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Abstract. Advanced phase-field techniques have been appiedidress various aspects of polycrystalline Jateh

tion including different modes of crystal nucleatid he height of the nucleation barrier has bedardened by solv-
ing the appropriate Euler-Lagrange equations. ™Mangles shown include the comparison of various et®df ho-
mogeneous crystal nucleation with atomistic sinioret for the single component hard-sphere fluidteBaing pre-
vious work for pure systems (Granasy L, Pusztédylor D and Warren J A 20@Phys. Rev. Lett. 98 art no 035703),
heterogeneous nucleation in unary and binary systerdescribed via introducing boundary conditithet realize the
desired contact angle. A quaternion representatianystallographic orientation of the individuanticles (outlined in
Pusztai T, Bortel G and Granasy L 2@% ophys. Lett. 71 131) has been applied for modeling a broad vaoépoly-

crystalline structures including crystal sheaveesulites and those built of crystals with dendritubic, rhombodo-
decahedral, truncated octahedral growth morphatodimally, we present illustrative results for datic polycrystal-

line solidification obtained using an atomistic pedield model.

PACS numbers: 61.72.Bb, 61.72.Mm, 64.60.Qb, 64.7080.10.Aj
1. Introduction

A substantial fraction of the technical materiated in the everyday life are polycrystalline, iagg composed of crys-
tallites whose size, shape and composition didioha determine their macroscopic properties aifldréacharacteris-
tics of these substances (Cahn 2001). Size ofdhstituent crystallites may range from nanometersentimeters in
different classes of materials. While polycrystadlimaterials are the subject of an intensive rekefar some time,
many aspects of polycrystalline solidification at#@l little understood. The complexity of multignacrystallization is
exemplified by thin polymer layers, which show amwenous richness of crystallization morphologiegi(G996). Po-
lycrystalline morphologies of particular interese @he ubiquitous multi-grain dendritic and sphigicistructures. The
multi-grain dendritic structures are composed tH#rge number of pine-tree-like dendritic crystalsdtives of the ice-
flowers forming on window panes) and besides admage of other materials they have been seenystatlizing
colloidal suspensions (Chemggal 2002). The term ‘spherulite’ is used in a broaskmse for densely branched, poly-
crystalline solidification patterns (Magill 2001Besides polymers and biopolymers, they have been Bea broad
variety of systems including alloys, mineral aggteg and volcanic rocks, liquid crystals, oxide ametallic glasses,
even chocolate and biological systems. In particulte world of minerals provides beautifully complexamples of
such structures (Shelf and Hill 2003). Appearaniceemi-crystalline spherulites of amyloid fibrils associated with
the Alzheimer and Creutzfeldt-Jakob diseases, tiypkabetes, and a range of systemic and neudiimrders (Jiret al
2003, Krebset al 2005), kidney stones of polycrystalline spherulgtcucture have been observed (Klehral 1979,
Lambertet al 1998), and the formation kinetics of ice crystalfuience the extent of damage biological tissuetetgo
during freezing (Zacharaissen and Hammel 1988)eOthmarkably complex polycrystalline morphologéspear in
composite materials, such as the "shish-kebabttsire in carbon nanotube containing polymerseflal 2006), and
the plate like branched structures (e.g, graphiteaist iron and in other systems (Napolitahal 2004, Hyde et al
2004)). Crystallization can be influenced by insimand external fields such as composition, teatpeg, pressure,
flow and electromagnetic fields. For example, matkd fields have been used to influence the dendrigstallization
morphology both in experiment and modeling: flono(issouet al 1990), laser pulses (Quian and Cummins 1990,
Murray et al 1995), and pressure (Bérzstmyial 1999, 2000, Kosst al 2005, Liet al 2007). Although in the present
paper, we concentrate mainly on techniques thaghle to address polycrystalline solidificationsipecific intrinsic
(composition) and external fields (temperature),camsider possible inclusion of other fields (eflow).

First, we need, however, a suitable model of pgistalline solidification that incorporates crystalcleation and
growth on equal footing. The fact that very simpalycrystalline morphologies are seen in substadeery different
molecular geometry raises the hope that a coaeseqgt field theoretic model that neglects the makecdetails might
be able to capture some of the essential factatsgiivern crystalline pattern formation in suchteyss. It is expected
that nucleation, diffusional instabilities, crystsgimmetries, and the presence of particulate irtipsplay an important
role. A particularly interesting mode of polycryliitee solidification, identified recently, igrowth front nucleation



(GFN), where growth takes place via continuous #iom of new grains at the solidification frontgeowth mechan-
ism typical for spherulites and fractal-like polystals (Granasgt al 2004a 2004b 2005). Accordingly, the model
needs to address homogeneous and heterogeneoaatimrchf growth centers and growth front nucleatjoomoge-
neous and heterogeneous) together with diffusimsshbilities.

Advances in computational materials science offaious methods to model polycrystalline solidifioat which
include cellular automata (e.g., Zhu and Hong 2@xtram-Sanchez and Stefanescu 2004, &hal 2008), level set
(e.g., Tryggvasoret al 2001, Tan and Zabaras 2006 2007) and other fragkitng techniques (e.g., Schmidt 1996,
Steinbactet al 1999, Jacot and Rappaz 2002), and phase-field agipes (recent reviews: Boettinggtral 2002, Chen
2002, Hoytet al 2003, Granasgt al 2004a). Among them the phase-field models appele tperhaps the most popular
ones as they connect thermodynamic and kineticgptigs with microstructure via a transparent matiéral formal-
ism. In the phase-field theory, the local statematter is characterized by a non-conserved stralcarder parameter
¢r, t), called phase field, which monitors the transitlmetween the solid and liquid states. The timdwiam of the
structural order parameter is usually coupled &i tf other slowly evolving conserved fields susht@mperature or
composition.

The phase-field model has already been used tonliete the height of the nucleation barrier for h@g®oeous and
heterogeneous nucleation (Granésgl 2002 2003a 2007) In the case of homogeneous tigriea quantitative study
has been performed for the hard sphere systenmngdithe thermodynamic, interfacial free energg amerface thick-
ness data to fix the model parameters in equilibriihen the Euler-Lagrange equations have beeedabs/obtain the
unstable equilibrium corresponding to crystal nuitiehe supersaturated state. This procedure elslithe free energy
of nucleiwithout adjustable parameters, which can be then compared to the nucleationdyagiata measured directly
by atomistic simulations (Auer and Frenkel 2001812). It has been found that with an orientatioaraged interfa-
cial free energy of ~ 0.6kT/o 2, obtained from molecular dynamics and Monte Céelchniques (Davidchack and
Laird 2000, Cacciutat al 2003), a fair agreement can be seen with a phelserhodel that relies on a quartic free
energy and the usual intuitive but thermodynamycetinsistent interpolation function. Remarkablycemtly, the free
energy of the hard sphere crystal-liquid interfaas been reduced considerably to ~ 0.65% ? (Davidchacket al
2006) which certainly spoils the fair agreementé¢he T, and o are Boltzmann's constant, the temperature andithe d
ameter of the hard spheres, respectively). It wialdhen natural to explore whether a better appration could be
obtained by using physically motivated double vesitl interpolation functions emerging from a Ginzpuandau ex-
pansion of the free energy (Granasy and Puszt&)200

In the case of heterogeneous nucleation approf@tadary conditions have been introduced at theido wall to
realize the required contact angle (Granétsgl 2007). Properties of the heterogeneous nuclei mmdimensions (2D)
were obtained by solving numerically the respectwder-Lagrange equation under these boundary tondi This
work needs too be extended to 3D and to alloys.

