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ABSTRACT: Long-term hydrological projections can vary substantially depending on the combination of meteorological
forcing dataset, hydrologic model (HM), emissions scenario, and natural climate variability. Identifying dominant sources
of model spread in an ensemble of hydrologic projections is critically important for developing reliable hydrological projec-
tions in support of flooding risk assessment and water resources management; however, it is not well understood due to the
multifactor and multiscale complexities involved in the long-term hydrological projections. Therefore, a stepwise clustered
Bayesian (SCB) ensemble method will be first developed to improve the performance of long-term hydrological projec-
tions. Meanwhile, a mixed-level factorial inference (MLFI) approach is employed to estimate multiple uncertainties in hy-
drological projections over the Jing River basin (JRB). MLFI is able to reveal the main and interactive effects of the
anthropogenic emission and model choices on the SCB ensemble projections. The results suggest that the daily maximum
temperature under RCP8.5 in the 2050s and 2080s is expected to respectively increase by 3.28 and 5.28C, which are much
higher than the increases under RCP4.5. The maximum increase of the RegCM driven by CanESM2 (CARM)-projected
changes in streamflow for the 2050s and 2080s under RCP4.5 is 0.30 and 0.59 3 103 m s23 in November, respectively. In
addition, in a multimodel GCM–RCM–HM ensemble, hydroclimate is found to be most sensitive to the choice of GCM.
Moreover, it is revealed that the percentage of contribution of anthropogenic emissions to the changes in monthly precipi-
tation is relatively smaller, but it makes a more significant contribution to the total variance of changes in potential evapo-
transpiration and streamflow.

SIGNIFICANCE STATEMENT: Increasing concerns have been paid to climate change due to its aggravating im-
pacts on the hydrologic regime, leading to water-related disasters. Such impacts can be investigated through long-term
hydrological projection under climate change. However, it is not well understood what factor plays a dominant role in
inducing extensive uncertainties associated with the long-term hydrological projections due to plausible meteorological
forcings, multiple hydrologic models, and internal variability. The stepwise cluster Bayesian ensemble method and
mixed-level factorial inference approach are employed to quantify the contribution of multiple uncertainty sources. We
find that the total variance of changes in monthly precipitation, potential evapotranspiration, and streamflow can be
mainly explained by the model choices. The identified dominant factor accounting for projection uncertainties is criti-
cally important for developing reliable hydrological projections in support of flooding risk assessment and water resour-
ces management. It is suggested that more reliable models should be taken into consideration in order to improve the
projection robustness from a perspective of the Loess Plateau.
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1. Introduction

Global warming has the potential to significantly alter the hy-
drologic regime, leading to increasing concerns about the fre-
quency and severity of future water-related disasters (Arnell
and Gosling 2013; Marx et al. 2018). Regional climate models
(RCMs) and hydrologic models (HMs) have been commonly
used to examine climate change–related effects on the water cy-
cle (Zhou et al. 2018b). Nevertheless, a single integration of

RCM and HM tends to investigate some particular impacts of
climate change on the hydrologic regime, such that decisions
for planning water-related infrastructure may merely be effec-
tive in limited aspects without a comprehensive consideration.
Meanwhile, long-term hydrological projections are subject to
extensive uncertainties such as multiple meteorological forcings,
modeling structures, and scheme parameterizations (Jones
2000; Knutti and Sedláček 2013; Murphy et al. 2009; Webster
et al. 2002; Yip et al. 2011). Therefore, it is imperative to quan-
tify uncertainty based on an ensemble approach in order to im-
prove projection robustness.

Over the past decades, there have been numerous ensemble
methods to improve forecasting performance under uncer-
tainty based on multiple simulation models such as generalized
linear modeling (GLM; Gregersen et al. 2013; Hundecha et al.
2009; Steinschneider et al. 2016; Thorarinsdottir et al. 2018),
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Bayesian model averaging (BMA; Baran et al. 2019; Duan
et al. 2007; Madadgar and Moradkhani 2014; Rings et al. 2012;
Tsai and Elshall 2013), and Bayesian hierarchical modeling
(BHM; Huard and Mailhot 2006; Yan and Moradkhani 2016).
Among them, BMA was widely applied to improve the meteo-
rological and hydrological projection robustness in recent
years (Fang and Li 2016; Strauch et al. 2012; Wang et al. 2012;
Zhang et al. 2016). The approach supports probabilistic predic-
tion through weighted predictive distributions based on the pos-
terior probability. To improve BMA’s performance, multiple
sets of posterior coefficients may be used to capitalize on the
merits of multiple climatic and hydrologic models. This is pre-
dominantly because various models perform differently in cap-
turing particular ranges of observations. However, such multiple
sets were often obtained by splitting the analysis period into sev-
eral time intervals according to subjective measures.

Any merging of multimodel outputs should account for the
uncertainty sources in modeling, including climate forcing,
model structure and parameterizations, and numerous statisti-
cal inferences based on ensemble simulation (Madadgar and
Moradkhani 2014). Manifold methods have been developed to
partition such uncertainties (Evin et al. 2019; Hanel and Buis-
hand 2015; Hingray and Saïd 2014; Yip et al. 2011; Zhang and
Chen 2021). The factorial design based on analysis of variance
(ANOVA) is one of the primary approaches to examine the
main effects of multiple factors and their interactions (Keppel
1991). For example, Northrop and Chandler (2014) used a ran-
dom-effect ANOVA model to partition uncertainties from
three sources (i.e., climate models, emissions scenarios, and in-
ternal variability) in future climate projections.

In this study, we extend methods of previous studies to
quantify the independent and combined effects of multiple
sources of uncertainty in long-term hydrological projections
over the Jing River basin (JRB). Our specific approach, a
stepwise clustered Bayesian (SCB) ensemble method is shown
to improve the performance of long-term hydrological projec-
tions by combining BMA and stepwise cluster analysis (SCA;
Li et al. 2015; Qin et al. 2008; Wang et al. 2013; Zhuang et al.
2016). Specifically, model outputs from three global climate mod-
els (GCMs) under two representative concentration pathways
(RCPs) have been dynamically downscaled using either Providing
Regional Climates for Impacts Studies (PRECIS) or RegCM.
The dynamically downscaled climate forcings are then used as in-
puts to three hydrologic models, which amounts to an ensemble
size of three. To this ensemble, a factorial approach is applied to
explore the impact of uncertainties (i.e., climate models, emissions
scenarios, and internal variability) on the prediction of monthly
precipitation, potential evapotranspiration, and streamflow in the
JRB.

2. Study area and data collection

This study focused on the JRB located in the middle of the
Loess Plateau, situated between 34.648 and 37.418N and be-
tween 106.148 and 108.898E. The Loess Plateau is known for
having one of the largest rates of soil erosion on Earth (Sun
et al. 2013; Zhao et al. 2013). The 455-km-long Jing River drains
a total area of over 45000 km2 (Peng et al. 2015) (Fig. 1). As
shown in Fig. 2a, the land cover in JRB is mainly composed of
grassland (43.5%), open shrublands (27.5%), wooded grassland

FIG. 1. Elevation of the JRB, which is derived from the hydrological data and maps based on
the HydroSHEDS dataset. The red dots show the location of the Zhangjiashan gauge station
(34.6388N, 108.6088E). The blue squares display the meteorological stations.
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(9.4%), closed shrublands (8.3%), woodland (5.6%), and crop-
land (3.2%). Figure 2b shows that topsoil cover in the water-
shed includes loam (81.6%), sandy loam (13.4%), loamy sand
(3.0%), clay (1.1%), and silt loam (0.9%), while Fig. 2c depicts
the subsoil classification which contains loam (71.6%), clay
loam (10.1%), sandy loam (9.0%), sandy clay loam (5.9%),
loamy sand (1.5%), clay (1.1%), and silt loam (0.8%).

