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Aluminum alloys are widely used in each sector of engineering because of their
lower density coupled with higher strength compared to many existing alloys
of other metals. Due to these unique characteristics, there is acceleration in
demand and discovery of new aluminum alloys with targeted properties and
compositions. Traditional methods of designing new materials with desired
properties, like ‘domain specialists and trial-and-error ’ approaches, are
laborious and costly. These techniques also lead to the expansion of alloy
search area. Also, high demand for recycling of aluminum alloys requires
fewer alloy groups. We suggest a machine learning design system to reduce
the number of grades in the 6XXX series of aluminum alloys by collecting the
features involving chemical composition and tensile properties at T6 tem-
pering state. This work demonstrates the efficiency of grouping the aluminum
alloys into a number of clusters by a combined PCA and K-means algorithm.
To understand the physics inside the clusters we used an explainable artificial
intelligence algorithm and connected the findings with sound metallurgical
reasoning. Through machine learning we will narrow down the search space of
6XXX series aluminum alloys to few groups. This work offers a useful method
for reducing compositional space of aluminum alloys.

INTRODUCTION

Aluminum (Al) and its alloys provide the unique
combination of properties, which makes them eco-
nomical, versatile and attractive metallic materials
for many uses–from highly ductile, soft wrapping
foil to the most demanding structural applications.1

As pure aluminum is rather soft, the alloying
elements are used to improve and control the
properties in Al alloys. Most common additions are
manganese, copper, silicon, zinc and magnesium.
Up to 2 wt.% total amount of these elements can be
typically present in an Al alloy, with some special-
ized alloys containing even large amounts of addi-
tives. Also, some minor alloying elements are added
in the amounts < 0.5%. These elements have a
function of controlling some specific properties, e.g.,

recrystallisation or corrosion resistance. The Al
alloys are classified as wrought, casting and rapidly
solidified/ powder alloys, which are further subdi-
vided as age- and work-hardenable alloys.1 These
classes are further subdivided into various systems
based on the selection of alloying elements.

Aluminum alloy design, since the beginning of the
twentieth century, has been essentially an iterative
and empirical process, based on the lessons learned
from experience and in-service use.2 A hill-climbing
approach is taken in the traditional development
and design of Al alloys.3 This traditional method of
research and development is laborious, expensive
and does not consider the full spectrum of potential
properties. Testing of billions of combinations of
alloys is not possible.4,5 Alloy development by
mixing a combination of alloying elements and
characterizing their structure and testing their
properties is slow, costly and does not fully harness
the data that have been accumulated before. Exam-
ples of empirical Al-alloy discovery include the
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gradual and continuous development of Al-Cu alloys
to Al-Cu-Mg, then to Al-Cu-Zn-Mg and Al-Cu-(Mg)-
Li alloys, based on the requirements of structural
applications.6

Currently, 7 million tons of recycled aluminum
scrap and around 22 million tons of new Al are being
used. Recycling aluminum has both financial and
environmental benefits. The production of 1 ton of
primary Al requires 14,000 kWh energy to create.7–9

In contrast, only 5% of this is required to remelt and
recycle 1 ton of Al. Ideally, recycled and virgin Al
alloys would be of equal quality.

However, the recycling of complex in composition
wrought alloys faces a few challenges. Wrought Al
alloy production from scrap has the main difficulty
of attaining the desired chemical composition with a
less addition of pure alloying elements and also of
primary aluminum.5 Technically, mixing of various
scrap leads to the uncontrollable concentration of
critical elements such as iron, copper, manganese,
magnesium, zinc and silicon.12 Once the concentra-
tion of these critical elements falls outside of the
concentration limit for a particular wrought alloy,
the only solution would be their dilution with
primary Al or modification of alloy composition.
Another technical solution is to carefully sort and
combine scrap at the pre-melting stage to assure the
suitable chemical composition of the batch is
costly.7,10 Therefore, due to the large search space
of alloying elements present and great variety of
existing Al alloys, grouping of alloys in the classes
would be a potential solution.

Another well-known issue is the ‘‘compositional-
tolerance limit’’ existing especially for wrought
alloys, which becomes critical in recycling where
unusual and unexpected impurities can inadver-
tently creep in, and even normal impurities may
tend to build up and accumulate to an unaccept-
able degree.10 In most cases, it is not well investi-
gated but rather the influence of these tolerance
limits on the properties (and particularly on the
selected properties) is known from experience with
wrought alloys.7,11 These recycling issues show an
urgent need for optimization of Al alloy grades to
narrow down their search space.

The optimization of existing alloys and discovery
of new alloys until now have been based on ther-
modynamic modeling11 and ‘ab initio’ methods.12

However, these methods have limitations in linking
the composition to the properties and to the real
processing and service conditions. Traditional meth-
ods are not suitable for finding new optimal alloys
compositions from the large compositional search
space.