Modeling of polycrystalline solidification requirdgbke inclusion of homogeneous and/or heterogenaaakeation
into the phase-field model. In field theoretic mizdie is done traditionally by adding Langevin rmisf appropriate
properties to the equations of motion (Gunébal 1983). However, to describe the impingement afrgd number of
crystallites that grovanisotropically, one needs to incorporate the crystallographientations that allow the specifica-
tion of the preferred growth directions of growdte first phase-field model that introduces differerystallographic
orientations into a solidifying system (Morhal 1995) relies on a free energy density thatmaslls, corresponding
to n crystallographic orientations, breaking thus th@tional symmetry of the free energy. Simulatioasenbeen then
performed to study polymorphous crystallization,enenthe composition of the liquid remains clos¢htt of the crys-
tal, therefore, chemical diffusion plays a minokercand the system follows the Johnson-Mehl-Avr&woimogorov
(JMAK) Kinetics (see e.g., Christian 1981). A weegs of the model is that the rotational invariaoicthe free energy
density had to be sacrificed and a finite numbesrg$tallographic orientations need to be introduteenable the for-
mation of grain boundaries of finite thickness.

A different approach for addressing the formatidéparticles with random crystallographic orientagas realized
by themulti-phase-field theory (MPFT; see e.g., Steinbaehal 1996, Fan and Chen 1996, Tiadsial 1998, Dieperst
al 2002, Krill and Chen 2002), in which a separatesphiéeld is introduced for every crystal grain. §hiodels offer
flexibility at the expense of enhanced mathematicatherical complexity. MPFT has been used to spalycrystalline
dendritic and eutectic/peritectic solidificatiomdahas also been successfully applied for desgrithia time evolution
of multigrain structures. However, the large numbgphase fields applied in these approaches leadsfficulties,
when nucleation is to be modeled by Langevin ndighile noise-induced nucleation can certainly blessituted by
inserting nuclei by ‘hand’ into the simulationsjstiprocedure becomes excessively non-trivial, whieactures that
require the nucleation of different crystallograpbrientations at the growth front are to be adslds Such a treat-
ment, furthermore, rules out any possible intecactietween diffusion and the orientation of newirgraln this way
realization of growth front nucleation in the MPEThot immediately straightforward.

It appears that modeling of complex polycrystallitictures and especially of GFN, requires anaperoach that
relies on an orientation field to monitor the cajlstgraphic orientation. The first model of this\#ihas been put for-
ward by Kobayashit al (1998) to model polycrystalline solidification ild2which uses a non-conserved scalar field to
monitor crystallographic orientation. Assuming aefrenergy density df; = HTOO &, where the coefficienitl has a



minimum at the position of the interface, the miiziation of free energy leads to a stepwise vanmatib4r), a beha-
vior approximating reasonably the experimentalitgalf stable, flat grain boundaries. (Such minimoan be realized
making the coefficienH dependent on the phase field, e.g., by introduttiegfactor 1- p(¢ into f,; (Granasyet al
2002)) Vvarious modifications of this approach héeen successfully applied for describing problemetuding solid-
solid and solid-liquid interfaces (Kobayashial 1998, 2000, Warregt al 2003). A further important contribution was
the modeling of the@ucleation of grains with different crystallographic orientations, which has been solved by Granasy
et al (2002), who extended the orientation figldnto the liquid phase, where it has been madéutduate in time and
space. Assigning local crystal orientation to ldjuegions, even a fluctuating one, may seem adifiat first sight.
However, due to geometrical and/or chemical coigsaa short-range order exists even in simpleidis, which is
often similar to the one in the solid. Rotating thegstalline first-neighbor shell so that it aligmgtimally with the local
liquid structure, one may assign a local orientatm every atom in the liquid. The orientation db¢a in this manner
indeed fluctuates in time and space. The corralatfothe atomic positions/angles shows how goasl fihiis. (In the
model, the fluctuating orientation field and theapé field play these roles.) Approaching the sibich the liquid, the
orientation becomes more definite (the amplitudéheforientational fluctuations decreases) and nestto that of the
solid, while the correlation between the local itjstructure and the crystal structure improvgs= [1 — p(@]00&61
recovers this behavior by realizing a strong couplbetween the orientation and phase fields. Ttditian to the
orientation field model, first introduced by Grands al (2002), facilitates the quenching of orientatiodefects into
the crystal, leading to a mechanism generating grams at the growth front. Indeed this approacbuws successfully
describes the formation of such complex polycrjisglgrowth patterns formed by GFN as disorderetiz¢y”) den-
drites (Granasgt al 2003b), spherulites (Granasyal 2003c 2004a 2004b 2005), ‘quadrites’ (Granésg 2005),
fractallike aggregates (2004a) and eutectic graitls preferred orientation between the two crystallphases (Lewis
et al 2004). The generalization of this approach to thieeensions has been done somewhat later. Prdgtatathe
same time two essentially equivalent formulatioagehbeen put forward: Pusztiial (2005a 2005b) used the quater-
nion representation for the crystallographic o@ion in solidification problems, while KobayashmidaWarren (2005a
2005b) proposed a rotation matrix representatioadaress grain boundary dynamics. A shortcominthe$e earlier
works is that crystal symmetries have not beenrntakéo account in the simulations, although Pusetal (2005a
2005b) outlined in their papers how crystal symiastshould be handled in grain boundary formation.

A promising new field theoretic formulation of palystalline solidification is th€hase-Field Crystal (PFC) model
(Elder et al 2002 2007, Elder and Grant 2004), which addressezihg on the atomistic/molecular scale. The PFC
approach is a close relative of the classical dgfisnctional theory (DFT) of crystallization: omeay derive it by mak-
ing a specific approximation for the two-particieedt correlation function of the liquid (Elder atant 2004, Eldeet
al 2007) in the Ramakrishnan-Yussouff expansion offtbe energy functional of the crystal relativetie homogene-
ous liquid (for review on DFT see Oxtoby 1991). Rekably, the PFC description includes automatictily elastic
effects and crystal anisotropies, while addressiteyfaces, dislocations and other lattice defeatshe atomic scale. It
has the advantage over traditional atomistic sitrarla (such as molecular dynamics), that it workstle diffusive
time scale, i.e., processes taking place on abaitlian times longer time scale than molecular a@yics can address.
The PFC method has already demonstrated its higgnpal for modeling dendrites, eutectic structupycrystalline
solidification, grain boundaries / dislocationsijtagial growth, crack formation, etc. (Elder anda@t 2004, Eldeet al
2007, Provatast al 2007). However, due to its atomistic nature it cdrbre easily used to model large scale polycrys-
talline structures. Combination of a coarse graifeethulation of the binary PFC theory based onr#r@rmalization
group technique outlined for the single componaisecwith adaptive mesh techniques (Goldergedd 2005, Athreya
et al 2006, 2007) will certainly enhance the simulati@méin for multi-component systems in the futureother dif-
ficulty is that the crystal lattice and the resperianisotropy of the interfacial free energy canpe easily tuned, al-
though recent work incorporating three-body cotretaopens up the way for advance in this direc{idapper and
Grant 2008). While the PFC is undoubtedly an ercgltool for investigating the atomistic aspectpolycrystalline
solidification, it cannot easily address such scataphologies as 3D multi-grain dendritic structua spherulites:
they seem to belong yet to the domain of conveatiphase-field modeling. With appropriate numerigahniques,
however, the PFC model might be applicable to axdesen such problems under specific conditior2bin

