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Abstract

Due to the highly complex and non-linear physical dynamics of lithium-ion batteries, it
is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of
accurate SOC estimation has become a key technology for battery management systems
(BMS). Existing mainstream SOC estimation approaches still suffer from the limitations
of low efficiency and high-power consumption, owing to the great number of samples
required for training. To address these gaps, this paper proposes a memristor-based denois-
ing autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC
estimation of lithium-ion batteries. Specifically, the DAE circuit module is designed to
extract useful feature representation with strong generalization and noise immunity. Then,
the gated recurrent unit (GRU) circuit module is designed to learn the long-term depen-
dencies between high-dimensional input and output data. The overall performance is
evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and
45◦C, respectively. Compared with the current state-of-the-art methods, the entire scheme
shows its superior performance in accuracy, robustness, and operation cost (referring to
time cost).

1 INTRODUCTION

Considering the root of the climate change may be the high-
mass carbon emissions, it is necessary to develop clean and
efficient energy devices and systems. Lithium-ion battery with
eco-friendly nature, fast charging efficiency, long service life,
low self-discharge rate, and low maintenance cost has been
regarded as a potential remedy to relieve climate change [1].
So far, lithium-ion batteries have been widely used in electric
vehicles (EV) and energy storage power stations [2]. The state
of charge (SOC) representing the ratio between the available
capacity and rated capacity is an important parameter to evalu-
ate the performance of batteries used as energy storage devices
[3]. Since the lithium-ion battery is a highly time-invariant, non-
linear, and complex electrochemical system, direct measurement

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

of SOC is difficult and challenging. How to design a vehicle-
mounted computing system that enables fast and accurate SOC
estimation is gradually becoming a key technology in low carbon
energy systems [4].

Currently, SOC estimation algorithms can be roughly divided
into three sorts, that is, traditional estimation methods, control
theory-based (CTB) methods, and the data driven-based (DDB)
methods [4].

1. For traditional methods, they are easy to implement, but
are susceptible to the interference of temperature and noise,
leading to a large error in the final estimation [5–7].

2. For CTB methods, considering that the non-linear properties
of the battery are difficult to characterize, the model-
building process is relatively complex and time-consuming.
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Meanwhile, the CTB method is always designed for a specific
battery model, which means this kind of estimation method
is lack of universality, especially for different lithium-ion
batteries [8–10].

3. For DDB methods, the lithium-ion battery is considered
a black box, and it is possible to achieve the estimation
by analyzing the non-linear relationship between the bat-
tery measurement data (e.g. temperature, voltage, current)
and SOC without considering both the internal mechanism
and battery type [11–20]. Theoretically, SOC estimation is
a time series prediction problem with previous and cur-
rent measurement data, recurrent neural networks (RNNs)
and their variants, for example, the long short-term mem-
ory (LSTM) and gated recurrent unit (GRU) neural networks
have been widely used to deal with this estimation task
[11–13]. For example, Xi et al. [11] proposed a time-delayed
RNN for SOC estimation. Yang et al. [12] investigated
a LSTM network with multiple hidden layers to estimate
SOC of lithium-ion batteries and verified its superior per-
formance. Jiao et al. [13] employed a GRU network to
estimate SOC and optimized the weights of the network
with a momentum gradient method. However, these single
network-based methods are susceptible to noise interference
and fail to achieve stronger robustness [14]. To address this
issue, a lot of hybrid intelligent estimation methods have
been developed [14–20]. While almost all these methods are
pure software-based methods, high estimation accuracy also
brings new challenges, that is, the high computational burden
and high latency [20]. Hence, exploring the hardware imple-
mentation for accurate and time-saving EV SOC estimation
is an effective way.

Nanoscale memristor is a potential candidate for address-
ing the research gaps in computational complexity and energy
consumption, due to their excellent characteristics such as low
power consumption, non-volatility, fast resistance switching,
compatibility with Complementary Metal Oxide Semiconductor
(CMOS), and the ability of performing computational opera-
tions in parallel with extremely high efficiency in the crossbar
array [21–23]. In this paper, we present a memristor-based
hybrid neural network to perform the EV SOC estimation task,
aiming to deal with the noise interference issue (emerging in
traditional methods) and high computational cost (emerging
in DDB methods). The main contributions of this paper are
summarized below:

1. The circuit design scheme of denoising autoencoder
(DAE) and GRU network are both proposed using the
nanoscale memristors. The former is used to deal with
the noise interference issue, the latter is responsible
for sequence estimation. Notably, it is the first attempt
to use the hardware-based GRU network for sequence
estimation.