However, there are several advanced methods
like machine learning (ML) and artificial intelli-
gence (AI) that aim to develop self-learning models
that can solve these problems, acting like the
human brain. Machine learning aims at building
statistical models for data analysis and prediction.
The artificial intelligence algorithms construct an

inference model connecting the targeted property to
material descriptors by successfully learning from
the past data and understanding the pattern inside
the data, which results in the rational choice of next
experiment and makes accurate predictions.13

Today, materials science successfully uses
machine learning algorithms to solve various mate-
rials science problems.14 The prediction of new
stable materials, calculation of multiple material
properties and acceleration of first-principle calcu-
lations are only a few examples of the numerous
machine learning applications in materials research
that have already been shown to be effective.15

For instance, Raccuglia et al.16 successfully
designed new materials by employing a machine
learning strategy to learn the rules of material
synthesis from failed experiments. High-perfor-
mance copper alloys with inverse compositional
design were accomplished by building a method for
designing alloy compositions with a focus on alloy
properties; this method was also used to design the
composition of piezoelectric materials.17 By inte-
grating an adaptive learning technique and a
machine learning model, Lookman et al.18,19 were
able to successfully manufacture high-property
shape memory alloys. Similar machine learning
methods were applied in the compositional design of
inorganic superconducting material,20 piezo-electric
materials,21,22 high-entropy alloys23 and stainless
steel24 as well as in the property and structure
predictions such as diffusion,25,26 lattice misfit,27

density,28 fatigue,29–31 Seebeck coefficient,32 glass-
forming ability,33,34 atomic force field,35 strength,36

elastic constant,37 etc. For the design and prediction
of structure and properties, most of the current
machine learning algorithms (ML) used the concen-
tration of specific elements as the input/output to
construct regression models of composition-property
design. Most of these works focused on designing
new alloys, which does not help us in narrowing
down the composition space of alloys.

Also, there have been many attempts to apply
clustering algorithms in materials science problems,
e.g., Nenchev et al.38 combined supervised and
unsupervised machine learning for predicting and
estimating the hardenability in gear steel samples.
Golowanov et al.39 devised a recursive algorithm for
forming homogeneous groups (clusters) of semicon-
ductor devices based on the maximization of silhou-
ette score by using the K-means clustering
algorithm. Kazakovtsev et al.40 offered a number
of clustering models and techniques to address the
issue of dividing a presumably heterogeneous batch
of semiconductor devices into homogeneous groups
(clusters). Previously, there were many attempts to
use clustering but their focus was also not on
narrowing down the composition space of alloys.

In the present work, we proposed a design loop for
the rational design of alloy clusters based on key
element features and tensile properties, which is
identified by machine learning and materials
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science knowledge. Due to good formability, machin-
ability, weldability and high resistance to corrosion,
we have selected 6XXX series alloys as the case
study. This series of heat-treatable alloys generally
acquires the top strength in T6 temper, i.e., being
strengthened by precipitation hardening.1 In this
case study, we narrowed down the solution space by
classifying the 6XXX series dataset in groups using
a combined approach of clustering and principle
component analysis (PCA) as the main algorithms.
Also, LIME (local interpretable model-agnostic
explanations) algorithm was applied to explain the
clusters provided by the combined approach of PCA
and K-means algorithms.

METHODOLOGY

To reach the objectives of this study, we propose
the following design loop: data collection fi com-
bined K-means clustering and PCA analy-
sis fi box plot fi LIME algorithm fi metallur-
gical reasoning behind clustering. These steps and
their objectives are shown in Fig. 1. Note that we
limit ourselves to the extruded alloys in T6 condi-
tions and to the tensile properties at room temper-
ature. This approach makes the database
manageable for the case study.

Data Collection

Information gathering and dataset training is the
initial step of machine learning (ML) workflow,
which heavily depends on the objective of the model
that we want to train. The data for the 6XXX series
Al alloys were collected from literature sources,
journal papers and open web searches and saved in
Excel file in csv format. For our case, the data
included alloy composition and their tensile proper-
ties at T6 tempering conditions.1 For preparing the
data for machine learning algorithms, cleaning of

data was performed. Mostly, the alloys with the full
set of the required data were chosen. Some approx-
imating terms can be used in machine learning
algorithms such as int, float and char corresponding
to integer, decimal and character variables, respec-
tively. Also, we used Jupyter Notebook, an applica-
tion of Anaconda Navigator, to implement all the
machine learning algorithms in this work, and the
python libraries used for visualization of figures are
Matplotlib.pyplot and Seaborn.13,41

Combined Approach of Clustering and PCA

Clustering is an unsupervised machine learning
algorithm.42 In the k-means algorithm every data
point is repeatedly assigned to the cluster with the
closest centroid, and then based on the mean of the
data points assigned to each cluster, the centroids or
cluster centers are updated. K-means clustering
algorithm, for several reasons, often does not work
well for high dimensionality datasets; hence, to
improve the efficiency, prior to clustering we
applied principle component analysis (PCA) on the
original data set for better visualization of
clusters.43

PCA is a dimensionality reduction technique
which reduces the dimensionality of dataset con-
sisting of many variables. It works by identifying
the directions of highest variance, i.e., principle
components in the dataset, and then creating a low-
dimensional space consisting of these principle
components. The main objective of combining k-
means clustering with PCA is to apply k-means
clustering to the reduce dimensionality space to
identify patterns or clusters. The clusters obtained
by this combined method provided the insight into
how the data is organized and how different data
points related to the others.

There are a few steps involved in this combined
method to better visualize our 6XXX data set:44

Fig. 1. Design loop.
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Step 1: Standardize the data: If in the dataset the
variables were measured on different value scales,
standardization is performed.

Step 2: Perform PCA: PCA was applied to the
standardized data to decrease the dataset dimen-
sionality and determine the principle components.

Step 3: Choose the number of principle compo-
nents: Based on the amount of variation (by a
variance plot), we decided how many principle
components to keep.

Step 4: Transform data: Using the selected prin-
ciple components, the original data were trans-
formed into the reduced dimensional space.

