital signal processing

technique to extract damage sensitive features and finally combining techniques with

machine learning models to establish an automated early damage detection appli-

cation. In this study, an advanced digital signal processing technique is proposed

to address the requirement aiming to detect small defects that are hard to detect in

structure by applying optimal filtering to extract useful information. The developed

work will contribute a key role in damage detection application as the accuracy

of damage sensitive feature dominate the effectiveness of an application that could

cause false alarm resulting in delayed repair along with increased maintenance cost.
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Chapter 3

Methodologies

3.1 Proposed Signal Processing Techniques

In nature, there are three types of signals namely periodic time, aperiodic time and

random signals that present different characteristics of certain patterns over time or

no pattern respectively. In conventional digital signal processing, Fourier Transform

is widely used to convert signal from time domain to frequency components; however,

it cannot be used to detect non-stationary signal thus discrete Fourier transform is

utilised to analyse aperiodic signal.

Signals captured in real world is full of noise and in random format therefore

other technique such as PSD (Power Spectral Density) is used for analysis. PSD is

a technique used to display the distribution of signal frequency components visually.

It shows the percentage of the overall signal power that each frequency component

contributes to the signal. Since the PSD estimates are dependent on choice of

window size and overlap can affect the accuracy, these limitations make it challenging

to use PSD for non-stationary signal processing. Therefore, an advanced signal

processing technique Spectral Kurtosis is proposed in this study to identify non-

linear and non-stationary frequency components generated by damage in structure.

3.1.1 Spectral Kurtosis

Spectral Kurtosis (SK) is a statistical spectral analysis tool that can be used to

indicate the presence of non-stationary signal buried in a time-series signal. It is

proficient in characterising non-stationary frequency component of a signal while
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compressing Gaussian noise and stationary component by utilising it’s fouth-order

cumulant based Kurtosis statistical parameter. This technique has caught many

interests due to its effectiveness in detecting non-stationary components produced by

damage; for instance, the majority of the applications are focused on fault detection

and diagnosis of rotating machinery [37, 86, 106].

SK was originally used as a supplement tool to PSD to detect random frequency

buried in noisy signal. Despite its capability is suited to many detection problems, it

was rarely used until a mathematical approach was published by Antoni to connect

the missing theoretical proof and validated with vibration-based condition monitor-

ing applications [82]. Although there are other definition of SK, Vrabie et al. [83]

agrees that the technique has the ability in detecting non-stationary components in

noisy transient signals. The SK estimates can be calculated by finding the relation-

ship in terms of the signal-to-noise ratio (SNR) in detecting transient fused with

additive noise. SK can be calculated based on the second (S2,x) and fourth (S4,x)

spectral moments of a vibration signal, x(t) as

SKx(f)
S4,x

S2,x

− 2 (3.1)

The spectral moments can be estimated as

Sn,x = ⟨|PS(f)|n⟩ (3.2)

where PS(f) is the Fourier power spectrum of the signal, x(t).

3.1.2 Wiener Filter and Envelop

Once the SK estimates are processed, a Wiener filter can be obtained by applying

a statistical threshold using

W (f)
1

1 + ρ(f)
(3.3)

where ρ(f) is the signal-to-noise ratio.
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An adaptive threshold is applied to the Wiener filter using a proportion of the

SK estimate’s maximum value, this approach can eliminate the need of baseline data

which is a preferred method in general. Furthermore, an envelope is then generated

by calculating the inverse of the extracted feature that can be used as a damage

sensitive filter for bolt looseness detection.

3.1.3 Spectral Kurtosis Feature Extraction

The methodology is presented in Figure 3.1 that uses Equation 3.1, 3.2, 3.3 to

extract an SK-based Wiener Filter and an SK residual squared envelope. The gen-

erated envelope can be applied to the raw vibrational signal directly to extract

damage sensitive index. Extracted feature can then be used as an input to machine

learning model for an automated damage detection decision-making tool. This can

be achieved by implementing a peak tracking operation on the extracted Hilbert

envelope. By using this method, damage can also be localised by comparing the

amplitude of peaks against the sensor channel location as damage tends to generate

stronger response to nearby sensor.

Figure 3.1: SK feature extraction and filtering methodology (Sketch from [84])

The proposed approach is demonstrated and validated with two applications

with designed experiments to detect bolt looseness and bearing fault to prove the

effectiveness.

3.2 Application 1: Bolt Looseness Detection Al-

gorithm

Experiments are carried out to validate the proposed method to detect bolt loose-

ness. A bolted structure is designed to simulate the girder assembly part of a bridge
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under normal operation. Firstly, a finite element analysis (FEA) is conducted to

observe the system behaviour of the designed bolted structure in order to estimate

the modal parameters such as natural frequencies. This simulation is performed to

provide an insight how structure behaves under normal operation between healthy

and damaged cases by loosening bolt.

3.2.1 Finite Element Model Simulation

A finite element model of the bolted structure is developed for modal analysis to

investigate the system fundamental movement and the first five vibration modes are

estimated using simulation software ANSYS. The designed model is presented in

Figure 3.2 when all the bolts are fixed and configured to a fixed support mount.

Figure 3.2: Finite Element Model of Bolted Structure (a) Top view (b) Side view

Figure 3.3: Modal Analysis of FE
model with first five natural frequen-
cies

A modal analysis is implemented to

simulate both healthy and damaged cases

by removing a bolt and compare their nat-

ural frequencies to indicate the change of

structural properties. The simulated result

of the first five vibration modes is showed

in Figure 3.3 where the difference of natu-

ral frequencies of both cases is almost neg-

ligible (less than one percent).

Figure 3.4 presented the maximum dis-

placement location of the bolted structure for the simulated first five vibration modes

for both healthy (a - e) and damaged (f-j) case. It was clear that despite a bolt at
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Figure 3.4: First five vibration modes of bolted structure (a)-(e) Healthy (f)-(j)
Damage Cases

bottom left is removed as damage in the structure, the change in structural property

was minor and the results were identical for both cases. This simulation approach

has proved small defect such as bolt looseness is difficult to detect as the severity of

damage is not enough to change the structure properties such as stiffness and mass

to be detectable. Therefore, there is a need to develop an advanced signal processing

technique to detect small damage in large structure before it grows to be detectable

to save maintenance cost.
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3.2.2 Experiment Setup

In order to verify the simulated FEA result, a bolted structure was manufactured

accordingly using structural steel material as close to a real bridge structure. The

assembly had 28 M10 type bolts arranged in evenly spaced row to assemble eight

components together. Two square lap cover metal plates (150mm×150mm×10mm)

were used to sandwich two rectangle cover metal plates (300mm×200mm×10mm)

using two rows of bolts as highlighted in Figure 3.5a. This bolted structure was

installed on an electro-magnetic vibration testbed (Data Physics GW-V2644 shaker

controller) using a pair of S-shape brackets (200mm×150mm×75mm) using four

columns of bolts (Figure 3.5b). The weight of the structure was approximately 18.5

kg.

Figure 3.5: Bolted structure experimental setup (a) Bolted Assembly (b) Assembly
mounted on vibration test-bed

The vibration testbed was configured to operate under controlled excitation and

transferred to the bolted structure. Vibration data was captured by using a National

Instruments cDAQ-9234 module with a NI9171 data acquisition chassis from three

stud mounted piezoelectric accelerometers on the top plate. A PC was connected to

both shaker controller and DAQ unit for data exchange and computation purposed.

