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A B S T R A C T

Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos
exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic
subtype in which significant components of both of the previous subtypes are present. Early diagnosis and
identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping
of malignant mesothelioma, and specifically the recognition of transitional features from routine histology
slides has a high level of inter-observer variability.

In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothe-
lioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural
networks on bags of image patches that allows learning on a wider range of relevant instances compared to
max or top-N based MIL approaches. We also investigate augmenting the instance representation to include
aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identifica-
tion of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a
sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary
and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor
heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed
method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89 ± 0.05 for this task. The dataset
and developed methodology is available for the community at: https://github.com/measty/PINS.
1. Introduction

Malignant Mesothelioma (MM) is an aggressive cancer of the pleural
lining, primarily associated with asbestos exposure [1]. It has a long
latency period from initial exposure, to eventual carcinogenesis, and is
difficult to diagnose due to its nonspecific clinical manifestations. As a
result, diagnosis is usually confirmed in an advanced stage [2], leading
to the 5 year survival rate being less than 5% [3]. Hence there is an
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urgent clinical need to detect MM at its early onset when treatment is
more effective. MM is classified into 3 subtypes [4], Epithelioid (EM),
Biphasic (BM) and Sarcomatoid (SM) Mesothelioma, with Biphasic
characterised by a mix of epithelioid and sarcomatoid components,
including Transitional Mesothelioma (TM). Epithelioid mesothelioma
are characterised by malignant cells that are cytologically round with
varying grading of atypia. Sarcomatoid mesothelioma cells are gener-
ally recognised as malignant spindle cells [5]. The Epithelioid subtype
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is more common, and is associated with relatively more favourable
outcomes, whereas Biphasic and Sarcomatoid are associated with a
progressively worse prognosis. Recent studies have also shown that
the presence of transitional features of TM, which share intermediate
cytology between epithelioid and spindle cell also indicate a poorer
prognosis [6]. In MM, TM may represent an aspect of Epithelial Mes-
enchymal Transition (EMT), with cells differentiating between EM and
SM, suggesting that MM cases may fall more naturally on a continuum
of characterisation according to the relative prevalence of EM, SM and
TM components. Part of the motivation for this work is to go beyond
the current 2021 WHO 3 basic subtypes and move towards a system
whereby we use sub-visual signals on individual cell level, to specify
quantitatively where a MM sample lies on the EM-SM continuum.

While distinction of these three histological subtypes of MM is cru-
cial to patient treatment, management and prognosis, it is challenging
to differentiate EM, SM and BM through visual analysis as they tend to
present similar features to transitional patterns at some stages.

A number of deep learning methods for analysing mesothelioma im-
ages have been developed recently. For example, SpindleMesoNET [7]
can separate malignant SM from benign spindle cell mesothelial prolif-
erations. This method uses region annotations on whole slide images to
train a resnet patch classifier. This differs from our learning task, as we
do not have region annotations and must rely only on core-level labels.

To address the challenges of assessing stromal invasion in small
biopsies, the most accurate indicator of malignancy, the separation
of benign and malignant mesothelial proliferations has been investi-
gated [8], in both epithelial and spindle cell mesothelial processes. A re-
cent approach for survival prediction of MM patients called MesoNet [9]
uses an MIL solver originally developed for computer vision applica-
tions [10]. This has also been applied to classification of lymph node
metastases in [11]. The model uses a resnet50 base followed by a 1-d
convolution to give an instance level score. A small MLP prediction
head on the top and bottom two instances then provides the bag-level
label. Models based on learning on extremal instances can suffer from
learning on only a small subset of the relevant instances during training.

These examples demonstrate the successful application of machine
learning to some prediction tasks on MM tissue, however automated
subtyping of mesothelioma from Hematoxylin and Eosin (H&E) stained
tissue sections remains an open problem that has not been addressed
in the literature.