Step 5: Decide the number of clusters: An elbow
method was applied to the transformed data.

Step 6: Perform k-means clustering: K-means
clustering was applied to assign each data point to
the closest cluster centroid.

Step 7: Evaluate the results: The quality of
clustering was evaluated by a silhouette score.

Step 8: Interpret the results: The clustering
results were interpreted based on the features of
the clusters, the features that were making the
differences between the clusters and any other
information about the dataset.

Step 9: Visualize the results: The clustering
results were visualized.

Box Plot to Detect Outliers in Clusters

A box plot is a graphical representation to detect
outliers for each cluster based on the distribution of
variables in each cluster. For each cluster, it
consists of a whisker and box plot with whiskers
representing the range of the data and the box
representing the interquartile range (IQR) of the
data points. Outliers are plotted beyond the whis-
kers as individual points. We visualized and
inspected the distribution of the alloy features in
each cluster by box plot and identified any potential
outliers present in them. Any point outside the
whiskers of the box plot was identified as an outlier.
By interpreting these plots for each cluster, we
could determine which clusters had outliers in high
proportion and which clusters had more homoge-
neous distributions or no outliers.45

LIME Algorithm

The combined PCA and K-means clustering was
applied to visualize clear clusters and box plot to
detect outliers. The next step was to perform LIME
algorithm to understand how the compositions were
affecting properties in each cluster. For LIME, we
ignored the outliers.46 The main focus of LIME is to
train local surrogate models for explaining individ-
ual clusters predicted by PCA & K-means algo-
rithm.47 To explain the clusters, the algorithm
processes the input data samples, i.e., alloy compo-
sitions, and ranks the positive or negative impacts
of compositions on tensile properties in each clus-
ter.46 The LIME algorithm can also be used in

regression mode to explain the predictions of regres-
sion models. In this way we can explain the
meaning behind clustering to get better under-
standing of how properties are varying with com-
positions in our black box clustering model.

RESULTS AND DISCUSSION

Data Collection

It is necessary to have access to high-quality data
to accurately apply the machine learning algo-
rithms. Fifty sets of 6XXX series Al alloys were
collected from the ASM Specialty Handbook,1

makeitlearn website48 and literature search, and
presented as supplementary material; see the sup-
plementary data file. The dataset consisted of eight
dimensions of explanatory variables including com-
position, yield strength (YS) and modulus of tough-
ness. It is well known that the volume fraction,
morphology and type of precipitates as well as the
condition of the alloys (deformed, recrystalized, etc.)
define the properties in Al alloys. Therefore, for the
data consistency and accuracy of ML predictions,
and to reduce the variation in alloy characteristics
caused in by various processing conditions, the alloy
properties collected were limited to the T6 temper-
ing condition of extruded alloys with the main focus
on tensile properties.

The alloying elements were within a composition
space of 0.05< Cu< 0.95, 0< Mn< 1.1,
0.35< Mg< 1.4, 0< Zn< 0.75, 0.35< Si< 1.35
and 0.075< Fe< 0.4. We excluded minor alloying
elements such as Ti, Cr and V from our dataset as
they did not have much effect on T6 tensile prop-
erties. In the present work, we only considered the
tensile properties, i.e., the yield strength and mod-
ulus of toughness, as the main criteria to cluster the
6XXX series alloy grades. These properties are
mainly affected by the addition of major alloying
elements/impurities such as Cu, Si, Mg, Fe and Mn
and very little by the addition/presence of minor
elements or impurities. Small amounts of transition
elements such as Cr, V and Ti mainly affect the
electrical resistivity and are used to control recrys-
tallization.1 Corresponding to this composition
space and the T6 tempering condition, the tensile
properties, i.e., tensile strength, yield strength and
elongation, were collected, and the modulus of
toughness was calculated as 0:5 � UTSþð
YSÞ � EI.49 We used the modulus of toughness to
reduce the number of variables in the machine
learning model. In future, we will extend our
dataset to other properties. The elongation (El),
yield strength (YS), tensile strength (UTS) and
modulus of toughness were in the ranges of
3< EI< 15, 170 MPa< YS< 430 Mpa, 210 Mpa
< UTS< 483 Mpa and 10.5< modulus of tough-
ness< 49. As for the precipitation hardening
response, the Mg:Si ratio is important in the 6XXX
series Al alloys; it was calculated and found to be in
the range of 0.34< ratio< 1.71 in the dataset. The
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ratio of magnesium (Mg) to silicon (Si), most
commonly referred to as the Mg:Si ratio, is impor-
tant because of its influence on the alloy’s precipi-
tation hardening characteristics and kinetics,
affecting the mechanical properties.50

Combined Clustering and PCA

To investigate similarities between the aluminum
alloys in our dataset in terms of composition and
tensile properties, specifically yield strength and
modulus of toughness, it was necessary to perform
unsupervised learning, i.e., clustering analysis, to
search for clusters of aluminum alloys having
similar property and compositional range. To reveal
clusters in the dataset, we performed k-means
clustering in conjugation with PCA. This allowed
us to obtain rather well-defined clusters.