2. Different with the pure software-based methods, a hybrid
hardware circuit framework (MDGN), containing the DAE
circuit model, GRU circuit module, and other necessary
peripheral circuit module, is proposed to perform the accu-

rate and fast EV SOC estimation task under different
temperature and working conditions.

3. This work integrates nanoscience, materials science, and
life science, which provides a good reference for future
interdisciplinary research, especially in lower carbon energy
systems.

The rest of the paper is organized as follows. Section 2
briefly introduces the memristor background and details the
mathematical and PSPICE models of Ag/TiOx nanobelt/Ti
memristor. Section 3 provides the hybrid network topology
composed by DAE and GRU network. The corresponding
hybrid hardware circuit framework is proposed in Section 4.
In Section 5, a series of contrast experiments with comprehen-
sive analysis are executed to demonstrate the superiority of the
proposed MDGN in SOC estimation. The limitations of the
proposed method and directions for future improvements are
discussed in Section 6. Finally, Section 7 summarizes the whole
work.

2 MEMRISTOR BACKGROUND

Memristor was first introduced by Professor Chua in 1971 and
physically implemented by Hewlett-Packard Laboratory in 2008.
This nanoscale device is a passive two-terminal circuit compo-
nent, representing the relationship between the charge q and the
magnetic flux φ, with the following equation [24].

M =
d𝜑

dq
(1)

where M denotes the resistance value of the memristor.
The successful fabrication of the memristor has aroused

widespread interest from research scholars worldwide due to
its superior non-volatility properties, ultra-low power consump-
tion, and ability to be compatible with CMOS. So far, numerous
different types of memristor models have been developed
[25–27], such as HP memristor, spintronic memristor, voltage
threshold adaptive memristor etc.

In this paper, we use the Ag/TiOx nanobelt/Ti memris-
tor [27]. This device exhibits non-standard faradic capacitance
(NFC), battery-like capacitance (BLC), and resistive switch-
ing (RS) characteristics at ambient humidity of 0%, 35%–45%,
and 95%–100%, respectively. Notably, the relative humidity of
the Ag/TiOx nanobelt/Ti memristor discussed in this paper
is maintained at 95% to 100%. According to [27], the V–I

relationship of the Ag/TiOx nanobelt/Ti memristor can be
mathematically expressed by

i =

{
a1 ⋅ x ⋅ exp(b1 ⋅ x3 + 1) ⋅ sinh(c1 ⋅ (v − vth1)3

+ d1), v < 0
a2 ⋅ x ⋅ exp(b2 ⋅ x3 + 1) ⋅ sinh(c2 ⋅ (v − vth2)3

+ d2), v > 0
(2)

where i is the current passing through the memristor, v is the
applied voltage, x is the state variable representing the electrical
conductivity of the memristor, a1, a2, b1, b2, c1, c2, d1, and d2 are
all the fitting parameters, and sinh(⋅) is a non-linear function.
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FIGURE 1 V–I characteristics of the Ag/TiOx nanobelt/Ti memristor.

Further, the dynamic equation for state variable x(t) is
expressed as follows:

dx

dt
= h(v) ⋅ f (x ) (3)

h(v) =

⎧⎪⎨⎪⎩
kL ⋅ (v − vth1)𝛼L , v < vth1 < 0

0, vth1 ≤ v ≤ vth2

kH ⋅ (v − vth2)𝛼H , 0 < vth2 < v

(4)

f (x ) =

⎧⎪⎨⎪⎩
fL(x ) = exp

(
− exp

(
aL−x

wc

))
fH(x ) = exp

(
− exp

(
x−aH

wc

)) (5)

where f(x) denotes the window function, it is used to keep the
state variable x in the range of [xmin, xmax]. When x = xmin, the
resistance of the memristor is RH; Conversely, when x = xmax,
the resistance of the memristor is RL. vth1 and vth2 are the neg-
ative and positive threshold voltages, respectively. kL, kH, αL,
αH, aL, aH, and wc are the fitting parameters of the memristor
model.

Figure 1 demonstrates the V–I curve of the Ag/TiOx

nanobelt/Ti memristor. The specific device parameters can be
found in the Appendix Table 1 (i.e. the PSPICE circuit model).
Notably, the grey solid line is the fitting result generated by
Equations (2) to (5), and the purple dot line is the measured
V-I values of the real Ag/TiOx nanobelt/Ti memristor. It can
be seen that the memristor behaves RS characteristics and the
current has asymmetry at positive and negative voltages.

3 NETWORK TOPOLOGIES

Figure 2 depicts the overview of the proposed hybrid neural
network framework.