One of the issues associated with development of automated compu-
tational pathology approaches for predicting malignant mesothelioma
subtypes is that pathologist-assigned ground-truth labels for these im-
ages are typically available only at the case level. However, we are
often interested in properties of smaller regions of a sample. To address
this, tissue images can be tiled into patches for training of deep learning
models and the case-level labels used as bag labels. Thus, mesothelioma
subtyping can be categorised as a multiple instance learning (MIL) or
weak-supervision problem. This class of problem was first introduced
in [12], and various approaches have since been proposed for use in
such problems.

An attention-inspired pooling method for MIL instance aggrega-
tion is proposed in [13]. Another attention-based MIL approach is
introduced in [14]. Here, a dual stream approach is used where the
final bag score is the mean of max instance pooling and an attention
based weighted average of instances attended to by the max instance.
This model is applied to Camelyon-16 and TCGA lung cancer datasets.
Large datasets on prostate cancer, basal cell carcinoma and breast
cancer metastases are assembled in [15] and used to train an MIL
model backpropagating only the top instance per bag. In the IDaRS
algorithm proposed in [16], for each slide the training instances used
in epoch 𝑡 are the top 𝑘 ranked instances by prediction score from the
revious epoch 𝑡 − 1, augmented by a number of randomly selected

patches from the slide. This approach was used to predict the status of
molecular pathways and detect key mutations in colorectal cancer. Of
2

the approaches detailed in the literature, this is the closest conceptually
to the approach taken in this paper. Our approach differs in that instead
of the union of top N and a purely random sampling of instances, we
instead sample at each iteration according to the current model score.
By avoiding to use an arbitrary top N cutoff, and instead stochastically
sampling the more positive scoring patches through a probability dis-
tribution based on how highly each patch is scored, our approach can
adapt more closely to the actual distribution of positive instances in
each bag, thus making better use of all instances for training.

Building on our previous work [17], here we present a simple
yet effective approach to multiple instance learning for MM subtype
prediction with the following major contributions:

1. The introduction of a novel MIL-based method for computational
pathology tasks which addresses shortcomings identified in sim-
ilar methods regarding robustness to initialisation and learning
on only a small number of the relevant instances in the training
data. Instead of learning on some variation of top N instances,
we learn on instances sampled according to model score. Thus,
learning is focused on the more positive instances but in a more
natural, adaptive and smooth way that does not rely on an
arbitrary, discontinuous cut off to select instances to be used.

2. The collection of a dataset of MM tissue cores labelled by sub-
type, which we make publicly available for further study by
the community. We also address a prediction task, automated
subtyping of MM tissue, which has not been covered in the
literature to date.

3. The incorporation into the model of patch level cell morphol-
ogy statistics derived from analysis of cell segmentation on the
tissue images, as a way to introduce domain knowledge (specifi-
cally, the knowledge that cells are important histological entities
within the tissue) into the model.

2. Data and preprocessing

The dataset used in this work is a collection of H&E stained Tis-
sue Micro-arrays (TMAs) of tumor tissue biopsies collected from St.
George’s Hospital. It consists of 4 TMA slides each with an average size
of 40, 000×40, 000 pixels scanned using a Hamamatsu Nanozoomer S360
scanner at 20× (0.4415 μm per pixel) with a total of 279 cores covering
102 separate cases (patients). After removal of dropped and severely
damaged/incomplete cores, we are left with 234 cores, with 148 EM, 61
BM, and 25 SM cores. We perform Vahadane stain normalisation [18]
to minimise systematic stain variability between slides and cores. We
tile each core into patches of 224 × 224 pixels at 20× magnification.
Patches consisting of less than 50% tissue, as determined by a tissue
mask created via luminosity thresholding, were discarded. Only core-
level labels are provided, detailed annotations describing how different
regions of the core contribute to the core-level label are not available.