Figure 2 shows the raw data set with two selected
dependent parameters, i.e., yield strength and
modulus of toughness. All points in our current
data set are represented in this figure. These data
points show that the domain for the modulus of
toughness is from 10.5 MPa to 49 MPa, whereas for
YS it is from 170 MPa to over 430 MPa, which
indicated a significant contrast in the value ranges.
Therefore, standardization of data was applied.
Standardization was an important part of data
pre-processing. Generally, we want to treat each
feature equally. To keep the variations between the
feature values equivalent, we can achieve this by
transforming the features so that their values lie
within the same numerical range. In the next step,
we reduced the number of features in our data set
by a dimensionality reduction technique, i.e., cumu-
lative variance plot. Y-axis in Fig. 3 shows the
amount of variance captured depending on the
number of principle components as shown on X-
axis. In the PCA variance plot, the number of
principle components indicates how many principle
components are required to explain a significant
proportion of the total variance in the dataset. Each

principle component captures a certain amount of
variability in the original dataset. The higher the
number of principle components, the more variance
in the data is accounted for. The trade-off between
the amount of variance explained and the number of
principle components is understood using this plot.
It helps in dimensionality reduction or better visu-
alization by determining the optimal number of
principle components to retain for further
analysis.51

The plot often exhibits a declining pattern, with
the first few principle components explaining a
significant amount of variance while subsequent
components explain less and less. When determin-
ing the number of principle components to retain,
the elbow point or the point of inflection in the plot
is often considered. It represents the point of
diminishing returns, where including additional
principle components provides diminishing
increases in the explained variance. By analyzing
the PCA variance plot, based on the desired amount
of variance explained, we can make an informed
decision about the number of principle components
to select and the dimensionality reduction require-
ments for data analysis.

As a rule of thumb, at least 80% variance should
be present in the principle component.52 So, in
present case, we decided to choose three principle
components with > 85% variance.

In the third step, with the chosen number of
components, we performed PCA. We used PCA for
better visualization of clusters. Now, for the ele-
ments in our data set we needed only the calculated
resulting components scores that were used in the
k-means algorithm. Before going further with the k-
means algorithm, we implemented an elbow method
to find the total number of clusters present in our
6XXX series dataset considering the PCA scores.
Figure 4 suggests the number of clusters to keep.

Fig. 2. Scatter plot YS versus modulus of toughness. Fig. 3. Cumulative variance versus number of principle components
plots.
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The approach was based on finding a kink or
‘‘elbow’’ in the weighted cumulative sum of square
(WCSS) distance curve.44 In general, the part of the
curve before the elbow would be rapidly decreasing,
while the part after it would be going more gradu-
ally. In our case, the kink came between the four
and five cluster mark. After trying both values, we
decided to keep five clusters of alloys for quality
visualization.

Figure 5 demonstrates the advantages of using k-
means together with PCA in plot (a). It shows rather
distinct clusters based on combined PCA and K-
means algorithm compared with using K-means
alone (Fig. 5b).

This was the main objective of using PCA prior to
K-means clustering—to make fewer variables by
combining them into more significant principle
components for better visualization. Also, difference
between the components is as large as possible, i.e.,
they are ‘orthogonal’ to each other. There were still
some overlaps between clusters of 6XXX series Al
alloys. The areas where the clusters overlapped
were determined by the third principle component,
which has low variance compared to other compo-
nents not shown on this 2D graph.

We placed the cluster numbers in front of each set
of data points (original features that comprised
them); see supplementary data file. Based on the
alloy property ranges and composition values in
each cluster, we found the clusters are quite distin-
guishable with few overlaps in terms of composition
and property values as given in Table I.

The ranking of concentration of critical alloying
elements and YS is as follows in ascending order for
all clusters:

YS ¼ 0<3<1< 2< 4; Si ¼ 0<1<4< 3< 2;

Cu ¼ 0<3<1< 2< 4; Mg ¼ 0<2< 1< 3< 4;

Mn ¼ 0<1<4< 3< 2

This is also summarized in Table II with some
example alloy grades in each cluster. Table II works
in parallel with Table I or represents a summary
table, from which the observation is made on how
the concentration of alloying elements leads to low,
medium and high values of the given properties.
Table II gives us the base for metallurgical reason-
ing behind the clusters obtained from PCA and K-
means algorithm; see Section ‘‘Metallurgy-Based
Understanding of Clusters’’.

It seems that in Cluster 4 containing alloys with
large amounts of solute elements, i.e., Mg + Si +
Cu, high Cu content, Si excess and medium levels

of iron, the alloys demonstrated the highest YS.
Cluster 1, because there are medium levels of solute
elements, i.e., Mg + Si + Cu � 1.9, Cu content is
medium, and Mg:Si is in stoichiometry, comprised
the alloys with medium levels of YS values. Its
modulus of toughness (see Table I) is higher though
than in Cluster 3. Alloys grouped in Cluster 0
showed the lowest YS due to the low percentage of
solute elements, i.e., Mg + Si + Cu � 1.2, low Cu
content and only slight Si excess. Alloys in Cluster 2

Fig. 4. Elbow plot to detect number of clusters.

Fig. 5. K-means clustering with PCA (a) and without PCA (b).
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had a high percentage of solute elements, i.e.,
Mg + Si + Cu � 2.9, and large excess of Si, but the
percentage of Cu and Mg was less than in Cluster 4.
Therefore, these alloys showed the second highest
YS. Cluster 3 included alloys with medium levels of
solute elements, i.e., Mg + Si + Cu � 2.1, low Cu
and high Fe content, Mg:Si � 0.9, which was
reflected in a relatively low YS and modulus of
toughness.