From Figure 2, the entire network framework is composed by
DAE and GRU connected in a cascaded configuration. Specif-

FIGURE 2 DAE-GRU neural network framework. DAE, denoising
autoencoder; GRU, gated recurrent unit.

ically, after training the DAE network, the output layer, which
implements the decoding operation, is removed. Then the hid-
den vector values are transferred to the input layer of the GRU
network for subsequent training and testing.

To facilitate the comprehension of the network topology
design, we describe it using two modules, that is, DAE mod-
ule and GRU module, which implements the denoising and
estimation functions, respectively.

3.1 DAE neural network

By adding a noise to the input layer of the autoencoder (AE)
neural network, DAE is designed to prevent overfitting problem
in AEs and deal with the complete conditions [28]. Meanwhile,
DAE prevents replication of inputs to outputs robotically and
forces it learn efficient representations of data.

The DAE neural network consisting of three layers (i.e. the
input layer, hidden layer, and output layer) mainly performs two
operations, that is, the encoding and decoding operation. The
structure of the DAE neural network is shown in Figure 3.

From Figure 3, the vector xnoise is considered the input layer
data after adding some noise to the original data xin. Subse-
quently, an encoding operation is performed on the input layer
to obtain h. The final output z is derived by performing a decod-
ing to the hidden layer. The specific operation mechanism of
DAE can be described by

xnoise = A ⋅ xin (6)

h = f (Wencoder ⋅ xnoise + bencoder ) (7)

z = g(Wdecoder ⋅ h + bdecoder ) (8)
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WANG ET AL. 375

FIGURE 3 DAE neural network structure. DAE, denoising autoencoder.

where A represents a random matrix with only elements 0 and 1.
Wencoder, Wdecoder, bencoder, and bdecoder are all network param-
eters for the implementation of encoder and decoder. Both f(⋅)
and g(⋅) act as non-linear activation functions.

The target of DAE is to recover the corrupted data to the
original data, that is, the final output result z should be as close
as possible to the original data xin. Therefore, the loss function
can be obtained by

l =
1
n

n∑
i=1

‖‖‖z(i ) − x
(i )
in
‖‖‖

2

(9)

where l is the error in the training process of the DAE network,
and n denotes the length of the training samples.

3.2 GRU neural network

Traditional RNNs suffer from the gradient explosion or disap-
pearance problem, which makes them fail to learn long-term
dependencies [29]. Aiming to solve such gradient problems, the
GRU network with a simple structure, few parameters, and fast
execution is selected in this work.

As shown on the left of Figure 4, the GRU neural network
is usually handled by a hidden layer used to preserve histori-
cal information for time series problems. The refined structure
of hidden layer units is shown in the upper right of Figure 4.
GRU has two gates, that is, the update gate and the reset gate, to
store and filter information. With the update gate the amount of
information available to pass from the previous state to the next
state is controlled. A larger value of the update gate means that
there is more input information to be obtained. The reset gate
determines how much of the previous information needs to be
ignored. A smaller value of the reset gate indicates that more
information from the previous state remains forgotten. The
schematic diagram of a GRU cell is shown in the bottom right
of Figure 4; its internal operating mechanism is mathematically
expressed by

FIGURE 4 GRU neural network structure. GRU, gated recurrent unit.

[
rt

zt

]
= 𝜎

⎛⎜⎜⎜⎝
[

Wr Ur br

Wz Uz bz

]⎡⎢⎢⎢⎣
xt

ht−1

1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ (10)

at = tanh
(
Whxt + Uh

[
ht−1 ⊙ rt ] + bh

)
(11)

ht =
[
1 − zt ] ⊙ ht−1 + zt ⊙ at (12)

where xt denotes the input vector, rt and zt are the values of
the update gate and reset gate respectively. ht and ht-1 are the
output of the hidden layer at time steps t and t−1. at denotes
the candidate state. W (Wr, Wz, Wh), U (Ur, Uz, Uh), and b (br,
bz, and bh) are all the network parameters, which represent the
weight values and biases values. tanh(⋅) and σ(⋅) represent the
hyperbolic tangent function and sigmoid function, respectively,
and ⊙ is the elemental multiplication, known as Hadamard
Product.

4 CIRCUIT DESIGN OF DAE-GRU
HYBRID NETWORK

In this section, the specific hardware circuit design of the hybrid
DAE-GRU network (i.e. MDGN) is proposed. To illustrate
the entire framework, two main components, that is, DAE and
GRU circuit module, are described below.

4.1 Circuit design of DAE module

Figure 5 describes the circuit design of the memristor-based
DAE module. The entire DAE neural network circuit consists
of two main subcircuits for performing matrix vector multipli-
cation and activation function, respectively. Since the inputs and
outputs of the designed circuit are all voltages, mathematical
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376 WANG ET AL.