The study basin has a typical continental climate and is sig-
nificantly affected by monsoons (Dong et al. 2021; Shi et al.
2021). There is a northwest–southwest precipitation gradient
from semiarid to semihumid climates (Fig. 2). Significant im-
pacts of climate change on flooding frequencies and drought
durations have been investigated in a number of previous
studies (Arnell and Gosling 2016; Blöschl et al. 2019; Das et al.
2020; Lehner et al. 2017; Pokhrel et al. 2021; Ukkola et al.

2020; Zhou et al. 2018b). The monthly average daily maxi-
mum temperature during the period of 1960–2005 ranges
from 0.48C in January to 26.68C in July, while the daily mini-
mum temperature is varied between 210.18C in January and
16.18C in July. Over the same period, the monthly average
daily total precipitation varies from 0.09 mm day21 in January
to 3.22 mm day21 in August. Based on the CRU datasets, the
mean value and standard deviation of annual-averaged daily
total precipitation for the period of 1985–2004 are 1.28 and
0.19 mm day21, respectively. As seen from a relatively low
value of standard deviation, small spatial variability of precip-
itation is found over JRB. In addition, the average potential
evapotranspiration ranges from 0.90 mm day21 in December
to 4.07 mm day21 in June. Such values are all averaged over
the JRB domain.

Land cover
Woodland
Wooded grassland
Water
Urban and built-up
Open shrublands
Mixed forest
Grassland
Evergreen needleleaf forest
Deciduous broadleaf forest
Cropland
Closed shrublands
Bare ground

Topsoil classification
Silt loam
Sandy loam
Sand
Loamy sand
Loam
Clay (light)

Subsoil classification
Silt loam
Sandy loam
Sandy clay loam
Sand
Loamy sand
Loam
Clay loam
Clay (light)

®

(a) Land cover classification

(b) Topsoil classification

(c) Subsoil classification

0 50 100 15025 km

FIG. 2. Land- and soil-cover classifications in JRB based on the AVHRR Global Land Cover
Classification and the Harmonized World Soil Database. The corresponding layer depths for
topsoil and subsoil classification are 0–30 cm and 30–100 cm, respectively. (a) Land-cover classifi-
cation, (b) topsoil classification, and (c) subsoil classification.
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To validate the performance of RCMs in reproducing spa-
tial and temporal patterns of historical climate over JRB,
simulation results are validated against the gridded monthly
datasets of daily maximum temperature, minimum tempera-
ture, and total precipitation from the Climate Research
Units Time series (CRU TS v4.05, herein CRU) (Harris
et al. 2020). The CRU dataset has a spatial resolution of
0.58 3 0.58 from 1901 to 2020 based on reanalyses of over four
thousand individual meteorological station records (Harris
et al. 2020). Furthermore, gridded observations of wind speed
(WS) at a height of 10 m above ground level were obtained
from the ERA5 dataset, which is the fifth-generation reanalysis
from the European Centre for Medium-Range Weather Fore-
casts (Hersbach et al. 2020).

The CRU gridded datasets include monthly time series of
variables, which could not perform hydrologic simulations
at a daily time step. To calibrate and validate the models,
the daily time series of observations (e.g., daily maximum
temperature, minimum temperature, total precipitation,
wind speed, relative humidity, and sunshine hours) for 6 me-
teorological stations across the study watershed from 1960
to 2005 were acquired from the China National Meteorolog-
ical Information Center (http://data.cma.cn/). Fig. 1 presents
the six meteorological stations across the study watershed.
The streamflow observations at the Zhangjiashan (ZJS)
gauge station (Fig. 1) from 1960 to 2005 were retrieved from
the National Earth System Science Data Center (http://
loess.geodata.cn/). The void-filled elevation datasets were
retrieved from the Hydrological data and maps based on the
Shuttle Elevation Derivatives at Multiple Scales (Hydro-
SHEDS) dataset, which was developed by the Conservation
Science Program of the World Wildlife Fund (Lehner et al.
2006; Zhou et al. 2018b). More detailed information could
be referred to the product page (https://www.hydrosheds.
org/hydrosheds-core-downloads). We also used leaf area in-
dex values and vegetation parameters at 1-km spatial resolu-
tion from the AVHRR Global Land Cover Classification,
produced by the Department of Geography, University of
Maryland (Hansen et al. 1998; Xiao et al. 2014; Zhou et al.
2018b). Moreover, the soil parameters were acquired from
the Harmonized World Soil Database with 1-km spatial reso-
lution, which is developed by the United Nations Food and
Agriculture Organization of the United Nations (FAO/IIASA/IS-
RIC/ISSCAS/JRC 2012; Zhou et al. 2018b).

3. Methodology

a. Climate modeling and hydrological projection

Table 1 presents how the modeling experiments are set
up in this study. As shown in Table 1, RCMs, including
PRECIS2.0 (herein PRECIS) and RegCM4.6.0 (herein
RegCM), are employed to develop high-resolution climate
projections using GCM historical (1985–2004, herein RF),
RCP4.5 (2006–2100) and RCP 8.5 (2006–2100) output.

A lumped conceptual model [Sacramento Soil Moisture
Accounting (SAC-SMA)] and two fully distributed physically
based models [variable infiltration capacity (VIC) and soil
and water assessment tool (SWAT)] are employed to simulate
streamflow to climate inputs from RCMs over JRB at a daily
time step. SAC-SMA (Duan et al. 2007; Fan et al. 2017) has
16 parameters, which has been extensively employed in
National Weather Service for streamflow forecasting pur-
poses. SWAT (Jayakrishnan et al. 2005), developed by the
U.S. Department of Agriculture, is a comprehensive semidis-
tributed hydrologic/water quality model. There are 587 hydro-
logic response units (HRUs) for SWAT in JRB. The spatial
area of these units ranges from 0.024 to 2066.757 km2, with an
average of 77.38 km2. VIC (Liang et al. 1996, 1994; Zhou et al.
2018b) is a spatially distributed macroscale hydrologic model,
which is set up at a horizontal resolution of 0.228 3 0.228 to
couple with the regional climate models to assess the impacts
of climate change on hydrology regimes. The streamflow of
JRB simulated by VIC is derived through an offline routing
model (https://vic.readthedocs.io/en/vic.4.2.d/Documentation/
Routing/). It routes within the grids and to the outlet by using
the unit hydrograph approach and the linearized Saint-
Venant equation (Lohmann et al. 1996; Zhou et al. 2018b).
The climate inputs for VIC are daily total precipitation, mini-
mum temperature, maximum temperature, and wind speed.
Additional inputs of solar radiation and relative humidity are
required for SWAT and SAC-SMA. The calibrated HMs will
be driven by each of GCM–RCM simulation to develop three
members of hydrological projections. Each of the 27 model
output streamflow time series is then inputted into the SCB
method to infer a probabilistic projection of streamflow at the
outlet.