Box Plot Analysis

A box plot for each cluster based on the YS and
modulus of toughness shows the distribution of
values as well as the potential outliers. We checked
that some data points are legitimate data points and
some are errors or anomalies that need to be
removed or corrected. Some box plots (Fig. 6a and
b) are very compressed because the data are highly
concentrated within a narrow range of YS and
modulus of toughness values. This may indicate
that there was very little variation in the data point
values, i.e., YS and modulus of toughness values
within that cluster were tightly grouped around a
central value, meaning that there was little devia-
tion from the mean or median value.45 The box plots
in Fig. 6a and b clearly show that Clusters 0, 1, 2
and 3 had missing values of YS and modulus of
toughness (0 values), which might be due to some
missing values of El and UTS in the data set.
Clusters 1 and 4 showed outliers with very high
modulus of toughness values as well as with much

lower values. No outliers in terms of YS were found
for Clusters 0 and 4.

In the next step (Section ‘‘LIME Algorithm’’), we
ignored these outliers to perform LIME algorithm
for most common alloy composition for each of the
clusters to understand which alloying elements had
positive impact and which had negative impact on
YS and modulus of toughness to understand the
physics and patterns inside the clustering. After
removing the outliers, we received much better
defined clusters. Later, in Section ‘‘Metallurgy-
Based Understanding of Clusters’’, we considered
these outliers to connect the metallurgical reason-
ing behind the clusters obtained from combined
approach of PCA and K-means. In this work our
main aim is to narrow down the search space of
aluminum alloys to a few groups, which will be the
basis for future designing of 2–3 alloys for each
cluster.

LIME Algorithm

As the model becomes more complex, the predic-
tion becomes more accurate; however, the inter-
pretability becomes challenging. Therefore,
clustering techniques are known as black box
algorithms. To verify the model reliability, it is
important to check how the model is operating.
Therefore, an explainable artificial intelligence
(XAI) emphasis should be placed on the chosen
factors, or compositions, that have a significant
impact on how the clusters are defined. A black box
clustering model whose internal reasoning is hidden

Table I. Composition and property value ranges in the five clusters during ML

Group 0 1 2 3 4

Si 0.37–0.45 0.5–0.6 1–1.35 1–1.25 0.8–0.9
Fe 0.1–0.18 0.35–0.37 0.25 0.25–0.35 0.25
Cu 0.05–0.1 0.2–0.28 0.28–0.95 0.1–0.2 0.85
Mn 0.03–0.13 0.15 0.7–0.85 0.6–0.7 0.5–0.6
Mg 0.45–0.65 0.9–1 0.85–1.1 0.8–0.9 1–1.4
YS 170–220 220–280 300–385 220–270 350–430
Modulus of toughness 10.5–22 25–35 35.15–36.55 22–27 35.03–49
Mg:Si 1.3–1.68 1.667 < 1 < 1 1–1.667
Cu content Low Medium High Low High
Excess Si Slight excess Stoichiometry Large excess Large excess Excess
Mg + Si + Cu 1.2 (low) 1.9 (medium) 2.9 (high) 2.1 (medium) 2.65 (high)

Table II. Composition values affecting yield stress and modulus of toughness

Clusters Composition variation in each cluster Alloy grades

Cluster 4 (the highest YS) High Cu, Mg and medium Si, Fe, Mn concentrations 6110A, 6013, 6092
Cluster 2 (2nd highest YS) High Si, Cu, Mn, low Fe, Mg 6024, 6070, 6066
Cluster 1 (medium YS) Low Mn, Si, high Fe, medium Cu, Mg 6151, 6053, 6061
Cluster 3 (2nd lowest YS) High Si, Fe, Mg, Mn, low Cu 6005A, 6009, 6012
Cluster 0 (lowest YS) Low Fe, Si, Mg, Mn, and Cu 6106, 6101A, 6060

Tiwari, Jalalian, Mendis, and Eskin4532



and difficult to understand can be explained using
the LIME algorithm. As described above, the clus-
ters consisting of alloys with a varying range of
properties and composition values were predicted
using PCA and K-means combined algorithm. To
understand and interpret the contribution of each
alloying elements on the tensile properties, we
needed to use an extra step, as clustering could
not distinguish between independent and depen-
dent variables. In addition, it is necessary to verify
the predicted results with the scientific knowledge
available. The clusters obtained from combined
algorithm of PCA and K-means were explained
here using the LIME algorithm. For each cluster, a
separate dataset was prepared (see supplementary
data file). The LIME algorithm divided the dataset
consisting of alloy features into training and test
sets and interpreted the prediction of target prop-
erties, i.e., YS and modulus of toughness, as shown
in Fig. 7. It shows the alloying elements that
positively or negatively affect the yield strength
and modulus of toughness. For each cluster, we
selected a representative alloy and interpreted its
inclusion in the cluster. When considering the

effect, one also needs to consider the number of
elements in the alloy.

For Cluster 0, all alloying elements, except Mn,
had a negative impact on the YS values; conse-
quently, the YS of the alloys in this cluster was the
lowest. On the other hand, almost all alloying
elements (except Si) should have had a positive
impact on the modulus of toughness. However, due
the lower amount of these alloying elements in this
cluster, this contribution could not be realized to the
full extent, and the overall modulus of toughness
values were low.

For Cluster 4, which showed the highest YS and
moderate modulus of toughness, the alloys had high
concentrations of Mg and Cu, and these elements
affected the YS most, while decreasing the modulus
of toughness. Fe had a negative effect on YS and
positive on the modulus of toughness, but because of
its low concentration these effects were not realized
to the full extent.