FIGURE 5 Circuit design of memristor-based
DAE neural network. DAE, denoising autoencoder.

Equations (7) and (8) representing the DAE module are
rewritten in the following form:

Vh = 𝜎(W1 ⋅ Vx +Vb1) (13)

Vz = 𝜎(W2 ⋅ Vh +Vb2) (14)

where Vx, Vh and Vz are the voltage vectors corresponding to
the vectors xnoise, h and z, respectively. The matrices W1 and
W2 match Wencoder and Wdecoder, respectively. Vb1 and Vb2 are
the voltage forms of biases bencoder and bdecoder.

Specifically, the elements Vh , j that make up the voltage vector
Vh in Equation (13) are given by

Vh, j = 𝜎

(
n∑

i=1

m∑
j=1

(
Gi,2 j − Gi,2 j−1

)
⋅Vx,i +Vb1

)
(15)

where Gi ,2 j and Gi ,2 j-1 are the conductance of the adjacent
column memristors. Vx ,i denote the elements composing the
vector Vx. Similarly, Equation (14) can also be expressed in this
form.

W1 & b1 and W2 & b2 are represented by the one transis-
tor one memristor (1T1M) crossbar structure. Positive, zero,
and negative weights (e.g. W1 and W2) are achieved using the
conductance difference between two adjacent columns of mem-
ristors in the crossbar array. In particular, the 1T1M crossbar
array can solve the current leakage problem of the crossbar array
constructed by only memristors, thus improving the accuracy of
matrix vector multiplication. The regular resistors Ra1 and Ra2
with equal resistance values are set to achieve W1⋅Vx+Vb1 and
W2⋅Vh+Vb2.

In this paper, the sigmoid activation functions are chosen
for the f(⋅) and g(⋅) functions in the DAE neural net-
work. As shown in the bottom left corner of Figure 5,
the sigmoid function circuit consists of five Metal Oxide
Semiconductor Field Effect Transistor (MOSFET) transistors
(two N-Metal-Oxide-Semiconductor (NMOS) transistors, three
P-Metal-Oxide-Semiconductor (PMOS) transistors) and two
regular resistors. The lengths of the transistors are all 0.18 μm,
and the widths of T1, T2, T3, T4, and T5 are 1.8 , 1.8, 10, 0.9, and
0.9 μm. The regular resistors Rb1 and Rb2 have resistances of 5
and 25 kΩ, respectively.

4.2 Circuit design of GRU module

Based on Equations (10) to (12), the circuit design of the GRU
module is supposed to contain matrix vector multiplication
circuit, sigmoid activation function circuit, hyperbolic tangent
activation function circuit, and several basic arithmetic circuit
modules that can implement addition, subtraction, and multi-
plication. The memristor-based circuit for a GRU cell is shown
in Figure 6.

The circuit for implementing the matrix vector multiplica-
tion operation in Equations (10) and (11) is along the same
lines as the above-mentioned matrix vector multiplication cir-
cuit. Notably, the GRU module circuit contains six memristor
crossbar arrays that are divided into representative network
parameters Wr, Wz, Wh, Ur & br, Uz & bz, and Uh & bh.

In this work, the sigmoid activation function circuit can be
derived from the activation function circuit in the DAE module.
Meanwhile, the hyperbolic tangent activation function circuit
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WANG ET AL. 377

FIGURE 6 Circuit design of memristor-based GRU cell. GRU, gated recurrent unit.

is designed with the specific configuration of four transistors,
one voltage regulator diode, and one memristor. Also, the
corresponding circuit parameters Vdd1, Vdd2, Vp1, Vp2, Vn1,
Vn2, Vss1, Vss2 are set as 1.3, 1.3, 0.4, 0.5, −1.2, −0.4, −0.5,
−1.1 V, respectively.

In the basic circuit arithmetic modules, the addition and
subtraction circuits are mainly realized by the joint action
of operational amplifiers and regular resistors, ensuring that
Rc1 = Rc2 = Rc3 = Rc4 = 0.5Rc5. The implementation
of element-wise multiplication operations usually requires the
additional CMOS transistors. Since the output values of both
the tanh function and the sigmoid function will be served as
the input to the multiplier, the input values are either positive or
negative. A four-quadrant multiplier is preferred for the inter-
element multiplication operation. Set the width and length of
transistors M1, M2, M3, M4 to 1.6/0.18 μm, M5, M6, M7, M8 to
2.0/0.2 μm, the resistance value of resistors Rd1∼Rd6 to 20 kΩ,
and Rd7 to 10 kΩ.