Herein, we apply the phase-field method to addvas®us aspects of nucleation and polycrystalliole#ication:
(i) We reassess phase-field models of homogenagsatatnucleation in the hard sphere system. (i@ #étermine the
structure and the barrier height for heterogenemiedeation in a binary alloy. (iii) We apply the de of Pusztaét al
(2005a 2005b) for describing polycrystalline sdiddition while considering crystal symmetries imtbng the orienta-
tion field (crystallites with orientations relatéal each other by symmetry operations should nohfograin boundaries),
and demonstrate that the model is able to descob®lex polycrystalline solidification morphologiessed on den-
dritic, cubic, rhombododecahedral, and truncatedhrmxral growth forms, besides the transition betwsingle needle
crystals and polycrystalline spherulites. We coraltime model with boundary conditions that realiee-gefined con-
tact angles which is then used to model the fonatif shish-kebab structures on nano-fibers. Wimdhice then a
spatially homogeneous flow and a fixed temperatueglient to mimic directional solidification, whidé then used to
model the columnar to equiaxed transition in a hyiraloy. (iv) Finally, we model multi-grain dentid solidification
in the framework of the binary PFC approach.



2. Phase-field models used
2.1 Phase-field approach to nucleation barrier in homogeneous and heterogeneous nucleation

As in other continuum models the critical flucteatior nucleus represents an extremum of the apptefdree energy
functional, therefore can be found by solving tkespective sets of Euler-Lagrange equations. Infadhewing we
present phase-field models for two cases: (a) H@megus nucleation in the hard sphere system tistadlizes to the
fcc (face centered cubic) structure, where bedidesstructural changes, we explicitly incorpordte tlensity change
during crystallization. (b) Heterogeneous nucleaiioa binary system, where appropriate boundangitions will be
introduced to fix the contact angle in equilibrium.

2.1.1 Phase-field model of homogeneous nucleation in the hard sphere system Here we consider two possible phase-
field approaches. Following previous work (Granéswl 2003a), the grand potential of the inhomogeneostesy
relative to the initial liquid is assumed to beoadl functional of the phase field monitoring the liquid-solid transition
(m=0 and 1 in the liquid and in the solid, respealiiy and the volume fractios = (T76)c°p (herep is the number
density of the hard spheres):

AQ = [d°r {% (Om)* + acx(m, ¢)} : (1)

where, ¢ is a coefficient that can be related to the imteidl free energy and the interface thickndsts, the tempera-
ture, whileAa(m,...) is the local grand free energy density relativéhe initial state (that includes the Lagrangetipul
lier term, ensuring mass conservation; here thedrage multiplier is related to the chemical potnif the initial lig-
uid). The gradient term leads to a diffuse cryBtplid interface, a feature observed both in expernt (e.g, Howe
1996, Huismaret al 1997, Howe and Saka 2004, van der Veen and Rei2bé#) and computer simulations (e.qg,
Broughton and Gilmer 1986, Laird and Haymet 199ayiBchack and Laird 1998, Ramalingatal 2002). In the
present work, grand potential density is assumdtate the following simple form:

Aafm,g) =wTg(m) + [1 - p(m)]fs(#) +p(m)f(g) — {0f/0P} @)~ ] — FiL(@er), )

wherefg(@) andf_ (@) are the Helmholtz free energy densities for @ sand liquid states, whil@., is the volume frac-
tions of the initial (supersaturated) liquid pha3#ferent “double well’g(m) and “interpolation” functionp(m) will be
used as specified below. The free energy sealetermines the height of the free energy bariééween the bulk solid
and liquid states. Once the functional formg@h) andp(m) are specified, model parameterandw can be expressed
in terms ofy, and the thicknesd of the equilibrium planar interface (Cahn and iditi 1958).

Here we use two sets of these functions. One afthas been proposed intuitively in an early forrtiataof the
PFT and in use widely:

(a) The "standard" set (PFT/S): These functions are assumed to have the ffgh= "/, #(1 - ¢ andp(¢) = F(10
- 15p+ 6¢f), respectively, that emerge from an intuitive fatation of the PFT (Wangt al 1993). Herep= 1- mis
the complementing phase field, defined so that @ in the solid and 1 in the liquid. The respexexpressions for the
model parameters are as folloves® = 62"2),,dT;, andws = 62"2),./(JT;). This model has been discussed in detail in
(Granasyet al 2003a).

(b) Ginzburg-Landau form for fcc structure (PFT/GL): Recently, we have derived these functions for (bese ce-
tered cubic) and fcc (face centered cubic) strest@Granasy and Pusztai 2002) on the basis ofjfesimder-parameter
Ginzburg-Landau (GL) expansion that considers tlgstal symmetries (Shié al 1987). This treatment yieldgm) =
(1/6)( - 2m’* + mP) andp(m) = 3m"* — 2m° for the fcc structure, while the expressions tiéite the model parameters
to measurable quantities are as follows;? = (8/3)C&s®, Wg. = Ws(4C)™, whereC = In(0.9/0.1) [3In(0.9/0.1)-
In(1.9/1.1)T". Combination of the latter double well and intdgtion functions with equation (2) is a new constien,
presented here for the first time. Therefore, thorigs analogous to the procedure applied in aiptes work (Granasy
et al 2003a), we briefly outline the way the propertiésuclei are determined in this case:

The field distributions, that extremize the freemgy, can be obtained solving the appropriate Huégrange (EL)
equations:

X _ ol al 5(2_6I_D ol

=~ =—-0—=0, and —=—-0—2=0, (3a,b)
an_ om  o0m 5% op ong

where dQ/dm and 0/ o¢ stands for the first functional derivative of theagd free energy with respect to the fietds
and ¢, respectively. Herd, = ¥ 2T(Om)? + f(m, @) + A¢ is the total free energy density inclusive thertevith a La-
grange multiplierd ensuring mass conservation, while the Helmhoke fenergy density i§m, ¢) = wTg(m) + [1 -



p(m)] fs(@) + p(m) f (). For the sake of simplicity, we assume here atrapic interfacial free energy (a reasonable
approximation for simple liquids). Note that dueattack of a gradient term for the fiegdin the grand potential, equa-
tion (3b) yields an implicit relationship betweerand ¢, which can be then inserted into equation (3agmsolving it.

Herein, equation (3b) has been solved numericaBing a variable fourthffifth order Runge-Kutta hed (Korn
and Korn 1970), assuming an unperturbed liqmd(0, ¢ = @) in the far field { - ), while, for symmetry reasons, a
zero field gradient applies at the center of thetfiations. Sincen anddnvdr are fixed at different locations, the central
value ofmthat leads ton - m,, = 0 forr - o, have been determined iteratively. Having deteeahithe solutionsn(r)
and ¢(r), the work of formation of the nucleug/ has been obtained by inserting these solutiowsti@ grand potential
difference (equation (1)).

