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Abstract
When dealing with time series with outlying and atypical data, a commonly used 
approach is to develop models based on heavy-tailed distributions. The litera-
ture coping with continuous-valued time series with extreme observations is well 
explored. However, current literature on modelling integer-valued time series data 
with heavy-tailedness is less considered. The state of the art research on this topic is 
presented by Gorgi (J R Stat Soc Ser B (Stat Methodol) 82:1325–1347, 2020) very 
recently, which introduced a linear Beta-negative binomial integer-valued general-
ized autoregressive conditional heteroscedastic (BNB-INGARCH) model. However, 
such proposed process allows for positive correlation only. This paper develops a 
log-linear version of the BNB-INGARCH model, which accommodates both nega-
tive and positive serial correlations. Moreover, we adopt Bayesian inference for bet-
ter quantifying the uncertainty of unknown parameters. Due to the high computa-
tional demand, we resort to adaptive Markov chain Monte Carlo sampling schemes 
for parameter estimations and inferences. The performance of the proposed method 
is evaluated via a simulation study and empirical applications.

Keywords  Beta–negative binomial distributions · Integer-valued GARCH models · 
Adaptive Markov chain Monte Carlo

1  Introduction

Despite a long history in the literature analyzing continuous time series varia-
bles, it is only in the recent years or so that much attention has been given to 
time series variables that are integer-valued (see Winkelmann 2008; Fahrmeir 
et  al. 2013; Davis et  al. 2016; Weiß 2018, and references therein for reviews). 
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Generally, integer-valued time series models can be classified into two categories: 
“thinning” operator based models (Scotto et al. 2015) and regression based mod-
els (Fokianos 2012; Tjøstheim 2016).

To allow for dependence between time series data, two classes of models have 
been proposed in Cox et  al. (1981): observation-driven models and parameter-
driven models. In observation-driven models, the mean of the conditional dis-
tribution of the current observation yt is directly specified as a function of past 
observations yt−1,… , y1 . In parameter-driven models, dependence among obser-
vations is introduced via latent factors which follow a stochastic process, such 
as a hidden Markov chain (Leroux and Puterman 1992), or a latent stationary 
auto-regressive process (Zeger 1988; Chan and Ledolter 1995). Compared with 
parameter-driven models, observation-driven models are easier to fit in practical 
contexts with numerous covariates and long time series. See Zeger and Qaqish 
(1988) for a review of various observation-driven models for count time series 
data. A reference for the substantial development of observation-driven models 
can be found in Kedem and Fokianos (2005). A variety of observation-driven 
models for count responses have been developed. Davis et al. (2003, 2005) pre-
sented a class of observation-driven models for time series of Poisson counts and 
provided properties of the maximum likelihood estimators. Ahmad and Francq 
(2016) derived regularity conditions for the consistency and asymptotic normal-
ity (CAN) of the Poisson quasi-maximum likelihood estimator (QMLE) for time 
series of counts. However, the equidispersion assumption in Poisson distribution 
makes it too restrictive to be applied in empirical settings. Given this, Drescher 
(2005) considered various generalized count distributions for observation driven 
models and explored their maximum likelihood estimations. Regarding existing R 
packages (R Core Team 2021), the glarma package (Dunsmuir and Scott 2015) 
provides functions for estimation, testing, diagnostic checking and forecast-
ing based on the generalized linear autoregressive moving average (GLARMA) 
class of observation-driven models for discrete-valued time series with regression 
variables.

The benchmark parameter-driven count data model introduced in Zeger (1988) 
has been widely extended. It has been considered as a class of the state-space 
model, which extends the generalized linear model by introducing a latent auto-
regressive process as the conditional mean function. The parameter-driven mod-
els allow the distribution of yt to be dependent on this latent process and can deal 
with auto-correlation as well as over-dispersion in the model. However, param-
eter estimations in parameter-driven models require considerable computational 
effort. The main issue lies in the calculation requirement of very high dimen-
sional integrals when using maximum likelihood estimation techniques, such that 
estimation methods based on Monte-Carlo (MC) integration are typically consid-
ered. To estimate the parameters of parameter-driven models, Chan and Ledolter 
(1995) employed a Monte Carlo EM algorithm. Kuk and Cheng (1997) consid-
ered the MC Newton Raphson method. However, such estimation approaches are 
not yet routinely available and therefore not ready for general use (Davis et  al. 
2003).
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Bayesian estimation for time series of counts turns out to be a feasible and more 
elaborate alternative. Applications of Bayesian paradigm to count times series have 
mainly focused on parameter-driven models. Dynamic latent factor models within 
Bayesian count time series contexts have been actively studied (see, e.g., West and 
Harrison 1989; Durbin and Koopman 2000; Chib and Winkelmann 2001). Hay and 
Pettitt (2001) presented a fully Bayesian analysis of counts time series for a param-
eter-driven model with the form of a generalized linear mixed model, and inves-
tigated its application to the control of an infectious disease. Unlike the MC EM 
estimation approach for parameter-driven models, the Markov chain Monte Carlo 
(MCMC) procedure provides information of posterior distributions for both regres-
sion and time series parameters. In maximum likelihood-based estimations, estima-
tion uncertainty is produced by constructing confidence intervals around the point 
forecasts. However, this kind of confidence intervals can only be justified asymp-
totically. When counts are small, such approximation is less accurate and the Bayes-
ian technique arises as a prime candidate. When forecasting counts from the Bayes-
ian perspective, not only the parameter uncertainty, but also the uncertainty caused 
by model specification, can be directly incorporated into the predictive probability 
mass function, which is a natural outcome of Bayes’ theorem.