The daily time series (i.e., 1976–88) of both the forcings
(e.g., daily maximum temperature, minimum temperature,
total precipitation, wind speed, relative humidity, and sun-
shine hours) from the six meteorological stations and the

TABLE 1. The selected GCMs, RCMs, and HMs in each experiment.

Experiment GCM RCM Hydrological model Scenarios Statistical model

1 HadGEM2-ES PRECIS VIC, SWAT, and SAC RF SCB
2 HadGEM2-ES PRECIS VIC, SWAT, and SAC RCP45 SCB
3 HadGEM2-ES PRECIS VIC, SWAT, and SAC RCP85 SCB
4 GFDL RegCM VIC, SWAT, and SAC RF SCB
5 GFDL RegCM VIC, SWAT, and SAC RCP45 SCB
6 GFDL RegCM VIC, SWAT, and SAC RCP85 SCB
7 CanESM2 RegCM VIC, SWAT, and SAC RF SCB
8 CanESM2 RegCM VIC, SWAT, and SAC RCP45 SCB
9 CanESM2 RegCM VIC, SWAT, and SAC RCP85 SCB
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streamflow from the ZJS gauge station are used to calibrate
and validate the three hydrologic models. The calibration
and validation periods for JRB are 1979–85 and 1986–88,
respectively. Table 2 presents the detailed descriptions,
possible ranges, and calibrated values of the selected pa-
rameters from the three hydrologic models, which are con-
sidered for calibration purposes in this study (Fan et al.
2017; Gupta et al. 1999; Her and Chaubey 2015; Singh et al.
2005; Zhou et al. 2018b). Notably, only 13 parameters of
SAC-SMA are calibrated, since the other three parame-
ters ratio of deep recharge to channel base flow (SIDE),
riparian vegetation area (RIVA), and fraction of lower
zone free water not transferrable to lower zone tension

water (RSERV) were fixed at prespecified values in accor-
dance with previous studies (Gupta et al. 1999). The Nash–
Sutcliffe coefficient of efficiency (NSE) at a monthly time
step is selected as the objective function (Zhou et al. 2018b).
The shuffle complex evolution algorithm, University of
Arizona (SCE-UA) (Duan et al. 1994), is then employed
to calibrate these parameters of the three hydrologic mod-
els in simulating the daily time series of historical stream-
flow at the ZJS station.

PRECIS2.0 is the latest version of the regional climate
modeling system, which is developed by the Met Office Hadley
Centre for Climate Science and Services. PRECIS can only
be implemented at horizontal resolution of 0.448 3 0.448 and

TABLE 2. Selected parameters for calibration of the three hydrologic models (Fan et al. 2017; Gupta et al. 1999; Her and Chaubey
2015; Singh et al. 2005; Zhou et al. 2018b).

Parameters Range Unit Calibrated value

VIC
Variable infiltration curve parameter (Bi) 0–1 0.1065
Fraction of maximum soil moisture (Ws) 0–1 0.1290
Maximum velocity of baseflow (Dsmax) 0–30 mm day21 24.5324
Fraction of the maximum velocity of baseflow (Ds) 0–1 0.5547
Second soil layer depths (d2) 0.1–1.5 m 1.1971
Third soil layer depths (d3) 0.1–2 m 0.1779

SWAT
Runoff curve number (CN2) 40–70 45.7817
Groundwater delay (GW_DELA) 0–500 days 120.5924
Baseflow alpha factor (ALPHA_BF) 0–1 days 0.4713
Threshold depth of water in the shallow aquifer (GWQMN) 0–5000 mm 4600.3874
Groundwater re-evaporation coefficient (GW_REVAP) 0.02–0.2 0.0632
Soil evaporation compensation factor (ESCO) 0–1 0.2311
Plant uptake compensation factor (EPCO) 0–1 0.9496
Manning’s n for main channel (CH_N2) 20.01 to 0.3 20.0567
Effective hydraulic conductivity (CH_K2) 0–500 mm h21 168.8398
Baseflow alpha factor for bank storage (ALPHA_BNK) 0–1 days 0.5358
Moist bulk density for two soil layers (SOL_BD) 0.9–2.5 g cm23 0.7681 and 0.0127
Available water capacity for two soil layers (SOL_AWC) 0–1 mm mm21 0.2025 and 0.4628
Saturated hydraulic conductivity for two soil layers (SOL_K) 0–2000 mm h21 5.6161 and 36.9450
Snowfall temperature (SFTM) 220 to 20 8C 4.9460

SAC-SMA
Upper-zone tension water maximum storage (UZTWM) 5–300 mm 59.3312
Upper-zone free water maximum storage (UZFWM) 5–150 mm 46.9599
Lower-zone tension water maximum storage (LZTWM) 40–600 mm 234.7610
Lower-zone free water primary maximum storage (LZFPM) 40–600 mm 451.4140
Lower-zone free water supplemental maximum storage (LZFSM) 5–500 mm 207.4350
Additional impervious area (ADIMP) 0–0.4 0.2523
Upper-zone free water lateral drainage rate (UZK) 0.1–0.75 day21 0.5096
Lower-zone primary free water lateral drainage rate (LZPK) 0.001–0.05 day21 0.0201
Lower-zone supplemental free water lateral drainage rate (LZSK) 0.01–0.6 day21 0.4880
Maximum percolation rate (ZPERC) 0–350 12.3252
Exponent of the percolation equation (REXP) 0–5 2.3111
Impervious fraction of the watershed area (PCTIM) 0–0.1 0.0761
Fraction of water percolating from upper zone directly to lower zone

free water storage (PFREE)
0–0.9 0.6330

Riparian vegetation area (RIVA) 0 0
Ratio of deep recharge to channel base flow (SIDE) 0 0
Fraction of lower zone free water not transferrable to lower zone

tension water (RSERV)
0.3 0.3
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0.228 3 0.228 at the rotated grid (Zhou et al. 2018a), which ap-
proximately provides 50 km 3 50 km and 25 km 3 25 km, re-
spectively. Specific parameterizations of the PRECIS model
are detailed by Jones et al. (2004) and Zhou et al. (2018c).
Therefore, we ran our model extending out from JRB with the
highest horizontal resolution of 0.228 3 0.228 and time resolu-
tion of 1 h. The RCM simulations and observation/reanalysis
datasets are regridded to the PRECIS grid cell for the purpose
of performance evaluation.

PRECIS model can solely be driven by the boundary data
from the Met Office Hadley Center (e.g., HadGEM2-ES).
This is due to that the input and output data of PRECIS are
written in the post processing (PP) binary data format, which
is a Met Office proprietary format. To identify the uncertainty
of boundary conditions, the RegCM4.6.0 modeling system
from the International Center for Theoretical Physics (ICTP)
is also used to dynamically downscale additional GCMs. As
shown in Table 1, the first ensemble member (r1i1p1) of
HadGEM2-ES, CanESM2, and GFDL-ESM2M from CMIP5
is employed to address the effects of model choices on future
climate projections. The horizontal resolutions (i.e., latitude 3

longitude) of each model are 1.258 3 1.8758, 2.81258 3 2.81258,
and 28 3 2.58, respectively. The temporal frequency of each
lateral boundary forcing is 6-hourly. The boundary data of
HadGEM2-ES for PRECIS experiments are obtained from
the Met Office Hadley Centre, which is not available pub-
licly (Met Office 2020). The boundary data of CanESM2
and GFDL-ESM2M are retrieved from their websites (http://
clima-dods.ictp.it/regcm4/CanESM2/ and http://clima-dods.ictp.
it/regcm4/GFDL-ESM2M/, respectively).