The data acquisition system was deployed with a LabVIEW program to interface

the DAQ unit for sampling the vibration data at 5 kHz. The test setup schematic

is presented in Figure 3.6. The locations of the three channels of sensors (ACC0 –

ACC2) and loosened bolt (red bolt at the bottom left) located on the centre plate

is illustrated in Figure 3.7.
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Figure 3.6: Bolt looseness detection experimental sys-
tem schematic

Figure 3.7: Sensor loca-
tions and bolt arrange-
ment

3.2.3 Multi-Mode Input Excitation Profile

In order to simulate a bridge excitation profile under normal operation as close to

real life, an excitation profile was required for the electromagetic shaker controller.

A combination of multiple stationary components with a broadband baseline ran-

dom excitation was considered for this purpose. Referring to the FEA numerical

simulated modal analysis result in Session 3.2.1, the first three vibration modes were

observed as below 500 Hz and this information was utilised to select the bandwidth

of the input excitation profile. The traffic passing on the bridge was generated by

using two stationary components and this assumption was proven to be a true sce-

nario and the findings were reported by many researchers [107, 108, 109, 110]. The

baseline broadband random vibration was matched with the excitation bandwidth

with two stationary components with centre frequency located at 50 Hz and 110

Hz. These patterns represent vibration induced by moving vehicles with wind and

ambient environmental excitation. The profile details and input excitation model

were presented in Table 3.1 and Figure 3.8 respectively.

Table 3.1: Multi-mode vibration modelling profile

Multi-mode vibration components
Frequency Range 5 Hz - 500 Hz
Sinusoidal Stationary 48 Hz - 60 Hz (0.5 gˆ2/Hz)
Component 96 Hz - 120 Hz (0.25 gˆ2/Hz)
Random Broadband 5 Hz - 500 Hz
Amplitude 2.4 g
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Figure 3.8: Multi-mode excitation profile

3.3 Application 2: Bearing Fault Early Detection

Algorithm

Although SK has been a popular choice in damage detection applications, it can

also be used as a novel blind feature extraction approach for industrial machine

monitoring application. There were many diverse algorithms developed to solve the

Blind Source Separation (BSS) problem; however, this was a challenging task for

rotating machinery as the complexity of frequency combinations was higher due to

the oil lubricant fluid interaction.

In general, the presence of abnormal patterns in the vibration data often indicate

an abnormal behaviour that might cause issues to the process or the processing

unit. These abnormal patterns induce non-stationary components that were fused

in transient vibration signal and were difficult to filter. Due to the diversity of

BSS applications, Pal et al. [111] have summarised the fundamental approach and

classified this into four types as below:

• Temporal Structure, Non Whiteness;

• Mutual Independence, Non-Gaussianity and ICA (Independent Component

Analysis)

• Non-stationary, Time-varying variance;

• Time-Frequency, Spectral/Spatial diversities;
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Apart from Antoni and Randall’s approach in using SK for rotating machine

diagnostics [84], many researchers have implemented enhancement in adaptive SK

[112], SK-based optimal filter [113], wavelet-based SK [114], combination of PPCA

(probabilistic principal component analysis) and SK [115], correlated EEMD and

SK [116]. Nevertheless, there were few gaps remains unsolved as listed in Table 3.2.

Table 3.2: Unsolved problems in previously reported SK applications

Unsolved Problems Cause
1 Fluctuation of SK estimates due

to spikes in signals
Rolling element tend to intro-
duce spikes in vibration data fre-
quently

2 Scalability of SK estimates anal-
ysis pipeline

Datasets from reported approach
are specified to certain applica-
tions and cannot be generalised to
other machinery datasets

3 Inaccurate SK estimates due to
noisy signal

Low SNR in vibration signal can
cause false alarm and potential
engineering failures

This study had proposed an enhanced Spectral Kurtosis filtering technique to

address the above mentioned problems by applying a combination of spike sub-

traction, stationary wavelet waveforms and automated change detection algorithms.

The detail of the implementation was described in Session 3.3.2.

3.3.1 Description of Experiments and Data Acquisition

A set of open-source vibration data for bearing damage experiment published by the

NASA prognostic centre [117] was used in this study to prove the effectiveness of

the proposed SK enhancement technique. The test setup was graphically presented

in Figure 3.9 that consists of four Rexnord ZA–2115 double row bearings installed

on a shaft. A constant rotation speed of 2000 RPM was configured for an AC motor

coupled to a shaft to operate. A radial load of 2721.55 kg was applied on the shaft

and bearing using a spring mechanism to speed up the deterioration process.

Regards to the data measurement process, four pairs of PCB 353B33 accelerom-

eters were installed to capture the x− and y− axes vibration response of the four

bearings as presented in Figure 3.9. The measurements were stored as individual
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files of a one second duration of vibration measurements with 20,480 samples. The

data was captured every 10 minutes using a sampling frequency of 20 kHz. A run

to failures experiment was conducted aiming to operate and exceed the designed

lifetime of the bearing as more than 100 million revolutions. This dataset had been

widely used by many researchers to validate their proposed techniques and a sum-

mary of comparison of the published literature findings against the proposed method

was presented in Table 3.3.

Accelerometers
Thermocouples

Radial Load

Bearing 1

Motor

Bearing 2 Bearing 3 Bearing 4

Figure 3.9: IMS bearing test set up and sensor’s configuration

Table 3.3: Comparison of signal processing techniques using the NASA IMS bearing
data

Study Qiu et al.
[118]

Wang et
al. [119]

Yu [120] Proposed
Method

De-noising No No No Stationary
Wavelet
Transform

Filtering Wavelet
Transform

Packet
Wavelet
Transform

Hidden
Markov
Model

Wiener Fil-
ter

Decomposition Singular
Value De-
composition

Empirical
Mode De-
composition

Dynamic
Principal
Component
Analysis

Spectral
Kurtosis

Prior Knowl-
edge to Failure

No No No No

Automated
Detection

No No No Change
detection
using SK
estimate
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A weak signature detection algorithm was developed by Qiu et al. [118] and

Wang et al. [119] using wavelet-transform while Yu [120] had used hidden Markov

model for filtering damage sensitive coefficients. Their proposed algorithms have

managed to detect defect pattern that was seven days earlier than the inspection

day. Although their proposed techniques were capable to detect defects and prior

knowledge to failure were not needed, they were prone to noisy signal as prior de-

noising process was missing. For instance, the trend forecast developed by Wang

et al. [119] use of the 10th IMF (Intrinsic Mode Function) from EMD (Empirical

Mode Decomposition) generates a coarse result. This made the filtering process very

sensitive to noise level and false alarm are likely to happen. Therefore, the author

has proposed an pre-processing algorithm for this application in order to eliminate

unwanted noise at the initial stage.

3.3.2 Pre-Processing Algorithms

Multiple pre-processing algorithms were developed by the author in order to address

the de-noising process mentioned in session 3.3.1. A spike subtraction algorithm is

a denoising technique that is particularly effective for non-stationary signals and

considered initially. It works by restoring each data point of the signal by its me-

dian estimated over a fixed window length, thereby removing any spikes or transient

noise in the signal. This method is useful for denoising signals that contain a large

amount of noise or artifacts, as it can effectively reduce these unwanted components

without significantly affecting the underlying signal. Additionally, this technique

is computationally efficient and can be applied in real-time applications. This al-

gorithm had addressed the fluctuation issue in data due to random events that do

not represent a defect. Apart from that, a wavelet transform-based decomposition

process was also proposed to ensure the SNR of signal was high and improve the

accuracy of diagnosis.