Of these two phase-field models (PFT/S and PFT/@id latter, which relies on the Ginzburg-Landapamsion,
incorporates a more detailed physical informatiarttee system (e.g., crystal structure), therefibis,expected to pro-
vide a better approximation to the atomistic sirtiates.

The physical properties, we use here, are the sanrea previous work of us (Granasyl 2003a), with the excep-
tion of the 10%-90% interface thickness, which ésvrallowed to change between 8.8nd 3.3, values that are con-
sistent with the interfacial profiles for a variaty physical properties (such as coarse grainegiterdiffusion, and
orientational order parametaggandqg) at the equilibrium solid-liquid interface of thard sphere system (Davidchack
and Laird 1998). In Section 3.1, we are going tdrads uncertainties associated with the interfaiokriess and inter-
facial free energy taken from atomistic simulations

2.1.2 Phase-field model of heterogeneous nucleation in binary alloys Here, we have two fields to describe the local
state of the matter, the usual phase figlg and the concentration fieltr). In the order to keep the problem mathe-
matically simple, we assume again an isotropiadsidiuid interface. Then the Euler-Lagrange equatian be solved
in a cylindrical coordinate system. Furthermoreyd do not assume a gradient term for the condsonréeld in the
free energy, in equilibrium, there exists an explielationship between the phase field and thallooncentration. Un-
der these conditions, we need to solve the follgvnler-Lagrange equation for the phase field

19 (r 6_<o]+ 9 _ P (@ [pd+g (@WT

= 4
20r\ or ) 0z° e @)

while in the absence of &df term in the free energy, the Euler-Lagrange equdbr the concentration field yields a
c(¢ relationship. Accordingly, in equation (&f[@ c(@] = fl@ c(@] — (0f/oc)(c.)[c(@ — c.] — f» is driving force of
crystallization, while properties with subscriptrefer to quantities characterizing the initialuid state. Now we wish
to ensure in equilibrium (stable or unstable) timat solid-liquid interface has a fixed contact &gyl with a foreign
wall placed az = 0. To achieve this, we prescribe the followirngbdary condition at the wall, which can be vievasd
a binary generalization of Model A presented infi@syet al 2007):

(g = 22N o), (5)
T

wheren is the normal vector of the wall. The motivatiar this boundary condition is straightforward ir ttase of a
stable triple junction, in which the equilibriumaplar solid-liquid interface has a contact anglaith the wall. The
wall is assumed to lead to an ordering of the amjaéiquid, an effect that extends into a liquigida of thicknessl,
which is only a few molecular diameters thick (geg., Toxvaerd 2002, Web# al 2003). If we take plane = z,,
which is slightly above this layer, i.&g, > d, the structure of the equilibrium solid-liquid énface remains unperturbed
by the wall (see figure 1). Then along the z, plane the phase field and concentration profitestavially related to
the equilibrium profiles across the solid-liquidarface. Evidently, in the interface the followirglationship holds

2 L ong J =Af[pc(a)], (6)

whereng is a spatial coordinate normal to the solid-liqiiterface, while the component @fp normal to the wall is
then (¢ = (0¢7dng )BosE) = [2AF/(£°T)]V*Gos(). (Remarkably, if in equilibrium a parabolic gr@approximation
by Folch and Plapp (2003 2005) is applied for tree fenergy surface, one finds that convenie&flys c(¢)] =

wTg(¢).) While equation (5) is straightforward for thqudibrium planar solid-liquid interface, generation of this

approach for nuclei involves further consideratidngeed, in the undercooled state the planarfaxteris not in equili-
brium, Af[@ c(¢)] is a tilted double well, and equation (6) is matid anymore. Note that it is the capillary pregsthat
restores the uniform chemical potential insiderbeleus (being in unstable equilibrium). While pinnciple, it would

be possible to solve the appropriate sphericalrHidgrange equation for the phase field, and usedkpective solu-
tion to determine the normal componéh{ ¢ of the pressure tensor that makes the chemidehpal spatially uni-
form, it seems rather unpractical. It turns outwlweer, that at least for large nuclei (small undelinigs) a fairly good



Figure 1. Typical cross-sectional phase-field map of a nugiéthe structural effects of a wall placedzat O are considered (com-
putation performed with Model B, Warren proposedGi@nasyet al (2007)). Note the boundary layers between the amd the
solid phaseg¢= 0), and between the wall and the liquid phase {). Note also that the crystal becomes disotat¢he wall, while
an ordering of the liquid takes place near the .wlove plane = z, the solid liquid interface remains unperturbeds presence
of the wall. In the case of a stable triple junatibowever, the solid-liquid interface will be ptar(not curved as for nuclei).

approximation can obtained if equation (5) is metdi, however, witlhf ' = Af —[1 - p(@][Af,, whereAf, is the driving
force of solidification in the undercooled statatélithat the correction term mimics the effectaittary pressure.

2.2. Polycrystalline phase-field theory with quaternion representation of crystallographic orientations

Here we use the three-dimensional PF model of ppdyalline solidification (Pusztat al 2005a 2005b). Besides the
usual square-gradient and local free energy detesitys, the free energy functional consists of @entational contri-
bution:

F =Id3r{%lm¢f +f(pcT)+ f} (7)

The local physical state of the matter (solid quid) is characterized by the phase figldnd the solute concentration
c, while &,is a constant, antlis the temperature. The local free energy densigssumed to have the fof(p c, T) =
w(AT g(@ + [1 - p(P] fs(c) + p(@ fL(c), where the intuitive “double well” and “interpdien” functions shown in the
section 2.1.1 are used, while the free energy dsalgg) = (1 —c) wa + Cc Wg. The respective free energy surface has
two minima @= 0 andg = 1, corresponding to the crystalline and liquichgds, respectivelylyvhose relative depth is
the driving force for crystallization and is a ftioo of both temperature and composition as spatifiy the free ener-
gy densities in the bulk solid and liquiid, (c,T), taken here for the binary systems from the idedlition model, or
from CALPHAD type computations (computer aided CAlation of PHAse Diagrams).

The orientational contribution to free enefgyhas been obtained as follows. In 3D, the relatiientation with re-
spect to the laboratory system is uniquely defingd single rotation of angle around a specific axis, and can be ex-
pressed in terms of the three Euler angles. Howsdkes representation has disadvantages: It haerghiwces at the
polesJ = 0 andm, and one has to use trigonometric functions thatieme consuming in numerical calculations. There-
fore, we opt for the four symmetric Euler paramgtep = cos(y/2), q; = ¢; sin(//2), g, = ¢, sin(/2), andgs = c3
sin(n/2), a representation free of such difficultiese(eic; are the components of the unit veataf the rotation axis.)
These four parametegs= (Qo, 01, 02, Gs), Often referred to asquaternion, satisfy the relationship; g = 1, therefore,
can be viewed as a point on the four-dimension) (nit sphere (Korn and Korn 1970). (Herestands for summa-
tion with respectto = 0, 1, 2, and 3, a notation used throughoutghjger.)