Metallurgy-Based Understanding of Clusters

In the previous section, we looked at some
reasoning behind the YS and modulus of toughness
values obtained in each alloy clusters because of the
varying percentage of solute elements present and
Mg:Si ratio. This, however, was done using a ML
LIME algorithm so was based formally on the
numbers in the dataset. In this section, we will look
at the metallurgical meaning behind the grouping of
the alloys in each cluster, based on known mecha-
nisms of precipitation hardening in 6XXX series
alloys.

According to the Al-Mg-Si system phase diagram,
the precipitation events in ternary 6XXX series
alloys were supersaturated solid solution (SSS) fi
GP fi b¢¢ fi b¢ fi b.50,53–55 There is consensus
that the metastable coherent b¢¢ phase serves as the
main strengthening phase in Al-Mg-Si ternary
alloys.53–55

When Cu is added to the Al-Mg-Si alloys in the
6XXX series, the Al-Mg-Si-Cu family of alloys is
created. These quaternary alloys do not have a
distinct designation within the 6XXX alloy ser-
ies.50,56,57 The possibility for the formation of a
quaternary phase is a significant underlying char-
acteristic shared by all these alloys.58 The phase
was extensively studied and is so called the Q
phase.59–62 While the compositions of ternary Al-
Mg-Si alloys fall on the equilibrium phase diagram
at normal aging temperatures in a three-phase field,
i.e., (Al) + b (Mg2Si) + (Si),58 the coexisting equilib-
rium three-phase fields enlarge into three tetrahe-
dron composition spaces upon the inclusion of Cu.
Inside each of these spaces, a four-phase equilib-
rium is present in the equilibrium phase diagram
consisting of the two common phases, i.e., quater-
nary Q phase and (Al), and two other phases from
the selection: b (Mg2Si), h (CuAl2) and (Si).58

Regarding the precipitation, which is a

Fig. 6. Box plot to detect outliers in each cluster for (a) modulus of
toughness and (b) YS.
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Fig. 7. LIME plots of YS and modulus of toughness: (a) Cluster 0 (4th data), (b) Cluster 1 (31th data), (c) Cluster 2 (27th data), (d) Cluster 3 (49th
data), (e) Cluster 4 (13th data).
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metastable process, the presence of Cu modifies the
order of precipitation as follows:63

At a lower Cu concentration: SSS—GP zones—b¢¢
(with Cu?)—Si—numerous variations of b¢ (with Cu)
including b¢C—Mg2Si and Si.

At a higher Cu concentration: SSS—GP zones—b¢¢
(with Cu?)—h¢ or/and Q¢—Si—numerous variations
of b¢ (with Cu) including b¢C, Q¢ and h¢—Q
(AlMgSiCu), Mg2Si, Al2Cu and Si.

These two precipitation paths may form at inter-
mediate copper concentrations in cases of natural
aging preceding, artificial aging and tempera-
tures > 200�C. It is also known that the excess of
Si regarding Mg2Si stoichiometry (revealed by the
Mg:Si ratio) is beneficial to hardening because of the
effect on the composition and structure of GP zones.
The addition of copper also makes 6XXX series
alloys less sensitive to the negative effects of
natural aging on hardening upon artificial aging.63

Based on this general understanding of metal-
lurgy of 6XXX series alloys, we can suggest the
metallurgical reasons behind grouping of the alloys
in different clusters. Let us look primarily at the
yield strength as it is the property that responds
most directly to the precipitation hardening.

Cluster 4: Cu = 0.85%, high concentration of Mg
and Si, excess of Si (Mg:Si = 1–1.67), low Fe. High
YS is due to the formation of b¢¢ modified with Cu.

Cluster 2: Medium range of Cu = 0.275–0.95%,
higher concentration of Mg and Si, large excess of Si
(Mg:Si< 1). High YS due to the formation of b¢¢
modified with Cu.

Cluster 1: Cu = 0.2–0.275%, medium Si and high
Mg concentration, Mg:Si is close to stoichiome-
try � 1.667, high Fe. Medium YS due to the less
b¢¢ particles and high Fe that takes some Si from the
solid solution.

Cluster 3: Cu = 0.1–0.2%, high concentration of
Mg and Si and large excess of Si (Mg:Si< 1), high
Fe. Medium YS due to the precipitation of b¢¢ but in
lesser quantities due to the consumption of Si by Fe-
containing phases.

Cluster 0: Cu = 0.05–0.1%, lower concentration of
Mg and Si and moderate excess of Si (Mg:Si = 1.3–
1.68). The lowest YS due to the overall smaller
concentration of solute elements and the resultant
smaller amount of the hardening b¢¢ phase.

These observations proved that clustering had a
metallurgical reasoning behind it as the variation in
the tensile properties between the clusters was due
to the various precipitation hardening features.
These clusters will now be the basis for future
optimization and reduction of the number of the
alloy grades without compromising their tensile
properties.

CONCLUSION

In the present study, we attempted to refine the
search space of 6XXX series aluminum alloys
(extruded, T6 condition) into a few clusters by a

combined PCA and K-means algorithm. We suc-
cessfully created five clusters, each having distinct
ranges of composition and properties with very few
overlaps and outliers. To find the characteristic
features that make each cluster special, we used a
LIME algorithm. This allowed us to identify the
alloying elements with their combinations and
concentrations that affected the yield strength
and modulus of toughness of the alloys in each
cluster.