The proposed SK approach can benefit from the combination of these techniques

to improve its reliability and adaptability in an industrial setting as well as its

scalability of the analysis pipeline. The author had developed a change detection
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algorithm to enable automated detection for the early diagnosis of bearing defects.

Since the proposed approach was targeted to detect abnormal patterns induced by

damage, the analysis pipeline can be generalised and applied to other rotary machine

applications such as gearboxes and wind turbines.

Spike Subtraction Algorithm for Abnormal Event Detection

The spike subtraction algorithm was implemented by obtaining the median of the

data vector estimated over a fixed window length to restore each data point. This

filtering process ensures the spikes in signal were eliminated, and false alarms were

significantly minimised. This was because fluctuation in a signal that is irrelevant to

defect will generate a peak in the SK estimates thus fused noise to the SK spectrum.

The filtered result of the vibration response of a bearing with defects was presented

in Figure 3.10. Despite the algorithm having eliminated some spikes in the signal

(highlighted by arrows), it was still fused with additive noise that could lead to a

false alarm. Consequently, an alternative de-noising algorithm was considered to

improve the signal-to-noise ratio.
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Figure 3.10: Demonstration of spike subtraction algorithm on open source IMS
bearing data set

Wavelet Decomposition

Apart from compressing noise in a signal, it was critical to extract signal patterns

from a noisy signal. In general, data captured with high sampling frequency was

highly sensitive to the noise level. Stationary Wavelet Transform (SWT) is consid-
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ered in this study for noise elimination. The Stationary Wavelet Transform (SWT)

is a powerful signal processing technique that offers several advantages over the

Power Spectral Density (PSD) method for denoising purposes. Firstly, SWT can

effectively reduce noise and artifacts in non-stationary signals that change over time

[121]. Secondly, SWT can accurately capture the local variations in signal frequency

components, making it more suitable for the analysis of signals with abrupt changes

in frequency content [122]. Additionally, SWT can be used with a variety of mother

wavelets, allowing for greater flexibility and control over the denoising process [123].

Overall, the advantages of SWT make it a popular choice for denoising applications

in fields such as biomedical signal processing and image analysis.

Wavelet Transform provides a flexible decomposition process that various formats

of wavelet that can be applied to signals that has its distinct characteristics thus can

be adapted to different signal to extract the patterns. This approach can compress

noise while maintaining the impulsiveness of the data. Figure 3.11 has presented

a comparison between two sets of health and defect bearing and the effectiveness

of using SWT processing to compress the noise in signals. In order to evaluate the

noise compression performance of the de-noising algorithm, PSD analysis is used to

evaluate the spectra of the signal before and after the de-noising process. The result

presented in Figure 3.12 showed that the PSD estimates have dropped significantly

after the 1 kHz frequency range in both healthy and defect data. It can be observed

that the noise level in the healthy data between 1 kHz and 9 kHz is almost negligible,

presented an effective noise compression.
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Figure 3.11: Before and after de–noising using Stationary Wavelet Transform
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Figure 3.12: PSD estimate of before and after de-noising using Stationary Wavelet
Transform

Rotating Machine Generated Weak Vibration Signatures

In general, rotating machinery generates a consistent pattern of vibration response

under normal operation. However, bearing faults tends to produce abnormal pattern

as weak vibration signature; for instance, a cyclo-stationary random component as

shown in Figure 3.13. These signals were buried in a vibration signal mixed with

other signal components such as input shaft frequencies and higher-order harmonics

due to load fluctuation and difficult extracting. The motivation of the proposed 2

stages pre-processing and feature extraction algorithm was to extract these weak

signatures from signals to distinguish damage sensitive features and identify early

fault characteristics and results were discussed in the next chapter.
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Figure 3.13: (Left) Bearing configuration with rolling elements [124] (Right) Signal
expected due to bearing fault

Summary

This chapter had discussed the methodologies perused in this study by covering

the theoretical background of the proposed SK-based signal processing technique to

prove it can be used to detect small defect such as bolt looseness that was hard to de-

tect. The proposed technique consists of multi stages that a initial SK-based Wiener

filter was applied to raw vibration data from sensor to extract the SK residual. An

adaptive threshold is then applied to the Wiener filter based on the SK’s estimate’s

maximum value to eliminate the need of baseline data for damage detection. Even-

tually, an Hilbert envelope was then generated that can be applied directly to raw

vibration data as a damage sensitive filter for bolt looseness detection. Two ap-

plications were design to validate the proposed techniques. This includes the bolt

looseness detection algorithm and bearing fault early detection algorithm.

The author had designed a finite element model of a bolted structure to simulate

a modal analysis in order to observe the structure’s system behaviour under healthy

and damaged cases. The damaged case is simulated by removing a single bolt in

the bolted joint. The modal analysis had provided an insight of the structure’s

structural property such as natural frequencies and maximum displacement of the

first five vibration modes. The simulated result had proven that small defects can-

not be detected by monitoring structural properties as the changes in both natural

frequencies and maximum displacement were almost neglectable. Therefore, there

is a need to develop an efficient signal processing technique to detect small defect.
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An experiment was designed to verify the simulated finite element model by man-

ufacturing a bolted structure accordingly in order to simulate a bridge structure as

close as possible. The simulated result was then used as a reference to design a

bridge excitation profile to control the vibration testbed. A combination of multiple

stationary components with a broadband baseline random excitation was considered

for this purpose to mimic a bridge under normal operation and traffic induced by

vehicles and environmental noise.

The proposed technique was also validated by an bearing fault early detection

application by addressing the missing gaps of the explored literature findings of

existing equivalent usage of SK-based algorithms. This consists of improving the

scalability, adaptability and reliability of the algorithm to solve the noisy signal is-

sue. The author had therefore proposed an enhanced SK-based filtering technique

by implementing multiple pre-processing algorthms for de-noising purpose and de-

composition. An spike subtraction algorithm was considered; however, the processed

result was not satisfactory that the signal was still fused with additive noise that

could cause false alarm. SWT was then pursued due to its effectiveness in reducing

noise and the provided flexibility in choosing various mother wavelet to fit different

signal needs along with the control over the denoising process. The performance

of the proposed SWT technique was then validated using PSD analysis and effec-

tive result was showed by evaluating the signal’s spectra before and after de-noising

process. The results of the two applications were covered in the following chapter.
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Chapter 4

Experimental Results

4.1 Bolt Looseness Detection

To ensure the repetitiveness of the experiment result, the baseline data of all bolts

tight cases were measured multiple times. All bolts were tightened to 45Nm torque,

referring to the maximum torque load of property class 8.8 of M10 size bolt to

present a healthy condition of the bolted structure. The controlled excitation from

the input excitation profile showed stable operating performance and repeatable

excitation.

