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Abstract 

Climate change mitigation is the main challenge for the automotive 
industry, as the government issues legislation to combat CO2 
emissions. In addition to electrification and battery electric vehicles, 
using low carbon and zero carbon fuels in Internal Combustion (IC) 
engines can also be an effective way to reach net zero carbon transport.  

This study investigated and compared the combustion characteristics,  
performance and emissions of a highly boosted spark ignition (SI) 
engine fuelled with EU VI 95RON E10 gasoline and blends of second-
generation bio-gasoline with different ethanol contents of  5% (E5), 
10% (E10), and 20% (E20). The single-cylinder  SI engine was 
equipped with a centrally mounted high-pressure injector and supplied 
externally boosted air. Engine experiments were conducted at 
2000RPM and 3000RPM with low and high load operations.   

The overall finding indicates that increasing the ethanol content of 
second-generation biofuels from 5% to 20% improves the indicated 
thermal efficiency at low load by 2.1% and increases the knock 
resistance by 16.8% at high load operation as well as a reduction by 
0.7% on cycle-to-cycle variation. The engine emissions were primarily 
affected by the engine operating conditions, and no consistent 
correlation between the ethanol content and emissions. However, it 
was noted that the average NOx and THC emissions were increased by 
11.02% and 66%, respectively, at the low load operation when the 
ethanol content was increased from 5% to 20%  at the exact fuel 
injection timing of  350 BTDC. 

1. Introduction 

The powertrain technology used in every transportation sector must be 
significantly changed to achieve the worldwide goal of a zero-carbon 
society.  

In order to transition toward a net carbon zero society in 2050 and 
beyond, significant efforts are being  made by the automotive industry 
to reduce and eliminate carbon emissions from the vehicles on the 
road. CNG (compressed natural gas) has been introduced as an 
alternative low carbon fuel  [5], but the infrastructure for using natural 
gas as a transportation fuel is not as developed as liquid fuels. Thus,  
Alcoholic fuels are introduced  worldwide as excellent fossil fuel 
replacements in the form of  blended fuel with the fossil fuel.  This 
contrasts with other alternative fuels that require extensive 
infrastructure and fleet upgrades[15][16][17]. As a result,  immediate 
and significant impact can be achieved on the reduction in  carbon 
emissions both in the tailpipe and the life-cycle of the fuel and vehicle 
usage. On the other hand, Increasing oxygenated fuel percentages with 
fossil fuels produces some challenges, such as the cold start issues with 

higher ethanol concentrations [6][7][8][9][10]. Overall, premixed 
alcohol/gasoline fuels show a significant drop in the total emission of 
the vehicle with less particulate number; however, some emission 
parameters, such as the NOx emission, have a different response on SI 
engines depending on the powertrain setup itself [11][12]. 

Previous studies also show that ethanol and methanol outperform 
gasoline engines with higher thermal efficiency in most operating 
conditions. The increase in the thermal efficiency  is more pronounced 
at higher loads and power outputs. The strong knock resistance of 
ethanol and methanol permits more advanced combustion phasing, 
eliminating the need for over-fueling under full load and power 
operations. This is because the higher latent heat and lower air-fuel 
ratio of alcohol fuels contribute to a higher knock resistance [13] [14]. 

In addition to the use of bio-ethanol, bio-gasoline can be produced and 
used. Modern bio-derived gasoline fuels have been tested using a 
steady-state engine dynamometer and a transient vehicle test with a 
mandated driving cycle. The findings demonstrate that such fuels can 
be utilised as a drop-in substitute for  normal gasoline fuel produced 
from fossil sources without requiring any engine adjustments or 
change in the fueling system [18]. 

This study aims to investigate the performance and emission 
performance of a spark-ignited (SI) engine operated with the bio-
gasoline with three different concentrations of ethanol, E5, E10, and 
E20, all with a RON value of 95. The first set of experiments were 
carried out  at various load points at a constant engine speed of 3000 
RPM. The combustion characteristics, engine performance and 
emissions measured using the same fuel injection parameters as those 
used in the baseline gasoline fuel. Then,  the combustion, efficiency 
and emissions of  three blended biofuels were evaluated at multiple 
parts- and high-load operating  conditions with different injection 
parameters. 

