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The eigensystem underpinning the classical edge
resonance phenomenon in linear elasticity is
studied. Several exact results are presented, the
most significant being an identically zero sum
demonstrating the linear dependence of the stresses.
An exact condition for edge resonance is derived.
This is cast into a form that is independent of the
Lamb modes, robust and highly convergent, enabling
the system to be explored by varying Poisson’s ratio
(PR) or frequency. An improved estimate of the value
of PR for real resonance is determined, as is the
non-Lamé frequency corresponding to resonance
when PR is zero. Quasi-resonances are explored.
It is demonstrated that, for fixed PR, these occur
at more than one frequency, and that they occur
for negative PR. It is shown that quasi-resonances
are associated with one of two distinct families of
complex resonances: real PR and complex frequency
or real frequency and complex PR. Higher Lamé
frequencies are considered. It is demonstrated that a
real pure shear resonance exists at the second Lamé
frequency when PR is zero. The corresponding edge
displacement is simple in form, and it is anticipated
that such resonances exist at every Lamé frequency.
Finally, point-wise convergence for Lamb-mode
eigenfunction expansions is established.

1. Introduction
Edge resonance is a phenomenon that has long fascinated
engineers and mathematicians. It was first observed
experimentally by Shaw [1] in 1956 while using an
optical interference technique to study the surface
motion of thick circular barium titanate discs. The
‘disk was excited in an axially symmetric dilatational
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Figure 1. Schematic diagram of semi-infinite strip showing a typical longitudinal resonant displacement around x = 0.

motion’ [2], and Shaw noticed that, at an isolated frequency below the first cut-on, a resonance
appeared with maximum displacement occurring at the edge of the disc. This localized excitation
could not be explained in terms of the natural modes for the disc and constitutes the first recorded
observation of the edge resonance phenomenon. Since 1956 many investigations into this
phenomenon have appeared in the literature with authors using a wide variety of analytic and/or
numerical methods. The reader can find a comprehensive review of these and related studies
in [3]. Most studies have focused on the semi-infinite strip and in this context edge resonance
occurs for symmetric vibration at frequencies for which only the fundamental eigenmode can
propagate. For a real resonance to occur, however, the propagating mode must be decoupled from
all other modes so that no energy is transported. Thus, the resonance comprises a superposition
of attenuated modes, forming a standing wave at the edge.

It is worth expanding on the methods used in some notable investigations. Before doing so,
however, the model problem and non-dimensionalization used in this paper are introduced, so
that cogent comparisons can be made with the results of other authors. The semi-infinite strip
comprises an elastic slab under plane strain occupying the space, say, x̂> 0, −â ≤ ŷ ≤ â, −∞<

ẑ<∞ (where the ‘hats’ indicate dimensional quantities), and in which the edge at x̂ = 0, −â ≤
y ≤ â is traction free: σ̂xx = σ̂xy = 0 (that is the stresses normal to and parallel to this surface are
zero). The reader is reminded that under the assumption of plain strain the governing equations
reduce to the two-dimensional case with no displacement in the ẑ-direction and with ∂/∂ ẑ = 0. On
assuming harmonic time dependence the components of the displacement vector take the form
�{û(x̂, ŷ) e−iωt̂} and �{v̂(x̂, ŷ) e−iωt̂}, with analogous expressions for the stresses. It is convenient to
non-dimensionalize with respect to time and length scales ω−1 and â such that âx = x̂, ây = ŷ and
âu = û, etc. The strip half-width is thus reduced to unity (see figure 1) and the governing equation
for the non-dimensional displacement vector is:

τ 2∇2u + (1 − τ 2)∇(∇ · u) + β2u = 0, (1.1)

in which u = (u, v), β =ωâ/cp and

τ 2 = 1 − 2ν
2(1 − ν)

= c2
s

c2
p
< 1, (1.2)

where ν is Poisson’s ratio (PR), and cs and cp are the transverse and longitudinal wave speeds
respectively. Note that β is related to the non-dimensional frequency parameter Ω =ωâ/cs

through β = τΩ .
A natural starting point for investigating edge resonance is to express the displacement field

as a superposition of Lamb modes. Indeed, a range of methods based on such modal expansions
have been employed. Torvik [4] used a truncated modal expansion to obtain an approximation
to the resonance frequency for a strip with ν = 0.31. It was found that Ω ≈ 1.483π/2, a result that
was subsequently confirmed using an approach involving both the Lamb modes and a variational
formulation by Auld & Tsau [2]. Gregory & Gladwell [5] used Lamb modal expansions and
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the ‘method of projection’ to determine the distribution of energy among the reflected modes
generated by an incoming fundamental mode. In Appendix 4 of [5] edge resonance is considered,
and it is demonstrated that, when ν = 0.25, this manifests as a very large amplitude for the second
reflected mode occurring when Ω ≈ 1.3/τ . In a contemporary article, Grinchenko & Meleshko [6]
use a Fourier series approach to find that, for ν = 0, the edge resonance occurs whenΩ ≈ 1.26π/2.
All these results are approximate and, as stated by Gregory and Gladwell, they ‘neither prove or
disprove the existence of a true standing mode’.

The first definitive proof was presented by Roitberg et al. [7] in 1998, who by studying an
operator describing harmonic vibrations in a semi-infinite strip, were able to prove the existence
of a real resonance when ν = 0. In 2003, LeClezio et al. [8] presented a comprehensive numerical
and experimental investigation of edge resonance for an aluminium plate. Two further seminal
articles appeared in 2006. Zernov et al. [9] extended the understanding of the edge resonance
phenomena to non-zero PRs. They demonstrated that a symmetry (similar to the internal
symmetry that enables edge resonance at ν = 0) occurs at the frequencies associated with Lamé
modes and that the existence of the edge resonance is a result of the linear dependence of the
Lamb stress modes. A criterion for the linear dependence, based on Gram’s determinant, was
introduced and used to show that a second real resonance occurs when ν ≈ 0.22475. They further
speculate that the real part of the resonant frequency may be expressed in terms of PR as:

�(Ωr) ≈ 151 + 68ν + 50ν2

76
, (1.3)

which agrees well with the results listed above. Also, in 2006, Pagneux [10] undertook a numerical
study of the reflection of an incident Lamb mode at the free edge. He employed a spectral
collocation method, which descretized the problem in the y-direction but left the x dependence in
terms of a system of coupled differential equations. This enables the reflection coefficient of the
fundamental mode to be studied as a function of ν, with resonance being indicated by an abrupt
change over a narrow frequency band. Pagneux presents an empirical formulae for the real and
imaginary parts of the resonant frequency, Ωr, see (6.1), with two real values occurring at ν = 0
and ν = 0.2248. Interest in this and related topics has continued. In 2011, Cès et al. [11] executed
an experimental investigation into the local resonances of a free isotropic elastic plate. More
recently, Davey et al. [12] used a method involving corner modes to show that, at the second
real edge resonance, ν ≈ 0.224798.

In this paper, edge resonance is studied using methods developed by the author for addressing
waveguide problems in structural acoustics. In that context, the author has established that
the eigenmodes for acoustic waveguides with flexible walls are linearly dependent, and that
this property is manifest through certain special sums of the eigenmodes that are identically
zero [13–15]. The key step in deriving such identities is to recognize the link between the
(generalized) orthogonality relation and the derivative of the characteristic equation that defines
permissible wavenumbers. Following that, the derivation hinges on the analysis of the residues
of carefully chosen integrals. These techniques have been applied here to study the eigensystem
underpinning edge resonance.