Vibration signals were recorded for 40 seconds duration under the controlled

excitation. This baseline data was labelled as a tight bolt (healthy) dataset. The

bolt near sensor ACC0 was later loosened to less than 10Nm tension to simulate

a defect in the structure, and the same excitation was applied. A weak rattling

effect was generated by the loss of pressure of the bolt that produced non-linear and

non-stationary vibration components. This phenomenon have changed the struc-

tural properties so that the local stiffness of the structure was reduced, and weak

signatures were transferred to the system through washers.

This experiment aimed to extract these weak signatures using Spectral Kurtosis

estimates; it was because conventional signal processing techniques such as con-

ventional signal processing techniques such as FFT and PSD were not suitable for

extracting non-linear and non-stationary signals.

The time-series data presented in Figure 4.1 illustrated the healthy (all bolts

tight) and unhealthy (ACC0 bolt loose) state of the structure respectively. There
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Figure 4.1: Raw time domain data for tight bolt case (left) and ACC0 loose bolt
case (right)

Figure 4.2: PSD graph of tight and loose case

was no clear indication of the simulated defect. To further analyse the vibration

signals, PSD analysis is implemented, and the estimate was presented in Figure 4.2.

A trivial irregularity was detected by the PSD estimates after frequency at 500 Hz

in the data; however, the result cannot differentiate the looseness clearly. Thus,

further processing was required to detect the damage.

The SK estimates presented in Figure 4.3 extracted the presence of multiple
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non-stationary components corresponded to the response of the three individual

bolts on the bolt joint. A 5% statistical threshold was applied to the SK estimates

to filter out the non-linear components buried in the signal using a Wiener filter.

The Wiener filter shown in Figure 4.4 was used as a band-pass filter to extract

vibration corresponding to the rattling effect from raw vibration data. The result

had indicated between the healthy and single bolt loosen case; there was a new

frequency component captured at 350Hz near the ACC0 accelerometer while ACC1

and ACC2 show the identical result. The extracted feature of these non-stationary

components was later presented using a Hilbert envelope (Figure 4.5), which clearly

indicated that looseness can be detected using the proposed technique.

To further elaborate the result, a peak tracking operation was implemented on

the Hilbert envelope in Figure 4.6. To summarise the findings, non-stationary be-

haviour induced by the loosened bolt was captured distinctively with ACC0 using

the proposed technique. In contrast, a weaker peak response was detected from the

next accelerometer ACC1, which was 135 mm away from the loosened bolt. Fur-

thermore, this phenomenon can also be observed from ACC2, which was diagonally

opposite to the ACC0 location with the weakest signature.

This trend showed the amplitude of peaks can be used to localise the loosened

bolt where the peaks gradually decrease the futher away from the defect; In contrast,

the response of the healthy case from all three accelerometers indicated a negligible

peak. The proposed approach can also be implemented without baseline data to

detect the looseness defect.
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Figure 4.3: SK estimates Figure 4.4: Wiener filter of
SK

Figure 4.5: Features:
Hilbert Envelope of the
filtered signals

Figure 4.6: Peak tracking performed on the Hilbert envelope (Figure 4.5) of the
filtered signal
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4.2 Bearing Fault Early Detection

An enhanced SK-based algorithm was used to address missing gaps from explored

literature findings in terms of fault alarm caused by spikes in signal, scalability

of SK estimates and the high noise level. Referring to the pre-processed signal in

Figure 3.11, the wavelet decomposition technique demonstrated how non-stationary

patterns fused within raw vibration data can be extracted. The obtained data

was then fed to the SK-based filtering function to compute the Spectral Kurtosis

estimate.

This estimate can be calculated using Fast Fourier Transform (FFT) or time-

frequency technique such as Short-Time Fourier Transform (STFT) alternatively.

For instance, the STFT-based SK estimate has a better performance than the FFT-

based approach in terms of filtering non-stationary signals due to the windows size

variation. A part of the computed SK estimate is presented in Figure 4.7, and the

two signals drew the comparison from the healthy and defect data sets. The feature

estimate of all signals in the data set was presented in the following session.
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Figure 4.7: Spectral Kurtosis estimate
of healthy and defect signal

Figure 4.8: SK–based wiener filter ex-
tracted from SK curve through thresh-
olding

An SK-based Wiener filter extracted by threshold filter is shown in Figure 4.8.

It can be observed that a significant peak is detected from the defect bearing signal

corresponds to the non-stationary behaviour in the signal. In contrast, no significant

considerable peak was detected from the Wiener filter for the healthy bearing set
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data. Manual data processing was also implemented to cross-validate the results

from part of the data set against the ground truth results published by the NASA

authors [118].

The extracted Wiener filter was then applied to raw data to detect defect and

computed using Hilbert Transform to extract the envelope of the signal components.

The obtained envelope of a defective and unhealthy bearing data set was presented in

Figure 4.9. It had indicated that the rolling element bearings were hitting the outer

race periodically from the defected signal. In contrast, no non-stationary vibration

components were detected from the healthy case. This comparison had showed that

the diagnosis for finding bearing fault was successful.
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Figure 4.9: Envelope of the SK filtered signal

The SK feature estimate of the IMS bearing data set was presented in Figure

4.10; this had included a total of 2156 signal samples for 35 days’ worth of data. The

result had showed that the SK based feature extraction algorithm had successfully

detected the faults detected after day 27 and other non-stationary behaviour in the

data.
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Figure 4.10: SK feature for all signals plotted against the number of days of testing

A change detection algorithm that involves detecting changes in SK estimates

over time was implemented to address the missing piece of automated detection

function from previously explored literature findings. This decision boundary helped

to identify the sudden change in data and raise an alert of detected unique patterns

as presented in Figure 4.11. The change algorithm had identified that bearing 4 was

damaged on day 27 (highlighted in red), which is a week earlier than the final run

to failure inspection day. This had proved that the proposed approach is capable to

detect early fault characteristics.

Figure 4.11: SK features vector after application of change detection algorithm
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Summary

This chapter had presented the result of the designed experiments to showcase the

feasibility of the proposed technique to detect damage in the two applications. The

experiment result was first investigated in time series data and processed by PSD

that indicated conventional signal processing technique was not suitable to detect

small damage that were non-stationary signal. The proposed technique was then ap-

plied to the signal to extract the weak signatures buried in noisy transient data. The

investigated result in the bolt looseness application had validated Spectral Kurtosis

was capable in detecting loosened bolt from extracting non-stationary components

buried in time-series signals in three stages of processing. A peak tracking opera-

tion was applied on the Hilbert envelope to indicate the feature to localise defect by

distinguishing the corresponding sensor channel.

The proposed technique is further enhanced to address the current missing gaps

from the explored literature findings on detecting early bearing faults in terms of

adaptability and scalability. It was validated using an open-source data published

by NASA that the SK-based filtering algorithm successfully detected the bearing

fault a week earlier than the run-to-failure inspection day.
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Chapter 5

Conclusion and Recommendations
for Future Work

Early fault detection was crucial in asset health monitoring applications as it im-

proves engineering maintenance efficiency; for instance, scheduled inspection and

maintenance work can be planned ahead to prevent severe damage to save cost and

preserve quality of industrial process.