Two different future climate change scenarios, namely,
RCP4.5 and RCP8.5, are chosen to account for the effects of
greenhouse gas (GHG) emissions due to anthropogenic activi-
ties. More detailed descriptions of the two RCPs are presented
in the study of Zhou et al. (2018b). Dynamical downscaling
multiple GCMs under two RCPs is able to develop the range
of possible climatic changes that can be expected for JRB. The
RCM simulations and observation/reanalysis datasets are re-
gridded to the PRECIS grid cell for the purpose of perfor-
mance evaluation.

The future projection of climate changes for the daily
maximum and minimum temperature, total precipitation,
and wind speed are developed to force hydrologic simula-
tions under RCP4.5 and RCP8.5 by using the validated
RCMs driven by multiple GCMs. However, in order to ex-
plore the impacts of climate change on the hydrologic re-
gime, we first analyze changes derived from the dynamically
downscaled climate projections for the two 30-yr periods:
2050s (2036–65) and 2080s (2066–95) in relative to the refer-
ence period (i.e., 1985–2004, herein RF). The averaged val-
ues and standard deviations of annual and seasonal changes,
as well as seasonal cycles of changes in the climate variables,
are derived and examined.

b. SCB ensemble model

Based on multivariate analysis of variation, the SCA
method is capable of cutting or merging sample sets of

dependent variables given by whether there is a significant
difference among them (Wang et al. 2015). Thus, the origi-
nal sample set of observed streamflow at the ZJS station
can be split into multiple subsets through numerous cutting
and merging operations, indicating the complex relation-
ships between the observed streamflow and the multiple
simulated streamflow. The detailed information is de-
scribed by Huang (1992) and Wang et al. (2015). Therefore,
SCA is integrated into the SCB framework to generate multi-
ple subsets of observed streamflow without any subjective as-
sumptions, and then the projection of each subset based on
BMA is combined into a probabilistic projection for the origi-
nal dataset.

The proposed SCB thus can take its advantages to tackle
nonlinear relationships among multiple continuous and dis-
crete variables, as well as to generate more reliable probabilis-
tic projections from multiple RCMs and HMs. However, the
key prerequisite of SCB is to select independent hydrologic
models in order to improve its reliable performance. It is
practically difficult to acquire a mutually exclusive and col-
lectively exhausted (MECE) ensemble of hydrologic mod-
els, which is expected to be a similar challenge to BMA
(Madadgar and Moradkhani 2014; Refsgaard et al. 2012).
The uncertainty of probabilistic projections may be overes-
timated without independent hydrologic models (Madadgar
and Moradkhani 2014). It also should be noted that a limita-
tion of the SCB method is that the model independency
should be stationary under various climatic conditions.
Figure 3 conveys the detailed processes from initial GCM–RCM
simulations to final SCB projections.

Specifically, consider two sets of original datasets: c1 5 (o,m)
and c2 5 (p, f), where o and p are column vectors of dependent
variables with n1 and n2 samples, respectively;m and f are vec-
tors of independent k models with a dimension of n1 3 k and
n2 3 k, respectively. We are interested in comparing possible
differences in the mean responses for the two datasets. Thus,
the appropriate null and alternative hypothesis can be formu-
lated as follows:

H0 : m 5 n; and (1)

H1 : mÞn, (2)

where m and n respectively represents the average of o and p:

m 5
1
n1

+
n1

i51
oi; and (3)

n 5
1
n2

+
n2

j51
pj: (4)

According to the Wilks’ statistic (Huang 1992; Kennedy
and Gentle 1981; Wang et al. 2015), the sums of squares and
cross-products (SSCP) for the within group (w) and between
group (b) can be respectively obtained:

w 5 +
n1

i51
(oi 2 m) 1 +

n2

j51
(pi 2 n); and (5)
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b 5
n1n2

n1 1 n2
(m 2 n)2: (6)

Thus, the value of the Wilks’ statistic l can be calculated
based on the w and b SSCP:

l 5
w

w 1 b
: (7)

Based on Rao’s F approximation (Huang 1992; Rao 1952;
Wang et al. 2015), l can be transformed to distribute as an ex-
act F statistic with 1 and n1 1 n2 2 1 degree of freedom:

F1,n11n221 5
(n1 1 n2 2 1)(1 2 l)

l
: (8)

Therefore, Eq. (8) is the test statistic to determine
whether to reject the null hypothesis H0 given a significance
level of a. We would conclude that there is no significant
difference in the mean responses (i.e., m and n) of the
two datasets at a significance level of a if F , Fa,1,n11n221,
implying that SCB will merge two datasets. Otherwise, if
F$Fa,1,n11n221, SCB will cut them into two different subsets,

as the mean responses of the two datasets differ at the given
significance level.

The SCB method will exhaustively cut and merge datasets
based on the hypothesis test. The finalized multiple subsets for
the entire training period will then be obtained until no hy-
potheses of further cutting or merging operations are accepted
(Huang 1992; Li et al. 2016; Wang et al. 2015). Assume that a
total of S subsets is generated through the above procedures,

FIG. 3. Flowchart for developing the climatic and hydrologic projections.
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and then we could have the dependent variable and indepen-
dent variables for each subset s as follows:

o′s 5 (o′s1,o′s2, …, o′sts )′; and (9)

m′
s 5 (m′

sr) 5 (m′
s1,m

′
s2,…,m′

sk), r 5 1, 2,…, k, (10)

where m′
sr is the column vector of model r with ts samples. Ac-

cording to BMA (Duan et al. 2007), the probability density

FIG. 4. Spatial distributions of annual averages of historical simulations for the period of 1985–2004 derived fromHAPE, CARM, GFRM, and
CRU/ERA5. COR is the spatial correlation between simulations and CRU/ERA5. (a)–(d) Tmax, (e)–(h) Tmin, (i)–(l) TP, and (m)–(p) WS.
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FIG. 5. Differences in annual averages of (a)–(c) Tmax, (d)–(f) Tmin, (g)–(i) TP, and (j)–(l) WS between the
simulations and the CRU/ERA5 for the period of 1985–2004.
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function (PDF) of the probabilistic predictand y′s in subset s
can be expressed as follows:

p(y′s |o′s) 5 +
k

r51
p(m′

sr|o′s) · p(y′s|m′
sr, o

′
s): (11)

The posterior mean and variance of the predictand y′s can
be formulated as follows (Duan et al. 2007):

E[y′s |o′s] 5 +
k

r51
p(m′

sr|o′s) · E[p(y′s |m′
sr, o

′
s)] 5 +

k

r51
vsrhsr; and

(12)

V(y′s |o′s) 5 +
k

r51
vsk hsr 2 +

k

r51
vsrhsr

( )2
1 +

k

r51
vsrs

2
sr, (13)

where vsr 5 p(m′
sr |o′s) and the sum of vsr for all models is equal

to 1; expectation hsr and variance s 2
sr represent the average and

uncertainty of model r given by the observation o′s, respectively.
The expectation-maximization (EM) algorithm is employed to
loop all the subsets in order to estimate the parameters vsr and
s2
sr. The probabilistic projection y′s for each subset s can be ob-

tained individually using Eqs. (12) and (13). The SCB projection
y′ for the entire training datasets thus can be developed through
the combination of each subset.