Although parameter-driven models are very flexible, the existence of unobserv-
able latent factors brings a heavy computational burden even manageable via the 
MCMC sampling technique. On the other hand, Bayeisan analysis of the more 
parsimonious observation-driven models has received growing attention recently. 
Generalized autoregressive moving average (GARMA) model extends the univari-
ate Gaussian ARMA model to a flexible non-Gaussian observation-driven model. 
Silveira de Andrade et al. (2015) investigated the Bayesian approach for GARMA 
models with Poisson, binomial and negative binomial distributions. They utilized 
the Bayesian model selection criteria to choose the most appropriate model. Another 
advantage of Bayesian methodology over the corresponding frequentist procedure 
for forecasting discrete time series data is that Bayesian approach can produce only 
integer estimates of the count variable, while traditional forecasting often yields 
non-coherent (i.e. non-integer) estimates. For example, the Autoregressive Inte-
grated Moving Average (ARIMA) model is one of the most prominent methods 
in financial time series forecasting. It has shown robust and efficient capability for 
short-term predictions and has been extensively applied to economics and finance 
fields (Contreras et  al. 2003; Khashei et  al. 2009; Lee and Ko 2011, among oth-
ers). However, forecasts from ARIMA model can give negative values. Techniques 
such as log scale transformation or constrained forecast might guarantee non-nega-
tive predictions, but with the burden of elaborate post-processing and consequences 
of obtaining back-transformed forecasts that behave abnormally. Given the fact that 
many actual data in socioeconomic and business areas cannot have negative values, 
the classical ARIMA forecasting methods are improper when applied to non-nega-
tive count data series. From another point of view, Bayesians utilize the likelihood 
and prior multiplicity to generate forecasts from posterior predictive distributions by 
the iterative loop of MCMC procedures. Therefore, Bayesian model is prone to obey 
the non-negative value rules with its probabilistic predictive distributions, provid-
ing new perceptions for time series forecasting research. Nariswari and Pudjihastuti 
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(2019) implemented Bayesian time series estimation on ARIMA model for monthly 
medicine demand count data, showing the validity of Bayesian time series approach 
to avoid negative-value predictions, which is consistent with characteristics in the 
actual medicine data where the stock cannot have a negative value. McCabe and 
Martin (2005) developed Bayesian predictions of low count time series within the 
context of the integer-valued first-order autoregressive (INAR(1)) class of model, 
and showed the Bayesian method is feasible for producing coherent forecasts. Esti-
mation uncertainty associated with both parameters and model specification is fully 
incorporated in their proposed methodology.

A commonly used model in most count time series data is the Poisson integer-
valued generalized autoregressive conditional heteroscedastic (Poisson INGAR CH) 
model proposed in Ferland et  al. (2006). Since then, this model has been widely 
explored (see Neumann 2011; Doukhan et  al. 2012, amongothers). However, the 
Poisson INGARCH model is not eligible to be applied in existence of potential 
extreme observations due to its equidispersion assumption. To this end, Zhu (2011) 
developed a negative binomial (NB) INGARCH model via the maximum like-
lihood approach. The NB-INGARCH model is flexible and allows for both over-
dispersion and extreme observations simultaneously. Later, Christou and Fokianos 
(2014) explored probabilistic properties and quasi-likelihood estimation for NB-
INGARCH(1,1) process, and Xiong and Zhu (2019) considered a robust quasi-like-
lihood estimation for this process with an application to transaction counts. From a 
Bayesian perspective, Truong et al. (2017) proposed a hysteretic Poisson INGARCH 
model within the MCMC sampling scheme to estimate model parameters and 
adopted the Bayesian information criteria for model comparison. They highlighted 
their proposed model with a better performance of hysteresis in modelling the inte-
ger-valued time series. Chen et  al. (2019) developed a Markov switching Poisson 
INGARCH model within a Bayesian framework to cope with the lagged depend-
ence, overdispersion, consecutive zeros, non-linear dynamics and time varying coef-
ficients for the meteorological variables. Some studies considered the natural candi-
dates for the Poisson model. Chen and Lee (2017) proposed a Bayesian causality test 
based on the Poisson, negative binomial and log-linear Poisson INGARCH models 
with applications to climate and crime data. Recently, Chen and Khamthong (2020) 
introduced two nonlinear negative binomial INGARCH models (Markov switching 
and threshold specifications) along with the exogenous covariates in the conditional 
mean to describe time series of counts. They conducted parameter estimations and 
one-step-ahead forecasting via the Bayesian MCMC methods.