3. Problem formulation

As the biphasic subtype is a mix of epithelioid and sarcomatoid
components, the subtyping task can be modelled as a two class problem,
where the three subtypes act as a crude measure of how much of the
positive class are present. If we can train a model that will provide
instance scores that express how likely each patch is to be the positive
class, we can move towards a more expressive characterisation of
mesothelioma cores according to the proportion of sarcomatoid com-
ponent they contain. As subtype labels are only available at the core
level and not for individual image patches within each core, we model
the subtype prediction task as a binary Multiple Instance Learning
(MIL) problem, with sarcomatoid as the positive class. Under the MIL
paradigm [12], an example is represented by a bag of instances, and
a bag is considered positive if it contains at least one positive sample.
The goal of an MIL predictor is to use training data consisting of bags

with bag level labels only to predict both bag and instance level labels
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in testing. Formally, let 𝐵 =
{

𝑥1,… , 𝑥𝑛𝐵
}

be a bag corresponding to a
single TMA core in our dataset, where 𝑥𝑖 are instances (patches) within
the bag. The number of instances 𝑛𝐵 can vary across bags. Each core,
epresented by bag 𝐵, is associated with a label 𝑌𝐵 ∈ {0, 1} in the

training dataset. In our formulation, both sarcomatoid and biphasic
cores are taken as positive bags (𝑌𝐵 = 1), as in both cases a noticeable
sarcomatoid component is present whereas epithelioid-labelled cores
become negative examples (𝑌𝐵 = 0). Our goal is then to build a
machine learning model 𝐹 (𝐵;𝛷) with trainable parameters 𝛷 that can
use a labelled training dataset 𝐷 = {(𝐵1, 𝑌1), (𝐵2, 𝑌2),… , (𝐵𝑀 , 𝑌𝑀 )} to
generate a predicted label for a test core 𝐵. This is done by denoted
by aggregating instance level predictions 𝑧𝑖 = 𝑓 (𝑥𝑖;𝜙) to give 𝑍𝐵 =
𝐹 (𝐵;𝛷) = 𝐴𝑔𝑔({𝑧𝑖 = 𝑓 (𝑥𝑖;𝜙)|𝑥𝑖 ∈ 𝐵}) through an appropriate
aggregation function 𝐴𝑔𝑔(⋅) such as max or average across top most
positive instances.

Modelling the mesothelioma subtyping problem through MIL allows
us to use the weakly supervisory signal from core-level labels to learn
an instance-level scoring, with which we can identify predominantly
EM or SM regions in a core. This enables us to quantify where each
tissue component falls in the EM-to-SM continuum according to the
proportion of positive (sarcomatoid) instances. This fine-grained and
natural characterisation of a tumor can lead to more informed decisions
regarding treatment etc. to be made.

4. Sampling-based MIL training for CNNs

We propose a simple but powerful approach for solving the MIL
problem underlying mesothelioma subtyping based on the fundamental
definition of MIL. In the binary case, MIL can be paraphrased as ‘only
the most positive instance in a bag counts’. Recall from Section 3 we
label a bag as positive if it contains at least one positive instance.
Intuitively, then, during training we wish to make the most positive
scoring instances of negative bags less positive, and the positive in-
stances of positive bags more positive. We would also like to avoid
forcing negative instances in a positive bag to become positive labelled.
Many approaches [9,11], rank instances according to an instance score,
and learn only on the max (or top N) of these. However, this has some
potential problems:

1. We learn only on very few instances. A significant proportion of
the bag may be positive, but only the top few will contribute to
learning per bag. This may be fine if we have many example bags
to learn from, but can become a problem if we have relatively
few bags as the model may rapidly over fit the resulting small
number of top instances.

2. The method can be susceptible to unfortunate initialisation. If
the initial weights of the model happen to score some unimpor-
tant instances highly, a situation may arise where the model is
learning on a small subset of instances which have little to no
relation to the bag labels, and may get stuck in an extremely
sub-optimal local minimum.