To infer probabilistic projection through the SCA, BMA,
and SCB, the one-parameter Box–Cox transformation is

performed on the observed and simulated streamflow of
each hydrologic model. The detailed equation for the Box–
Cox transformation is presented in the supporting informa-
tion (Text S1). The performance of the three hydrologic
models and the three ensemble methods are then evaluated
by using four hydrological metrics, including NSE, the nor-
malized root-mean-square error (NRMSE), the RMSE-
observations standard deviation ratio (RSR), and the
continuous ranked probability score (CRPS). CRPS is a
measurement of the integrated squared difference between
cumulative distribution functions (CDFs) of simulations and
observations (Candille et al. 2007; Hersbach 2000). The de-
tailed equations of these metrics (Eum et al. 2017; Fan et al.
2017; Moriasi et al. 2007; Wagener et al. 2009; Zhou et al.
2018b) are presented in the supporting information (Text
S2). As for the probabilistic projections, the daily expected
values are determined first in order to calculate these
metrics.

The three validated hydrologic models along with SCB are
then employed to develop the historical and future streamflow
over JRB, driven by high-resolution simulations of GCMs
through PRECIS and RegCM. In detail, dynamically down-
scaled climate variables are first employed to drive three hy-
drologic models to generate different deterministic simulations
for the historical and future periods. SCB is then used to de-
velop probabilistic simulations based on the ensemble hydro-
logic outputs under multiple GCMs downscaled by RCMs.

FIG. 6. The domain-averaged seasonal cycles of (a) Tmax, (b) Tmin, (c) TP, and (d) WS over JRB obtained from
HAPE, CARM, and GFRM for the RF. The blue line with the error bar shows the mean value bounded by a 90%
confidence interval of CRU/ERA5.
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c. Mixed-level factorial design

In this study, impacts of factors, including the anthro-
pogenic emissions and model choices on the changes in
precipitation, potential evapotranspiration, and simulated
streamflow are investigated. Particularly, the anthropogenic

emissions mainly include two levels, namely, the RCP4.5 and
RCP8.5 scenarios. The ensemble projections of PRECIS
driven by HadGEM2-ES (herein HAPE), RegCM driven
by CanESM2 (herein CARM), and RegCM driven by
GFDL-ESM2M (herein GFRM) are composed the three
levels of model choices. Changes for the two 30-yr periods,

FIG. 7. Simulated and observed monthly streamflow at the Zhangjiashan station (34.638N, 108.608E). (a) HM, (b) BMA,
(c) SCA, and (d) SCB.
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including the 2050s (2036–65) and the 2080s (2066–95) rel-
ative to the baseline period (i.e., 1985–2004), are taken
into consideration. The mixed-level factorial experiments
are then performed at all the possible combinations of
GCM–RCMs (i.e., HAPE, CARM, and GFRM), RCPs
(i.e., RCP4.5 and RCP8.5), and periods (i.e., the 2050s
and 2080s).

The ANOVA approach (Zhu et al. 2018) is employed to
investigate the main and interaction effects of different con-
tributors to the changes in precipitation, potential evapo-
transpiration, and simulated streamflow. ANOVA is useful
in estimating the effects of anthropogenic emissions and
model choices, by decomposing the total variance into a
sum of squares due to anthropogenic emissions, a sum of
squares due to model choices, a sum of squares due to the
interaction between these two factors, and an error sum of
squares. Two-way ANOVA is used to decompose the con-
tributions to the total uncertainty in the responses into not
only the main effects of anthropogenic emissions and model
choices but also their interactions. The analysis of variance
model for projected changes driven by multiple climate sim-
ulations can be formulated as

yijl 5 t 1 Ai 1 Uj 1 (AU)ij 1 «ijl, (14)

where t is the overall mean effects of the projected changes
in precipitation, potential evapotranspiration, or simulated
streamflow; particularly, these changes can be calculated by
subtracting the annual averages in the historical period from
their averages in the future periods; Ai is the main effect of
anthropogenic emission scenario i; Uj is the main effect
driven climate model j; (AU)ij is the interaction effects of an-
thropogenic emission scenario i and driven climate model j;
yijkl is the projected changes in precipitation, potential evapo-
transpiration, or simulated streamflow driven by climate sim-
ulation j under the RCP scenario i in period k; jijkl is residual
terms. To perform the analysis of variance, the equations of
the corresponding total sum of squares and its individual and
interaction contribution components are derived as follows:

SSA 5
1
un

+
a

i51
y2i·· 2

y2···
aun

, (15)

SSU 5
1
an

+
u

j51
y2·j· 2

y2···
aun

, (16)

SSAU 5
1
n
+
a

i51
+
u

j51
y2ij· 2

y2···
aun

2 SSA 2 SSU ; and (17)

SST 5 +
a

i51
+
u

j51
+
n

l51
y2ijl 2

y2···
aun

, (18)

where SSA and SSU are the main effect of anthropogenic
emissions and model choices, respectively; SSAU is the inter-
active effect of these two factors; SST is the total sum of
squares; y··· represents the sum of change responses; yi·· and
y·j· are respectively defined as the total of ith level of factor A
and jth level of factor U; yij· is the corresponding sum at the
combination of two factors; a and u respectively denotes the
total levels of factor A and U; and n is the replicates of each
combination of three factors. Moreover, internal variability
arises from the internal dynamics of the climate system
(Frankcombe et al. 2015). In this study, a trend model will be
fitted to these variables in order to estimate the internal vari-
ability since there is only one realization for each experiment
(Hawkins and Sutton 2011; Lafaysse et al. 2014). The daily time
series of total precipitation (mm day21), potential evapotranspi-
ration (mm day21), and streamflow (m3 s21) for the period of
1985–2095 are estimated with smoothing splines (Evin et al.
2019). The smooth.spline function in the R software (https://
www.r-project.org/) is employed to fit the trends.

4. Results

a. Evaluation of regional climate models

Figure 4 presents spatial distributions of annual averages of
daily maximum temperature, minimum temperature, total
precipitation, and wind speed over JRB extracted from differ-
ent RCMs driven by multiple GCMs for the historical (i.e.,
1985–2004). In general, as seen from the spatial correlations
with CRU or ERA5 in Fig. 4, the ensemble ranges of the
HAPE, CARM, and GFRM simulations can reasonably
capture the spatial patterns of these variables except for
daily total precipitation (Fig. 4). For example, the spatial
correlations of daily maximum temperature, minimum tem-
perature, and wind speed range from 0.8749 to 0.9751, while
the maximum spatial correlation for daily total precipitation
is 0.4440. Figure 5 further shows the calculated differences
of the selected variables between simulations and observa-
tions/reanalyses (i.e., ERA5 and CRU TS, v4.05). For exam-
ple, there are differences from 22.08 to 3.08C in daily

TABLE 3. Evaluations of streamflow at the ZJS station from the hydrologic models for the calibration and verification period.