In addition to this formal selection of the features
determining the formation of each cluster, we also
examined the alloys in the clusters from the point of
view of the known metallurgical knowledge due to
precipitation hardening in 6XXX series alloys, as
precipitation hardening of 6XXX alloys has a direct
impact on the yield strength. This analysis showed
that the amount of alloying elements, Mg:Si ratio
and the contents of Fe are the parameters that
determined the inclusion of the alloys in a given
cluster.

This study showed that the machine learning
algorithms gave us a meaningful selection of five
clusters that incorporated 50 commercial 6XXX
series alloy grades. This is a good base for opti-
mization and reducing the number of the alloy
grades without compromising their tensile proper-
ties. In the future, we will widen the selection of
properties in our dataset.
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Schütt, and K.R. Müller, Sci. Adv. https://doi.org/10.1126/sc
iadv.1603015 (2017).

36. M.S. Ozerdem and S. Kolukisa, Mater. Des. https://doi.org/
10.1016/j.matdes.2008.05.019 (2009).

37. V. Revi, S. Kasodariya, A. Talapatra, G. Pilania, and A.
Alankar, Comput. Mater. Sci. https://doi.org/10.1016/j.com
matsci.2021.110671 (2021).

38. G. Peng, Y. Cheng, Y. Zhang, J. Shao, H. Wang, and W.
Shen, J. Manuf. Syst. https://doi.org/10.1016/j.jmsy.2022.08.
014 (2022).

39. S.M. Golovanov, V.I. Orlov, L.A. Kazakovtsev, and A.M.
Popov, IOP Conf. Ser.: Mater. Sci. Eng. https://doi.org/10.
1088/1757-899X/537/2/022035 (2019).

40. A.L. Kazakovtsev, A.N. Antamoshkin, and V.V. Fedosov,
IOP Conf. Ser.: Mater. Sci. Eng. 122, 012011 https://doi.org/
10.1088/1757-899X/122/1/012011 (2016).

41. F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter,
A. Taptunov, D. Lange, and D. Salinas, J. Mach. Learn. Res.
20(175), 1 (2019).

42. V. Kevorkijan, Metallurgia 16, 103 (2010).
43. C. Ding and X. He, in Proceedings of the Twenty-First

International Conference on Machine Learning (2004). http
s://doi.org/10.1145/1015330.1015408.

44. J.A. Hartigan and M.A. Wong, Royal Stat. Soc. Ser. C Appl.
Stat. https://doi.org/10.2307/2346830 (1979).

45. D.F. Williamson, R.A. Parker, and J.S. Kendrick,Ann. Intern.
Med. https://doi.org/10.7326/0003-4819-110-11-916 (1989).

Tiwari, Jalalian, Mendis, and Eskin4536

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/ncomms11241
https://doi.org/10.1038/ncomms11241
https://doi.org/10.1557/jmr.2016.92
https://doi.org/10.1557/jmr.2016.92
https://doi.org/10.1038/nmat3568
https://doi.org/10.1016/j.commatsci.2022.111783
https://doi.org/10.1016/j.cirp.2015.04.051
https://doi.org/10.1016/S0924-0136(00)00634-8
https://doi.org/10.1016/S0924-0136(00)00634-8
https://doi.org/10.1016/j.commatsci.2018.11.001
https://doi.org/10.17705/1jais.00664
https://doi.org/10.17705/1jais.00664
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1002/inf2.12028
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1038/nature17439
https://doi.org/10.1038/s41524-019-0227-7
https://doi.org/10.1016/j.commatsci.2019.03.057
https://doi.org/10.1016/j.commatsci.2019.03.057
https://doi.org/10.1016/j.actamat.2016.12.009
https://doi.org/10.1016/j.actamat.2016.12.009
https://doi.org/10.1038/s41524-018-0085-8
https://doi.org/10.1038/s41524-018-0085-8
https://doi.org/10.1021/acs.jpcc.7b04636
https://doi.org/10.1021/acs.jpcc.7b04636
https://doi.org/10.1002/adma.201702884
https://doi.org/10.1002/adma.201702884
https://doi.org/10.1016/j.actamat.2019.03.010
https://doi.org/10.1016/j.actamat.2019.03.010
https://doi.org/10.1016/j.commatsci.2008.11.006
https://doi.org/10.1016/j.commatsci.2017.12.030
https://doi.org/10.1016/j.commatsci.2017.12.030
https://doi.org/10.1016/j.commatsci.2017.03.052
https://doi.org/10.1016/j.commatsci.2017.03.052
https://doi.org/10.1016/j.commatsci.2017.09.061
https://doi.org/10.1016/j.commatsci.2017.09.061
https://doi.org/10.1016/j.commatsci.2018.07.049
https://doi.org/10.1016/j.commatsci.2018.07.049
https://doi.org/10.1016/j.commatsci.2016.08.035
https://doi.org/10.1038/s41524-018-0094-7
https://doi.org/10.1002/jcc.25067
https://doi.org/10.1002/jcc.25067
https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1021/acs.jpclett.7b01046
https://doi.org/10.1016/j.commatsci.2017.06.015
https://doi.org/10.1016/j.commatsci.2017.06.015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1016/j.matdes.2008.05.019
https://doi.org/10.1016/j.matdes.2008.05.019
https://doi.org/10.1016/j.commatsci.2021.110671
https://doi.org/10.1016/j.commatsci.2021.110671
https://doi.org/10.1016/j.jmsy.2022.08.014
https://doi.org/10.1016/j.jmsy.2022.08.014
https://doi.org/10.1088/1757-899X/537/2/022035
https://doi.org/10.1088/1757-899X/537/2/022035
https://doi.org/10.1088/1757-899X/122/1/012011
https://doi.org/10.1088/1757-899X/122/1/012011
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.2307/2346830
https://doi.org/10.7326/0003-4819-110-11-916


46. M.W. Craven and J.W. Shavlik, Adv. Neural Inf. Process.
Syst. p. 8 (1995).

47. D. Garreau and U. Luxburg, in: International Conference on
Artificial Intelligence and Statistics (2020), pp. 1287–1296. h
ttps://doi.org/10.48550/arXiv.2001.03447.