In our approach, we minimise these issues by randomly sampling
instances from each bag with a probability that is a continuous function
of their instance score, sampling higher scoring instances more often.
Formally, for each bag 𝐵 we define a probability distribution 𝑃𝐵
(initially uniform) over instances in 𝐵. Given the prediction scores
𝑧𝑖 = 𝑓 (𝑥𝑖, 𝜙) ∈ [0, 1] for an instance 𝑥𝑖 ∈ 𝐵, from a CNN 𝑓 with learnable
weights 𝜙, we set

𝑃𝐵(𝑖) =
𝑧𝛼𝑖 + 𝑐

∑

𝑗 (𝑧
𝛼
𝑗 + 𝑐)

. (1)

n Eq. (1), 𝑐 is a small constant which limits how small 𝑃𝐵(𝑖) can get so
hat all instances are occasionally sampled, and 𝛼 controls how heavily
e weight for positive instances. For each training epoch, we sample
3

0% of the patches in each bag according to the distribution in Eq. (1)
for training. In the extreme of 𝛼 = 0, all instances are weighted equally
and we simply learn on all patches with label inherited from the bag
label, disregarding the MIL setting. In the case of 𝛼 → ∞ (and assuming
𝑐 is reduced accordingly), we recover something similar to the max-
based MIL approach of [10] or [9], where we learn only on the maximal
instance of each bag. The pseudo-code for our method can be found in
Algorithm. 1, and it is illustrated diagrammatically in Fig. 1.

Algorithm 1 Pseudo-code for MIL CNN Training
Initialise 𝑃𝐵 : uniform distribution for all training
bags 𝐵
for e in epochs:

𝑆: Sample 20% instances ∼ 𝑃𝐵 from each
training core

For batch of instances 𝑋 and bag labels 𝑌 in 𝑆:
𝑍 = 𝑓 (𝑋,𝜙)
𝐿 = CE(𝑍, 𝑌 ) #cross-entropy loss
Update 𝜙 to minimise 𝐿

Save 𝜙𝑏𝑒𝑠𝑡 if validation AUC improves
For instances 𝑥𝑖 ∈ 𝐵 in each training bag B:

𝑧𝑖 = 𝑓 (𝑥𝑖, 𝜙) #inference pass
Update 𝑃𝐵 ’s according to Eq. (1)

Return best model 𝑓 (⋅, 𝜙𝑏𝑒𝑠𝑡)

This approach mitigates the problems mentioned earlier, as

1. We learn from all positive instances in a bag, not just the top N.
As the probability distribution is calculated per bag (core), the
method adjusts to the varying proportion of positive instances in
different bags.

2. It is robust to initialisation, as initial probability distributions are
likely to be fairly flat, and (assuming 𝛼 not large) the sampling
does not focus heavily on positive instances until the model
has started to become more sure of its predictions (i.e when its
outputs 𝑧𝑖 become more polarised).

Our approach improves on similar models in the literature by
removing the need for some arbitrary, discontinuous cut-off in the way
we select instances to learn from during training, while still focusing the
training on the most positive instances, which are the most important
examples in a MIL setting. As the probability distribution to be sampled
from is a continuous function calculated on the fly for each bag from
the current model predictions at each iteration, it is adaptive to the
different distributions of positive instances present in the bags in the
training set.

5. Incorporating morphological features

We would ideally want that a deep learning model trained on
histopathological images would learn to identify the morphological
features of cells present in a patch that are relevant to the problem, to-
gether with any other important features of the tissue images. However
this may not be the case when learning on a relatively small amount
of weakly labelled data. In these cases, it can help to provide domain
knowledge directly. To this end, we have used stardist [19] to segment
the cells in each TMA core, and have associated with each image patch
the cells contained within it. For each cell, we have calculated, using
QuPath [20], a number of morphological features as follows:

• Shape features: Area, length, circularity, Max and Min diameter
for both nucleus and whole cell

• Intensity features: Mean, Median and Standard Deviation for
Hematoxylin and Eosin channels over cell nucleus, cell cytoplasm
and whole cell

• Shape/intensity smoothed: Above features smoothed over nearby
cells using a gaussian kernel of diameter 50 μm
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Fig. 1. Overview of proposed method, showing the instance scoring → weight calculation → sampling → training loop.
Fig. 2. Overview of model architecture and data pipeline. Cores are patched into 224 × 224 patches. For each patch, aggregate statistics on morphological features of cells that
intersect with it are calculated. The patch image and morphological feature vector are passed to the model which outputs the patch score.
• Delaunay cluster features: number of neighbours, edge length
statistics, cluster means of above features.