In §2, the problem is formulated in terms of the Lamb modes and in §3 several exact results
are derived, the most significant of which is an identically zero sum demonstrating the linear
dependence of the stresses. These results are used in §4 to obtain an exact condition for edge
resonance in the form of an infinite determinant which is zero at resonance. In §5, the problem
is reformulated by representing the transverse (shear) edge displacement as a Fourier series in
terms of the Lamé modes. The condition for resonance is then expressed in a ‘root-free’ form,
i.e. independent of the Lamb wavenumbers. The root-free determinant is robust and highly
convergent, enabling the eigensystem to be explored by varying either ν orΩ . In §6, an improved
estimate of the value of PR for the classical real resonance is determined, as is the non-Lamé
frequency corresponding to resonance at ν = 0. The system is further explored with reference to
Pagneux’s empirical formula for complex resonant frequency. It is demonstrated that, for fixed

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 O

ct
ob

er
 2

02
3 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230256

..........................................................

ν, quasi-resonance can occur at more than one frequency and also for negative PR. The quasi-
resonances are found to be associated with one of two distinct families of complex resonances:
real ν with complex frequency or complex ν with real frequency. The situation for higher Lamé
frequencies is also considered. It is observed that there exists a real pure shear resonance for ν = 0
whenΩ = 3π/

√
2, and it is speculated that this form of resonance occurs at every Lamé frequency.

The main findings are summarized in §7.
Finally, since this article relies on the use of eigenfunction expansions of the Lamb modes,

it is worth mentioning the completeness of these functions. In 1994, Kirrmann [16] presented a
proof of completeness for the Lamb modes and this topic has recently been revisited by Akian
[17]. However, in order to use eigenfunction expansions confidently, not only is it necessary that
the Lamb modes are complete but also that the eigenfunction expansions converge point-wise to
the intended function. In appendix A, the results of §3 are used to prove this. A Parseval-type
identity for the resonant edge displacements is also derived in appendix A. This is a powerful
tool for confirming the accuracy of the results presented in the main body of the paper.

2. Formulation in terms of the Lambmodes
In this section, the edge resonance problem is formulated in terms of the Lamb modes. The
non-dimensional longitudinal and transverse displacements, u(x, y) and v(x, y), are governed by
(1.1) and, for waves travelling in the positive x-direction, have separable solutions of the form
U(s, y) eisx and V(s, y) eisx where s is the non-dimensional wavenumber, V(s, −y) = −V(s, y) and
U(s, −y) = U(s, y). The governing equations can thus be re-cast as:

τ 2U′′ − γ 2U + is(1 − τ 2)V′ = 0, γ = (s2 − β2)1/2 (2.1)

and

V′′ − τ 2δ2V + is(1 − τ 2)U′ = 0, δ = (s2 −Ω2)1/2, (2.2)

where the primes indicate differentiation with respect to y and β = τΩ . The stresses σxx(x, y),
σxy(x, y) and σyy(x, y) also have separable solutions analogous to those for u(x, y) and v(x, y).
These will be written as σij(s, y) eisx where i, j take the values 1 and/or 2 and where σ11(s, y) eisx

corresponds to a separable solution of σxx(x, y) etc. The surfaces of the strip are stress free, so along
y = ±1, the boundary conditions are

σ22(s, ±1) = σ12(s, ±1) = 0, (2.3)

where the stresses are related to the displacements through:

σ11(s, y) = isU(s, y) + (1 − 2τ 2)V′(s, y), (2.4)

σ12(s, y) = τ 2(U′(s, y) + isV(s, y)) (2.5)

and σ22(s, y) = V′(s, y) + is(1 − 2τ 2)U(s, y). (2.6)

The eigenfunctions that satisfy the governing equations (2.1) and (2.2) and the boundary
conditions (2.3) are the Lamb modes:

Un(y) = cosh(γny) cosh(δn) −
(

s2
n + δ2

n

2s2
n

)
cosh(γn) cosh(δny) (2.7)

and

Vn(y) = −iγn

sn
sinh(γny) cosh(δn) + i

(
s2

n + δ2
n

2snδn

)
cosh(γn) sinh(δny), (2.8)

where Un(y) = U(sn, y), Vn(y) = V(sn, y). Note that the first condition of (2.3) is automatically
satisfied by U(s, y) and V(s, y), whereas the second is only satisfied when s = ±sn, n = 1, 2, 3, . . .
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where ±sn are the roots of the characteristic equation σ12(s, 1) = 0, that is when:

σ12(s, 1) = 2γ sinh(γ ) cosh(δ) − (s2 + δ2)2

2s2δ
cosh(γ ) sinh(δ) = 0. (2.9)

The wavenumbers sn, n = 1, 2, 3, . . . are either positive real or have positive imaginary part. The
numbering system is such that the real roots come first with the largest real root being denoted
s1. Roots are then numbered with increasing imaginary part, those having equal imaginary parts
are numbered so that that with the largest real part comes first.

The displacements and stresses can be expressed as modal expansions, for example, of the
form

u(x, y) =
∞∑

n=1

AnUn(y) eisnx and v(x, y) =
∞∑

n=1

AnVn(y) eisnx (2.10)

with analogous expressions for the stresses and where An, n = 1, 2, 3, . . . are the modal coefficients.
There are two further conditions to be satisfied: the solution must be stress free at the edge/end
face of the strip (x = 0) and the appropriate conditions are

σxy(0, y) =
∞∑

n=1

Anσ
12
n (y) = 0, −1 ≤ y ≤ 1 (2.11)

and

σxx(0, y) =
∞∑

n=1

Anσ
11
n (y) = 0, −1 ≤ y ≤ 1, (2.12)

where σij(sn, y) = σ
ij
n (y) with i, j take the values 1 and/or 2 as appropriate. Thus, the problem is

fully specified and the challenge is to determine the coefficients An, n = 1, 2, 3, . . . such that (2.11)
and (2.12) are satisfied.

Before moving to the solution, it is worthwhile recollecting that the Lamé modes occur when
cosh(δ) = s2 + δ2 = 0, that is at discrete frequencies Ω = √

2(nL + 1/2)π , nL = 0, 1, 2, . . ., and that
these modes are simple in form, the first one (corresponding to nL = 0) having components
comprising UL(y) = cos(πy/2), VL(y) = −i sin(πy/2), σ 12

L (y) = 0 and σ 11
L (y) = √

2iβτ cos(πy/2) =
−σ 22

L (y). These modes are decoupled from the Lamb modes in the sense that a simple linear
combination of an incoming and outgoing Lamé mode will satisfy σxx(0, y) = σxy(0, y) = 0. Thus, a
Lamé mode can exist without exciting the Lamb modes and are not germane to the edge resonance
phenomena. A similar situation occurs when ν = 0. In this case, sm = β is a real root of the
characteristic equation for all frequencies, and σ 12

m (y) = σ 22
m (y) = Vm(y) = 0 while Um(y) = cos(β)

and σ 11
m (y) = iβ cos(β) (with m = 1 for frequencies below the first cut-on). Clearly, this is not a

Lamé mode, however, the components are nonetheless decoupled from the Lamb modes. Edge
resonance involves a superposition of Lamb modes such that (2.11) and (2.12) are satisfied.
Decoupled propagating modes do not contribute to the phenomena and going forward a prime
on the upper summation limit of a modal expansion will be used to indicate that any Lamé mode
is omitted from the sum. It is not necessary to explicitly exclude the decoupled mode occurring
for ν = 0 as, due to the simplicity of its modal components, this one takes care of itself.

In the next section, some important properties of the eigensystem are presented. These enable
an elegant analysis of the edge resonance problem.

3. Properties of the eigensystem
The eigensystem for the Lamb modes as described in the previous section comprises
two governing equations (2.1) and (2.2) and two boundary conditions (2.3) that link five
eigenfunctions (two displacements and three stresses). Perhaps the best-known property of the
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eigensystem is the bi-orthogonality relation

∫ 1

−1
{σ 11

n (y)Um(y) − σ 12
m (y)Vn(y)} dy = Enδmn, (3.1)

where δmn is the Kronecker delta and

En = iUn(1)
∂σ12

∂s
(sn, 1). (3.2)

Although expression (3.1) is well known, the relationship between En and the derivative of the
characteristic equation (see (2.9)) given by (3.2) is less so. This result, which is crucial to the
following analysis, can be established using a fairly standard approach (although the algebra is
somewhat tedious) and for the sake of brevity the reader is referred to the appendices in [13,18] for
details. In this section, following [13–15], a number of identities are proved. These take the form of
sums of the eigenfunctions that are evaluated in terms of well-known generalized functions. The
identities are significant in that (a) linear dependence of the stresses is represented as a simple sum
and (b) they enable point-wise convergence to be established for the eigenfunction expansions
introduced in §2.