2. Experimental setup 

The single cylinder is constructed with a single cylinder engine block 
and a cylinder head from a Mahle  3-cylinder highly-downsized 
gasoline engine.  It is  mounted on a fully instrumented AC 
dynamometer testbed as shown in Figure 1. The versatility and 
adaptability of single-cylinder engine testing helps to reduce engine 
development time, expense, and complication in the engine control 
unit.   
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Figure 2. Picture of the single-cylinder engine testbed at Brunel University. 

Prior work on this single-cylinder research engine involved a 
combination of port fuel injection (PFI) and direct injection (DI) and 
an evaluation of water injection. The engine has been since modified 
with a centrally-located solenoid GDI injector for operation on pure DI 
ethanol and methanol [14][22][23]. 

Table 1 displays the hardware specifications for the engine. The 
cylinder head includes two intake valves, two exhaust valves, and 
double overhead camshafts with hydraulically changeable cam phasers 
capable of 40°CA. The centrally-mounted direct injector can operate 
at pressures as high as 200 bar. The ignition system’s spark plug is also 
positioned centrally with a 100 mJ coil-on-plug configuration. Lastly, 
the engine is managed by a MAHLE Versatile ECU (MFE), which 
employs a control software framework that is adaptable to any new 
engine technology and is flexible and easily customisable. 

Table 1. Specification of the Single-Cylinder Engine. 

Configuration  Single Cylinder  

Displaced volume  400 cc  

Stroke  73.9 mm  

Bore  83 mm  

Geometric Compression Ratio  11.1: 1  
Number of Valves  4  
Exhaust Valve Timing  EMOP (Exhaust Maximum 

Opening Point) 100-140°CA 
BTDC, 11 mm Lift, 278°CA 
Duration  

Inlet Valve Timing  IMOP (Intake Maximum 
Opening Point) 80-120°CA 
ATDC, 11 mm Lift, 240°CA 
D ti   Injection System  Central Direct Injection 
outwardly opening spray ≤200 
b   Injection Control MAHLE Flexible ECU (MFE) 

 

 

Figure 2 illustrates the arrangement of the testbed, which includes an 
external boosting system that is operated separately. The intake and 
exhaust pressures were measured by two high-speed piezo-resistive 
pressure sensors. In addition, the coolant and oil temperatures were 
controlled to ensure stable and consistent coolant temperatures for the 

steady-state testing conducted under all conditions in which the engine 
operates. Gaseous emissions were measured using a HORIBA 
(MEXA-554JE for CO/CO2) and Signal analysers (Ambitech model 
443 Chemiluminescent NO/NOx and Rotork Analysis model 523 
flame ionisation detection (FID) hydrocarbon (HC) analysers). A 
Cambustion DMS500, capable of measuring the particle size 
distribution, was used to quantify the particle emissions [24]. 

 

Figure 2. Testbed Layout. 

The test cell is fitted with a Data Acquision system comprising a NI-
USB 6353 fast card capable of having 32 analog inputs at a speed of 
1.25 MS/s and a NI-USB 6210 card as an extra time domain card. This 
system can capture all data in the crank domain as well as the time 
domain to conduct quick analyses and can also accept additional input 
from pressure and temperature sensors the time domain. An in-house 
combustion analyses programme was used to generate live monitoring 
of the primary combustion parameters, and record the in-cylinder 
pressure data up to 300 cycles. 

3. Biofuel properties  

This study used a bio gasoline fuel that was produced via a two-step 
process . The first step is to produce bioethanol  from waste biomass,  
or agricultural waste such as straw. This lignocellulosic biomass is 
initially pretreated to increase enzyme accessibility. After 
pretreatment, the biomass is subjected to enzymatic hydrolysis to 
convert it into sugars, which are then fermented to ethanol using a 
mixture of microorganisms. This bio-ethanol is then dehydrated into 
ethylene and “grown” at 300-400 °C in the presence of a zeolite 
catalyst into longer chain hydrocarbons, as shown in Figure 3 [25]. 
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Figure 3. Schematic of the ethanol-to-gasoline conversion process [26]. 