Therefore, according to the designed circuit, the output volt-
age of the reset gate, update gate, and the whole GRU cell can
be expressed as the following mathematical equation:

Vt
r = 𝜎

(
Wr ⋅ Vt

x + Ur ⋅ Vt−1
h

+Vb,r

)
(16)

Vt
z = 𝜎

(
Wz ⋅ Vt

x + Uz ⋅ Vt−1
h

+Vb,z

)
(17)

Vt
a = tanh

(
Wh ⋅ Vt

x + Uh ⋅
(
Vt−1

h
⊙ Vt

r

)
+Vb,h

)
(18)

Vt
h
=
(
1 − Vt

z

)
⊙ Vt−1

h
+ Vt

z ⊙ Vt
a (19)

where Vx
t, Vr

t, Vz
t, Va

t, Vh
t, and Vh

t-1 represent the voltage vec-
tors corresponding to the vectors xt, rt, zt, at, ht, and ht-1 in

TABLE 1 Parameters of Samsung 18650-20R battery.

Nominal

capacity

Nominal

voltage Weight

Maximum

charge

voltage

Minimum

discharge

voltage

2000 mAh 3.6 V 45.0 g 4.2 V 2.5 V

Equations (10) to (12), respectively. Vb ,r, Vb ,z, and Vb ,h are the
voltage forms of biases br, bz, and bh, respectively.

5 APPLICATION IN SOC ESTIMATION

To evaluate the effectiveness and practicality of the proposed
method MDGN, we utilize it to estimate the remaining charge
of the lithium-ion battery and conduct a series of comparison
tests with the current state-of-the-art methods.

5.1 Experiment environment

The proposed memristor-based DAE-GRU neural network is
used for forward computation and the error back-propagation
operation is performed on a desktop workstation with the
Intel Core i7 10700K processor with 32.0GB RAM running
PyCharm 2022.

5.2 Dataset and parameter setting

The public lithium-ion battery dataset, namely Center for
Advanced Life Cycle Engineering (CALCE), collected from the
Samsung 18650-20R batteries is used in this part [30]. The
specific battery parameters are shown in Table 1.
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378 WANG ET AL.

TABLE 2 Train data and test data allocation during the tests.

Tests Training data Test data

Test 1 US06 FUDS

BJDST

DST

Test 2 BJDST US06

DST

FUDS

Test 3 DST BJDST

FUDS

US06

Test 4 FUDS DST

US06

BJDST

The dataset involves the voltage and current data at ambient
temperatures of 0, 25, and 45◦C in BJDST, FUDS, US06, and
DST driving cycles. We have taken three conditions in four driv-
ing cycles as training data and one as test data for a total of four
(C3

4) tests, and the specific data allocation during the experiment
is described in Table 2. Notably, during the battery discharge
process, there is a significant downward trend in SOC if it falls
below 80%. For effective alleviation of mileage anxiety, the dis-
charge data with the initial SOC of 80% are chosen in the tests.

Before applying the designed DAE-GRU neural network cir-
cuit via memristor circuits to SOC estimation, the numbers of
nodes in the input, hidden, and output layers of the DAE and
GRU neural networks are set to 3, 30, 3, 30, 150, and 1, respec-
tively. Then the forward computation-related circuit parameters
are required to be set. To be more specific, the scan voltage, scan
rate, read voltage, word line voltage, and bit line voltage are set
to ± 3 V, 0.05 V/s, 0.5 V, 3 V, and 1.7 V, respectively. The error
back-propagation process depends on the Adam optimizer with
an initial learning rate of 0.0001. And training epochs of DAE
network and GRU are set to 200 and 500, respectively.

5.3 Experimental results

For the purpose of evaluating the accuracy of the proposed
method MDGN for SOC estimation, we conducted some
comparative experiments with seven SOC estimation meth-
ods (i.e. GRU, LSTM, Standard RNN, AE-GRU, DAE-GRU,
LSTM-attention, and LSTM-attention-Kalman) [11–13, 16–18].

Figure 7 shows the SOC estimation results with different
methods at different ambient temperatures (0, 25, and 45◦C)
and different tests (Test 1, Test 2, Test 3, and Test 4), with
embedded plots showing the SOC estimation errors. The valid-
ity of the proposed MDGN is confirmed by comparing the esti-
mated SOC values (purple solid line) and the actual SOC values
(grey solid line). From Figure 7, the proposed MDGN and the
seven compared methods are all affected by the external ambi-
ent temperature in SOC estimation, and the impact trends are

the same. At low temperature (0◦C), the SOC estimation curves
slightly shift the real SOC curve, whereas at high temperature
(45◦C), the estimated curves overlap more with the real curve.