The angular differencé between two orientations represented by quatesigipandg, can be expressed as ad§(
=% [Tr(R) - 1], where the matrix of rotatioR is related to the individual rotation matride&y;) andR(qy), that rotate
the reference system into the corresponding lodehtations, aRR = R(qy)R(q,) . After lengthy but straightforward
algebraic manipulations one finds that the angdifierence can be expressed in terms of the diffege of quaternion
coordinates: cog] = 1- 2A% + A2, whereA? = (0, — q;)? = X Ag?, is the square of the Euclidian distance betwhen t
pointsqg; andg, on the 4D unit sphere. Comparing this expressiiim the Taylor expansion of the function cd3(one
finds that 2 is indeed an excellent approximation @fRelying on this approximation, we express thermtdtional
difference a®d= 2A.

The free energy of small-angle grain boundarieseimges approximately linearly with the misoriematof the
neighboring crystals, saturating at about twiceéhef free energy of the solid-liquid interface. @l is to reproduce
this behavior of the small angle grain boundaff@spenalize spatial changes in the crystal oriematn particular the
presence of grain boundaries, we introduce an @itiemal contributiorfy; to the integrand in equation (1), which is
invariant to rotations of the whole system. White2D, the choice of the orientational free enemyyhie formf,; =



HT[1 - p(@]008| (where the grain boundary energy scales Wifrensures a narrow grain boundary and describes
successfully both polycrystalline solidificationdagrain boundary dynamics (Kobayashal 1998 2000, Warrest al
2003, Granasgt al 2002 2004a 2004b), in 3D we postulate an analogaugive form

t,, =2HT- pn {3 (0g )72 ®

It is straightforward to prove that this form baillewn to the 2D model, provided that the orientaidransition across
grain boundaries has a fixed rotation axis (perjetal to the 2D plane) as assumed in the 2D foatia.

As in 2D, to model crystal nucleation in the liguwile extend the orientation field¥(r), into the liquid, where they
are made to fluctuate in time and space. Notefthatonsists of the factor [t p(@] to avoid double counting of the
orientational contribution in the liquid, which jigr definitionem incorporated into the free energy of the bulk iiu
With appropriate choice of the model parameterspralered liquid layer surrounds the crystal as seeatomistic si-
mulations.

Time evolution of the field is assumed to folloviaseation dynamics described by the equations ofanot
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Herel is the integrand of the free energy functiongljs the molar volumeD the diffusion coefficient in the liquid,
and ¢; are the appropriate noise terms representinghimental fluctuations. (Conserved noise for the coreskfields
and non-conserved noise for the non-conservedsfigdddrma and Rappel 1999).) The time scales fofidhes are de-
termined by the mobility coefficients appearingtive coarse-grained equations of motity, M. and My These
coarse-grained mobilities can be taken from expemiiand/or evaluated from atomistic simulatioe® (s.9., Hoyét
al 2003). For example, the mobilityl;, is directly proportional to the classic interfddion coefficient for a binary
mixture, the phase-field mobilityl, dictates the rate of crystallization, while théeatational mobilityM, controls the
rate at which regions reorient, a parameter thatearelated to the rotational diffusion coefficiand is assumed to be
common for all quaternion components. While thevdion of a more detailed final form of equatiq®s) and (9b) is
straightforward, in the derivation of the equati@isnotion (equations 9(c)) for the four orientatd fieldsqi(r), we
need to take into account the quaternion propefties;® = 1) , which can be done by using the method afraage
multipliers, yielding

E:Mq O HT[1- p()] 1 — |~ & X a0 HT[1- p(¢)] 0% — 1+ (10)
ot >, (@a)? >, (0g)?

Gaussian white noises of amplitude= {s; + ({1 — {si) p(¢) are then added to the orientation fields so tiratquater-
nion properties of the; fields are retained{(; and{s; are the amplitudes in the liquid and solid, retipely.)

This formulation of the model is valid for triclmiattice without symmetries (space group P1)hkmdase of other
crystals, the crystal symmetries yield equivalemtrdations that do not form grain boundaries. dlevpus works, we

@)

Figure 2. Single crystal growth forms at various choiceshef anisotropy parameters of the kinetic coefficiém) cube §; = - 1.5,
€, = 0.3); (b) rhombo-dodecahedran € 0.0,s, = 0.6); (c) truncated octahedran € 0.0,&, = — 0.3). Heree; ande, are the coeffi-
cients of the fist and second terms in the Kubitrtomic expansion of the kinetic anisotropy.



have proposed that the crystal symmetries cankes tato account, when discretizing the differdntigerators used in
the equations of motions for the quaternion fiel@alculating the angular difference between a eémell and its
neighbors, all equivalent orientations of the nbihhave to be considered, the respective angiifarehceso be cal-
culated (using matrices of rotatiti = R[Eﬁ[R'l, where§; is a symmetry operator), of which the smallésalue shall
be used in calculating the differential operatbor(cubic structure, there are 24 differ&nbperators, if mirror symme-
tries whose interpretation in continuum modelsassiraightforward are omitted.)

Solving these equations numerically in three din@rswith an anisotropic interfacial free energy

PO - o) =2 Thant -2 5 +ooninen -2 | a

0

or with an anisotropic phase-field mobility of siamiformM,= M4,Sn), one may obtain various single crystal growth
forms as exemplified in figure 2. Note that in efipra (11)n = (04, Ny, N3) in the normal vector of the solid-liquid inter-
face that can be expressed in terms of componéigo

2.2.1 Boundary conditions Unless stated otherwise, we have used periodicdaryrcondition in all directions. On for-
eign surfaces, a binary generalization of the bamndondition of Model A of (Granasst al 2007) has been applied
(see also section 2.1.2). We model directionadffatation by imposing a temperature gradient (nibie excess term
that appears because of the temperature depermifitient of ¢ ) and a uniform flow velocity in the simulation
window. Foreign particles of given size and contawgle distributions of random lateral position aaddom crystallo-
graphic orientation were let in on the side, whagh temperature liquid enters the simulation windo

2.2.2 Materials properties The polycrystalline calculations have been perfmtwith three sets of materials parameters:
(i) For an ideal solution approximant of the Ni-Gystem, we used in previous studies (for detaids Pesztakt al
2005a). (ii) For a parabolic groove approximatidéthe free energy (developed by Folch and Plap@ZlD5) adopted

to the Ni-Cu system at 1574 K by Warren (20@iii). For the Al-Ti alloy of thermodynamic propees from a CAL-
PHAD type assessment of the phase diagram (foilslete Pusztadt al 2006).

2.2.3 Numerical solutions The equations of motion have been solved numeyiaading an explicit finite difference
scheme. Periodic boundary conditions were applié@. time and spatial steps were chosen to ensaipditst of our
solutions. The noise has been discretized as teschy Karma and Rappel (1999). A parallel codésng on the
MP1/OpenMPI protocols have been developed.