The specifications of the testing fuels are givn in Table 2. The baseline 
gasoline is not only compliant with the EN228 fuel standard, which 
may cover a vast range of fuel performance, but also has a very high 
specification, including a low particle index, made possible by a 
complex mixing. This fuel standard was chosen as a demanding 
benchmark for bio-gasoline fuels.  Blended bio-fuels with the same 
octane rating but varying ethanol concentrations were  prepared and 
studied. 

Table 2. Fuels properties used in the experimental study. 

Parameter  Unit Fossil 95 
E10 Bio E5 Bio E10 Bio E20 

Bio-Content % v/v - 82.9 100 100 
Honda 
Particulate 
Mass Index 

 1.03 2.17 2.25 1.88 

Simplified 
Particulate 
Mass Index 

 - 2.15 2.49 -2.95 

R.O.N.  95.50 95.20 95.90 96.20 

M.O.N.  85.10 85.10 84.60 85.00 

Carbon % (m/m) 83.06 84.77 83.10 79.02 

Hydrogen % (m/m) 13.35 13.44 13.31 13.57 
Density at 
15°C kg/L 0.753 0.752 0.763 0.761 

Initial Boiling 
Point °C 34.9 30.1 30.1 34.9 

H/C Ratio  1.915 1.889 1.908 2.046 

O/C Ratio  0.03244 0.01585 0.03243 0.07039 

AFR (Stoic) assume
s 14.66 14.63 14.65 14.85 

AFR (Stoic) assume
s 13.98 14.29 13.97 13.43 

Percentage 
H+C+O % 100.00 100.00 100.00 100.00 

Ethanol & 
Higher 
Alcohols 

% (v/v) 9.8 4.9 10 20.4 

Net Calorific 
value (LHV) MJ/kg 41.33 41.91 40.98 39.36 

Gross 
Calorific 
value 

MJ/kg 44.17 44.76 43.8 42.23 

Sulfur 
Content mg/kg 3.2 <1 <1 <1 

 

Figure 4 shows that the fossil gasoline had a lighter composition than 
the studied bio-gasolines since a more significant proportion of the fuel 
evaporated at lower temperatures. This is a product of the bio-
feedstock gasoline and the manufacturing process. Typically, high-

grade fossil gasoline undergoes further processing to eliminate 
aromatic components to decrease the creation of hazardous particles 
during burning. 

 

Figure 4. Fuel evaporation characteristics for all fuels analysed. 

Figure 5 shows each chemical contents of the bio fuels which have 
been adjusted  to keep the RON number equal with different ethanol 
percentages. Components with a high molecular weight result in a fuel 
with a higher boiling point, which tends to produce more soot particles 
and increased chance of wall wetting.  The  resulting fuel-oil 
combination has a more significant potential of leaving the combustion 
chamber in droplet form, contributing to the emission and combustion 
performance[27]. 

 

Figure 5. Biofuels compositions. 

4. Test methodology  

The single-cylinder engine tests were carried out at 3000 RPM because 
of its relative high occupancy over a drive cycle range. The differences  
in performance and emissions were analyzed  of bio fuels compared to 
the baseline gasoline at different loads. The load sweeps were 
conducted with consistent engine settings (e.g., cam timing, fuel 
injection pressure and timing) to remove any comparability variation. 

In the second part of the study, effects of fuel injection pressure and 
start of fuel injection timings were investigated for the Therefore, 
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Moving to the low and high load fuel matrix tests for an in-depth 
comparison between the three biofuels to analyse the effect of higher 
ethanol content and assess the performance profile of each biogasoline 
over wide injection angles and different injection pressures. Finally, 
analyse the emission over the vast operation regime to study the effect 
of the ethanol increase over the vast operation points. 