This study had proposed an advanced digital signal processing technique to de-

tect small defects that were difficult to diagnose in early stage inspection. An

overall review was delivered to discuss the introduction of need in asset health mon-

itoring and the relevant literature review of the current state-of-the-art in health

monitoring techniques as well as the cause of damages. A comparison was drawn

to outline the limitation of conventional signal processing techniques such as time

series analysis, wavelet transfer and Hilbert-Huang transform cannot be used to ex-

tract non-stationary signal buried in noisy transient data. Therefore, the author has

proposed the use of Spectral Kurtosis to detect bolt looseness due to its outstand-

ing performance in identifying non-stationary components induced by damage. The

methodology of the proposed technique Spectral Kurtosis was presented as a three

stages processing algorithm; firstly, a SK-based Wiener filter was applied to raw

vibration data to extract the SK residual, secondly, a statistical threshold was ap-

plied to the SK estimates to eliminate the non-linear components fused in the signal,

lastly, the extracted features were presented using a Hilbert envelope to indicate the

detected damage.
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The proposed technique was validated using two applications of bolt looseness

detection and bearing fault detection to show its feasibility and capability in de-

tecting non-stationary component induced by damage. The obtained experimental

results presented that Spectral Kurtosis was capable in detecting non-linear and

non-stationary buried in time-series data that were induced by small defects. Fur-

ther enhancement was implemented to address missing gaps of explored literature

findings in existing SK-based techniques for bearing fault detection. This study had

made contribution of knowledge to propose an advanced signal processing technique

to develop a vibration-based method using optimal filtering approach to detect bolt

looseness in bolted structure and an enhanced methodology to address missing gaps

of current asset monitoring applications in regards to spikes subtraction, scalability

of the data analysis pipeline and SNR ratio.

Given the promising result of the proposed technique, this was confident that

the technique can be further improved to provide meaningful damage sensitive fea-

tures. For instance, different signal processing techniques such as wavelet transform,

Hilbert-Huang transform, time-frequency analysis and principal component analy-

sis can be combined to form a multiple stages of processing; this can also further

enhance the SNR ratio of data, noise subtraction as well as data compression to

reduce storage required. The enhanced extracted features could be used to improve

the accuracy of data to localise damages precisely, capable to detect multiple bolts

looseness and possibly quantify the looseness.

These features shows a meaningful insight into how they can be used as input for

machine learning models for both supervised and unsupervised learning methods.

The automated change detection algorithm developed in the bearing fault detection

algorithm can be used to label data to diagnose if damage is detected; which can

be used to train different models such as random forest, Bayesian decision tree and

SVM. On the other hand, unlabelled data can be fed to neural network model such

as LSTM (Long-short term memory) in which the model learns from the data to

detect damage.
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The benefit of data provides a way to detect damage sensitive signal with a

better understanding to small defects that are difficult to detect using conventional

signal processing techniques. These models could be used to develop automated

early fault detection for asset health monitoring applications such as Industrial IoT

digital twin to enable smart remote monitoring. The mentioned future works could

be contributed to other papers focusing on the development of combination of signal

processing techniques and benchmark the performance amongst existing techniques

and using the extracted features for training machine learning model.
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[17] Magalhães F Cunha A Caetano E. “Recent perspectives in dynamic testing
and monitoring of bridges”. In: Structural Control and Health Monitoring
20.6 (2013), pp. 853–877. issn: 15452255. doi: 10.1002/stc.1516. arXiv:
arXiv:1011.1669. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/stc.1516.

[18] G. T. Webb, P. J. Vardanega, and C. R. Middleton. “Categories of SHM De-
ployments: Technologies and Capabilities”. In: Journal of Bridge Engineering
20.11 (2015), p. 04014118. issn: 1084-0702. doi: 10.1061/(ASCE)BE.1943-
5592.0000735. arXiv: arXiv:1011.1669v3. url: http://ascelibrary.
org/doi/10.1061/%5C%28ASCE%5C%29BE.1943-5592.0000735.

[19] Juan Pablo Amezquita-Sanchez and Hojjat Adeli. “Signal Processing Tech-
niques for Vibration-Based Health Monitoring of Smart Structures”. In: Archives
of Computational Methods in Engineering 23.1 (2016), pp. 1–15. issn: 18861784.
doi: 10.1007/s11831-014-9135-7. url: http://dx.doi.org/10.1007/
s11831-014-9135-7.

[20] J.P. Amezquita-Sanchez and H. Adeli. “Feature extraction and classification
techniques for health monitoring of structures”. In: Scientia Iranica 22.6
(2015), pp. 1931–1940. issn: 10263098.

[21] Cristian Contreras-Nieto, Yongwei Shan, and Phil Lewis. “Characterization
of Steel Bridge Superstructure Deterioration through Data Mining Tech-
niques”. In: Journal of Performance of Constructed Facilities 32.5 (2018),
p. 04018062. issn: 0887-3828. doi: 10.1061/(ASCE)CF.1943-5509.0001205.
url: http://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-

5509.0001205.

[22] Types of Steel bridges - Engineering Feed. url: http://engineeringfeed.
com/types-steel-bridges (visited on 12/04/2019).

[23] Highways England. “Highways England Climate Adaptation Risk Assessment
Progress Update - 2016”. In: November (2016).

88 Chapter 5 Siu Ki Ho

https://www.express.co.uk/news/uk/1068448/uk-bridge-warning-collapse-lorry-roads-highways-england
https://www.express.co.uk/news/uk/1068448/uk-bridge-warning-collapse-lorry-roads-highways-england
https://www.express.co.uk/news/uk/1068448/uk-bridge-warning-collapse-lorry-roads-highways-england
https://www.newcivilengineer.com/latest/highways-england-calms-fears-over-uk-bridges-structural-soundness-20-08-2018/
https://www.newcivilengineer.com/latest/highways-england-calms-fears-over-uk-bridges-structural-soundness-20-08-2018/
https://www.arup.com/projects/boston-manor-viaduct
https://www.arup.com/projects/boston-manor-viaduct
https://www.bbc.co.uk/news/uk-england-45346006
https://www.bbc.co.uk/news/uk-england-45346006
https://doi.org/10.1002/stc.1516
https://arxiv.org/abs/arXiv: 1011.1669
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1516
https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1516
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000735
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000735
https://arxiv.org/abs/arXiv:1011.1669v3
http://ascelibrary.org/doi/10.1061/%5C%28ASCE%5C%29BE.1943-5592.0000735
http://ascelibrary.org/doi/10.1061/%5C%28ASCE%5C%29BE.1943-5592.0000735
https://doi.org/10.1007/s11831-014-9135-7
http://dx.doi.org/10.1007/s11831-014-9135-7
http://dx.doi.org/10.1007/s11831-014-9135-7
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001205
http://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0001205
http://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0001205
http://engineeringfeed.com/types-steel-bridges
http://engineeringfeed.com/types-steel-bridges


Advanced digital signal processing technique for asset health monitoring

[24] F. Khoshnoudian and A. Esfandiari. “Structural damage diagnosis using
modal data”. In: Scientia Iranica 18.4 A (2011), pp. 853–860. issn: 10263098.
doi: 10.1016/j.scient.2011.07.012. url: http://dx.doi.org/10.1016/
j.scient.2011.07.012.

[25] Wesley Cook and Paul J. Barr. “Observations and Trends among Collapsed
Bridges in New York State”. In: Journal of Performance of Constructed Fa-
cilities 31.4 (2017), p. 04017011. issn: 0887-3828. doi: 10.1061/(asce)cf.
1943-5509.0000996.