2.3. Binary phase-field crystal model

In derivation of the binary PFC, the starting pamthe free energy functional of the binary pdraiive density func-
tional theory, where the free energy is Taylor exjeal relative to the liquid state (denoted by srpst) up to 2nd
order in density difference (up to two-particle retations) (Eldeet al 2007):

k—=fd{pAln(pA) AP+ Py ln(pBJ Aps}
P Ps (12)
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wherek is Boltzmann's constanfyp, = pa — pa- and Apg = pg — ps". It is assumed here that all two point correfatio
functions are isotropic, i.eG;(rq, rp) = Cj(Jr1 — r2l). Taylor expanding direct correlation functionsHourier space up
to 4th order, one obtair®; = [C%; — C%0°+C*%0%d(r, — 1) in real space, whei@ differentiates with respect tq (see
Elderet al 2007). The partial direct correlation functioGgcan be related to measured or computed partiedtate
factors (see e.g. Woodhead-Galloway and GaskeB)Y196

Following Elderet al (2007), we introduce the reduced partial numbesit differencesia = (pa — pa-)/pL andna
= (ps - p&“)lpL, wherep, = pa- + pg". It is also convenient to introduce the new vdgahb = n, + ng and 6N) = (ng -
na) + (ps" — pat)lpL. Then, expanding the free energy arouiid) € 0 andn = O one obtains

kaT—jdr{ [B, + B, (2R2D? + R*D* )]n+ n®+ 1 EN) + (AN + 2 () +—|D(d\l)| } (13)

Assuming substitutional diffusion between speciearl B, i.e., the samd mobility applies for the two species, the
dynamics o and ¢N) fields decouple. Assuming, furthermore, thattability is a constant,, the respective equa-
tions of motions have the form (Eldetral 2007):
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where &£ =2 +3 (-n'0! og—'l)( is the first functional derivative of the free eggmwith respect to fielg, andl is the

integrand of equation (13), while the respectivieaive mobility isM. = 2M/p?. ExpandingB,, Bs andR in terms of
(3N) with coefficients denoted &", B;° andR,, assuming that only coefficieBy", B,", By>, Ry andR, differ from zero,
and inserting the respective formlahto equations (14), one finds
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These equations have been solved numerically @ssgmi-implicit spectral method based on operatiittiag (Tegze
et al 2008) under periodic boundary condition on alesidfter adding a conservative noise (a randon) ftuthem that
represent the thermal fluctuations with an ultréaticut off at the inter-atomic spacing.

2.4. Computational resources

The parallel codes developed for the phase-fietdmrase-field crystal models have been run on tteeently built PC
clusters: two at the Research Institute for SotateéSPhysics and Optics, Budapest, Hungary, camgisef 160 and 192
CPU cores (80 dual core Athlon processors with it/&fnormal Ethernet) communication, and»22 x 4 CPU core
Intel processors equipped with 10 Gbit/s fast comigation (Infiniband)), respectively, and third R@ister at the
Brunel Centre for Advanced Solidification Technofp@runel University, West London, UK, consistinfy @60 CPU
cores (20x 2x 4 CPU core Intel processors) and 1 Gbit/s (noftiaérnet) communication.

3. Results and discussion
3.1. Quantitative test of phase-field models of homogeneous crystal nucleation in the hard sphere system
The predicted nucleation barrier heights are ptesefor the usual intuitive and the Ginzburg-Lanéapanded double

well and interpolation functions in figure 3 asumdétion of volume fraction. It has been found ttie barrier heights
predicted by the PFT with physically motivated fexeergy (PFT/GL) gives a considerably closer agesgmith direct

m Auer-Frenkel
—— CNT

—— PFTIS(3.00)
—PFTIS(3.30)
== PFTIGL(3.00)
= PFTIGL(3.30)

Figure 3. Comparison of the reduced nucleation barrier hefgdlitkT) vs volume fraction relationships various phasédfimodels
predict for the hard sphere system without adjustalarameters. Predictions of PFT models with tteitive (PFT/S) and with
Ginzburg-Landau expanded (PFT/GL) double-well am@rpolation functions are presented. There are dwwes for each PFT
model: one with the minimum (upper curve) and aeothith the maximum of the 10980% interface thickness deduced from ato-
mistic simulations (Davidchack and Laird 1998). Fomparison, direct results fok* from the Monte Carlo simulations (full
squares; Auer and Frenkel 2001a 2001b), and pagartet predictions from the droplet model of thassical nucleation theory
(CNT) are also shown.



results from atomistic simulations (Auer and Frdi@01a 2001b) than the PFT model with a free gnetgface rely-
ing on the usual intuitively chosen double well amtéirpolation function (PFT/S). It is also remabslathat the droplet
model of the classical nucleation theory fails spealarly. We note here that in a previous studya(@syet al.
2003a), we used an interface thickness determigetthd envelope of the density peaks. We believe ttiea present
choice 0fd1gy- 900 1 [3.00; 3.30], which has been deduced from profiles for sevehgkical properties should be more
reliable. It is worth noting also that the inteifdadata from atomistic simulations might somewhatlerestimate both
the interfacial free energy and the interface théds due to the limited size of such simulatiortsckvleads to a long
wavelength cut off in the spectrum of surface flations. On the other hand, interfaces relevanutdeation are of a
size scale that is comparable to the size scaddoiistic simulations, so one might expect herg oamhor error from
this source.

3.2. Srructure and barrier for heterogeneous crystal nuclei in binary alloys

The structure of the heterogeneous nuclei forminth@4 K in a NiCu liquid alloy (with a free energurface approx-
imated by a parabolic groove (Foch and Plapp 2083pmposition € — cg)/(c. — ¢s) = 0.2 under nominal contact an-
glesy= 30, 60, 9¢°, 120, and 170 at a horizontal wall enforced by the boundary d¢tionl equation (5) are shown
in figure 4. Note that the interface thickness dsgiderably smaller than the radius of curvaturecokdingly, in the
non-wetting limit ¢ — ), the height of the nucleation barrier can be apipnated well with that from the classical
droplet model of homogeneous nuclei. However, towadeal wetting the nuclei are made almost egtioéinterface,
so the classical spherical cap model is expectédegak down. Despite this, an analysis of the aarlioes correspond-
ing to ¢= Y% gives contact angles within abodtd the nominal (scattering with roughly this valuk is thus demon-
strated that so far as the height of the nuclela ger than the interface thickness the true araagle falls reasonably
close to the nominal value, i.e., the boundary @@rdgiven by equation (5) can be used with cosrfice to simulate
surfaces of pre-defined contact anglg/of

It is also of interest to compare the nucleatiorribes from the phase-field theory and from thessleal spherical
cap model relying on a sharp interface (the homeges nucleus can also be obtained as doublingattiebheight for
90° contact angle). It appears that under the invatdconditions the catalytic potency fadi@) = Whetero/ Whomo fOI-
lows closely the functiof(¢) = (1/4)[2 - 3 cos{) + cos)’] from the classical spherical cap model (see rightmo
panel in figure 4). This is reasonable, since thasdei, as mentioned above, are fairly classigadestheir radius of
curvature is large compared to the interface théskn

Next, we apply this technique in phase-fialohulations of heterogeneous nucleation. First, we applyritie soli-
dification of a single component system (only etqra{9a) is solved here). Noise induced heterogememicleation
has been simulated on complex surfaceg/af 60° including stairs, a checkerboard modulated surfaeetangular
grooves and randomly positioned spheres with randatius, while using the properties of pure Ni (fig 5). Also we
incorporate results for a non-wetting brugh< 175) protruding from a wetting surface/E 6C°), while at the center
of the simulated area a wetting stage=60C) is placed that helps crystal nucleation (figuyecomplex behavior is

y=30°  y=60°  y=90° y=120° y=170°

= 1
l l l S T

Figure 4. Phase-field (upper row) and composition (lower yowaps for heterogeneous nuclei obtained by solmingerically the
respective Euler-Lagrange equation (equation (g)g function of contact anglg in the binary NiCu system at 1574 K. The size of
the calculation window is 108 150 nm. The contour lines in the upper row indigattase field levels ap= 0.1, 0.3, 0.5, 0.7, and
0.9, while the black contour line in the compositimaps indicates the equilibrium composition of sléid phases® = 0.399112.
Here parabolic well parameters corresponding tmeanface thickness of 1.76 nm and a solid-liquigtifacial free energy of 0.3623
Jin? have been used. The classical (black) and nosicigred) catalytic potency factors are showrhenright.
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Figure 5. Noise induced heterogeneous crystal nucleatiosomnplex surfaces of contact angle of 6Brom left to right: stairs,
rectangular grooves, checkerboard modulated syrdakspherical particles. (Properties of Ni hagerbused.)