5. Test results and discussion  

water and oil temperatures were kept constant at 90oC, and the Intake 
air temperature was at 40oC  with zero per cent humidity. Three sets of 
experiments were carried out. Firstly, results will be presented and 
discussed for the 95 RON E10 baseline gasoline and biogasoline with 
different ethanol concentrations at 3000 rpm and varying load sweep 
from 2bar  to 28bar IMEP. The same fuel injection pressure and initial 
injection timings optimised for the baseline gasoline were used for all 
the tested fuels.  

The second experiment was carried out at  4.6 bar IMEP in 2000rpm 
to investigate the effect of injection parameters on the biogasoline fuels 
with different ethanol content at low load engine operation. The third 
experiment was carried out at 16 bar IMEP and 3000rpm to study the 
effect of injection parameters on engine performance and emissions at 
high power operation.  

5.1 Effect of fuel composition on combustion, 
efficiency and emissions at different loads  with 
the same fuel injection parameters 

In this test, the engine speed was fixed at 3000RPM, and the load 
varied from 2 bar IMEP to 28 bar IMEP.   The engine operating 
parameters, including the rail pressure, the start of injection time, and 
the intake and exhaust valve timings, were kept the same at each 
operating condition for different fuels, and they were determined for 
optimised engine performance in the baseline tests with gasoline. It is 
noted that the end of injection was delayed with the increase in ethanol 
content due to more fuel in volume to be injected. 

In most conditions, the engine was operated with stoichiometric 
combustion by measuring the relative air-to-fuel ratio using a Lambda 
sensor in the exhaust. However, above 24 bar IMEP, as shown in 
Figure 7, the lambda value was reduced to 0.9 to keep the exhaust 
temperature below 750oC. 

 

Figure 7. 3000 RPM load sweep data shows the lambda value, Exhaust 
temperature, fuel injection angle, cam timing, and fuel rail pressure. 

As shown in Figure 8, the knock intensity, defined as abnormal and 
stochastic combustion phenomenon that limits the efficiency of the 
spark ignition engine, increased steadily as the engine load was 
increased and reached its peak at 20 bar IMEP. As the load was 
changed from  2-14 bar IMEP, the burn durations measured by the 
spark to 10%, 10 to 50%, and 50- 90% mass fraction burned were 
reduced to a minimum because faster combustion at elevated gas 
pressure and temperature. Consequently, the spark timing was 
retarded, and the MBT could be reached. Above 15 bar IMEP, the 
spark timing had to be retarded beyond the MBT to keep the knock 
intensity below 1.0. This resulted in slower combustion and extended 
burn durations.  

 

Figure 8. 3000 RPM load sweep data shows spark-to-10% MFB duration, 10-
90% MFB durations, spark timing, Knoicking intensity, and Incylinder 
pressure.  

Concerning the effect of fuel properties, it is noted that baseline 
gasoline and blends of bio-gasoline and ethanol exhibited similar 
combustion characteristics at part-load up to 12bar IMEP when the 
wide-open-throttle (WOT) condition was reached. As the load was 
increased further, the addition of ethanol caused increased combustion 
durations but lower   knock intensity when the engine was operated 
with boosted air.  

At the highest load of 25bar IMEP, less fuel enrichment was needed to 
keep the exhaust gas temperature below the limit of 750o (Figure 7) 
and hence higher combustion efficiency shown in Figure 8. 
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Figure 9. 3000 RPM load sweep data shows The indicated specific 
consumption and the ITE. 

Figure 9 shows the indicated specific consumption and engine thermal 
efficiency as a function of load for different fuel blends. It can be seen 
that the gasoline fuel produced higher engine efficiency and lower 
specific fuel consumption when the same fuel injection parameters and 
spark timings were used. 

Finally, Figure 10 shows the corresponding engine out emissions for 
different fuel blends at a load function. The increased CO and HC 
emissions at the highest load conditions were attributed to the fuel-rich 
combustion.  The CO emission was inversely proportional to the lamda 
value, and the E20 biogasoline produced the lowest CO emission at the 
highest load. Higher HC emission was observed with biogasoline fuel 
blends thanks to the higher content of heavy hydrocarbons in bio-
gasoline. 