When modelling time series with outlying and atypical data, a commonly used 
approach is to develop models based on heavy-tailed distributions. The literature cop-
ing with continuous-valued time series with extreme observations is well explored 
via the Student’s t-distribution (Harvey and Luati 2014). However, current literature 
on modelling discrete time series with heavy-tailedness is less considered. To fill this 
gap, very recently, Qian et al. (2020) proposed a new integer-valued autoregressive pro-
cess with generalized Poisson-inverse Gaussian (GPIG) innovations to model heavy-
tailed count time series data. Gorgi (2020) explored a heavy-tailed mixture of negative 
binomial distributions, known as the Beta-negative binomial (BNB) distribution, and 
developed a BNB auto-regression process for modelling integer-valued time series with 
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outliers, where a linear observation-driven dynamic equation for the conditional mean 
has been specified. Both Qian et al. (2020) and Gorgi (2020) employed maximum like-
lihood approaches to estimate the model parameters. This paper gives rise to the Bayes-
ian inference for log-linear BNB-INGARCH models and conducts parameter estima-
tions within adaptive Markov chain Monte Carlo frameworks. Moreover, the conditions 
for the posterior distribution of the full model parameter to be proper given some gen-
eral priors have been derived and presented.

2 � The log‑linear BNB‑INGARCH model

The Beta-negative binomial distribution can be represented as a beta mixture of the neg-
ative binomial distribution. Denote a discrete random variable Y, then Y ∼ BNB(�, r, �) 
if its probability mass function (PMF) is given by

where Γ(⋅) is the gamma function and B(⋅, ⋅) is the beta function. r > 0 is the disper-
sion parameter, 𝛼 > 0 is the tail parameter and 𝛽 > 0 . We follow the parameteriza-
tion of the BNB distribution in terms of its mean parameter � presented in Gorgi 
(2020)

with mean 𝜆 > 0 , dispersion r > 0 and tail 𝛼 > 1 . Let {yt}, t = 1,… , n denote a uni-
variate time series with the conditional distribution following the representation of 
BNB(�t, r, �) at time t. We model the log-intensity process �t+1 = log(�t+1) in terms 
of a linear auto-regression process lying on its own past �t and the past observation 
yt . The log-linear BNB integer-valued generalized auto-regressive conditional het-
eroscedastic model of order (1,1) is defined by

where Ft−1 denotes the “ �-filed” generated by {yt−1, yt−2,…} . Here we follow Foki-
anos and Tjøstheim (2011) to choose log(yt + c) with constant c = 1 in model (3) 
to map zeros of yt into zeros of log(yt + 1) . Other reasonable choices for c may be 
considered. Note that model (3) accommodates both negative and positive serial 
correlations by allowing parameters �,�, � to take values in ℝ , whereas the linear 
BNB-INGARCH model introduced by Gorgi (2020) accommodates positive serial 
correlation only by restricting parameters to be positive to guarantee positivity of 
the conditional mean. Moreover, model (3) permits faster increase or decrease in 

(1)f (Y = y) =
Γ(y + r)

Γ(y + 1)Γ(r)

B(� + r, � + y)

B(�, �)
, y ∈ N

(2)f (Y = y) =
Γ(y + r)

Γ(y + 1)Γ(r)

B(� + r,
(�−1)�

r
+ y)

B(�,
(�−1)�

r
)

, y ∈ N

(3)

yt|Ft−1 ∼ BNB(�t, r, �),

�t+1 = log(�t+1),

�t+1 = � + � log(yt + 1) + ��t
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�t according to the values of �,� and � than the linear model. Extensions to higher 
order log-linear BNB-INGARCH (p, q) models can be given as follows:

We note that the BNB distribution belongs to the class of mixed Poisson distributions 
and can approximate arbitrarily well the negative binomial distribution as well as the 
Poisson distribution. Specifically, as � → ∞ , the parameterized distribution 
BNB(�, r, �) converges to a NB distribution with dispersion r and success probability 
�∕(� + r) . Furthermore, as r → ∞ , the BNB converges to a Poisson distribution with 
mean � (Gorgi 2020). Given this Poisson approximation to the BNB distribution, we 
follow (Douc et al. (2013), Lemma 14) and Liboschik et al. (2017) to impose the con-
ditions {|𝜙|, |𝜏| < 1, |𝜙 + 𝜏| < 1} and {�𝜙i�, �𝜏j� < 1, �

∑p

i=1
𝜙i +

∑q

j=1
𝜏j� < 1} to 

guarantee stationarity of the proposed processes (3) and (4) respectively. We further 
follow Wang et al. (2014) and Gorgi (2020) to preassign the initial point �1 to a fixed 
positive value for both models (3) and (4). As noted in Gorgi (2020), this approach is 
quite standard in the literature of observation-driven time series models. In fact, 
Gorgi (2020) showed that the filtered parameter {𝜆̂t(�)}t∈ℕ converges exponentially 
almost surely and uniformly over the compact parameter sets Θ to a unique stationary 
and ergodic sequence {𝜆̃t(�)}t∈ℤ for any initialization 𝜆̂1(�) ∈ ℝ

+.