• Haralick texture features [21] on a small circular region around
detection: calculated on the Eosin channel, the Hematoxylin chan-
nel and on the OD sum.

We have then calculated simple per-patch statistics (mean and
standard deviation over the cells contained in the patch) for each of
these morphological features, together with a cell count, and provided
these as an additional input to the model for each patch. This results in
a feature vector of length 321. The model incorporates this information
4

via a small MLP, whose output is concatenated to the 512 features
output by the resnet34 backbone before the final prediction head, as
shown in Fig. 2. The remainder of our model training paradigm is kept
the same.

In this way we can introduce domain knowledge, providing to
the model the knowledge that cells are important histological entities
within tumor tissue, and features describing their appearance are likely
to be useful for subtype prediction. This means the model does not need
to learn the concept of cells, and the relevant features of the cells, from
scratch, which may be expecting too much of a model given relatively
limited training data.
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A better way for such domain information to enter the model would
be through the use of a computational-pathology specific pre-trained
backbone having learned a highly expressive representation for Cpath
images. However currently no such general purpose Cpath backbone
has emerged, and most CPath applications when doing transfer learning
still rely on Imagenet pre-trained models.

6. Results and discussion

We use a ResNet34 pre-trained on ImageNet as the backbone in our
CNN model [22], due to its consistently strong performance over a wide
range of application areas including computational pathology [15,23],
combined with its relatively small footprint. Larger models were not
expected to provide much improvement due to the relatively small
size of the dataset, meaning the additional capacity provided by larger
networks would not be well utilised. We train our model using the
Adam optimiser [24] with batch size of 64 over a maximum of 200
epochs with early stopping. Random rotations with equal probability
of 0.25 for 0, 90, 180 or 270◦ rotation, in combination with flips with
probability 𝑝 = 0.5, and a small amount of colour jitter using the
pytorch ColorJitter function (with strength arguments brightness=0.1,
contrast=0.05, saturation=0.2, and hue=0.2) were applied to images
during training. The learning rate used was 5 × 10−5, weight decay
10−4, with 𝛼 = 2 and 𝑐 = 0.01 (See Eq. (1)). We choose a relatively
low learning rate over a larger number of epochs because we update
the probabilities used for sampling after each epoch, so we do not
want the ‘true’ distribution to change too quickly over a single epoch.
To address class imbalance, losses per class were weighted inversely
to their class counts. We use a one-cycle learning rate schedule as
introduced in [25]. During inference on cores, we aggregate the in-
stance scores by averaging the top 5 instances. This is more robust than
max aggregation, where a single poorly scored instance can completely
change the aggregated score. Our model is implemented in PyTorch;
code and data is available at https://github.com/measty/PINS. Models
were trained on a workstation with an nvidia RTX 3080 12Gb graphics
card, 64Gb RAM and an AMD Ryzen 9 5900X CPU. Training times
varied due to early stopping, but were on the order of a day for a full
cross-validation run.

For performance evaluation we employ a hold-one-out cross-
validation strategy over slides, so that for each fold all cores of a single
slide are held out as the test set. This is done to avoid any potential bias
from systematic differences between slides, and to ensure no mixing of
cores from the same patient occurs between the training and testing
sets. The cores to be used for training are split 75%–25% into train
and validation sets, respectively.