2t
Jidd

Figure 6. Crystal nucleation and growth on a non-wetting nfilper brush. Note the effect of decreasing densitthe brush (from
left to right) on crystallization. (For details st text.)

seen: if the brush is dense, no nucleation is plesen the horizontal surfaces only at the cemsti@de, and after nuclea-
tion the crystal "crawls" on the tips of the nonttivey brush. If the distance between the fiberthanon-wetting brush
increases crystal can climb down to the horizowetting surface, while if this distance betweennba-wetting fibers
is large enough, nucleation may take place on thizdntal surface. Simulations of this kind mighrdf application in
nano-patterning studies.

3.3. Modeling complex polycrystalline morphologies in three dimensions

3D phase-field simulations showing the nucleation ggrowth of crystallites of different habits (cubdombo-
dodecahedron, truncated octahedron, and dendmitidized by prescribing appropriate kinetic anispies) illustrate
the application of quaternion field for describienystallographic orientation in figures 7 and 8eTghysical properties
of the Cu-Ni system has been used, the calculatiere performed at 1574 K and at a supersaturaid®= (c_ —
c)/(c. —cg) = 0.75, where, = 0.466219cs = 0.399112 and are the concentrations at the liquidus, solidod, tae ini-
tial homogeneous liquid mixture, respectively. Hiféusion coefficient in the liquid was assumedo®D, = 10° m/s.
Dimensionless mobilities df,, = 3.55x 10" m*Js (with an anisotropy d¥l, = My{l — 35 + 45 [(A.09," +
(A09," + (A,09),"/0ADO¢TY) and My, = 8.17 milJs, andM,s = 0 were applied, whil®s = 0 was taken in the solid.
The kinetics of multi-grain dendritic solidificatichas been simulated in a cube of @A x 8.4um x 8.4 um for a time
interval of ~ 0.16 ms. The evolution of the norreadl crystalline fractioiX has been analyzed in terms of the Johnson-
Mehl-Avrami-Kolmogorov kinetics (Christian 198J>i,=1—exr{— (t/r) PaK } wherer is a constant related to the nuc-

leation and growth rates, apgdk is the Avrami-Kolmogorov exponent characteristicthhe mechanism of transforma-
tion. The kinetic exponent evaluated from our sitiohs,pa = 2.922+ 0.001 = 5x 10° s), falls between those for

Figure 7. Polycrystalline structures formed by nucleatiod gnowth of cubic, rhombo-dodecahedral and trurtattahedral crys-
tals (from left to right, respectively). The comatibns have been performed on a 40000x 400 grid for ideal solution NiCu ther-
modynamics at 1574 K and supersaturaBen0.8, however, with kinetic anisotropies giveritie caption of figure 2.
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Figure 8. Polycrystalline structure formed by nucleation atehdritic growth in a NiCu alloy (whose thermodynarproperties
were approximated by the ideal solution model) 3#4LK andS = 0.78, while assuming cubic crystal symmetriegudions (9)
have been solved numerically on a 64640x 640 grid (~262 million grid points) by solving nenically the equations of motion (6
stochastic partial differential equations). The pomation took about a month on 80 processors. Betiteof the simulation, about
180 crystalline particles formed. Different colamdicate different crystallographic orientations.

nucleation with diffusion controlledpfx = 2.5) and with steady state growjp( = 4) (see Christian 1981). This im-
plies that some of the particles have not yet redc¢he fully grown steady state dendritic morphglas is apparent in

figure 8. Larger simulations are planned to clafifither the relationship between morphology and Note that here

we have a reasonable statistics for nucleatiotyathe end of the simulation, about 180 dendritictiples formed, a

number considered sufficient for such purposesafauand Granasy 1998).

As discussed in detail in previous work (Granésgl 2003c 2004a 2004b 2005), reduction of the oriemtanobil-
ity in the case of needle crystals may lead tofthimation of Category 2 spherulites, that stargtow as a single
needle crystal but later the ends splay out ana farentually a space filling roughly spherical moijstalline structure.
A similar transition can be seen when increasirgdhiving force of solidification. As demonstratadfigure 9, the

Figure 9. From needle crystal to spherulites in a phase-fieeory relying on a quaternion representatiothef crystallographic
orientation. The simulations have been performeddlying equations (9) on a 260200 x 400 grid assuming ideal solution ther-
modynamics. A large kinetic anisotropy favoringesedle crystal form, characterized by the parametieress, = 1/3 andA = (0, 0,

1) has been applied. The driving force of soli@ifion increases from the left to riglg< 1.8, 1.9, 2.0, and 2.1, respectively).

12



0,56 1680

1700

0,54
1720

1740
0.52 i

1760 B

1780 0,6 1780 p

1800

. 0,43
1820 [

1840 5
1860

1860 §

1820 [ 0,44 1880 §

Figure 10. Phase-field simulation of polycrystalline soliddtion of the Ad 4sTig 55 alloy in @ moving frame\( = 1.26 cm/skhnd
constant temperature gradiedfT(= 1.12x 10" K/m). Composition (on the left) and orientation mdpn the rightgorresponding 1
timest = 2.3, 2.6 and 2.9 ms are shown. Note that thetatiens corresponding to 0 and 1 are equivaldm.computation has be
performed by solving the 3D model (equations (8)2D on a 60& 3000 grid (3.93um x 19.69um). White spots in the chemic
maps indicate the foreign particles, whose diamedées in the 13 nm 66 nm range, and have a contact anglg sf60.

frequency by which new grains form at the endsefrieedle crystal increases strongly with increpsupersaturation.
The mechanism, by which the new grains form, isquenching orientational defects into the solidjovhdefects
might be identified as bunches of dislocationgpna&D simulations (Granast al 2006).