3 � Bayesian inference

Due to the high computational demand, we resort to Bayesian analysis for param-
eter estimations and inferences of the log-linear BNB-INGARCH processes. 
Without loss of generality, we focus on the first-order specification (p = q = 1) 
as presented in model (3) for simplicity of inference illustration. We denote the 
time series of interest as y = (y1, y2,… , yn)

T and � = (�,�, �, r, �)T as the entire 
unknown parameter vector. By the Bayes theorem, the posterior distribution 
p(�|y) is given by

where �(�) denotes the prior distribution and L(y|�) represents the likelihood 
function

(4)

yt|t−1 ∼ BNB(�t, r, �),
�t+1 = log(�t+1),

�t+1 = � +
p
∑

i=1
�i log(yt+1−i + 1) +

q
∑

j=1
�j�t+1−j

(5)p(�|y) ∝ L(y|�)�(�)

(6)L(y|�) =
n∏

t=2

Γ
(
yt + r

)

Γ(r)

B
(
� + r,

(�−1)e�+� log (yt−1+1)+� log (�t−1)

r
+ yt

)

B
(
�,

(�−1)e�+� log (yt−1+1)+� log (�t−1)

r

)
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with � ∈ ℝ , |𝜙| < 1 , |𝜏| < 1 , |𝜙 + 𝜏| < 1 , r > 0 and 𝛼 > 1 . We implement Bayesian 
inference for parameter groups (i) � ; (ii) {�, �} ; (iii) r; and (iv) � with the assump-
tion that they are priori-independent. The conditional posterior distributions for each 
parameter group are presented as follows. Hereafter let �j denote the j-th element of 
the parameter vector � , with j = 1, 2, 3, 4 referring to � , {�, �} , r and � respectively, 
and �−j denote the vector of all parameters excluding the component �j . 

	 (i)	 For the intercept � , we consider a normal prior �(�) = N(��, �
2
�
) . The full 

conditional posterior distribution of � is then as follows: 

	 (ii)	 For the prior �(�, �) of the parameter block {�, �} , we employ constrained 
normals �(�) = N(��, �

2
�
) and �(�) = N(�� , �

2
�
) with {�, �} satisfying the set 

A

 Then the full conditional posterior distribution of {�, �} is given by 

 where I(⋅) denotes the indicator function.
	 (iii)	 For the dispersion parameter r, we impose a gamma prior �(r) = Ga(�1r, �2r) 

with shape parameter �1r and rate parameter �2r , then the full conditional 
posterior distribution of r is given by 

	 (iv)	 For the tail parameter � , we impose a truncated gamma prior 
𝜋(𝛼) = Ga(𝜂1𝛼 , 𝜂2𝛼)I(𝛼 > 1) with shape �1� and rate �2� , then the full condi-
tional posterior distribution of � is given by 

Theorem  1 elaborated below presents the sufficient conditions for the posterior 
distribution of � to be proper given some general priors.

Theorem 1  Let {yt|Ft−1}t∈ℤ+ denote the target count time series with the conditional 
Beta-negative binomial distribution and � = (�,�, �, r, �)T be the full parameter 
vector. For ease of notation, we denote �(�) = (� − 1)∕r ⋅ e�+� log (yt−1+1)+� log (�t−1) in 

(7)
p(�|�−1, y) ∝ L(y|�)�(�)

∝ L(y|�)e
−

(�−�� )2

2�2�

(8)|𝜙| < 1, |𝜏| < 1, |𝜙 + 𝜏| < 1

(9)
p(�, �|�−2, y) ∝ L(y|�)�(�, �)

∝ L(y|�)e
−

(�−�� )
2

2�2
� e

−
(�−�� )

2

2�2� I(A)

(10)
p(r|�−3, y) ∝ L(y|�)�(r)

∝ L(y|�)r�1r−1e−�2r ⋅r

(11)
p(𝛼|�−4, y) ∝ L(y|�)𝜋(𝛼)

∝ L(y|�)𝛼𝜂1𝛼−1e−𝜂2𝛼 ⋅𝛼I(𝛼 > 1)
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the remainder of this section. Then under model (3) and proper prior specifications, 
the posterior distribution of � given y = (y1, y2,… , yn)

T is obtained by

and is well defined.

Proof  Under proper prior specifications, we have

where the equation follows by the relation B(a, b) = Γ(a)Γ(b)

Γ(a+b)
 . From the Stirling’s 

approximation of the gamma function Γ(⋅) , the following approximation is obtained 
for large r and �:

For r ≥ 1 , we obtain

p(�|y) ∝
n∏

t=2

Γ
(
yt + r

)

Γ(r)

B
(
� + r, �(�) + yt

)

B(�, �(�))
�(�)�(�, �)�(�)�(r)

(12)

∫ p(�|y)d�

∝ ∫
{ n∏

t=2

Γ
(
yt + r

)

Γ(r)

B
(
� + r, �(�) + yt

)

B(�, �(�))
× �(�)�(�, �)�(�)�(r)

}
d� d� d� d� dr

= ∫
{ n∏

t=2

Γ
(
yt + r

)

Γ(r)

Γ(� + r)

Γ(�)

Γ
(
�(�) + yt

)

Γ(�(�))

Γ(� + �(�))

Γ
(
� + �(�) + yt + r

)�(�)�(�, �)

�(�)�(r)

}
d� d� d� d� dr

(13)

(12) ≈ ∫ r
∑n

t=2
yt

� n�

t=2

Γ(� + r)

Γ(�)

Γ
�
�(�) + yt

�

Γ(�(�))

Γ(� + �(�))

Γ
�
� + �(�) + yt + r

�

�(�)�(�, �)�(�)�(r)

�
d� d� d� d� dr

≈ ∫ r
∑n

t=2
yt

� n�

t=2

�r
�
�(�)

�yt
�
� + �(�)

�−(yt+r)

�(�)�(�, �)�(�)�(r)

�

d� d� d� d� dr

= ∫ r
∑n

t=2
yt

� n�

t=2

�
�

� + �(�)