[26] Daniel Imhof. “Risk Assessment of Existing Bridge Structures”. In: Univer-
sity of Cambridge December (2004). issn: 1083-4087. url: http://www.nbq.
ch/PhD/Thesis.pdf.

[27] Boulent M. Imam and Marios K. Chryssanthopoulos. “Causes and conse-
quences of metallic bridge failures”. In: Structural Engineering International:
Journal of the International Association for Bridge and Structural Engi-
neering (IABSE) 22.1 (2012), pp. 93–98. issn: 10168664. doi: 10.2749/

101686612X13216060213437.

[28] Takashi Tamakoshi, Masahiro Shirato, and Toshiro Kamada. “Steel bridge
deterioration data in Japan and modelling”. In: Proceedings of the Institu-
tion of Civil Engineers - Bridge Engineering 170.2 (June 2017), pp. 133–
146. issn: 1478-4637. doi: 10.1680/jbren.16.00004. url: http://www.
icevirtuallibrary.com/doi/10.1680/jbren.16.00004.

[29] Jae-hyung Park et al. “Novel bolt-loosening detection technique using im-
age processing for bolt joints in steel bridges”. In: Proc. of the 2015 World
Congress on Advances in Structural Engineering and Mechanics (ASEM15)
(2015), p. 19.

[30] Structural Bolting. Tech. rep. url: https://user.eng.umd.edu/$%5Csim$
ccfu/ref/Bolt&Weld.pdf.

[31] K. LeBeau, S. Wadia-Fascetti, and S. Wadia-Fescetti. “A fault tree model of
bridge deterioration”. In: Eighth ASCE Speciality Conference on Probabilistic
mechanics and structural reliability February (2000).

[32] N. O. Attoh-Okine and S. Bowers. “A Bayesian belief network model of
bridge deterioration”. In: Proceedings of the Institution of Civil Engineers
- Bridge Engineering 159.2 (2006), pp. 69–76. issn: 1478-4637. doi: 10 .

1680/bren.2006.159.2.69. arXiv: 0112017 [cs]. url: http://www.

icevirtuallibrary.com/doi/10.1680/bren.2006.159.2.69.

[33] Preloaded bolting - SteelConstruction.info. url: https://www.steelconstruction.
info/Preloaded_bolting (visited on 12/09/2019).

[34] Jun Min You et al. “Behavior of bolt-connected steel plate girder attributable
to bolt loosening failure in the lower flange”. In: Engineering Failure Anal-
ysis 107.June 2019 (2020), p. 104208. issn: 13506307. doi: 10.1016/j.

engfailanal.2019.104208. url: https://doi.org/10.1016/j.engfailanal.
2019.104208.

Chapter 5 Siu Ki Ho 89

https://doi.org/10.1016/j.scient.2011.07.012
http://dx.doi.org/10.1016/j.scient.2011.07.012
http://dx.doi.org/10.1016/j.scient.2011.07.012
https://doi.org/10.1061/(asce)cf.1943-5509.0000996
https://doi.org/10.1061/(asce)cf.1943-5509.0000996
http://www.nbq.ch/PhD/Thesis.pdf
http://www.nbq.ch/PhD/Thesis.pdf
https://doi.org/10.2749/101686612X13216060213437
https://doi.org/10.2749/101686612X13216060213437
https://doi.org/10.1680/jbren.16.00004
http://www.icevirtuallibrary.com/doi/10.1680/jbren.16.00004
http://www.icevirtuallibrary.com/doi/10.1680/jbren.16.00004
https://user.eng.umd.edu/$%5Csim$ccfu/ref/Bolt&Weld.pdf
https://user.eng.umd.edu/$%5Csim$ccfu/ref/Bolt&Weld.pdf
https://doi.org/10.1680/bren.2006.159.2.69
https://doi.org/10.1680/bren.2006.159.2.69
https://arxiv.org/abs/0112017
http://www.icevirtuallibrary.com/doi/10.1680/bren.2006.159.2.69
http://www.icevirtuallibrary.com/doi/10.1680/bren.2006.159.2.69
https://www.steelconstruction.info/Preloaded_bolting
https://www.steelconstruction.info/Preloaded_bolting
https://doi.org/10.1016/j.engfailanal.2019.104208
https://doi.org/10.1016/j.engfailanal.2019.104208
https://doi.org/10.1016/j.engfailanal.2019.104208
https://doi.org/10.1016/j.engfailanal.2019.104208


Advanced digital signal processing technique for asset health monitoring

[35] Kiran Anginthaya et al. “A comparative study on the effectiveness of system
parameters in monitoring pre-load loss in bolted joints”. In: Journal of the
Brazilian Society of Mechanical Sciences and Engineering 40.8 (2018), pp. 1–
15. issn: 18063691. doi: 10.1007/s40430-018-1316-0. url: https://doi.
org/10.1007/s40430-018-1316-0.

[36] He Xianlong and She Tianli. “A New Identification Method for Bolt Loose-
ness in Wind Turbine Towers”. In: Shock and Vibration 2019.1 (2019), pp. 1–
10. issn: 1070-9622. doi: 10.1155/2019/6056181.

[37] Tao Wang et al. “Review of bolted connection monitoring”. In: International
Journal of Distributed Sensor Networks 2013 (2013). issn: 15501329. doi:
10.1155/2013/871213.

[38] Seyed Majid Yadavar Nikravesh and Masoud Goudarzi. “A review paper
on looseness detection methods in bolted structures”. In: Latin American
Journal of Solids and Structures 14.12 (2017), pp. 2153–2176. issn: 16797825.
doi: 10.1590/1679-78254231.

[39] Jun Li and Hong Hao. “Health monitoring of joint conditions in steel truss
bridges with relative displacement sensors”. In: Measurement: Journal of
the International Measurement Confederation 88 (2016), pp. 360–371. issn:
02632241. doi: 10.1016/j.measurement.2015.12.009. url: http://dx.
doi.org/10.1016/j.measurement.2015.12.009.

[40] Noritaka Yusa and Sakuo Sawada. “Demonstration of low-frequency vibra-
tion tests to evaluate bolt loosening”. In: International Journal of Applied
Electromagnetics and Mechanics 52.1-2 (2016), pp. 89–94. issn: 13835416.
doi: 10.3233/JAE-162070.

[41] Delin Sun and Ridong Liao. “Damping Prediction Technique of the Bolted
Joint Structure Considering Pretension Force”. In: The Open Civil Engi-
neering Journal 9.1 (2015), pp. 622–626. issn: 1874-1495. doi: 10.2174/
1874149501509010622.

[42] K. He and W. D. Zhu. “Detecting Loosening of Bolted Connections in a
Pipeline Using Changes in Natural Frequencies”. In: Journal of Vibration and
Acoustics 136.3 (2014), p. 034503. issn: 1048-9002. doi: 10.1115/1.4026973.

[43] Guangming Dong, Fagang Zhao, and Xiaoke Zhang. “Experimental study on
monitoring the bolt group looseness in a clamping support structure model”.
In: Advances in Mechanical Engineering 9.3 (2017), pp. 1–12. issn: 16878140.
doi: 10.1177/1687814017695046.