Lemma. The displacements and stresses defined in §2 satisfy the following identities:

2
∞′∑

n=1

Vn(w)σ 12
n (y)

En
= δ(w + y) − δ(w − y) + δ(y + w − 2)

− δ(w − y + 2) − δ(w − y − 2) + δ(y + w + 2), (3.3)

2
∞′∑

n=1

Un(y)σ 11
n (w)

En
+ 2L(w, y) = δ(w + y) + δ(w − y)

+ (4τ 2 − 1){δ(y + w − 2) + δ(y − w − 2)}
− (4τ 2 + 1){δ(w − y + 2) + δ(y + w + 2)} (3.4)

and 2
∞′∑

n=1

snUn(w)σ 12
n (y)

En
= (1 − 2τ 2) i{δ′(w + y) − δ′(w − y) + δ′(y + w − 2)

+ δ′(y + w + 2) − δ′(w − y + 2) − δ′(w − y − 2)}, (3.5)

where −1 ≤ w, y ≤ 1, δ(y) is the Dirac delta function, the prime on the delta function indicates
differentiation with respect to the argument and the prime on the upper summation limit is used to indicate
that, at a Lamé frequency, the Lamé mode is omitted from the sum. The quantity L(w, y) is in general zero
but at a Lamé frequency assumes the form

L(w, y) = cos[(nL + 1/2)πy] cos[(nL + 1/2)πw],

where the integer nL = 0, 1, 2, . . . specifies the Lamé mode.

Proof. Consider identity (3.3), this can be proved by analysing the families of poles of the
integrand of a suitably chosen integral. The integrand is chosen such that its numerator is equal,
or closely related, to the numerator of (3.3) when s = sn (in this case, to aid convergence, the
numerator is equal after differentiation with respect to w) and the denominator gives rise to En

through (3.2) when the relevant residues are calculated. The method is the same as that used in
[13,18]. The appropriate integral is

J(w, y) = 1
2π i

∫∞

−∞
I(s, w, y) ds, −1 ≤ w, y ≤ 1, (3.6)
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where

I(s, w, y) = Z(s, w)σ12(s, y)
U(s, 1)σ12(s, 1)

with
∂Z
∂w

= V(s, w). (3.7)

The path of integration is indented above (below) any poles on the negative (positive) real
axis. Note that the integrand is odd in s, so J(w, y) = 0. Further, on noting that U(s, 1) =
Ω2 cosh(γ ) cosh(δ)/(2s2), it is clear that the integrand has three families of poles defined by: (i)
cosh(γ ) = 0; (ii) cosh(δ) = 0; and (iii) σ12(s, 1) = 0. There are also poles when δ2 = 0, which arise
from the term Z(s, w). Note, however, that the combination Z(s, w)/σ12(s, 1) does not have a pole
corresponding to the Lamé mode. On closing the path of integration with a semi-circular arc, CR,
of radius R, R 	 1, in the upper half plane, it is clear that the sum of the residues of the poles in
the upper half plane is equal to the contribution from the arc. That is, as R → ∞,

1
2π i

∫
CR

I(s, w, y) ds → −2τ 2π i
β2

∞∑
n=0

(
n+1

2

)
cos

[(
n+1

2

)
πw

]
sin

[(
n+1

2

)
πy
]

+
∞∑

n=0

[
2iτ 2(n+1/2)π

β2 − i
(n+1/2)π

]
cos

[(
n+1

2

)
πw

]
sin

[(
n+1

2

)
πy
]

+
∞′∑

n=0

iZn(w)σ 12
n (y)

En
+ F(y), (3.8)

where the sums of residues are presented in the same order as the poles are listed in the text above.
Thus, the first sum corresponds to the residues arising from the poles defined by cosh(γ ) = 0
and the second one from the poles defined by cosh(δ) = 0. Note that, at a Lamé frequency one
term (n = nL) of the second sum vanishes since 2τ 2(nL + 1/2)2π2/β2 = 1, however, the component
parts of this sum are retained at all frequencies as one cancels with the divergent first sum. Note
also, that the residue arising from δ2 = 0 is a function of y only and is denoted by F(y). As it will
be necessary to differentiate with respect to w, this term will not contribute to the final expression.
The contribution from the semi-circular arc is zero unless y = ±1 and w = ±1 simultaneously. For
y = w = 1, I(s, w, y) ∼ i/s as s → ∞. Thus, as R → ∞

1
2π i

∫
CR

I(s, w, y) ds → H(y + w − 2) + H(y − w − 2)

− H(w − y − 2) − H(−y − w − 2), (3.9)

where H(y) is the standard Heaviside function defined with H(0) = 1/2. It follows that

∞′∑
n=0

Zn(w)σ 12
n (y)

En
− iF(y) = 1

π

∞∑
n=0

cos[(n+1/2)πw] sin[(n+1/2)πy]
(n + 1/2)

+ H(y + w − 2)+H(y − w − 2)−H(w − y − 2)−H(−y − w − 2). (3.10)

Identity (3.3) now follows from (3.10) on noting that, for −1 ≤ w, y ≤ 1,

2
π

∞∑
n=0

cos[(n+1/2)πw] sin[(n+1/2)πy]
(n + 1/2)

= 1−H(−y − w)−H(w − y)+H(2 − y − w)

+ H(2 + w − y)−H(2 + y + w)−H(2 + y − w) (3.11)

and differentiating with respect to w.
Expressions (3.4) and (3.5) can be proved using the same method but with appropriate

variations to the numerator of the integrand. For (3.4), the appropriate integrand is

I(s, w, y) = Z(s, y)σ11(s, w)
U(s, 1)σ12(s, 1)

with
∂Z
∂y

= U(s, y), (3.12)
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whereas for (3.5) it is

I(s, w, y) = sZ(s, w)σ12(s, y)
U(s, 1)σ12(s, 1)

with
∂2Z
∂w2 = U(s, w). (3.13)

In both cases, the families of poles are as listed above. These are the only poles in the case of
the integrand displayed in (3.12), whereas for that in (3.13) there are additional poles at both
δ2 = 0 and γ 2 = 0. It is worthwhile pointing out that the integrand (3.12) is such that the sum of
the residues corresponding to the poles defined by cosh(γ ) = 0 has exactly the same form as the
second sum in (3.8) whereas those arising due to the poles defined by cosh(δ) = 0 has exactly the
same form as the first sum in (3.8). However, at a Lamé frequency, there is a subtle difference in
the singularity structure and the divergent sums do not exactly cancel, leaving a contribution that
is the quantity L(w, y) in (3.4). �

Corollary. For −1 ≤ w, y ≤ 1, the Lamb stresses defined in §2 satisfy the following identities:

∞′∑
n=1

σ 22
n (y)σ 12

n (w)
En

= 4τ 2(τ 2 − 1){δ′(w − y) + δ′(w + y) + δ′(y + w − 2)

+ δ′(y + w + 2) − δ′(w − y + 2) − δ′(w − y − 2)} (3.14)

and
∞′∑

n=1

σ 12
n (w)σ 11

n (y)
En

= 0. (3.15)

Proof. These are easily proved by differentiating (3.3) with respect to w and combining the result
with (3.5) with reference to (2.4) and (2.6). �

Expression (3.15) is arguably the most significant result of this paper. It confirms the linear
dependence of the stresses and enables an elegant solution to the problem posed in §2 to be
constructed. Identities (3.3)–(3.5) and (3.13)–(3.15) are true for all values of ν and all frequencies.
Identities (3.3)–(3.5) are related to the completeness of the eigenfunctions, and in appendix A they
are used to prove point-wise convergence for the eigenfunction expansions introduced in §2. All
these identities should be viewed in the context of generalized functions (i.e. valid only under the
integral sign).