�r�
�(�)

� + �(�)

�yt

�(�)�(�, �)�(�)�(r)

�

d� d� d� d� dr

= ∫ r
∑n

t=2
yt

� n�

t=2

�
1

1 +
�(�)

�

�r�
1

1 +
�

�(�)

�yt

�(�)�(�, �)�(�)�(r)

�

d� d� d� d� dr
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where the first inequality follows by Bernoulli’s inequality (1 + x)d ≥ 1 + dx for real 
numbers d ≥ 1, x ≥ −1 and the second inequality follows by Bernoulli’s inequality 
(1 + x)d ≥ 1 + dx for integer d ≥ 0 and real number x ≥ −1 . Without loss of general-
ity, we assume that the first n1 yt ’s have zero-valued observations and the remaining 
(n − n1) observations have positive yt’s. Then we have

where C1 =
∏n

t=n1+1

1

yt
 . By the Binomial approximation 

(
�

�−1

)n1−1

=
(
1 +

1

�−1

)n1−1

 

≈ 1 +
n1−1

�−1
 for large � and further assuming � ≥ M for any large positive number M, 

we obtain

(14)

(13) ≤ � r
∑n

t=2
yt

� n�

t=2

1

1 +
r�(�)

�

�
1

1 +
�

�(�)

�yt

�(�)�(�, �)�(�)�(r)

�

d� d� d� d� dr

≤ � r
∑n

t=2
yt

� n�

t=2

1

1 +
r�(�)

�

1

1 +
�yt

�(�)

�(�)�(�, �)�(�)�(r)

�

d� d� d� d� dr

(15)

(14) = � r
∑n

t=n1+1
yt

� n1�

t=2

1

1 +
�

�−1

�

�
e�+� log (�t−1)

n�

t=n1+1

1

1 +
r�(�)

�

1

1 +
�yt

�(�)

�(�)�(�, �)�(�)�(r)

�
d� d� d� d� dr

≤ � r
∑n

t=n1+1
yt

� n1�

t=2

1�
�−1

�

�
e�+� log (�t−1)

n�

t=n1+1

�

r�(�)

�(�)

�yt
�(�)�(�, �)

�(�)�(r)

�
d� d� d� d� dr

= � r
∑n

t=n1+1
yt

� n1�

t=2

� e−{�+� log (�t−1)}

� − 1

n�

t=n1+1

� e−{�+� log (yt−1+1)+� log (�t−1)}

� − 1

(� − 1) e�+� log (yt−1+1)+� log (�t−1)

� r yt
�(�)�(�, �)�(�)�(r)

�
d� d� d� d� dr

= C1 � r
∑n

t=n1+1
(yt−1)

�
�

� − 1

�n1−1

e−(n1−1)�e−(
∑n1

t=2
log(�t−1))�

�(�)�(�, �)�(�)�(r) d� d� d� d� dr
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given that the prior density functions �(�),�(�, �),�(�) and �(r) integrate to a finite 
quantity, the 

∑n

t=n1+1
(yt − 1)-th moment about the origin of r exists and the moment 

generating function M�(1 − n1) of � exists. Here C2 is a constant unrelated with the 
parameters of interest.

It follows from the proof of Theorem 1 that the priors for (�, �) and � can be cho-
sen very flexibly. In fact, any proper distributions can be considered because the 
appropriateness of the posterior will not be affected. On the other hand, the choice 
of the prior �(r) requires existence of the 

∑n

t=n1+1
(yt − 1)-th moment about the origin 

of r and the choice of the prior �(�) requires existence of the moment generating 
function M�(1 − n1).

Since the obtained posterior distributions do not correspond to closed-form distri-
butions, we resort to MCMC sampling methods. Specifically, for faster convergence 
and better mixing of the chain, we follow the adaptive MCMC method of Chen and 
So (2006). We employ the random-walk Metropolis-Hastings in the first H iterations 
(the burn-in period) and the independent-kernel Metropolis-Hastings in the follow-
ing (N − H) iterations to draw samples for the parameter vector � . The adaptive 
MCMC procedure is provided as follows: 

Step1.	� Set initial values for �(0) = (�(0),�(0), �(0), r(0), �(0))T.
Step2.	� When 1 ≤ k ≤ H , we adopt the random-walk Metropolis-Hastings algo-

rithm for sampling �(k) : 

	� Step2.1.	�Generate candidate values �∗ = {�∗
l
} , l = 1, 2,… , 5 , where 

�∗
l
= �

(k−1)

l
+ �, � ∼ N(0, �2

l
) , and the tuning parameter �2

l
 is selected to 

achieve the acceptance rate around 23%.

Step2.2.	� Keep the candidate values if �∗ satisfies that: 𝜃1 > 0 , {�2, �3} do 
not violate the stationarity conditions of the model, 𝜃4 > 0 and 
𝜃5 > 1 . Otherwise, go back to Step 2.1.