3.3.1 Modeling of directional solidification In order to model columnar to equiaxed transitiG&T) in the framework
of the EU FP6 IMPRESS project (Jarvis and Voss 2088 have extended our 3D model to describe ppdyaline
solidification of the A} 44Tigss alloy in temperature gradient and a moving fraff@enable large scale simulations, we
have used a broad interface (65.6 nm), howevelyded an anti-trapping current (Kiet al 1999,Karma 2001, Kim
2007) to ensure a quantitative description of diéeslrin the simulation window, the material is lad move with a
homogeneous velocity from the bottom to the topilev fixed temperature gradient is prescribechertical direc-
tion. Particles of given number density, randonetation and size, and of given contact angleetrolenter into the
simulation window at the bottom edge. Snapshoth@ithemical and orientation maps illustrating poJgtalline soli-
dification under such conditions are presentedgaré 10. As a result of the interplay between fogteneous nuclea-
tion and growth, after the initial transient, wesebve stochastically alternating nucleation-coietbland growth-
controlled periods. This is a non-steady solutippearing in the CET zone. A detailed analysis &f ffhenomenon
will be presented elsewhere (Pusataal 2008).

3.3.2 Phase separation and polycrystalline solidification in the presence of fluid flow In order to address the solidifica-
tion of Al-Bi monotectic alloys (candidates for amgeneration of self lubricating bearing matejiatse 2D version of
our polycrystalline phase-field theory has been lzioed with viscous flow. Solidification has beemithmodeled via
introducing a phase-field dependent viscosity, ambn-classical stress-tensor related to the pheasewosition-, and
orientation fields (Tegze and Granasy 2006), wthike regular solution model has been used to apmairi the ther-
modynamics of the Al-Bi system. Inside the liquigiid immiscibility region we observed various hgdynamic ef-
fects (Tegzeet al 2005). Besides the solutal- and thermocapillaryiomptwe have seen flow assisted coagulation and
bicontinuous phase separation (figure 11), mechaidentified by Tanaka and coworkers (Tanaka 11955, Tanaka

13



(o)l = () IR
Figure 11. Liquid phase separation and solidification in mmetic alloys (regular solution approximant of Al}B{a) Collision
assisted collision of liquid dropletsg{ = 0.25,T = 920 K, 250x 250 section of a 512 512 grid); (b) bicontinuous phase separation
(csi = 0.5, T =900 K, 512x 512 grid); (c),(d) solidification of phase separgtliquid (cg; = 0.23,T = 750 K, 512x 512 section of a
1024x 1024 grid). Composition (&) (c) and orientation maps (d) are shown. In pafgls (c) arrows indicate the velocity field.

and Araki 1998). It has also been found that thetegile up ahead of the solidification front migdignificantly acce-
lerate droplet nucleation in the metastable regidthe liquid-liquid coexistence region (figure 11)

3.4. Atomistic smulations for polycrystalline solidification of a binary alloy in two dimensions
We have performed simulations for the PFC moded 46,384x 16,384 grid using the same model parameters a&s Eld

et al (2007), however, with half of their spatial stéyzcordingly, our simulation window contains roughlys million
atoms. Solidification has been initiated by insgyrtb, 50 and 500 randomly oriented and positiongstalline clusters

ms *ﬂh
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Figure 12. Polycrystalline solidification in the binary phaféeld crystal model (the distribution of th&N) field is shown). T row:
Dendritic growth of 5 crystalline particles (snapshtaken at 1,000, 5,000, 10,000 and 20,000 timessare shown)."% row:
growth of 50 particles (snapshots taken at 1,00@)@ 5,000 and 10,000 time steps are showfyo®: growth of 500 particles
(snapshots taken at 250, 500, 750 and 1,500 tieps stre shown). The simulations have been perfooneti16,384 16,384 grid,
using a semi-implicit spectral method. Note thaehte position of all atoms of the crystalline ghare known accurately.
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Figure 13. Crystallization kinetics for binary phase-field stgl simulations shown in figure 12. (a) Numbeatifms in the crystal-
line phase vs number of time steps; (b) Avrami i@t and X,.x are the transformed fraction and its maximum; slope of the
curve is the Avrami-Kolmogorov exponepix); and (c) the kinetic (Avrami-Kolmogorov) exponeag a function of the reduced
transformed fraction. (Upward and downward pointirigngles and squares correspond to 500, 50 aaditieles, respectively.)

of 13 atoms each into the simulation window. Theutlgng multi-grain structures are shown in figd (snapshots of
the "composition field" dN) are displayed). The respective time dependemdidse number of atoms in the crystalline
phase are presented in figure 13(a). The lattentgudas been obtained by counting the atoms énctlystalline state
(an atom has been supposed to belong to the dwdisiepif its density peak was larger than the aeecddhe value for
the bulk liquid and the maximum value for the batistal) using the public domain software Imagelirémoffet al
2004). The higher level of crystalline fraction ebsed in the 500 particle simulation (~1.5 milliatoms of a total of
~1.6 million) signals a more efficient solute trapp probably attributable to fact that here thigéiahtransient of fast
growth rate represents a larger fraction of thaltsolidification time than for 50 or 5 particleghis is also consistent
with the observation that the contrast of td)(field grows with time. The time evolution of ctgflization has been
analyzed in terms of the JMAK kinetics. The respecAvrami plots and the kinetic exponent vs redutransformed
fraction curves are displayed in figures 13(b) &o)d The Avrami plots are not linear, and the retpe Avrami-
Kolmogorov exponentk) vary with the transformed fraction (or time). Ap&rom an initial transient, the observed
pak values fall between the limiting valupg = d/2 = 1 andpak = d = 2 corresponding to diffusion controlled (con-
served dynamics) and interface controlled growtfixad number of particles in 2D (Christian 198Rpssible origin of
the observed time dependenciepgf is that due to mass conservation, and the diftmeim the densities of the crys-
tal and liquid, the driving force for crystallizati decreases as crystallization proceeds. Screeffiects characteristic
to highly anisotropic growth (Shepilov 1990, Shepiand Baik 1994, Birnie and Weinberg 1995, Pusatal Granasy
1998) are also expected to influence transformatinetics of the dendritic particles. Finally, weta that the behavior
of the pak(X) curve for the 5 dendritic particles reflects #mall number of these particles, which cannot glea sa-
tisfactory statistics for an accurate evaluatiothef kinetic exponent. Unfortunately, significanéyger simulations for
a large number of fully developed dendrites cafm®easily made with the present numerical technameethe hard-
ware we used.

4. Summary

Using various phase-field techniques, we have addckdiverse aspects of polycrystalline solidifteatincluding ho-
mogeneous and heterogeneous nucleation of growierse and polycrystalline growth. Along these dineve have
shown that using a physically motivated (Ginzbuegitlau expanded) free energy in the phase-fieldoappr a rea-
sonably accurate prediction can be obtained fomtigeation barrier of homogeneous crystal nuaeatn the hard
sphere system. We have then presented a methadctoporating walls of pre-defined contact anglwiphase-field
simulations, and demonstrated that rather complicatoblems (heterogeneous nucleation on pattesméaces/nano-
fiber brush) can be treated this way. Next, we teh@vn that phase-field models based on a quaterefresentation
of the crystallographic orientation are able toradd the formation of fairly complex three dimensilopolycrystalline
structures, including multi-grain dendritic solidétion and the formation of polycrystalline spHies. The effect of
temperature and flow fields on polycrystalline dification has also been explored. Finally, we hased a recently
developed atomistic approach, the "phase-fieldtatysnodel, to investigate multi-grain dendriticystallization in a
binary liquid alloy. We believe that these modeltogls and their descendants/combinations suppdayeatomistic
simulations andb initio computations will find application in various bcdres of materials science and technology.
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