In addition, it is difficult to distinguish the performance of
these different methods from the human visual system due to
the almost overlapping prediction curves. Thus, we introduced
the root mean square error (RMSE) and mean absolute error
(MAE) [31, 32] as SOC estimation metrics to judge the robust-
ness and accuracy, respectively. The mathematical expressions
of RMSE and MAE are described as follows:

RMSE =
1
T

√√√√ T∑
t=1

(soct − soc′t ) (20)

MAE =
1
T

T∑
t=1

||soct − soc′t || (21)

where T is the total number of SOC samples contained in the
test data. A lower RMSE signifies more robustness as the pro-
posed estimation method is less affected by abnormal values.
Besides the smaller value of MAE indicates the more accurate
estimation performance.

Table 3 lists RMSE, MAE, training time, and test time of
various SOC estimation methods in the above comparison
experiments. It can be seen from Table 3 that the accuracy
of SOC estimation has a strong correlation with the ambient
temperature, which is especially remarkable at low ambient tem-
peratures, as manifested by the relatively high RMSE and MAE
values at 0◦C. In addition, the LSTM-attention-Kalman method
showed the best estimation accuracy and robust performance
in all the comparison experiments for different driving condi-
tions at an ambient temperature of 45◦C. The proposed MDGN
shows the best performance in terms of SOC estimation accu-
racy and robustness under different driving conditions at a low
temperature environment of 0◦C. Among these SOC estimation
methods at ambient temperature (25◦C) the LSTM-attention-
Kalman method and the proposed method perform better, but
the proposed method has a great advantage over the LSTM-
attention-Kalman method in terms of training time, which is
reduced by 2911.73 s. There are also LSTM-attention method
and DAE-GRU method that perform well in terms of accu-
racy and robustness. The table also shows that all estimation
methods performed best in Test 1, also known as more accurate
battery SOC estimation for FUDS driving conditions. Besides,
the proposed method based on the memristor hardware imple-
mentation of the neural network greatly reduces the time cost
of SOC estimation, compared to other methods.

Table 4 lists the power consumption and the number of each
submodule, where the Metal Oxide Semiconductor Field Effect
Transistor (DAC) module is implemented to convert the data
in CALCE to the specific circuit voltages. In addition, the total
power consumption of the proposed MDGN circuit is listed
in the last row of Table 4. Typically in integrated circuits, resis-
tors, capacitors, transistors, and memristors are in the micron
size range. The power consumption for the 1-bit calculation is
25.07 mW when the read voltage is 0.5 V and 50 ns.
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WANG ET AL. 379

FIGURE 7 SOC estimation results and error results under different tests at different ambient temperatures (a) to (c) results of Test 1 at 0, 25, and 45◦C, (d) and
(e) results of Test 2 at 0, 25, and 45◦C, (g) to (i) results of Test 3 at 0, 25, and 45◦C, (j) to (l) results of Test 4 at 0, 25, and 45◦C. SOC, state of charge.

5.4 Experimental analysis

To minimize the effects of ambient temperature and datasets
(e.g. training data and test data) on the SOC estimation error,
Test 2 is chosen for the following tests and conducted at
25◦C.

1. SOC estimation at different training epochs

During the training process, the choice of different epochs
can have an impact on the accuracy of SOC estimation. The
epoch indicates the number of times the dataset is trained. Mul-
tiple training of the network can optimize the model and thus
improve the prediction effectiveness, while too many training
epochs increase the training time.

Table 5 collects the comparison results of RMSE, MAE,
training time, and test time of our proposed method under
different epochs. When the epochs of DAE and GRU are

small (less than 200), the RMSE and MAE of the estimated
SOC results are high and the network is not sufficiently fitted.
When the number of training DAE is certain, the accuracy and
robustness of the network improve with the increase of GRU
epoch. While too many epochs of GRU may lead to overfitting
issue, and finally degrade the estimation performance. When the
epoch of GRU is certain, RMSE and MAE show a significant
decrease first and then fluctuate continuously with the increase
of DAE epoch. In addition, the increase of training epochs also
means the increase of the training time. In these experiments,
the estimation performance is optimal when the epochs of DAE
and GRU are set to 200 and 500, respectively.

1. Anti-noise analysis

Considering that noise can have an effect on the accuracy of
SOC estimation methods, we discuss the noise immunity of the
open-circuit voltage method [6], the ampere-hour integration
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TABLE 3 Performance evaluation of different methods under different tests.

RMSE (%) MAE (%)

Methods

Temp.

(◦C) Test 1 Test 2 Test 3 Test 4 Avg. Test 1 Test 2 Test 3 Test 4 Avg.