48. Make it from, ‘‘Aluminum Alloys-Materials-Engineering,‘‘
(2022) https://www.makeitfrom.com/material-group/Alumi
num-Alloy. Accessed 18 Apr 2022.

49. H. Kuhn (Ed.) ASM Handbook, vol. 8 (ASM International,
Mechanical Testing and Evaluation, Materials Park (OH),
2000). https://doi.org/10.31399/asm.hb.v08.9781627081764.

50. D.J. Chakrabarti and D.E. Laughlin, Prog. Mater. Sci. h
ttps://doi.org/10.1016/S0079-6425(03)00031-8 (2004).

51. H. Abdi and L.J. Williams, Comput. Stat. https://doi.org/10.
1002/wics.101 (2010).

52. W.F. Miao and D.E. Laughlin, Scr. Mater. https://doi.org/10.
1016/S1359-6462(99)00046-9 (1999).

53. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper,
Acta Mater. https://doi.org/10.1016/S1359-6454(98)00059-7
(1998).

54. A.K. Gupta, D.J. Lloyd, and S.A. Court, Mater. Sci. Eng A. h
ttps://doi.org/10.1016/S0921-5093(00)01814-1 (2001).

55. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J.
Walmsley, A.T. Van Helvoort, and R. Holmestad, Philos.
Mag. https://doi.org/10.1080/14786430701287377 (2007).

56. The Aluminum Association. International Alloy Designa-
tions and Chemical Composition Limits for Wrought Alu-
minum and Wrought Aluminum Alloys (The Aluminum
Association, Washington, 2001).

57. S.D. Dumolt, D.E. Laughlin, and J.C. Williams, Scr. Mater.
https://doi.org/10.1016/0036-9748(84)90362-4 (1984).

58. M.W. Zandbergen, A. Cerezo, and G.D. Smith, Acta Mater. h
ttps://doi.org/10.1016/j.actamat.2015.08.018 (2015).

59. A. Biswas, D.J. Siegel, and D.N. Seidman, Acta Mater. h
ttps://doi.org/10.1016/j.actamat.2014.05.001 (2014).

60. C.S. Tsao, C.Y. Chen, U.S. Jeng, and T. Kuo, Acta Mater. h
ttps://doi.org/10.1016/j.actamat.2006.06.005 (2006).

61. D.L.W. Collins, J. Inst. Met. 86, 325 (1957–1958).
62. D.P. Smith, Metallurgia 63, 223 (1961).
63. D.G. Eskin, J. Mater. Sci. https://doi.org/10.1023/A:102110

9514892 (2003).

Publisher’s Note Springer Nature remains neutral with re-
gard to jurisdictional claims in published maps and institutional
affiliations.

Classification of T6 Tempered 6XXX Series Aluminum Alloys Based on Machine Learning
Principles

4537

https://doi.org/10.48550/arXiv.2001.03447
https://doi.org/10.48550/arXiv.2001.03447
https://www.makeitfrom.com/material-group/Aluminum-Alloy
https://www.makeitfrom.com/material-group/Aluminum-Alloy
https://doi.org/10.31399/asm.hb.v08.9781627081764
https://doi.org/10.1016/S0079-6425(03)00031-8
https://doi.org/10.1016/S0079-6425(03)00031-8
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1016/S1359-6462(99)00046-9
https://doi.org/10.1016/S1359-6462(99)00046-9
https://doi.org/10.1016/S1359-6454(98)00059-7
https://doi.org/10.1016/S0921-5093(00)01814-1
https://doi.org/10.1016/S0921-5093(00)01814-1
https://doi.org/10.1080/14786430701287377
https://doi.org/10.1016/0036-9748(84)90362-4
https://doi.org/10.1016/j.actamat.2015.08.018
https://doi.org/10.1016/j.actamat.2015.08.018
https://doi.org/10.1016/j.actamat.2014.05.001
https://doi.org/10.1016/j.actamat.2014.05.001
https://doi.org/10.1016/j.actamat.2006.06.005
https://doi.org/10.1016/j.actamat.2006.06.005
https://doi.org/10.1023/A:1021109514892
https://doi.org/10.1023/A:1021109514892

	Classification of T6 Tempered 6XXX Series Aluminum Alloys Based on Machine Learning Principles
	Abstract
	Introduction
	Methodology
	Data Collection
	Combined Approach of Clustering and PCA
	Box Plot to Detect Outliers in Clusters
	LIME Algorithm

	Results and Discussion
	Data Collection
	Combined Clustering and PCA
	Box Plot Analysis
	LIME Algorithm
	Metallurgy-Based Understanding of Clusters

	Conclusion
	Data Availability
	Conflict of interest
	Open Access
	References