4. Solution at edge resonance
In this section, the results derived in §3 are used to construct a solution to the edge resonance
problem described in §2. Key to the solution are the identities (3.3), (3.4) and (3.15). The reader is
reminded that the aim is to determine the coefficients An, n = 1, 2, 3, . . . such that (2.11) and (2.12)
are satisfied. On considering identity (3.15), it is clear that (2.11) and (2.12) are satisfied if

An = 1
En

∫ 1

−1
f (w)σ 12

n (w) dw = 1
En

∫ 1

−1
g(w)σ 11

n (w) dw, (4.1)

where f (w), g(w) are odd, even unknown functions. On multiplying (4.1) by Vn(y) and summing
over n, it is apparent that (3.3) gives

f (y) = −
∞′∑

n=1

AnVn(y) = −v(0, y). (4.2)

Before isolating g(y) by multiplying (4.1) by Un(y) and summing over n, it is worthwhile noting
that, at the first Lamé frequency

∫ 1

−1
σ 11

n (w) cos
(πw

2

)
dw = 0, n = 1, 2, 3, . . .
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and thus an arbitrary constant multiple of cos(πw/2) can be added to g(w) without altering the
modal coefficients An. Equivalently, were g(w) to be expanded as a Fourier series in terms of
cos[(p + 1/2)πw] then the first term (p = 0) would not contribute to the sum. Thus, it can be
assumed that ∫ 1

−1
g(w) cos

(πw
2

)
dw = 0, (4.3)

which confirms that, at the first Lamé frequency, UL(y) = cos(πy/2) is orthogonal to g(y). On
multiplying (4.1) by Un(y), summing over n and using (3.4), it is found that

g(y) =
∞′∑

n=1

AnUn(y) = u(0, y). (4.4)

In appendix A, it is proved that the modal sums converge point-wise to a given function subject to
certain constraints on that function. In particular, it is shown that the modal sum of (4.2) is equal
to f (y) = −v(0, y) provided f ′(±1) = 0 (see (A 9) and (A 10)). It is clear from (4.2) and (4.4) that
the functions −f (y) and g(y), respectively, are the resonant transverse (shear) and longitudinal
displacements and that, from (4.1), at resonance,

∫ 1

−1
{f (w)σ 12

n (w) − g(w)σ 11
n (w)} dw = 0. (4.5)

On using the modal forms for f (w) and g(w) given in (4.2) and (4.4), respectively, expression
(4.5) is seen to be equivalent to a homogeneous system of equations for the coefficients Am, m =
1, 2, 3, . . .. That is,

∞′∑
m=1

AmNmn = 0, (4.6)

where

Nmn =
∫ 1

−1
{Vm(w)σ 12

n (w) + Um(w)σ 11
n (w)} dw (4.7)

and any decoupled modes are excluded.
Expression (4.6) holds at any real or complex resonant frequency. A solution to this

homogeneous system of equations exists only when Det[N ] = 0 where N is the complex
symmetric square matrix with elements Nmn. The modal coefficients An then correspond to the
components of the eigenvector corresponding to the zero eigenvalue. The absolute value of the
determinant and smallest eigenvalue of N are plotted against ν at the first Lamé frequency in
figure 2 using a 25 × 25 truncation. As the absolute value of the determinant is very small for all
values of ν, the smallest eigenvalue gives a clearer indication of the points of interest, of which
there are three. The first is the resonant value which is clear at ν = νr ≈ 0.22479. In addition to
νr, there are two further points of interest, namely νc = 0.0639085096 . . . and ν = 0. It is worth
noting that, for the range 0< ν < νc, in addition to the Lamé mode, two further modes are cut-
on. That is, the wavenumbers s1, s2 and s3 are all real with s1 corresponding to the Lamé mode.
As ν→ 0+, s2 coalesces with the Lamé mode and s3 → 0. As ν→ ν−

c , s2 and s3 coalesce before
simultaneously cutting-off at ν+

c . Thus, for ν > νc the only propagating mode is the Lamé mode
(which is decoupled from the Lamb modes). These observations are easily confirmed by plotting
the characteristic function σ12(s, 1) for values of ν such that 0< ν < νc. Clearly, νc corresponds to
a cut-on, however, the nature of ν = 0 is not obvious. It is worth noting that when two modes
coalesce the eigensystem is degenerate (since En = 0 for at least one value of n) and eigenfunction
expansions of the form (2.10) do not fully represent the displacements or stresses. In general, a
further mode is required to restore completeness, see [18,19]. It follows that, Det[N ] = 0 is not a
valid resonance condition for parameter combinations that give rise to a repeated root of (2.9).
Note further that the system is also degenerate when ν = 0.5 (since τ = 0 when ν = 0.5), this point
is considered no further in this study.

In figure 3, the resonant shear and longitudinal displacements, f (y) and g(y), are plotted for
ν = 0.22479 using 30 terms in the summations in (4.2) and (4.4). Also plotted is the Lamé shear
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Figure 2. The absolute value of (a) Det[N ], (b) the smallest eigenvalue ofN (both plots at the first Lamé frequency and
plotted on a logarithmic scale).
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Figure 3. The resonant displacements for ν = 0.22479,Ω = π/
√
2: (a) shear, (b) longitudinal. Also plotted in (a) is the

Lamé shear displacement sin(πy/2) (red dashes).

displacement sin(πy/2) (dashed) and it is clear that f (y)/f (1) is closely approximated by this
function. It is worth noting that the functions f (y) and g(y) satisfy the following Parseval-type
relationship:

P =
∫ 1

−1

(
4(τ 2 − 1)
Ω2 [f ′(y)]2 + f 2(y) + g2(y)

)
dy = 0. (4.8)

Since these functions exist only at resonance (i.e. when Det[N ] = 0), this expression (which is
derived in appendix A) provides a valuable means for checking the accuracy of the solution. For
the case in hand, |P| = 0.0000110591.

Although elegant, the method outlined above is not optimum for exploring the problem, for
example, by varying frequency. As mentioned, the matrix N is complex symmetric. However, the
diagonal elements increase with increasing n and the determinant appears to tend rapidly to zero
for all ν, with increasing truncation, although numerical tests suggest that the smallest eigenvalue
converges rapidly in the vicinity of the resonance. Further, for each combination of ν and Ω the
wavenumbers sn must be located—a process which can be cumbersome and has the potential to
introduce errors should a root be missed or not be sufficiently accurate. In order to address these
shortcomings, a robust root-free approach is developed in the next section.