Training

time/s

Test

time/s

The

proposed

MDGN

0 2.37 2.75 2.78 2.86 2.69 1.98 2.11 2.15 2.41 2.16 662.63 1.22

25 0.96 0.94 1.56 1.38 1.21 0.73 0.81 1.29 1.07 0.98

45 0.92 0.54 0.59 1.08 0.78 0.71 0.41 0.45 0.77 0.59

GRU 0 2.98 3.58 3.59 3.66 3.45 2.42 2.96 2.99 3.07 2.86 2274.49 1.16

25 1.68 2.21 2.26 2.23 2.10 1.32 1.83 1.85 1.43 1.61

45 1.30 0.83 1.12 1.94 1.30 1.02 0.66 0.89 1.46 1.26

LSTM 0 3.52 3.63 3.69 3.75 3.65 2.88 3.26 3.26 3.19 2.55 2732.56 1.28

25 2.36 2.53 2.54 3.37 2.70 1.82 2.25 2.25 1.85 2.04

45 1.54 0.95 1.28 2.17 1.49 1.21 0.68 1.11 1.77 1.19

Standard
RNN

0 4.29 4.40 4.45 4.02 4.29 3.81 3.93 3.96 3.52 3.81 3003.19 1.53

25 2.81 2.72 2.80 1.73 2.52 2.56 2.25 2.31 0.67 1.95

45 2.02 0.97 1.93 2.56 1.87 1.85 0.76 1.46 1.97 1.51

AE-GRU 0 3.27 4.33 4.36 3.49 3.86 2.92 2.86 2.86 2.88 2.88 2535.37 1.66

25 2.31 2.01 2.06 1.56 1.97 1.98 1.66 1.66 1.36 1.67

45 1.05 0.74 0.91 1.18 0.97 0.81 0.60 0.70 0.70 0.71

DAE-GRU 0 2.85 3.86 4.84 3.36 3.73 2.48 3.57 2.35 2.83 2.68 2462.62 1.70

25 1.07 1.54 1.92 1.32 1.46 1.31 0.90 1.65 1.08 1.24

45 0.91 0.65 1.02 0.91 0.87 0.71 0.45 0.80 0.92 0.72

LSTM-
attention

0 3.07 3.64 3.67 3.23 3.40 2.45 3.56 3.37 2.78 3.04 3359.13 1.59

25 1.41 1.68 1.71 1.47 1.57 1.12 1.43 1.43 1.27 1.31

45 1.33 0.57 0.99 1.18 1.02 1.16 0.44 0.79 0.85 0.81

LSTM-
attention-
Kalman

0 2.07 3.37 3.12 3.03 2.90 1.68 3.33 2.74 2.53 2.57 3574.36 1.73

25 1.01 1.05 1.05 1.47 1.15 0.72 0.87 0.87 1.53 1.00

45 0.73 0.44 0.73 0.97 0.72 0.53 0.35 0.57 0.69 0.54

Note: The time (training time and test time) is an average result of different tests at different temperatures.
AE-GRU, autoencoder-gated recurrent unit; DAE, denoising autoencoder; GRU, gated recurrent unit; LSTM, long short-term memory; MDGN, memristor-based denoising autoencoder
and gated recurrent unit network; RNN, recurrent neural networks.

method [7], and the proposed method MDGN by adding noise
to the input signal. Figure 8 shows the MAE results of different
noise variances for these three estimation methods. It can be
seen that the estimation accuracy of MDGN remains at a high
level although the input is contaminated by noise. However, the
estimation performance of the open-circuit voltage method and
the ampere-hour integration method is severely impaired, which
also confirms the good noise immunity of the proposed method
in this paper.

6 DISCUSSION

As the experimental results show, it is valid to build a deep
neural network on hardware by memristors, and the key infor-
mation in the battery measurement data (voltage, current,
temperature) can be extracted and encoded as the conduc-
tance value of memristors by the DAE in the front-end of
the proposed network, and subsequently the non-linear map-
ping relationship between the measurement data and SOC is

constructed by the GRU network, which in turn enables the
SOC estimation of lithium-ion batteries. Compared with the
traditional data-driven approaches, this method exhibits obvi-
ous advantages in terms of energy efficiency and computational
speed. Due to the nanometre size and rapid resistance switching
time of the non-volatile memory device, the memristor crossbar
array not only enables the in-store calculation but also has a high
degree of parallelism, which greatly reduces the time cost.

Nevertheless, the proposed scheme uses software to realize
the error back-propagation calculation, which requires analog-
to-digital and digital-to-analog conversion modules. These mod-
ules have a large impact on the performance of the overall neural
network circuit in terms of reduced accuracy and increased
power consumption. In the future, we need to explore circuits
for error backpropagation to achieve better performance of
fully analog neural network circuits based on memristors. Fur-
thermore, the accuracy of SOC estimation for low-temperature
environment is lower compared to that for high-temperature
conditions, and the proposed method is not effective in
alleviating the mileage anxiety problem highlighted with the
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TABLE 4 Power consumption of the proposed MDGN.