The results of our prediction model (which we name PINS for
the Positive INstance Sampling that lies at its core) are reported in
Table 1, together with baseline results from max-based MIL, which is
the approach used to train the patch model in [15], and the model
resulting from training on all patches with no regard for the MIL
setting during training (naive-MIL in Table 1). We also provide results
of CLAM [26], an attention based MIL approach, on our dataset. Our
model achieves an AUROC of 0.83 and average precision (AP) of 0.73.
The ROC curve for our method can be found in Fig. 3 . As can be seen
from Table 1, the max-based MIL strategy performs poorly. This is likely
due to the relatively small size of our training dataset which is orders
of magnitude smaller than the very large dataset used in [15], which
reported excellent performance using this strategy. Limiting learning
to only one instance per core in each epoch exacerbates problems
inherent in small datasets, as the model may rapidly overfit the top
patches of positive bags. In contrast, our method allows learning from
a wider selection of positive instances according to the model estimate
of the proportion of positive instances in each bag resulting in much
improved performance. Purely patch-based learning, that is simply
learning on all patches labelled according to their bag label, performs
surprisingly well, scoring quite close to our MIL method. This is likely
5

Fig. 3. ROC curves over 4-slide folds. Green and red plots shows curves after adjust-
ment for labels from expert pathologist. Morph. denotes model on instances augmented
with patch-level cell morphology features. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. AUC and AP of model as 𝛼 is varied. 𝛼 around 1–2 allows sampling on positive
instances to occur without focusing to quickly or too sharply on a very small subset
of the most positive instances.

due to the relatively high proportion of positive instances that are
expected to be present in many of the positive bags (for example a
sarcomatoid core is expected to comprise of mostly positive instances).
This makes the implicit assumption a patch-based model makes, namely
that all instances share the label of the bag, less wrong for this dataset
compared to other MIL problems.

Labels on histopathology images are often noisy, as the classification
into clinical categories is subjective and opinion can vary significantly
between pathologists. This is especially true in the context of MM,
which is particularly difficult to diagnose. Thus, we sought an indepen-
dent opinion from an expert pathologist on a small set of examples that
were most consistently misclassified, to see to what extent the model
could be justified on examples where its predictions differed from the
original labelling.

https://github.com/measty/PINS
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Table 1
Summary of results (mean±stdev). PINS (P) indicates metric for a method after adjustment for labels from expert pathologist. PINS-M denotes
model including morphological feature vector.
Metric AUC-ROC Avg. precision Sensitivity Specificity Accuracy f1 score

max-MIL 0.70 ± 0.04 0.58 ± 0.12 0.54 ± 0.07 0.73 ± 0.09 0.68 ± 0.03 0.54 ± 0.05
naive-MIL 0.81 ± 0.04 0.68 ± 0.11 0.72 ± 0.08 0.71 ± 0.1 0.74 ± 0.04 0.67 ± 0.03
PINS 0.83 ± 0.04 0.73 ± 0.09 0.77 ± 0.12 0.68 ± 0.11 0.75 ± 0.06 0.68 ± 0.11
PINS (P) 0.87 ± 0.04 0.81 ± 0.07 0.82 ± 0.1 0.71 ± 0.13 0.77 ± 0.03 0.72 ± 0.07
PINS-M (P) 𝟎.𝟖𝟗 ± 𝟎.𝟎𝟓 𝟎.𝟖𝟒 ± 𝟎.𝟎𝟖 𝟎.𝟖𝟕 ± 𝟎.𝟎𝟔 𝟎.𝟕𝟕 ± 𝟎.𝟎𝟓 𝟎.𝟖𝟏 ± 𝟎.𝟎𝟒 𝟎.𝟕𝟕 ± 𝟎.𝟎𝟓
CLAM (P) 0.84 ± 0.07 0.74 ± 0.11 0.75 ± 0.11 𝟎.𝟕𝟕 ± 𝟎.𝟎𝟐 0.77 ± 0.03 0.71 ± 0.06
Fig. 5. Representative Heatmaps of model predictions. (a) a core labelled Epitheloid, which was consistently misclassified as positive (i.e significant SM component present). This
agreed with the second opinion obtained from an expert pathologist, making this an example of a justified misclassification. From the closeup, spindle-like morphology of cells can
be seen. (b) A correctly-predicted epithelioid-predominant core. As can be seen in (b) and the closeup of (c), patches demonstrating the typical rounded cell morphology of the EM
subtype appear in bluer shades. (c) A correctly-predicted biphasic core with an even mix of EM and SM components. (d) A Sarcomatoid core, correctly predicted. In comparison
to (a) and (c), has a much higher proportion of the core identified as SM.
In BM, a TMA core may represent a focal area that is specifically,
either epithelioid or sarcomatoid. Of 14 consistently miss-classified
cores, the opinion of the expert pathologist was that in 9 cases the
model could be justified in its prediction given the representative core
that was available for assessment. Further, 3 of the remaining cases
contained very few tumor cells or were otherwise very challenging
cases. Adjusting the ground truth for the 9 justified misclassifications
to align with the pathologists assessment of the cores improves AUC
(see Fig. 3) from 0.83 to 0.87, and AP from 0.73 to 0.81.