Step2.3.	� Calculate the acceptance probability 

(15) ≈ C1 � r
∑n

t=n1+1
(yt−1)

�
1 +

n1 − 1

𝛼 − 1

�
e−(n1−1)𝜔e−(

∑n1
t=2

log(𝜆t−1))𝜏

𝜋(𝜔)𝜋(𝜙, 𝜏)𝜋(𝛼)𝜋(r) d𝜔 d𝜙 d𝜏 d𝛼 dr

≤ C1 � r
∑n

t=n1+1
(yt−1)

�
1 +

n1 − 1

M − 1

�
e−(n1−1)𝜔e−(

∑n1
t=2

log(𝜆t−1))𝜏

𝜋(𝜔)𝜋(𝜙, 𝜏)𝜋(𝛼)𝜋(r) d𝜔 d𝜙 d𝜏 d𝛼 dr

= C2 � r
∑n

t=n1+1
(yt−1)e−(n1−1)𝜔𝜋(𝜔)𝜋(r) d𝜔 dr < ∞
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 where p(⋅) is the target posterior distribution given in (5). Then generate a random 
uniform number u ∈ [0, 1] . If u < Prob(�∗,�(k−1)) , accept the new candidate and set 
�(k) = �∗ . Otherwise, set �(k) = �(k−1).

Step3.	� When k ≥ H + 1 , we adopt the independent-kernel Metropolis-Hastings 
algorithm for sampling �(k) : 

	� Step3.1.	� Generate candidate values �∗ ∼ N(�� ,��) , where the 
sample mean �� and sample covariance matrix �� are 
calculated using the burn-in H iteration samples.

Step3.2.	� Keep the candidate values if �∗ satisfies that: 𝜃1 > 0 , {�2, �3} do 
not violate the stationarity conditions of the model, 𝜃4 > 0 and 
𝜃5 > 1 . Otherwise, go back to Step 3.1.

Step3.3.	� Calculate the acceptance probability 

 where g(⋅) is the Gaussian proposal density with mean �� and sample covari-
ance matrix �� . Then generate a random uniform number u ∈ [0, 1] . If 
u < Prob(�∗,�(k−1)) , accept the new candidate and set �(k) = �∗ . Otherwise, set 
�(k) = �(k−1).

Step4.	� Go to the next iteration or stop if the chain has converged.

Given the obtained N iteration samples �(1),�(2),… ,�(N) , we discard the first H 
in the burn-in period and perform model parameter estimations using the remaining 
(N − H) iterations.

4 � Simulation analysis

To examine the performance of the adaptive MCMC algorithm for the log-linear 
BNB-INGARCH model, we conduct a simulation analysis under the following data 
generating process (DGP) with sample sizes n = 100 and n = 250 . The count series 
yt is sampled from the log-linear BNB-INGARCH model (3) where (�,�, �, r, �)T 
is set to be (0.65, 0.7,−0.2, 5, 3)T . To investigate the sensitivity of the prior and 

Prob(�∗,�(k−1)) = min

{
1,

p(�∗)

p(�(k−1))

}
,

Prob(�∗,�(k−1)) = min

{
1,

p(�∗)g(�(k−1))

p(�(k−1))g(�∗)

}
,
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hyperparameter selections, we consider three prior calibrations for the parameters of 
interest, which is:

Prior 1: � ∼ N(0.1, 0.32) , {�, �} ∼ N(0.1, 0.252) ⋅ N(0.1, 0.752)I(A) , 
r ∼ Ga(10, 0.5) and 𝛼 ∼ Ga(10, 0.5)I(𝛼 > 1)

Prior 2: � ∼ N(0.1, 0.32) , �(�, �) ∝ I(A) , r ∼ Ga(10, 0.5) and 
𝛼 ∼ Exp(0.01)I(𝛼 > 1)

Prior 3: � ∼ N(0.1, 0.32) , {�, �} ∼ N(0.1, 0.252) ⋅ N(0.1, 0.752)I(A) , 
r ∼ Ga(10, 1) and 𝜋(𝛼) ∝ 1

(1+𝛼)2
I(𝛼 > 1)

where Exp(�) denotes the exponential distribution with the rate parameter � and 
the set A is given in (8). Note that in Prior 2, we employ a constrained uniform prior 
on {�, �} which configures a flat prior on the parameters restricted by the indicator 
I(A) . We perform 10,000 MCMC iterations by discarding 5000 iterations as a burn-
in sample for inference in each scenario. Table 1 presents the averages of posterior 
means, medians, standard deviations, and 95% credible intervals over 1000 repli-
cations for all model parameters. For a comparison with the frequentist approach, 
we report the simulation results for the maximum likelihood (ML) estimator of the 
considered model in Table 2. The averages of the mean and the standard deviation 
for different parameter values and sample sizes are obtained from 1000 Monte Carlo 
replications. We follow Gorgi (2020) to reparameterize r and � in terms of their 
inverse to facilitate the ML estimation. As noted by Gorgi (2020), this procedure is 
adopted because, especially for small sample sizes, the estimate of � may become 
arbitrarily large since the likelihood function is flat for large �.

Given Tables 1 and 2, we summarize the simulation results as follows:
(1) We observe that the employed adaptive MCMC approach gives a reasonably 

accurate estimate of all the parameters of interest for small sample sizes. The stand-
ard deviation decreases as the sample size increases from 100 to 250 in both Bayes-
ian and ML estimation scenarios. Furthermore, all the reported standard deviation 
values for parameters � , � and � under Bayesian estimation are smaller than that of 
ML estimator in each simulation scheme.