Module Number

Power

consumption

/mW

DAC 3 19.58

Layer normalization circuit 1 0.03

1T1M array 8 4.85

Sigmoid activation function (σ) circuit 4 0.04

Tangent activation function (tanh)
circuit

1 0.01

Multiplication circuit 3 0.49

Subtraction circuit 1 0.01

Addition circuit 6 0.06

Total 25.07

MDGN, memristor-based denoising autoencoder and gated recurrent unit network.

TABLE 5 SOC estimation at different training epochs.

DAE

epoch

GRU

epoch

RMSE

(%)

MAE

(%)

Training

time/s

Test

time/s

100 200 2.17 1.85 283.98 1.02

500 1.07 0.90 567.97 1.19

1000 1.37 1.17 1041.28 1.23

200 200 1.87 1.57 378.65 1.10

500 0.94 0.81 662.63 1.25

1000 1.22 1.02 1135.94 1.70

500 200 1.92 1.59 671.49 1.27

500 1.00 0.84 946.61 1.66

1000 1.24 1.03 1419.92 1.82

DAE, denoising autoencoder; GRU, gated recurrent unit; MAE, mean absolute error;
RMSE, root mean square error; SOC, state of charge.

FIGURE 8 Anti-noise analysis of the proposed method MDGN, the
ampere-hour integration method, and the open-circuit voltage method.
MDGN, memristor-based denoising autoencoder and gated recurrent unit
network.

development of the EV field, especially for harsh environments,
which is also the main obstacle to be tackled in the future.

7 CONCLUSION

This paper proposes an efficient memristor-based DAE-GRU
hybrid neural network circuit framework for SOC estimation.
First, the mathematical and PSPICE model of the Ag/TiOx

nanobelt/Ti memristor are introduced briefly. Then the cir-
cuit designs of the DAE and the GRU module are proposed
based on the nanoscale memristors. Both of them are the fun-
damental circuit modules of the entire hybrid circuit framework
(MDGN). Specifically, the circuit mainly contains the matrix
vector multiplication circuit implemented by 1T1M crossbar
arrays, the sigmoid and hyperbolic tangent activation function
circuits, and basic operation circuits such as addition, subtrac-
tion, and multiplication. To validate the effectiveness of the
circuit, we tested the proposed MDGN at different temper-
atures of 0, 25, and 45◦C under FUDS, US06, BJDST, and
DST conditions. Its SOC estimation performance was further
verified by comparing it with seven advanced SOC estima-
tion methods, and the experimental results showed that the
proposed MDGN is superior in terms of both the estimation
performance and computational efficiency.
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APPENDIX

TABLE A1 PSPICE sub-circuit description of Ag/TiOx nanobelt/Ti memristor model.

*Ag/TiOx nanobelt/Ti memristor model

SUBCKT Memristor mode TE BE XSV:

params a1=0.008 a2=−500 b1=−0.308 b2=8.15 c1=0.0066

c2=2E−8 d1=9.96E−5 d2=1.0 +Vth1=0 Vth2=0 kL=−5.66

AlphaL=1.0 aL=0.096 kH=2.9E−5 AlphaH=4.0 aH=0.041

wc=−0.047

*****Multiplication functions to ensure zero state*****

************Function dx/dt=F(x(t), v(t))************

func

F(x, v, kL, kH, AlphaL, AlphaH, aL, aH, wc)=

{If(v<Vth1, f1(x, v, kL, Vth1, AlphaL, aL, wc), +If(v>Vth2, f2(x, v, kH, Vth2, AlphaH, aH, wc), 0))}

func

f1(x, v, kL, Vth1, AlphaL, aL, wc)= kL*(v−Vth1)ˆAlphaL*exp(−exp((aL−x)/wc))

func

f2(x, v, kH, Vth2, AlphaH, aH, wc)= kH*(v−Vth2)ˆAlphaH*exp(−exp((x−aH)/wc))

**IV Response Hyperbolic sine due to MIN structure**

func IVRel(V)= {If(v<0,a1*x*exp(b1*xˆ3+1)*sinh(c1*(V−Vth1)+d1)), If(v>0, a2*x*exp(b2*xˆ3+1)*sinh(c2*(V−Vth2)+d2))}

********Circuit to determine state variable********

Cx XSV 0 {1}

ic V(XSV)=x0

Gx 0 XSV

*****Current source for memristor IV response*****

Gm TE BE value = {IVRel (V (TE, BE), V (XSV, 0))}

ENDS Ag/TiOx nanobelt/Ti memristor model
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