5. Root-free formulation
In this section, a solution that is independent of the wavenumbers sn, n = 1, 2, 3, . . . is constructed.
Given that the scaled resonant shear displacement is closely approximated by the function
sin(πy/2), −1 ≤ y ≤ 1, it seems appropriate to use a Fourier sine series (in terms of the Lamé
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modes) to represent the function f (y), that is

f (y) =
∞∑

p=0

bp sin(λpy) and λp =
(

p + 1
2

)
π , −1 ≤ y ≤ 1, (5.1)

where the Fourier coefficients bp, p = 0, 1, 2, . . . are to be determined. However, given (4.3), the
equivalent cosine series is clearly not the most appropriate representation for g(y). Fortunately,
it is possible to express g(y) in terms of a new and more convenient set of eigenfunctions: ψp(y),
p = 1, 2, 3, . . .. On using (4.4) and (4.1), it can be seen that

g(y) =
∞′∑

n=1

1
En

∫ 1

−1
f (w)σ 12

n (w) dwUn(y) (5.2)

and, on using (5.1), it follows that

g(y) = −
∞∑

p=0

bpψp(y) where ψp(y) =
∞′∑

n=1

BnpUn(y). (5.3)

Here, the quantity Bnp is defined by

Bnp = − 1
En

∫ 1

−1
σ 12

n (w) sin(λpw) dw = −8τ 4(−1)p

β2En
Un(1)Θ(sn, p), (5.4)

and, by direct integration (on recollecting that σ 12
n (w) = σ12(sn, w), see (2.5)), the quantityΘ(s, p) is

Θ(s, p) = γ 2s2

γ 2 + λ2
p

− (s2 + δ2)2

4(δ2 + λ2
p)

. (5.5)

Note that, the Lamb modal coefficients An and the Fourier coefficients bp are related through
An = −∑∞

p=0 bpBnp, n = 1, 2, 3, . . . and the definition of Bnp is consistent with

∞′∑
n=1

Bnpσ
11
n (y) = 0 and

∞′∑
n=1

BnpVn(y) = sin(λpy), (5.6)

which can be seen using (3.15) and (3.3), respectively. Thus, this choice of eigenfunctions offers a
significant advantage in that the zero stress condition σxx(0, y) = 0 is automatically enforced.

To proceed, (4.5) is multiplied by Bnq and summed over n to obtain:

∫ 1

−1
f (w)

∞′∑
n=1

Bnqσ
12
n (w) dw = 0. (5.7)

On substituting (5.1) into this expression, it reduces to

∞∑
p=0

bp

∞′∑
n=1

BnpBnqEn = 0, (5.8)

which is a homogeneous system of linear equations for the Fourier coefficients bp, p =
0, 1, 2, . . .. (The reader is reminded that the prime on the upper summation limit indicates that,
at a Lamé frequency, the Lamé mode is omitted from the sum.) Although in its current form this
system is not root-free, it can be cast into root-free form using contour integration. The method
closely follows that outlined in §2. Consider the non-zero integral

Ipq = −16τ 6(−1)p+q

πβ2

∫∞

−∞
Θ(s, p)Θ(s, q)

cosh(γ ) cosh(δ)
s2σ12(s, 1)

ds, (5.9)

where the integrand has been constructed, with reference to (3.2) and on noting that U(s, 1) =
Ω2 cosh(γ ) cosh(δ)/(2s2), such that the residues at s = sn generate the sum

∑∞′
n=1 BnpBnqEn. The

path of integration is indented above (below) any singularities on the negative (positive) real axis.
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The integrand has poles when σ12(s, 1) = 0 but, due to the form of σ12(s, 1), there is no pole at s = 0
(except as ν→ 0 at a Lamé frequency). Further, due to the presence of the term cosh(γ ) cosh(δ)
in the numerator, there are poles at γ 2 + λ2

p = 0 and δ2 + λ2
p = 0 only when p = q. Moreover, the

term cosh(δ) in the numerator ensures that the Lamé modes do not contribute to the sum of
the residues. Likewise, the numerator is zero when ν = 0 and s = β simultaneously, which also
excludes this uncoupled mode from the sum.

To proceed, the contour is closed in the upper half plane and Cauchy’s residue theorem is
employed. On evaluating the residues and noting that the contribution from the arc at infinity is
zero, it is found that

∞′∑
n=1

BnpBnqEn = Ipq + τ 2

Ω2 λp�pδpq, (5.10)

where

�p = 4λp

√
λ2

p − β2 −
(Ω2 − 2λ2

p)2

λp

√
λ2

p −Ω2
(5.11)

and δpq is the Kronecker delta. This expression is valid for all ν and Ω except Ω = λp.
It follows that (5.8) can be written in root-free form as

∞∑
p=0

bp

(
Ipq + τ 2

Ω2 λp�pδpq

)
= 0. (5.12)

Given that Ipp → o(1/p) and �p ∼ 2Ω2(1 − τ 2) + O(1/p) as p → ∞, the diagonal elements of this
matrix expression grow with increasing p, which is obviously undesirable. The conditioning can
be improved by substituting bp = b̃pλ

−1/2
p and dividing by 2τ 2(1 − τ 2)λ1/2

q . Then,

∞∑
p=0

b̃pMpq = 0, (5.13)

where

Mpq = 1
2τ 2(1 − τ 2)

(
Ipq

λ
1/2
p λ

1/2
q

+ τ 2

Ω2�pδpq

)
. (5.14)

The coefficients b̃p are the components of the eigenvector corresponding to the zero eigenvalue
of M (when this exists) where M is the square matrix with elements Mpq. The original
coefficients bn, n, 0, 1, 2, . . . are easily retrieved and normalized such that b0 = 1. The transverse
edge displacement, f (y), is calculated using (5.1) while the longitudinal displacement, g(y), is
obtained using

g(y) = 4τ 4

β2π

∫∞

−∞

∞∑
p=0

bp(−1)pΘ(s, p)
U(s, y)
σ12(s, 1)

ds + Υp cos(λpy), (5.15)

where

Υp = τ 2λp

β2

⎧⎨
⎩
Ω2 − 2λ2

p√
λ2

p −Ω2
+ 2

√
λ2

p − β2

⎫⎬
⎭ . (5.16)

Expression (5.15) is derived by expressing ψp(y) (see (5.3)) in terms of an integral using the same
approach as for (5.10). The path of integration in (5.15) is, as usual, indented above (below)
any singularities on the negative (positive) real axis. It is worth noting that the sum within
the integrand converges rapidly since the Fourier coefficients typically decay from b0 = 1 to
b30 = O(10−7).

6. Numerical results
The root-free matrix M is symmetric and has been arranged such that Mpp → 1 + O(1/p) as
p → ∞, which suggests that the determinant will not converge as the truncation is increased.
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Figure 4. The absolute value of the smallest eigenvalue ofM (logarithmic scale): (a) against ν at the first Lamé frequency (the
red dashed line in the inset graph corresponds to ν = 0.224798037), (b) againstΩ for νr = 0.224798037.

The off-diagonal terms tend to zero as p, q → ∞ such that for p, q> 3 the rows and columns
are diagonally dominant. Further, as the matrix represents a perturbation to the exact resonant
solution, a good approximation is achieved for very small truncations. A consequence is that
the smallest eigenvalue converges very rapidly and is accurate to five figures when the matrix
is truncated to 20 × 20. It is interesting to note that when Ω = π/

√
2 and ν is such that only one

mode is cut-on, the matrix elements are real. This is also the case for ν = 0, provided the frequency
is such that only one mode is cut-on. This is a reflection of the fact that, for these two special cases,
the real mode is decoupled from the other modes. For other combinations of Ω and ν, the matrix
elements are complex.

The major advantages of this formulation are that it is root-free, robust and the smallest
eigenvalue of the truncated matrix M converges rapidly, which makes it a convenient tool with
which to explore the system as Ω or ν varies. However, it is worthwhile noting that expression
(5.12) fails at a Lamé frequency as ν→ 0 and at the isolated values Ω = λp. It can be verified
(using the modal approach) that the latter points are not in any sense exceptional, and so they are
simply avoided in the results presented herein. The accuracy of the root-free approach enables an
improved estimate of the resonant value of PR to be obtained by employing an iterative process
with a 80 × 80 truncation of the matrix. It is found that νr ≈ 0.224798037, which is identical to six
decimal places to the value recently presented in the discussion of [12]. On using this value of νr

with the modal method of §4 with 30 terms |P| = 2.30214 × 10−7, whereas the root-free approach
with the same number of terms gives |P| = 2.20861 × 10−8. In the view of the high accuracy of the
root-free approach, all the figures in this section have been produced by truncating the system to
30 terms. However, this is more than necessary: tests show that the accuracy is just as good with
20 terms. In fact, for 10 terms, |P| = O(10−7) when νr = 0.22479893037, which suggests that good
accuracy can be achieved even with only 10 modes.