 

Figure 10. 3000 RPM load sweep data shows the emission captured. 

The above results showed that less fuel enrichment was needed, and 
hence lower emissions could be achieved at the highest load with 

biogasoline with higher ethanol content. However, lower engine 
efficiencies were obtained from biogasoline and ethanol blends if the 
fuel injection parameters optimised for gasoline were used.   

Finally, figure 11 shows the Pm emission captured by DMS 500, which 
shows the numbers of particulate matter over the load, which shows 
higher numbers for the biofuels than the fossil fuel due to the haver 
compositions of the biofuels which can be reduced by adding PM filter. 

 

Figure 11. 3000 RPM load sweep data shows the Pm numbers for 23-1000 
nmm size. 

Therefore, it was decided to carry out additional experiments to see if 
the engine thermal efficiency of biogasoline and ethanol blends could 
be improved by optimising the fuel injection parameters at low and 
high load operations.  

  

5.2 Effect of Fuel injection parameters on 
combustion, efficiency and emissions of bio 
gasoline fuels at low load engine operation 

This test aims to investigate the effect of fuel injection pressure and 
the start of fuel injection  for optimised engine operations with 
different bio gasoline and ethanol blends at a low load engine operation 
of 2.4 bar IMEP and 2000 RPM engine speed. The start of the injection 
timing was varied from 275 ca BTDCf to 350ca BTDCf at 25 degrees 
interval. The fuel injection pressure was increased from 50 bar to 200 
bar with a 50 bar step. Figure 12 shows the combustion phasing and 
comustion duration results as a function of fuel injection pressure (y-
axis) and the start of injection timing (x-axis). As the  spark timings 
were set to MBT,  the combustion phasing as indicated by 50% MFB  
remained constant at 8ca ATDC. It is noted that there was little change 
in the combustion duration for a given start of fuel injection whilst the 
most prolonged burn duration occurred at 300ca BTDCf  irrespective 
of the injection pressure and independent of the ethanol content. 
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Figure 12. 2000 RPM fuel Matrix data shows combustion phasing and the 
Burn duration. 

The results in Figure 13 show that the maximum indicated thermal 
efficiency increased slightly with more ethanol, but the ISFC increased 
at the lowest thermal efficiency area, thanks to the lower calorific value 
of ethanol.  Moreover, looking at the thermal efficiency distribution, 
both bio-gasoline E20 and E10 achieved the maximum efficiency at 
325ca BTDCf and 100 bar injection pressure. In contrast, E5 fuel 
obtained a higher thermal efficiency at the late injection timing and 
higher injection pressure. Overall, the variation of the thermal 
efficiency was within 1% when the fuel injection pressure and start 
injection timings were changed significantly. 

 

Figure 13. 2000 RPM fuel Matrix data shows ISFC and ITE. 

Figure 14 shows distributions of the THC and NOx emissions as a 
function of fuel injection pressure and the start of injection.  At the 
same injection pressure and timing, the THC emission increased 
slightly with the percentage of ethanol, probably because of the longer 
injection duration and delayed injection end, leading to less 
homogeneous mixtures. For each fuel, the minimum HC emissions 
were obtained with the start of fuel injection at 325ca BTDCf. Too 
early injection would lead to more fuel trapped in the crevices, and too 
late injection caused incomplete fuel evaporation and even fuel spray 
impingement on the piston top. At this part-load and low-speed engine 
operation, the fuel injection pressure had little effect on the HC 
emissions.   

It is also noted that the lowest NOx emission was obtained with E20 
with the most retarded injection timing and lower injection pressure 
due to the lower combustion temperature of E20 and slightly retarded 
combustion. 

 

 

Figure 14. 2000 RPM fuel Matrix data shows Emission data. 

5.3 Effect of Fuel injection parameters on 
combustion, efficiency and emissions of bio 
gasoline fuels at high power engine operation 

This test aims to analyse the effect of fuel injection parameters on the 
three bio gasoline and ethanol blends at a the high power engine 
operation. The test consisted of 18 testing points with stoichiometric 
combustion at a fixed speed of 3000 RPM at 16bar IMEP. 