Calibration period of 1979–85 Verification period of 1986–88

Model NSE NRMSE RSR CRPS NSE NRMSE RSR CRPS

SWAT 0.821 0.484 0.423 0.703 0.845 0.545
VIC 0.829 0.473 0.413 0.617 0.960 0.619
SAC 0.829 0.472 0.413 0.792 0.708 0.456
SCA 0.877 0.401 0.350 6.952 0.500 1.097 0.707 14.495
BMA 0.882 0.393 0.344 8.013 0.772 0.741 0.478 9.413
SCB 0.912 0.339 0.297 6.885 0.825 0.649 0.418 9.307
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FIG. 8. Averaged values of the projected changes in (a)–(d) Tmax, (e)–(h) Tmin, (i)–(l) TP, and (m)–(p) WS under RCPs derived from
the RCM simulations. Columns show the changes in the 2050s under RCP4.5, the 2080s under RCP4.5, the 2050s under RCP8.5, and the
2080s under RCP8.5, from left to right, respectively. Student’s t test is employed to test the null hypothesis that the mean values in the
baseline period (i.e., 1985–2004) and the future periods (i.e., 2036–65 and 2066–95) are from the same population. The grids with a cross
mark are considered to be significant since p values are less than 0.05.
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maximum temperature (Tmax) as simulated by HAPE
(Fig. 5a) and CARM (Fig. 5c). The GFRM simulation (Fig. 5b)
tends to underestimate the Tmax value, with a cold bias
from 24.08 to 08C. However, relatively small differences of

total precipitation (TP; i.e., from 240% to 80%) are derived
from HAPE (Fig. 5d), while there are large wet biases (i.e.,
up to 160%) in the CARM and GFRM simulations. This in-
dicates that the performance in replicating daily total

FIG. 9. Standard deviations over an ensemble of the projected changes in (a)–(d) Tmax, (e)–(h) Tmin, (i)–(l) TP, and (m)–(p) WS under
RCPs derived from dynamically downscaled simulations. Columns show the changes in the 2050s under RCP4.5, the 2080s under RCP4.5,
the 2050s under RCP8.5, and the 2080s under RCP8.5, from left to right, respectively.
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precipitation is not as effective as that for temperature. As
for WS (at a height of 10 m), the magnitude and pattern of
wind speed obtained from ERA5 are not well replicated by
RCMs except for HAPE (Figs. 4m and 5j). The mean differ-
ences between the RCM simulations and the ERA5 reanaly-
ses vary from 20.56 m s21 (i.e., from HAPE) to 1.58 m s21

(i.e., from GFRM).
To further assess the RCM performance, we compared the

averaged seasonal cycles of Tmax, daily minimum tempera-
ture (Tmin), TP, and WS over JRB against the observations/
reanalyses. Figure 6 shows the comparison of the averaged
seasonal cycles of the four variables for the period of
1985–2004 over JRB among HAPE, CARM, GFRM, and ob-
servations/reanalyses. The error bars indicate the 90% confi-
dence interval of the observed datasets, implying that with
90% confidence the observation for any given month lies
within such range. As can be seen in Fig. 6, HAPE and
GFRM perform reasonably well in simulating Tmax and
Tmin since they are close to or within the confidence interval
of the averaged observations/reanalyses. However, it is inter-
esting to note that CARM overestimates Tmax and Tmin dur-
ing the summer months (i.e., June, July, and August), as well
as TP in the autumn (i.e., September, October, and November).
Furthermore, WS from all the simulations is within the confi-
dence range of the observed data, meaning that the skill of

RCMs in reproducing the averaged seasonal cycles of this var-
iable is even higher than the other three variables, and also
that predictability may be low. Figures S1–S4 in the online
supplemental material further evaluate the RCM perfor-
mance in simulating seasonal climate through a comparative
analysis against the observed Tmax, Tmin, TP, and WS over
JRB.

b. Evaluation of hydrologic models

The three hydrologic models driven by the observed cli-
mate forcing are spun up from cold start for a 3-yr period
(i.e., 1976–78), which is able to establish a stable moisture
content of soil layer (Shrestha et al. 2014; Zhou et al. 2018b).
Figure 7 compares the monthly mean observed and modeled
streamflow at the Zhangjiashan station simulated by three hy-
drologic models (i.e., SAC-SMA, SWAT, and VIC). The results
demonstrate that all three models have a good performance in
simulating the historical monthly streamflow for the calibration
and validation period. However, the results also indicate that
the three models show different capabilities to capture various
ranges of streamflow. Figures 7b, 7c, and 7d display the ex-
pected simulations of BMA, SCA, and SCB, respectively, along
with the 90% confidence intervals of the three-member en-
semble mean. As shown in the figures, the goodness of fit
(i.e., NSE) with the observed streamflow for the multimodel

FIG. 10. The projected domain-averaged seasonal cycles of (a) Tmax, (b) Tmin, (c) TP, and (d) WS over JRB
obtained from an ensemble mean, which is calculated based on the three members of RCM simulations (i.e., HAPE,
CARM, and GFRM) for the RF and the future periods. The orange line with the error bar shows the mean value
bounded by a 90% confidence interval of the three members.
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mean is improved as compared to that for the specific mod-
els (SAC-SMA, SWAT, and VIC).

The verification values of NSE, NRMSE, RSR, and CRPS
for the SCB method achieve 0.825, 0.649, 0.418, and 9.307, re-
spectively. During the calibration and validation period, the
NSE values are larger than 0.8, while the RSR values are less
than 0.5, which explains the good performance of the pro-
posed SCB method (Moriasi et al. 2007). Compared with the
three hydrologic models, the expected SCB simulation for the
calibration and verification period have the highest NSE val-
ues and the lowest values in both NRMSE and RSR, which
suggests that the developed method is much better than the
three deterministic ones.

As seen from smaller CRPS in Table 3, the integrated
squared difference in CDFs (i.e., between modeled and ob-
served streamflow) is reduced in the ensemble simulations of
SCB for both calibration and validation periods when com-
pared to BMA. One reason for more uncertainties in BMA
compared with SCB is that the BMA method is to infer a
probabilistic projection based on one set of the posterior in-
formation, without accentuating different capabilities of the
three hydrologic models in simulating different phases of the
hydrograph. As seen from relatively larger NSE values and
lower values of NRMSE, RSR, and CRPS compared to the
SCA and BMA method, the probabilistic simulations of SCB

are more consistent with the observations, thus affirming bet-
ter performance of the developed method. In general, the
proposed SCB method has a good performance in reproduc-
ing the historical streamflow over JRB.

c. Projections of climatic changes

Figure 8 shows the averaged value of the projected changes
in daily maximum and minimum temperature, total precipita-
tion, and wind speed for the 2050s and 2080s under RCPs de-
rived from the RCM simulations. As shown in Figs. 8a–h, it is
found that the daily maximum and minimum temperature is
projected to increase from the 2050s to the 2080s under
RCPs. For example, the spatial range of the three-model
mean values of daily maximum temperature for the 2050s and
2080s under RCP8.5 is 3.08–3.48C and 4.98–5.58C, respectively.
However, the results further suggest that the spatial pattern
between daily maximum and minimum temperature differs
from each other. Much higher increases would occur in the
southern JRB for the daily maximum temperature and in the
middle area of JRB for the daily minimum temperature.
Additionally, the daily maximum temperature under RCP8.5
in the 2050s and 2080s is expected to respectively increase by
3.28 and 5.28C, which are much higher than the increases un-
der RCP4.5. This implies the effects of GHG concentrations
on future projections.