(a) Resonance at the first Lamé frequency
In this subsection, some results relating to the classic edge resonance are presented using the
root-free approach. First, in figure 4a, the absolute value of the smallest eigenvalue is plotted
against ν at the first Lamé frequency. Then, the same quantity is plotted for νr = 0.224798037
against frequency Ω in figure 4b. The resonant edge displacements are not plotted since, despite
the improved estimate for νr, the curves do not differ significantly from those shown in figure 3.
In figure 4a, there are (as in figure 2) three points of interest. The first is the real resonance at
νr ≈ 0.224798037. (To confirm this value, the inset graph shows a magnification of the region
around the resonance. The vertical red dashed line corresponds to ν = 0.224798037 and this
clearly coincides with the resonant value.) The cut-on at νc = 0.0639085096 . . . is manifest as a
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Figure 5. The absolute value of the smallest eigenvalue of M (logarithmic scale) (a) against ν atΩ = 1.98733948, (b) for
ν = 0 againstΩ (the red dashed line in the inset graph corresponds toΩ = 1.98733948).

discontinuity in the graph and, as ν→ 0, the smallest eigenvalue appears to tend to 0 which
suggests that there is a second resonance at ν = 0; this point is discussed in §6d. Figure 4b also
features three points of interest. Again the resonant value is clear at Ω = π/

√
2. In addition,

there is a cut-on at Ω ≈ 2.5025 . . .. Below this value of Ω only one mode is cut-on while above it
there are three propagating modes. Just beyond the cut-on (in the regime where three modes are
propagating) a quasi-resonance is apparent at Ω ≈ 2.6251. The nature of the complex resonance
corresponding to this is discussed in §6c, see table 2.

(b) Resonance at zero Poisson’s ratio
Roitberg et al. [7] proved that an edge resonance exists for a real frequency when ν = 0. In
this case, PR is known but not the resonant frequency, although this has been estimated by
Grinchenko & Meleshko [6], Zernov et al. [9] and Pagneux [10]. As previously mentioned, when
ν = 0, s = β is a real root of the characteristic equation for all frequencies and the corresponding
displacements/stresses are decoupled from the Lamb modes. Figure 5b shows the absolute value
of the smallest eigenvalue against Ω . The real resonance is clear at Ω = 1.98733948. (To confirm
this value, the inset graph shows a magnification of the region around the resonance. The vertical
red dashed line corresponds toΩ = 1.98733948.) A cut-on occurs atΩ = 2.15815, beyond this there
are three real modes. As Ω → π/

√
2, the root s = β coalesces with the Lamé mode while the other

real root tends to zero (which interferes with the path of integration in (5.9) and is the reason why
(5.12) fails for this combination of parameters). However, as observed in figure 4a, a real or quasi-
resonance is apparent at or close to Ω = π/

√
2 (this precise point is omitted from the data); this

will be discussed in §6d. Figure 5a shows the same quantity against ν at Ω = 1.98733948. In this
case, in addition to the real resonance at ν = 0, a quasi-resonance can be seen at ν ≈ −0.3156 i.e. in
the auxetic1 range of ν. The nature of the complex resonance corresponding to this is discussed in
§6c, see table 2.

The edge displacements can be calculated for the real resonance at Ω = 1.98733948 using (5.1)
and (5.15) and these are presented in figure 6. It is worth noting that the scaled resonant shear
displacement, f (y)/f (1), is well approximated by sin(πy/2), which further justifies the form of
Fourier series chosen for this displacement. The longitudinal displacement g(y) can be compared
with that presented in [6]. An indication of the accuracy of the resonant frequency is obtained by
evaluating expression (4.8). It is found that |P| = 3.18803 × 10−9. The two resonant longitudinal
displacements shown in figures 3 and 6 look broadly similar, however, the curves cut the y-axis
at different values. Further, expression (4.3) is not satisfied by g(y) for this resonance, instead∫1

−1 g(y) dy = 0 indicating that the non-Lamé decoupled mode U1(y) = cos(β) is orthogonal to this
resonant displacement.

1The classical theory of linear elasticity is considered a reasonable model for auxetic materials provided ν >−1 [20,21].
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Figure 6. The resonant displacements for ν = 0,Ω = 1.98733948: (a) shear, (b) longitudinal. Also plotted in (a) is the Lamé
shear displacement sin(πy/2) (red dashes).

(c) Quasi-resonance
In this section, the root-free formulation of §5 is compared with the empirical expression
presented by Pagneux [10] for complex resonant frequencies, fr. Pagneux suggests that, for
0 ≤ ν < 0.5,

fr = cs

2π ā
[ΩR(ν) − iΩI(ν)] (6.1)

where
ΩR(ν) = 0.652ν2 + 0.898ν + 1.9866 (6.2)

and

ΩI(ν) = ν4(ν − 0.2248)2

0.0313[1 + ((ν − 0.2062)/0.1696)2 + ((ν − 0.2062)/0.2606)4]
. (6.3)

To explore this expression,2 the absolute value of the smallest eigenvalue was plotted against ν at
three real frequencies, evaluated using (6.2) with ν = 0.18, 0.25 and 0.31, see figure 7a. As expected,
quasi-resonances are seen at (or close to) those values of ν used to generate the frequencies.
However, for each frequency there are, in fact, quasi-resonances for two distinct values of ν with
the higher value corresponding to the resonance predicted by (6.2). Further, between the two
resonances a cut-on is apparent. It is clear that the quasi-resonances that occur at lower values of
ν are closer to true resonances, in that the absolute value of the smallest eigenvalue is closer to
zero than for the higher values of ν. Figure 7b shows the absolute value of the smallest eigenvalue
plotted against Ω for ν = 0.18, 0.25 and 0.31. Again, for every value of ν, two quasi-resonances,
separated by a cut-on, are apparent. In this case, it is the first three resonant frequencies that are
predicted by (6.2), these occurring in the frequency regime where one mode is cut-on. The second
group of resonances occur at slightly higher frequencies, in the regime where three modes are
cut-on.

While it is clear that, for every value of ν, there are two families of quasi-resonances, the
precise natures of the families cannot be ascertained from figure 7a,b. Thus, for each quasi-
resonance shown in figure 7b, together with the quasi-resonances shown in figures 4b and 5a,
the corresponding complex resonance has been located iteratively using the root-free approach.
It is found that one family has real ν and complex Ω while the other has complex3 ν and real
Ω . Pagneux’s formula (6.1) addresses resonances with complex frequency, and table 1 presents
a comparison of the values obtained via the two methods: good agreement is seen. In fact, the
frequency generated by (6.1) will enable the Parseval identity, (4.8), to be satisfied to O(10−3),
although that generated via iteration of the root-free approach gives an accuracy of O(10−9).
Table 2 presents the values of ν andΩ for the second family of complex resonances, three of which

2Note that (6.2) is, in fact, very similar to the formula presented by Zernov et al. [9] (see (1.3)).

3Complex PR is not uncommon in the context of visco-elasticity and the imaginary part (or loss factor) is usually negative
[22,23].
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Figure 7. The absolute value of the smallest eigenvalue (logarithmic scale) against (a) ν at three real frequencies, selected
using (6.2) with ν = 0.18, 0.25 and 0.31, (b) againstΩ for ν = 0.18, 0.25 and 0.31.

Table 1. Complex resonances with real ν and complexΩ . Rows two-four relate to quasi-resonances in figure 7b, row one is
additional complex resonance included for comparison.

νr Ωr ΩR − iΩI

−0.3156 1.738729494 − 0.00178203i n.a.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.18 2.16879939 − 0.0000657466i 2.16936 − 0.0000657379i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 2.2521961926 − 0.000074002i 2.25185 − 0.0000742423i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.31 2.328267325 − 0.00150920i 2.32764 − 0.00153014i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Complex resonanceswith complexν and realΩ . Rowone relates to the quasi-resonance in figure 5a, row three relates
to that in figure 4b, all other rows relate to quasi-resonances in figure 7b.