(2) The simulation results demonstrate that both positive and negative serial cor-
relations can be captured by the proposed model. Moreover, the average posterior 
means and posterior medians are overall reasonably close to the true values of the 
parameters, implying the validity of the considered adaptive MCMC method. We 
therefore suggest using posterior medians as the model parameter estimates since 
the median is a robust measure of central tendency compared with the mean.

(3) We observe that the adaptive MCMC procedure is robust to the selection of 
priors and hyperparameters via delivering similar reasonably accurate estimation 
results under different setting scenarios.

(4) We extensively examine the sensitivity of starting values by specifying dif-
ferent starting points for the adaptive MCMC sampler. We also investigate the sen-
sitivity relating to the choice of �1 by randomly setting different initialization values 
for the intensity process. We observe that the employed MCMC sampler is robust 
to the selection of the starting values and the initial intensity as different calibra-
tions deliver similar reasonably accurate estimation results for the considered small 
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sample sizes n. For space limitation, we do not present these results, but they are 
available from the authors upon request.

5 � Empirical application on futures tick count data

This section illustrates the proposed methodology by an empirical application on 
the numbers of minute-bar VIX futures tick count data. This historical intraday mar-
ket data is delivered by Tick Data provider and is available from https://​www.​tickd​
ata.​com/. The sample data set we consider consists of 920 available observations 
between 01:00 a.m. and 11:00 p.m. on the day 02nd January, 2020. The empirical 
mean and variance are 25.789 and 1669.625 respectively, indicating considerable 
over-dispersion pattern of the data set. Figure 1 depicts the plot and the empirical 
auto-correlation functions of the tick count series. The auto-correlation function 
(ACF) and partial auto-correlation function (PACF) plots suggest the existence of 
significant auto-correlations in the data. The series exhibits several extreme obser-
vations. Specifically, the number of minute-bar VIX futures tick count is exceed-
ingly high at 08:31 a.m., 14:58 p.m. and 15:15 p.m.. These attributes indicate the 
desirability of BNB auto-regressions to capture the auto-correlation structure and to 
account for the extreme observations in the data by means of the heavy-tailedness 
characteristics of the BNB distribution.

We compare the performances of Bayesian log-linear BNB-INGARCH models 
and their counterpart log-linear NB-INGARCH models with order specifications 
{(p, q)} = {(1, 1), (1, 2), (2, 1), (2, 2)} . The prior calibrations are presented below. 
For both BNB-INGARCH and NB-INGARCH models, we adopt normal prior 
N(0.5, 0.252) for � , constrained normal priors N(0.2, 0.152) for �i and �j with {�i, �j} 
satisfying |𝜙i| < 1, |𝜏j| < 1 , �

∑p

i=1
𝜙i +

∑q

j=1
𝜏j� < 1 and gamma prior Ga(5, 0.5) for 

r. For the tail parameter � under BNB model specifications, we consider the trun-
cated gamma prior Ga(5, 0.5)I(𝛼 > 1) . We also refer to the analogical prior estab-
lishments in the simulation analysis section for the considered empirical application 
and observe the parameter estimations are robust to the selection of priors and 
hyperparameters. We perform 30,000 MCMC iterations and discard the first 10,000 
iterations as a burn-in sample in each model set-up scenario. Table 3 summarizes 
the estimation results including the posterior mean, standard deviation, the posterior 

Table 2   Simulation results for the ML estimators of the log-linear BNB-INGARCH model obtained 
from 1000 Monte Carlo replications. The parameters r and � are reparameterized in terms of their inverse

Parameter True Value Ave Mean Ave Std True Value Ave Mean Ave Std

n = 100 n = 250

� 0.65 0.6407 0.2976 � 0.65 0.6412 0.1846
� 0.7 0.6945 0.1286 � 0.7 0.6914 0.0874
� − 0.2 − 0.2392 0.1830 � − 0.2 − 0.2107 0.1075
r
−1 0.2 0.1692 0.2740 r

−1 0.2 0.1613 0.2001

�−1 0.3333 0.1454 0.1552 �−1 0.3333 0.1992 0.1379

https://www.tickdata.com/
https://www.tickdata.com/
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2.5 and 97.5 percentiles, Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) for each specification separately. The convergence diagnostics 
of each of the Markov chains is investigated through the trace plots for each parame-
ter of the fitted models. We conclude that proper mixing is achieved by each MCMC 
sampler. Based on the values of AIC and BIC provided in Table  3, the BNB-
INGARCH models under all considered order specifications are superior to their 
corresponding NB-INGARCH counterparts. The preference for the BNB distribu-
tion can be further embodied in the low estimate values of the tail parameter � , 
which is estimated to be around 2.5 with a standard deviation of about 0.15 in most 
order specification scenarios. This implies the heavy-tailedness of the estimated 
conditional distribution of the data with only a finite second order moment. Moreo-
ver, the BNB-INGARCH(1,2) is found to be a competitive model for this data set 
among all the considered candidates. Due to space limitation, we only provide the 
diagnostic trace plots of the Markov chains for each parameter in the favoured BNB-
INGARCH(1,2) model in Fig. 2.