FIG. 11. Seasonal cycle changes in the CARM-projected precipitation and potential evapotranspiration, as well as
the SCB-projected streamflow over JRB for (a) the 2050s under RCP4.5, (b) the 2080s under RCP4.5, (c) the 2050s
under RCP8.5, and (d) the 2080s under RCP8.5 under RCPs relative to the baseline period (i.e., 1985–2004). The
semitransparent shadow area shows the 90% confidence interval of changes in streamflow.
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Similarly, the daily total precipitation derived from the en-
semble climate simulations is projected to increase in the
2050s and 2080s under RCPs (Figs. 8i–8l). Student’s t test is
employed to test the null hypothesis that the mean values in
the baseline period (i.e., 1985–2004) and the future periods
(i.e., 2036–65 and 2066–95) are from the same population.
The grids with a cross mark are considered to be significant
since p values are less than 0.05. The projected changes for
the daily total precipitation in the 2050s under RCP4.5, the
2080s under RCP4.5, the 2050s under RCP8.5, and the 2080s
under RCP8.5 will increase as much as 0.11, 0.18, 0.08, and
0.33 mm day21, respectively. Moreover, the results also indi-
cate that the northeastern JRB would experience a statisti-
cally significant increase in the 2080s under RCP8.5.

Nevertheless, the spatial distribution of RCMs-projected
changes in the daily wind speed for the two future periods un-
der RCPs (Figs. 8m–p) depicts a different pattern than other
climate variables. The results indicate that there are no signifi-
cant changes in the daily wind speed in the north part of JRB
under RCP4.5. However, slight increases are found in the
middle part of JRB, with a maximum increase of 0.05, 0.07,
0.08, and 0.11 m s21 in the 2050s under RCP4.5, the 2080s un-
der RCP4.5, the 2050s under RCP8.5, and the 2080s under
RCP8.5, respectively.

Figure 9 presents the standard deviation of daily multi-
model means of the projected changes in daily maximum
and minimum temperature, total precipitation, and wind
speed. As seen from much higher standard deviations, there is

more considerable variability in daily maximum and minimum
temperature over the north than over the south. More-
over, under the scenario of RCP8.5, the uncertainties in
Tmax and Tmin are further aggravated during the 2080s,
indicating that climate change is associated with larger
variability under RCP8.5 for the 2080s. However, it is in-
dicated that greater variability is found in the western of
JRB for the daily total precipitation, while the projected
changes in daily wind speed have higher uncertainties in
the north.

The projected seasonal cycles of daily maximum and mini-
mum temperature, total precipitation, and wind speed are
shown in Fig. 10. In general, the average daily maximum and
minimum temperature in each month are projected to in-
crease. For example, the maximum increase in average Tmax
for the 2050s under RCP4.5, the 2080s under RCP4.5, the
2050s under RCP8.5, and the 2080s under RCP8.5 is 3.28, 4.08,
4.28, and 7.08C, respectively. In contrast, there would be a
decrease in the daily total precipitation for a few months.
Notably, the maximum decrease in the daily total precipita-
tion is projected in September, which is 0.84, 0.13, 0.90, and
0.41 mm day21 for the 2050s under RCP4.5, the 2080s under
RCP4.5, the 2050s under RCP8.5, and the 2080s under
RCP8.5, respectively. Moreover, the daily wind speed is
projected to increase in the summer, while there are no sig-
nificant changes in other months. For example, the maxi-
mum increase in the 2050s under RCP4.5 is 0.17 m s21.
Moreover, spatial patterns of seasonal averages and

FIG. 12. As in Fig. 11, but for seasonal cycle changes in the GFRM-projected precipitation and potential evapotranspiration.
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standard deviations of changes in the four variables are fur-
ther shown in Figs. S5–S12.

d. Projections of hydrological changes

Subsequently, the RCM-projected climate projections
driven by multiple GCMs are individually inputted to the
three HMs to generate deterministic hydrologic simulations
for the baseline and future period. The validated SCB
method is then employed to develop more reliable probabil-
istic projections based on the Box–Cox transformed simula-
tions of three hydrologic models over JRB. To explore the
impacts of climate change on hydrology, the expected values
and 90% confidence intervals of seasonal cycles of the SCB-
projected changes in the streamflow for the 2050s and 2080s
relative to the baseline period are derived. Moreover, the
average changes in both precipitation and potential evapo-
transpiration are explored for an improved understanding
of the hydrologic effects of climate change. The potential
evapotranspiration for each hydrologic model is computed
by using the Penman method with the RCM outputs.

The seasonal streamflow in JRB at the Zhangjiashan gauge
to CARM under RCPs is shown in Fig. 11. It is indicated that
decreased precipitation and streamflow are generally found
across all months except for November–December. For exam-
ple, the maximum increase of the expected changes in stream-
flow for the 2050s and 2080s under RCP4.5 is 0.30 and
0.59 3 103 m3 s21 in November, respectively. In addition, the
maximum decreases in the streamflow are projected in October

for the 2050s under RCP4.5, the 2080s under RCP4.5, and
the 2080s under RCP8.5, and in September for the 2080s
under RCP4.5. One explanation for such decreased streamflow
is due to a reduction of the daily total precipitation and in au-
tumn without a significant intensification of daily potential
evapotranspiration, resulting in less surface runoff. For exam-
ple, as shown in the figure, the most substantial decrease in
daily total precipitation with a value of 1.88 and 1.55 mm day21

is also projected in September for the 2050s and 2080s under
RCP4.5, respectively. Moreover, the semitransparent shadow
area shown in Fig. 11 presents the changes in streamflow within
the 90% confidence interval. The wide confidence interval in
September–October streamflow indicates substantial uncer-
tainty during that time of year. The large spread of streamflow
from September to November might be attributed to significant
changes in precipitation from CARM, which could generate a
wide range of estimates by using different types of hydrologic
models. However, it is expected to project large decreases
in streamflow from September to November due to the
CARM-projected reductions in precipitation.

The daily total precipitation and potential evapotranspira-
tion, as well as the SCB-projected streamflow under the
boundary condition of GFRM, are presented in Fig. 12, while
the responses to HadGEM2-ES are depicted in Fig. 13. Com-
pared with CARM, streamflow driven by GFRM is generally
projected to increase for the 2050s and 2080s under RCPs due to
higher projected precipitation. In contrast, there is no significant
change in the streamflow based on HAPE except for a general

FIG. 13. As in Fig. 11, but for seasonal cycle changes in the HAPE-projected precipitation and potential evapotranspiration.
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increase in the 2080s under RCP8.5. Tables 4 and 5 present the
Pearson correlation coefficients between the monthly stream-
flow and the monthly precipitation/potential evapotranspira-
tion for the historical period (Table 4), as well as between their
changes for the future periods (Table 5). These results suggest
that the change in streamflow over JRB is more positively re-
lated to monthly total precipitation than negatively related to
monthly potential evapotranspiration. Specifically, the results
indicate that the correlation between the streamflow and the
potential evapotranspiration is generally weaker (except for
HAPE in the 2080s) when compared to the monthly total pre-
cipitation. For example, GFRM has a Pearson’s correlation
value of 0.8801 and 0.9427 for monthly total precipitation in
the 2050s and 2080s under RCP8.5, respectively. This confirms
that there is a strong agreement between the projected monthly
streamflow and precipitation. Nevertheless, smaller Pearson’s
correlation values suggest fewer agreements between the
streamflow and potential evapotranspiration. Moreover, the
correlations with monthly potential evapotranspiration/total
precipitation are larger from GFRM than CARM.