νr Ωr

−0.3156 − 0.0000254477i 1.9873411653
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.18 − 0.0000046335i 2.509747404
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.224798037 − 0.000015964i 2.62446148
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 − 0.00002799048i 2.7027398844
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.31 − 0.00006339643i 2.9646238225
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

are shown in figure 7b, the other two (first and third rows of table 2) are the complex resonances
seen in figures 5a and 4b, respectively. As far as the author is aware, this family of resonances has
not previously been reported and so there are no comparison values.

The real and imaginary parts of the longitudinal edge displacements corresponding to the
parameters in the last row of both tables are presented in figure 8. As in previous cases,
the scaled resonant shear displacements are very close to sin(πy/2) and so are not presented.
The longitudinal displacements, however, show significant variation. That for complex frequency,
figure 8a, is dominated by the real part which is broadly similar to those reported in figures 3 and
6. By contrast, that for complex PR, figure 8b, is dominated by the imaginary part.

The real and imaginary parts of the longitudinal edge displacements corresponding to the
parameters in the first row of both tables are presented in figure 9. (Again, the scaled resonant
shear displacements are both very close to sin(πy/2).) For complex frequency, figure 9a, the
longitudinal displacement is dominated by the real part and again is broadly similar to those
reported in figures 3 and 6. That for complex PR, figure 9b, is dominated by the imaginary
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Figure 8. Real (blue) and imaginary (grey dashes) parts of the longitudinal edge displacements for the parameters in the last
rows of (a) table 1 (ν = 0.31) and (b) table 2 (ν = 0.31 − 0.00006339643i).
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Figure 9. Real (blue) and imaginary (grey dashes) parts of the longitudinal edge displacements for the parameters in the first
rows of (a) table 1 (ν = −0.3156) and (b) table 2 (ν = −0.3156 − 0.0000254477i).

part, however, this curve sits above the y-axis with no intersection, implying longitudinal
extension/contraction of the strip.

(d) Higher Lamé frequencies
The figures against frequency have so far been plotted on the range 0 ≤Ω ≤ 3.5 and a question
that naturally arises is whether any real or quasi-resonances occur at higher frequencies. In
this section, attention is restricted to the Lamé frequencies and a natural starting point for
investigation is the second one, Ω = 3π/

√
2. Figure 10a shows the absolute value of the smallest

eigenvalue plotted against ν at this frequency, and it is clear there is a resonance at or close to
ν = 0. Figure 10b shows the same quantity for ν = 0 plotted against Ω for a far greater range than
shown in figure 5b. The real resonance at Ω = 1.98733948 is apparent and, in addition, there are
real or quasi-resonances at or close to each of the three Lamé frequencies in the range. Analysing
the matrix M at a Lamé frequency is challenging as ν→ 0 because not only do two roots of the
characteristic equation coalesce but a further root tends to zero under these conditions, which
interferes with the path of integration in (5.9). To ameliorate this, the edge displacements at the
second Lamé frequency were calculated near resonance using ν = −1 × 10−9i, these are shown
in figure 11. (Note that, for this scenario, the coefficients bn, n = 0, 1, 2, . . . are normalized such
that b1 = 1.) It is seen that the longitudinal displacement g(y) is effectively zero while the shear
displacement exactly overlies − sin(3πy/2).

The form of f (y) suggests that bp = 0, p �= 1, in which case, from (5.3)

g(y) = b1

∞′∑
n=1

Bn1Un(y),
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Figure 10. The absolute value of the smallest eigenvalue ofM (a) against ν at the second Lamé frequency, (b) againstΩ for
ν = 0 (extended frequency range).
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Figure 11. Real (blue) and imaginary (grey dashes) parts of the edge displacements for ν = 0 at the second Lamé frequency:
(a) shear, (b) longitudinal. Note the shear displacement overlies− sin(3πy/2) (the red dashed curve).

although this expression should be treated with caution as it does not include the additional mode
anticipated to be required at mode coalescence [18,19]. Nevertheless, the modal method of §4 can
be used to determine Bn1. It is found that the Lamé shear displacement, VL(y) = −i sin(3πy/2), is
orthogonal to the Lamb stress components σ 12

n (y), n = 1, 2, 3 . . .. That is, Bn1 = 0, n = 1, 2, 3 . . ., see
(5.4), which, given that bp = 0, p �= 1, suggests that g(y) = 0. This remarkable behaviour could have
been anticipated from the Parseval identity4 (4.8), which is identically zero at all Lamé frequencies
(Ω = √

2(p + 1/2)π , p = 0, 1, 2, . . .) when ν = 0 (i.e. τ 2 = 1/2) provided f (y) = ± sin[(p + 1/2)πy]
and g(y) = 0. It may be concluded that a pure shear resonance of this form is likely to exist when
ν = 0 at every Lamé frequency.

7. Discussion
The eigensystem under-pinning the classical edge resonance phenomenon has been studied and
exact results relating to point-wise convergence (see appendix A) and linear dependence of the
stresses (3.15) have been presented. Building on these, an exact condition for edge resonance, in
the form of an infinite determinant that is zero at resonance, has been derived. This condition has
been cast into a root-free form by reformulating the edge displacements using a Fourier series in
terms of the Lamé modes for the transverse (shear) displacement. This form is robust and highly
convergent, enabling the eigensystem to be explored by varying either ν or Ω . An improved
estimate of the value ν for real resonance (νr = 0.22479893037) has been determined, as has the
non-Lamé frequency corresponding to resonance at ν = 0 (Ωr = 1.98733948).

4Expressions (3.3) and (3.14), which are used to derive the Parseval identity, do not allow for mode coalescence. However, it
is anticipated that f (y) and g(y) are continuous at parameter values that induce mode-coalesence [18] and thus (4.8) should
still be valid.
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Figure 12. The absolute value of the smallest eigenvalue mapped for real ν andΩ . The coordinates of the coloured markers
show the location of various real or complex resonances: yellow triangles are the classical real resonances, green inverted
triangles are real pure shear resonances, red dots are the points (n/20,Ωr(n/20)), n= 1, . . . , 9 whereΩr is the real part
of Pagneux’s frequency formula (6.2), light blue squares are the real parts of ν together with the corresponding frequencies for
the complex resonances presented in table 2.

The system has been explored with reference to Pagneux’s [10] empirical formula for complex
resonant frequency. Further, it has been demonstrated that the quasi-resonances, evident for real
ν and Ω , are associated with two distinct families of complex resonances: real ν with complex
frequency or complex ν with real frequency. The latter family has not, as far as the author is
aware, been previously reported in the literature, possibly because they are observed to occur
in frequency regimes where (when ν is real) more than one real mode exists. The situation for
higher Lamé frequencies has also been considered. It has been observed there exists a pure
shear resonance for ν = 0 when Ω = 3π/

√
2 and it is speculated that this form of resonance

occurs at every Lamé frequency. Indeed, the Parseval identity (4.8) suggests that, when Ω =
(p + 1/2)π/

√
2, edge displacements of the form f (y) = sin(pπy/2), g(y) = 0 are exact solutions to

the edge resonance problem. All these features are illustrated in figure 12 where the absolute
value of the smallest eigenvalue is mapped in the real νΩ-plane (using a 10 × 10 truncation of
the matrix M). The colour scheme is such that the eigenvalue is close to zero in the dark blue
regions of the map. The coordinates of the coloured markers show the location of various real or
complex resonances. That is, the yellow triangles represent the classical real resonances studied
in [7,9,10], the green inverted triangles are real pure shear resonances considered in §6d, the red
dots are the points (n/20,Ωr(n/20)), n = 1, . . . , 9 where Ωr is the real part of Pagneux’s frequency
formula for complex resonance (6.2) and the light blue squares are the real parts of ν together
with the corresponding frequencies for the complex resonances presented in table 2. It is not to
be concluded that these are the only resonances that exist, however, any others must occur in the
dark blue regions of the map.