To check the adequacy of the best fitted log-linear BNB-INGARCH(1,2) model 
based on the lowest AIC and BIC values, we examine the standardized Pearson 
residuals zt =

yt−E(yt�Ft−1)√
Var(yt�Ft−1)

 proposed by Jung et  al. (2006). For correctly specified 
model, the Pearson residuals should have mean zero and variance one, with no sig-
nificant auto-correlations. Figure  3 presents the series plot and auto-correlation 

Fig. 1   Numbers of minute-bar VIX futures tick count data on 02nd January, 2020 from 01:00 a.m. to 
11:00 p.m. (top panel) and sample auto-correlation function (bottom left) and partial auto-correlation 
function of the series (bottom right)
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Table 3   Summary of estimation results for VIX futures tick count data

Par. BNB-INGARCH(1,1) NB-INGARCH(1,1)

Mean Std 2.50% 97.50% Mean Std 2.50% 97.50%

� 0.1332 0.0355 0.0835 0.2123 0.2980 0.0715 0.1621 0.4466
� 0.2145 0.0258 0.1714 0.2659 0.2540 0.0346 0.1896 0.3246
� 0.7696 0.0308 0.7078 0.8202 0.6793 0.0492 0.5795 0.7700
r 3.7093 0.2758 3.1185 4.2318 1.0258 0.0461 0.9424 1.1210
� 2.5115 0.1370 2.2315 2.7735
AIC 7084.96 7328.09
BIC 7109.09 7347.38

Par. BNB-INGARCH(1,2) NB-INGARCH(1,2)

Mean Std 2.50% 97.50% Mean Std 2.50% 97.50%

� 0.1433 0.0324 0.0880 0.2144 0.2466 0.0538 0.1532 0.3600
� 0.2372 0.0260 0.1859 0.2869 0.2373 0.0298 0.1799 0.2982
�1 0.4302 0.0827 0.2700 0.5964 0.4501 0.0841 0.2840 0.6204
�2 0.3160 0.0742 0.1761 0.4620 0.2600 0.0763 0.1059 0.3927
r 4.1704 0.5325 3.0340 5.2870 1.0325 0.0477 0.9399 1.1343
� 2.5213 0.1557 2.2375 2.8430
AIC 7069.46 7304.70
BIC 7098.41 7328.83

Par. BNB-INGARCH(2,1) NB-INGARCH(2,1)

Mean Std 2.50% 97.50% Mean Std 2.50% 97.50%

� 0.1483 0.0395 0.0835 0.2368 0.3574 0.1069 0.1948 0.6661
�1 0.1941 0.0298 0.1305 0.2541 0.2180 0.0376 0.1431 0.2898
�2 0.0317 0.0268 0.0005 0.1124 0.0910 0.0504 0.0075 0.1973
� 0.7549 0.0343 0.6846 0.8141 0.6110 0.0818 0.3957 0.7456
r 4.2180 0.4933 3.4444 5.1955 1.0279 0.0466 0.9349 1.1182
� 2.5060 0.1526 2.2300 2.8121
AIC 7082.03 7311.75
BIC 7110.98 7335.87

Par. BNB-INGARCH(2,2) NB-INGARCH(2,2)

Mean Std 2.50% 97.50% Mean Std 2.50% 97.50%

� 0.1670 0.0397 0.1051 0.2561 0.3438 0.0806 0.2054 0.5288
�1 0.2123 0.0295 0.1558 0.2786 0.1959 0.0390 0.1239 0.2772
�2 0.0737 0.0350 0.0107 0.1474 0.1368 0.0460 0.0473 0.2224
�1 0.3096 0.0578 0.2132 0.4382 0.2433 0.1040 0.0604 0.4481
�2 0.3866 0.0506 0.2730 0.4679 0.3504 0.0869 0.1810 0.5210
r 3.6461 0.2576 3.1299 4.1100 1.0316 0.0480 0.9461 1.1308
� 2.5057 0.1497 2.2323 2.8250
AIC 7073.09 7304.85
BIC 7106.86 7333.80
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Fig. 2   Trace plots of the Markov chains for the log-linear BNB-INGARCH(1, 2) model marginal poste-
rior distributions of parameters �,�, �1, �2, r and � for VIX futures tick count data. The grey rectangles 
represent the burn-in periods

Fig. 3   Diagnostic checking plots for standardized residuals. The top panel reports the standardized Pear-
son residuals of the log-linear BNB-INGARCH(1, 2) model for VIX futures tick count data. The bot-
tom left and bottom right plots present the auto-correlation and partial auto-correlation functions of the 
residuals respectively



1200	 Y. Chu, K. Yu 

1 3

functions of the standardized residuals for the fitted BNB-INGARCH(1,2) model. 
The plots indicate no significant serial correlations in the residuals. On the basis of 
the diagnostic checking figures, the auto-correlation characteristics in the futures 
tick count data can be captured and described by the dynamics of log-linear BNB-
INGARCH models. We conclude that the proposed and fitted model is adequate.

6 � Conclusion

The Bayesian estimation approach and model selections for the proposed log-linear 
Beta-negative binomial integer-valued GARCH model have been presented. Param-
eter estimations for the proposed process are performed based on adaptive Markov 
chain Monte Carlo methods. The empirical application on high-frequency intraday 
VIX futures tick count data indicates that the proposed model is adequate and pro-
vides better performance than the INGARCH model under negative binomial dis-
tribution assumptions. This research, by extending the log-linear BNB-INGARCH 
model in Bayesian frameworks, complements another aspect of current literature on 
modelling discrete time series with heavy-tailedness characteristics.
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