[44] Neal A. Tanner et al. “Structural health monitoring using modular wire-
less sensors”. In: Journal of Intelligent Material Systems and Structures 14.1
(2003), pp. 43–56. issn: 1045389X. doi: 10.1177/1045389X03014001005.

[45] Tuan-Cuong Nguyen et al. “Hybrid bolt-loosening detection in wind turbine
tower structures by vibration and impedance responses”. In: Wind and Struc-
tures 24.4 (2017), pp. 385–403. issn: 1226-6116. doi: 10.12989/was.2017.
24.4.385.

90 Chapter 5 Siu Ki Ho

https://doi.org/10.1007/s40430-018-1316-0
https://doi.org/10.1007/s40430-018-1316-0
https://doi.org/10.1007/s40430-018-1316-0
https://doi.org/10.1155/2019/6056181
https://doi.org/10.1155/2013/871213
https://doi.org/10.1590/1679-78254231
https://doi.org/10.1016/j.measurement.2015.12.009
http://dx.doi.org/10.1016/j.measurement.2015.12.009
http://dx.doi.org/10.1016/j.measurement.2015.12.009
https://doi.org/10.3233/JAE-162070
https://doi.org/10.2174/1874149501509010622
https://doi.org/10.2174/1874149501509010622
https://doi.org/10.1115/1.4026973
https://doi.org/10.1177/1687814017695046
https://doi.org/10.1177/1045389X03014001005
https://doi.org/10.12989/was.2017.24.4.385
https://doi.org/10.12989/was.2017.24.4.385


Advanced digital signal processing technique for asset health monitoring

[46] Jeong Tae Kim et al. “Hybrid acceleration-impedance sensor nodes on Imote2-
platform for damage monitoring in steel girderconnections”. In: Smart Struc-
tures and Systems 7.5 (2011), pp. 393–416. issn: 17381991. doi: 10.12989/
sss.2011.7.5.393.

[47] Home - BoltSafe - Bolt load measuring systems. url: https://boltsafe.
com/ (visited on 01/02/2020).

[48] Products - Clarkwood. url: http://www.clarkwood.co.uk/products/ten-
con-fixing/tencon-tension-controlled-washer (visited on 01/03/2020).

[49] DTI SmartBolts - SmartBolts. url: http://www.smartbolts.com/dti/
(visited on 01/03/2020).

[50] Maxbolt, Load Indicating Fastener — Direct Tension Indicator. url: https:
//www.vfbolts.com/product/maxbolt- load- indicating- fastener-

system/ (visited on 01/03/2020).

[51] Anton Khomenko et al. “Bolt tension monitoring with reusable fiber Bragg-
grating sensors”. In: Journal of Strain Analysis for Engineering Design 51.2
(2016), pp. 101–108. issn: 20413130. doi: 10.1177/0309324715598265.

[52] Dongdong Chen et al. “A Fiber Bragg Grating (FBG)-Enabled Smart Washer
for Bolt Pre-Load Measurement: Design, Analysis, Calibration, and Experi-
mental Validation”. In: Sensors 18.8 (2018), p. 2586. issn: 1424-8220. doi:
10.3390/s18082586. url: http://www.mdpi.com/1424-8220/18/8/2586.

[53] Nohyu Kim and Minsung Hong. “Measurement of axial stress using mode-
converted ultrasound”. In: NDT and E International 42.3 (2009), pp. 164–
169. issn: 09638695. doi: 10.1016/j.ndteint.2008.09.005.

[54] Matthew C. Malkin Aydin Akdeniz, Jeffrey R. Kollgaard. Active washers for
monitoring bolted joints. 2010.

[55] Jairo Andres Martinez Garcia Rasim Oytun Guldiken. Active ultrasonic method
of quantifying bolt tightening and loosening. Sept. 2015.

[56] Xu Ding, Xinjun Wu, and Yugang Wang. “Bolt axial stress measurement
based on a mode-converted ultrasound method using an electromagnetic
acoustic transducer”. In: Ultrasonics 54.3 (2014), pp. 914–920. issn: 0041624X.
doi: 10.1016/j.ultras.2013.11.003. url: http://dx.doi.org/10.1016/
j.ultras.2013.11.003.

[57] Rafa l Kdra and Magdalena Rucka. “Damage detection in a bolted lap joint
using guided waves”. In: Procedia Engineering 199 (2017), pp. 2114–2119.
issn: 18777058. doi: 10.1016/j.proeng.2017.09.070. url: http://dx.
doi.org/10.1016/j.proeng.2017.09.070.

[58] Seyed Mohammad Parvasi et al. “Real time bolt preload monitoring using
piezoceramic transducers and time reversal technique - A numerical study
with experimental verification”. In: Smart Materials and Structures 25.8
(2016). issn: 1361665X. doi: 10.1088/0964-1726/25/8/085015.

[59] Wang Tao et al. “Health monitoring of bolted joints using the time reversal
method and piezoelectric transducers”. In: Smart Materials and Structures
25.2 (2016). issn: 1361665X. doi: 10.1088/0964-1726/25/2/025010.

Chapter 5 Siu Ki Ho 91

https://doi.org/10.12989/sss.2011.7.5.393
https://doi.org/10.12989/sss.2011.7.5.393
https://boltsafe.com/
https://boltsafe.com/
http://www.clarkwood.co.uk/products/ten-con-fixing/tencon-tension-controlled-washer
http://www.clarkwood.co.uk/products/ten-con-fixing/tencon-tension-controlled-washer
http://www.smartbolts.com/dti/
https://www.vfbolts.com/product/maxbolt-load-indicating-fastener-system/
https://www.vfbolts.com/product/maxbolt-load-indicating-fastener-system/
https://www.vfbolts.com/product/maxbolt-load-indicating-fastener-system/
https://doi.org/10.1177/0309324715598265
https://doi.org/10.3390/s18082586
http://www.mdpi.com/1424-8220/18/8/2586
https://doi.org/10.1016/j.ndteint.2008.09.005
https://doi.org/10.1016/j.ultras.2013.11.003
http://dx.doi.org/10.1016/j.ultras.2013.11.003
http://dx.doi.org/10.1016/j.ultras.2013.11.003
https://doi.org/10.1016/j.proeng.2017.09.070
http://dx.doi.org/10.1016/j.proeng.2017.09.070
http://dx.doi.org/10.1016/j.proeng.2017.09.070
https://doi.org/10.1088/0964-1726/25/8/085015
https://doi.org/10.1088/0964-1726/25/2/025010


Advanced digital signal processing technique for asset health monitoring

[60] Zhen Zhang et al. “Continuous Monitoring of Residual Torque of Loose Bolt
in a Bolted Joint”. In: Procedia Engineering 188 (2017), pp. 278–285. issn:
18777058. doi: 10.1016/j.proeng.2017.04.485. url: http://dx.doi.
org/10.1016/j.proeng.2017.04.485.

[61] Miao Pan et al. “Design of a Novel Wearable Sensor Device for Real-Time
Bolted Joints Health Monitoring”. In: IEEE Internet of Things Journal 5.6
(2018), pp. 5307–5316. doi: 10.1109/jiot.2018.2852653.

[62] N. Shimoi et al. “Simple Smart Piezoelectric Bolt Sensor for Structural Mon-
itoring of Bridges”. In: International Journal of Instrumentation Science 1.5
(2013), pp. 78–83. issn: 2324-9994. doi: 10.5923/j.instrument.20120105.
03. url: http://article.sapub.org/10.5923.j.instrument.20120105.
03.html.