To conclude, this article has provided a comprehensive analysis of the mathematics
underpinning classical edge resonance. The eigensystem is rich with structure and key to
unlocking this is the relationship between the bi-orthogonality relation (3.1) and the derivative
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of the characteristic equation (2.9). This relationship is well known to exist for a wide range
of problems involving propagation in waveguides and is fundamental to understanding the
physical and phenomenological features of a given problem; in this case, it has enabled fresh
insights into edge resonance. The identities presented in §2 are new results for Lamb modes and
are not restricted to the edge resonance situation. It is anticipated that these will find application
in a range of problems involving the propagation of Lamb modes (or similar modes such as
the Pochhammer modes, [24]). It is interesting to note that edge resonance on a functionally
graded material strip has recently been studied [25]. While the approach presented herein is
not appropriate for that situation, it is anticipated that it can be extended to study a strip
comprising two layers of material, indeed, similar studies have been executed in relation to
acoustic propagation [26]. Another avenue for potential investigation is the double zeros arising
in the characteristic equation (2.9). It is anticipated that the analysis presented by Lawrie et al. [18]
can be extended, enabling a better understanding of this situation.
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Appendix A. Point-wise convergence and the Parseval identity

(a) Point-wise convergence
In this appendix, the results of §3 are used to prove that the Lamb eigenfunction expansions
employed within this article converge point-wise to the intended functions. The functions must
be continuous and differentiable and must satisfy specified conditions at y = ±1.

Theorem. Given that the coefficients

Bn = 1
En

∫ 1

−1
fo(w)Vn(w) dw and Cn = 1

En

∫ 1

−1
fo(w)σ 12

n (w) dw (A 1)

exist, where fo(w) is an odd, differentiable function such that fo(±1) = 0, the two series

∞′∑
n=1

Bnσ
12
n (y) and

∞′∑
n=1

CnVn(y) (A 2)

both converge point-wise to −fo(y) for −1 ≤ y ≤ 1.
Also, for functions fo(w) that are odd, differentiable and satisfy f ′

o(±1) = 0 (whether or not fo(±1) = 0),
the sum

∞′∑
n=1

Cnσ
22
n (y) (A 3)

converges point-wise to 4τ 2(τ 2 − 1)f ′
o(y) for −1 ≤ y ≤ 1 where Cn is defined in (A 1).

Proof. It is sufficient to consider only one of the series as the proofs for the second and third
follow the same steps. Assume that a suitably smooth, odd function fo(y), −1 ≤ y ≤ 1 can be
expressed as an eigenfunction expansion of the form

fo(y) =
∞′∑

n=1

Bnσ
12
n (y). (A 4)
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Let FN(y) denote the sum of the first N terms of this expansion, thus

FN(y) =
N′∑

n=1

Bnσ
12
n (y). (A 5)

Then, on using (A 1), it is found that

N′∑
n=1

Bnσ
12
n (y) =

N′∑
n=1

σ 12
n (y)
En

∫ 1

−1
f (w)Vn(w) dw. (A 6)

On interchanging the orders of summation and integration and letting N → ∞, expression (A 6)
becomes

∞′∑
n=1

Bnσ
12
n (y) =

∫∞

−∞
F (w)

∞′∑
n=1

Vn(w)σ 12
n (y)

En
dw, (A 7)

where F (w) = fo(w)H(1 + w)H(1 − w). Thus, on using (3.3) it is clear that

∞′∑
n=1

Bnσ
12
n (y) = −fo(y), −1 ≤ y ≤ 1. (A 8)

The Heaviside function is defined such that H(0) = 1/2. Thus, the extension of fo(w) given in by
F (y) introduces a multiplicative half when v = ±1. This is, however, ‘balanced’ by the ‘tail’ of
delta functions in (3.3) which pick up contributions only from the points v= ±1 when y = ±1 and
ensure that the overall contribution is zero when y = ±1. Note also that instead of (3.3), (3.14) is
used to prove the last part of the Theorem relating to (A 3). �

Thus, provided the function fo(y) is odd, differentiable and has the property fo(±1) = 0, the two
series of (A 2) converge point-wise to −fo(y). The requirement that fo(±1) = 0 is strictly necessary
for the case in which the expansion is in terms of σ 12

n (y). However, for the expansion in terms
of Vn(y) numerical experimentation suggests that point-wise convergence holds not only when
fo(±1) = 0 but also when f ′

o(±1) = 0 (whether or not fo(±1) �= 0). This can be explained by noting,
from (2.4) and (2.6), that

∞′∑
n=1

Cnσ
22
n (y) = 4τ 2(1 − τ 2)

∞′∑
n=1

CnV′
n(y) + (1 − 2τ 2)

∞′∑
n=1

Cnσ
11
n (y). (A 9)

On comparison with (3.15), it is clear that the second sum on the right-hand side of (A 9) is zero.
Thus, on using the last part of the Theorem relating to (A 3), it is seen that

∞′∑
n=1

CnV′
n(y) = −f ′

o(y), −1 ≤ y ≤ 1 (A 10)

provided f ′
o(±1) = 0. This confirms that the second series of (A 2) converges to −fo(y) for a wider

range of functions than suggested by the theorem.
Analogous results exist for eigenfunction expansions in terms of the even functions σ 11

n (y)
and Un(y). The proof follows that outlined above using (3.4) instead of (3.3) and with −fo(y)
replaced be an even, differentiable function fe(y) such that fe(±1) = 0. It is worth noting that for
the odd functions, point-wise convergence holds at a Lamé frequency even though the Lamé
modes are excluded from the eigenfunction expansions. However, as suggested by the presence
of the term L(w, y) in (3.4), this is not true for the even functions unless fe(y) is orthogonal to the
Lamé mode.
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(b) Parseval identity
In this appendix, expression (4.8) is derived using the alternative form for the governing
equations, that is

∂σ 12
n
∂y

+ isnσ
11
n + β2Un = 0 (A 11)

and
∂σ 22

n
∂y

+ isnσ
12
n + β2Vn = 0. (A 12)

On multiplying (A 12) by An (where An is defined in (4.1)) and summing over n, it is found that

∫ 1

−1
f (w)

∞′∑
n=1

σ 12
n (w)
En

{
∂σ 22

n
∂y

+ isnσ
12
n (y) + β2Vn(y)

}
dw = 0, (A 13)

which on using (3.3) and (3.14) reduces to

4τ 2(1 − τ 2)f ′′(y) + β2f (y) =
∫ 1

−1
f (w)

∞′∑
n=1

isnσ
12
n (w)σ 12

n (y)
En

dw. (A 14)

On recollecting that
∫1

−1 f (w)σ 12
n (w)dw = ∫1

−1 g(w)σ 11
n (w)dw (see (4.1)), this can be expressed as

4τ 2(1 − τ 2)f ′′(y) + β2f (y) =
∫ 1

−1
g(w)

∞′∑
n=1

isnσ
11
n (w)σ 12

n (y)
En

dw

= −
∫ 1

−1
g(w)

∞′∑
n=1

(
∂σ 12

n
∂w

+ β2Un(w)

)
σ 12

n (y)
En

dw, (A 15)

where the second step is obtained using (A 11). On multiplying by f (y) and integrating with
respect to y, it is found

∫ 1

−1
[4τ 2(1 − τ 2)f ′′(y)f (y) + β2f 2(y)] dy = −

∫ 1

−1
g(w)

⎡
⎣∞′∑

n=1

An
∂σ 12

n
∂w

+ β2g(w)

⎤
⎦ dw. (A 16)

Since the remaining sum is zero, the result follows after performing integration by parts on the
first term of the left-hand side and recollecting that β = τΩ .
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