When providing the model both an rgb patch image and a vector
of aggregate morphological features of the cells contained in the patch,
performance further improves to an AUC of 0.89 and AP of 0.84. This
confirms the expectation that in cases where training data is limited,
if we can find a way to provide additional domain knowledge to the
model we can achieve better performance. The confusion matrix for
this model aggregated over all folds is

𝐶𝑀 =
[

113 35
10 76

]

revealing that our models errors are skewed slightly towards false
positive classifications.

An important parameter in our sampling-based MIL approach is 𝛼,
which as discussed in Section 4 controls how heavily we weight on
the instance score when determining the probability distribution to be
used when sampling training instances. We have investigated the effect
of varying this parameter between 𝛼 = 0 (no weighting by score) and
𝛼 = 4, a very heavy weighting on instance score. Results are shown
in Fig. 4. We expect 𝛼 between 1 and 2 will be appropriate in most
6

cases, allowing training to focus on positive examples without the dis-
tribution becoming too heavily focused on high-scoring patches before
the model has undergone sufficient training for scores on positive and
negative instances to diverge significantly as the model starts to learn
what positive instances look like. An extremely high 𝛼 also forfeits
one of the main advantages of our approach, which is to allow all
positive instances, not just the very few highest scoring, to participate
in training.

Heatmaps illustrating the output of our network are discussed in
Fig. 5. Quantifying the proportion of a core which is predicted as
SM subtype in this way could enable a much less subjective char-
acterisation of a tissue sample. It also allows a more fine-grained
characterisation of a core if desired.

7. Conclusions and future work

In this work, we demonstrate for the first time that an MIL frame-
work can successfully predict presence of a sarcomatoid component in
local tissue regions, paving the way for a quantitative categorisation of
malignant mesothelioma subtypes. Incorporating the MIL setting into
model training by sampling positive instances weighted on instance
score instead of considering only the max or top few instances is shown
to improve model performance. We believe our approach opens new
opportunities for more objective assessment of epithelial-mesenchymal
transformation where intra-tumor heterogeneity represents a gradient
that can be difficult to assess by routine examination by histopathology.
The output of the proposed model can be used to create a smoother
continuum of disease classification by determining the extent of the
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different cellular sub-populations at the patch level. Future work will be
focused on including contextual information and identifying subtype at
the cell level in addition to a detailed comparison with other backbone
CNNs and larger-scale multi-centric evaluation on whole slide images.
Due to a lack of ground truth cell segmentations on mesothelioma
tissue, the presented work used a stardist model that has been trained
for general cell segmentation on a variety of tissue. While the resulting
segmentations were visually validated as being reasonable segmenta-
tions by expert pathologists involved in the study, this does represent
a limitation of the study as quantitative validation of cell segmentation
cannot be reported, and it is likely that segmentation could be improved
through the use of a model fine-tuned on mesothelioma-specific cell
boundary annotations. A cell segmentation model capable of predicting
cellular phenotypes at single cell level could also be considered, to
enable a more accurate assessment of tumor heterogeneity and aid
pathological assessment. Explainability is an extremely important as-
pect of AI in the context of medicine, so another avenue of future work
could be to add a layer of explainable AI such as [27] to highlight the
features in image patches that are particularly relevant to the model
prediction.
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