[63] Dionysius M. Siringoringo and Yozo Fujino. “Experimental study of laser
Doppler vibrometer and ambient vibration for vibration-based damage detec-
tion”. In: Engineering Structures 28.13 (2006), pp. 1803–1815. issn: 01410296.
doi: 10.1016/j.engstruct.2006.03.006.

[64] Arthur M. Turner. Bolt tension indicator. 1993. doi: US005485919A.

[65] Chester P. Coldren. Mine bolt tension indicator. 1977.

[66] Ivan Wayne Wallace John A. Herr. Direct multi-tension indicating washer
having bumps of a first and second height. 2002. url: https://patents.
google.com/patent/US6425718.

[67] Young Jin Cha, Kisung You, and Wooram Choi. “Vision-based detection of
loosened bolts using the Hough transform and support vector machines”. In:
Automation in Construction 71.Part 2 (2016), pp. 181–188. issn: 09265805.
doi: 10.1016/j.autcon.2016.06.008. url: http://dx.doi.org/10.
1016/j.autcon.2016.06.008.

[68] Yang Zhang et al. “Autonomous bolt loosening detection using deep learn-
ing”. In: Structural Health Monitoring (2019). issn: 17413168. doi: 10.1177/
1475921719837509.

[69] Jian Wu, Xingmei Cui, and Yunpeng Xu. “A novel RFID-based sensing
method for low-cost bolt loosening monitoring”. In: Sensors (Switzerland)
16.2 (2016), pp. 1–15. issn: 14248220. doi: 10.3390/s16020168.

[70] D. Goyal and B. S. Pabla. “The Vibration Monitoring Methods and Sig-
nal Processing Techniques for Structural Health Monitoring: A Review”. In:
Archives of Computational Methods in Engineering 23.4 (2016), pp. 585–594.
issn: 18861784. doi: 10.1007/s11831-015-9145-0. url: http://dx.doi.
org/10.1007/s11831-015-9145-0.

[71] Osama Abdeljaber et al. “Real-time vibration-based structural damage de-
tection using one-dimensional convolutional neural networks”. In: Journal of
Sound and Vibration 388 (2017), pp. 154–170. issn: 10958568. doi: 10.1016/
j.jsv.2016.10.043. url: http://dx.doi.org/10.1016/j.jsv.2016.10.
043.

92 Chapter 5 Siu Ki Ho

https://doi.org/10.1016/j.proeng.2017.04.485
http://dx.doi.org/10.1016/j.proeng.2017.04.485
http://dx.doi.org/10.1016/j.proeng.2017.04.485
https://doi.org/10.1109/jiot.2018.2852653
https://doi.org/10.5923/j.instrument.20120105.03
https://doi.org/10.5923/j.instrument.20120105.03
http://article.sapub.org/10.5923.j.instrument.20120105.03.html
http://article.sapub.org/10.5923.j.instrument.20120105.03.html
https://doi.org/10.1016/j.engstruct.2006.03.006
https://doi.org/US005485919A
https://patents.google.com/patent/US6425718
https://patents.google.com/patent/US6425718
https://doi.org/10.1016/j.autcon.2016.06.008
http://dx.doi.org/10.1016/j.autcon.2016.06.008
http://dx.doi.org/10.1016/j.autcon.2016.06.008
https://doi.org/10.1177/1475921719837509
https://doi.org/10.1177/1475921719837509
https://doi.org/10.3390/s16020168
https://doi.org/10.1007/s11831-015-9145-0
http://dx.doi.org/10.1007/s11831-015-9145-0
http://dx.doi.org/10.1007/s11831-015-9145-0
https://doi.org/10.1016/j.jsv.2016.10.043
https://doi.org/10.1016/j.jsv.2016.10.043
http://dx.doi.org/10.1016/j.jsv.2016.10.043
http://dx.doi.org/10.1016/j.jsv.2016.10.043


Advanced digital signal processing technique for asset health monitoring

[72] Onur Avci et al. “Wireless and real-time structural damage detection: A novel
decentralized method for wireless sensor networks”. In: Journal of Sound and
Vibration 424 (2018), pp. 158–172. issn: 10958568. doi: 10.1016/j.jsv.
2018.03.008. url: https://doi.org/10.1016/j.jsv.2018.03.008.

[73] Shinae Jang et al. “Structural health monitoring system of a cable-stayed
bridge using smart sensor technology: deployment and evaluation”. In: Smart
Structures and Systems 6.5-6 (2010), pp. 439–460. url: http://proceedings.
spiedigitallibrary . org / proceeding . aspx ? articleid = 758061 % 5C %

5Cnpapers2://publication/uuid/867369C7-0157-4E84-BE88-466CED6FB46D.

[74] Zengshun Chen et al. “Deployment of a smart structural health monitoring
system for long-span arch bridges: A review and a case study”. In: Sensors
(Switzerland) 17.9 (2017). issn: 14248220. doi: 10.3390/s17092151.

[75] W. F. Luo and L. Yu. “New damage-sensitive feature for structures with
bolted joints”. In: Journal of Physics: Conference Series 842.1 (2017). issn:
17426596. doi: 10.1088/1742-6596/842/1/012083.

[76] F. P. Kopsaftopoulos and S. D. Fassois. “Vibration based health monitoring
for a lightweight truss structure: Experimental assessment of several statisti-
cal time series methods”. In: Mechanical Systems and Signal Processing 24.7
(2010), pp. 1977–1997. issn: 08883270. doi: 10.1016/j.ymssp.2010.05.
013. url: http://dx.doi.org/10.1016/j.ymssp.2010.05.013.

[77] Nikos G. Pnevmatikos et al. “Wavelet analysis based damage localization
in steel frames with bolted connections”. In: Smart Structures and Systems
18.6 (2016), pp. 1189–1202. issn: 17381991. doi: 10.12989/sss.2016.18.
6.1189.

[78] Maya Nayak and Bhawani Sankar Panigrahi. “Advanced Signal Processing
Techniques for Feature Extraction in Data Mining”. In: International Journal
of Computer Applications 19.9 (2011), pp. 30–37. doi: 10.5120/2387-3160.

[79] Chao Xu, Chen-Chen Huang, and Wei-Dong Zhu. “Bolt loosening detection
in a jointed beam using empirical mode decomposition–based nonlinear sys-
tem identification method”. In: International Journal of Distributed Sensor
Networks 15.9 (2019), p. 155014771987565. issn: 1550-1477. doi: 10.1177/
1550147719875656.

[80] N. Roveri and A. Carcaterra. “Damage detection in structures under travel-
ing loads by Hilbert-Huang transform”. In: Mechanical Systems and Signal
Processing 28 (2012), pp. 128–144. issn: 08883270. doi: 10.1016/j.ymssp.
2011.06.018. url: http://dx.doi.org/10.1016/j.ymssp.2011.06.018.

[81] Xueli An et al. “Application of the ensemble empirical mode decomposition
and Hilbert transform to pedestal looseness study of direct-drive wind tur-
bine”. In: Energy 36.9 (2011), pp. 5508–5520. issn: 03605442. doi: 10.1016/
j.energy.2011.07.025. url: http://dx.doi.org/10.1016/j.energy.
2011.07.025.
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