e. Main and interaction effects of uncertain factors

The total variance of the changes in monthly variables (i.e.,
monthly precipitation, potential evapotranspiration, and stream-
flow) decomposed by uncertain factors and internal variability
in the 2050s are shown in Fig. 14. The uncertain factors include
anthropogenic emissions and model choices, as well as their in-
teraction effects. The results indicate that the median contribu-
tions of each factor to the three variables are generally similar,
except internal variability (IV). In general, the total variance of
the long-term projected changes in three monthly variables over
JRB can be primarily explained by the GCM model choices
(Figs. 14a–f). The percentage of contribution of the RCP scenar-
ios to the change in monthly precipitation has the least impact.
However, it makes a more significant contribution to the total
variance of changes in monthly potential evapotranspiration.
The interaction effect is more significant than the main effects of
anthropogenic emissions. The internal variability has the

greatest impact on the total uncertainty of monthly variables.
Such influence is also found in the seasonal and annual varia-
bles. Figure 15 presents the results of the same analysis for the
2080s. It shows that the RCP scenario has a more significant
contribution to the changes in these variables. Moreover, we
found that the relative effect of the internal variability on
changes in the three variables is relatively smaller in the 2080s
than in the 2050s. The order of importance for these factors (i.e.,
U, IV, AU, and A) is still intact, but the RCP scenario has a
larger contribution in the longer-term projection.

5. Discussion

In this study, the results suggest that the model choices can
primarily explain the total variance of changes in monthly pre-
cipitation, potential evapotranspiration, and streamflow over
JRB. Similarly, Evin et al. (2019) found that GCM choices
have significant impacts on climate change of four French
mountain massifs located in the Pyrenees and in the Alps.
However, it is important to note that the main limitation of
this study is that there are only three GCMs, which is not suffi-
cient enough to conclusively determine relative contributions
to uncertainty in future projections. The limited number of
RCMs employed is another limitation of the current study.
Moreover, as found by Evin et al. (2019), RCM choices have a
smaller contribution to temperature, precipitation, and wind
speed than GCM choices.

Driven by additional GCMs will dramatically increase the
computational effort, which therein advanced methods such
as fractional design are of necessity. With the assumption
of insignificant in high order effects, the main and interactive
effects can be quantitatively estimated through a fraction of
the entire experiments at combinations of the levels of multi-
ple factors. Therefore, quantifying the uncertainty associated
with boundary conditions through factional factorial analysis
will thus require future research efforts.

It should be noted that the choices of SCB, BMA, and
SCA for developing the three-member ensemble mean
(SAC, VIC, and SWAT) could also have impacts on the
contribution study. Further calibration and validation of hy-
drological models with longer time series of observations
could be performed, which will improve the suitability of
calibrated model parameters.

6. Conclusions

In this study, an SCB ensemble method has been developed
to improve the performance of long-term hydroclimate

TABLE 4. Pearson correlation coefficients between the streamflow
and the precipitation/potential evapotranspiration for the historical
period.

Daily total precipitation Potential evapotranspiration

CARM GFRM HAPE CARM GFRM HAPE

RF 0.81 0.90 0.95 20.23 0.78 0.72

TABLE 5. Pearson correlation coefficients between the changes in streamflow and the changes precipitation/potential evapotranspiration for
the future periods.

Changes in total precipitation Changes in potential evapotranspiration

CARM GFRM HAPE CARM GFRM HAPE

RCP45 (2050s) 0.87 0.90 0.76 20.11 20.01 20.46
RCP45 (2080s) 0.78 0.89 0.13 20.21 0.15 20.13
RCP85 (2050s) 0.89 0.88 0.56 0.05 0.14 0.17
RCP85 (2080s) 0.80 0.94 20.11 20.04 0.43 0.47
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projections based on BMA and SCA. The developed ensem-
ble method was then applied to investigate climate change im-
pacts on the hydrologic regime within a general framework,
which was developed through the integration of RCMs and
HMs. Specifically, RCMs were first performed to downscale
boundary conditions from multiple GCMs. Meanwhile, HMs
were calibrated against the historical observations using SCE-
UA. Afterward, the performance of climate and hydrologic
simulations by using RCMs, HMs, and the ensemble methods
(i.e., SCA, BMA, and SCB) was validated through compari-
son to the historical observations. The validated RCMs,
HMs, and SCB were then applied to develop probabilistic
long-term projections of hydrological changes. The mixed-
level factorial inference approach is utilized to reveal the
main and interaction effects of the anthropogenic emissions
and model choices.

Based on the factorial analysis of multiple uncertain factors
in long-term climate projections and hydrological modeling
over JRB, the substantial findings of this study can be summa-
rized as follows:

1) The range of ensemble RCMs simulations is able to re-
produce the historical spatial and temporal patterns of an-
nual and seasonal temperature. We also found that RCMs
perform more effectively in capturing temperature varia-
bles than other precipitation and wind speed. However,
uncertainty in the observations/reanalyses (i.e., CRU and
ERA5) is another uncertainty source that future studies
should consider.

2) The SCB streamflow driven by GFRM is generally
projected to increase for the 2050s and 2080s under
RCPs due to its larger precipitation. In contrast, there
is no significant change in the SCB streamflow based
on HAPE except for a general increase in the 2080s
under RCP8.5. It is revealed that the change in stream-
flow in JRB is more positively related to daily total
precipitation than negatively related to daily potential
evapotranspiration.

3) Our findings suggest that the GCM model choices can
primarily explain the total variance of changes in
monthly precipitation, potential evapotranspiration, and
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FIG. 14. Percentage of contribution from multiple uncertain factors in the 2050s. (left) The percentages of the contribution of each factor
to the changes in monthly variables. (right) The percentage of contribution of each factor to the changes in seasonal and annual variables.
(a),(b) Precipitation, (c),(d) potential evapotranspiration, and (e),(f) streamflow. Here, A and U denote the main effects of anthropogenic
forcings (i.e., RCP4.5 and RCP8.5) and model choices (i.e., CARM, GFRM, and HAPE), respectively.
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streamflow over JRB. Moreover, it is revealed that the
percentage of contribution of anthropogenic emissions
to the changes in monthly precipitation is relatively
smaller, but it makes a more significant contribution to
the total variance of changes in potential evapotranspi-
ration and streamflow. Meanwhile, the internal variabil-
ity has a substantial impact on the total uncertainty of
monthly variables. Nevertheless, such influence is de-
creased at the seasonal and annual time scales. In addi-
tion, the RCP scenario has a more significant contribu-
tion to the changes.

This study is the first attempt to develop the SCB method
to improve the long-term projections based on BMA and
SCA, without the requirements of any subjective assumption
to split observations into multiple sets. The proposed mixed-
level factorial inference approach was applied in order to re-
veal the main and interaction effects of multiple factors in
long-term hydrological projections for the JRB. The results
conclude that the developed framework based on SCB can
thoroughly explore the potential impacts of climate change
and the associated uncertainties. The results of this study are
encouraging for further integration of RCMs and statistical

methods to drive more HMs in order to identify model uncer-
tainties within the context of a changing climate.
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item.html?id=70c54b0b7b344c418dee4af9029fe6f2). The soil
parameters are collected from the Harmonized World Soil Da-
tabase (https://www.fao.org/soils-portal/data-hub/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/).
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