Due to occurrence of knocking combustion at such a high load with 
intake pressure at 1.3bar, the spark timing  was retarded and the 
combustion stability became a potential issue when more combustion 
took place well after TDC. Thus, the combustion stability as measure 
by the CoV (%) in IMEP was measured and analysed as shown in 
Figure 15. 
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Figure 15. 3000 RPM fuel Matrix data shows combustion stability and spark 
timing. 

The results show that E20 fuel was characterised by more stable 
combustion with lower CoV, and the most stable combustion was 
obtained with the start of fuel injection at around 300 ca BTDCf for all 
three fuels.  There was no consistent trend in the change of combustion 
stability with injection pressure and injection timing, except for E20, 
which had lower CoV values at the lower injection pressure. 

The combustion phasing and the burn duration results are shown in  
Figure 16. 

 

Figure 16. 3000 RPM fuel Matrix data shows combustion phasing and the 
Burn duration. 

The combustion phasing at 50% MFB shows less deviation for E20 
fuel than for E5 and E10. Also, the most retarded combustion was 
obtained with the earliest injection angle of 350ca BTDCf at higher 
injection pressures. The burn duration results show a similar trend for 
the three biofuels. When the combustion was most stable, the 
minimum burn duration was obtained with 300ca BTDCf injection 
timing. 

As shown in Figure 17, the highest indicated thermal efficiency was 
obtained with the highest injection pressure and the start of injection 
timing of 300 ca BTDCf for all three fuels. As the fuel injection took 
place earlier, the thermal efficiency decreased steadily, which was in 
line with the increased HC emissions shown in Figure ??.  As the 
ethanol content was increased, the thermal efficiencies were increased 

slightly across the range of injection pressures and injection timings 
tested. As expected, the fuel consumption increased with more ethanol 
added due to the lower net calorific value of the higher ethanol content 
biofuels.  

The injection timing and pressure had a more apparent impact on the 
thermal efficiency than the low load operation. The variation was 
about 6%, much higher than the 4.6 bar IMEP.  

 

Figure 17. 3000 RPM fuel Matrix data shows ITE and ISFC. 

The unburnt HC emissions of all three fuels reached their minima with 
the start of injection at 300 ca BTDC and 200 bar injection pressure.  
The THC increased with higher ethanol fuel and the highest HC 
emissions were obtained with the earliest injection timing because of 
more trapped fuel in crevices as shown in the figure 18. 

The NOx emissions increased with ethanol percentages, because of 
more advanced spark timing. 

 

Figure 18. 3000 RPM fuel Matrix data shows THC and Nox emissions. 

As shown in Figure 19, the carbon monoxide emission increased with 
retarded injection timing because of the fuel-rich mixture formed by 
the incomplete mixing from the reduced time for mixture formation 
and probably the increased impingement of fuel onto the piston top.  
The total CO variation is less than 0.5%. E20 produced the lowest CO 
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emission as it had the lowest carbon content, and the CO2 emissions 
remained almost constant at around 13%.  

 

 

Figure 19. 3000 RPM fuel Matrix data shows carbon monoxide and dioxide 
emissions. 

Summary and Conclusions 

In this study, three sets of experiments were carried out to investigate 
the biogasoline and its blend with ethanol in a single-cylinder spark 
ignition engine. Both the effects of fuel properties and fuel injection 
parameters were measured and analysed on the combustion process, 
thermal efficiency, and emissions. The main findings can be 
summarised as follows.  

At 3000rpm  and loads from 2 bar to 12bar IMEP, the 95 RON E10 
baseline gasoline, blends of bio-gasoline, and ethanol exhibited similar 
combustion characteristics when the engine was operated with the 
natural aspiration with intake pressure below 1 bar. Less fuel 
enrichment was needed; hence, lower emissions could be achieved at 
the highest load with biogasoline E20. However, slightly lower engine 
efficiencies were obtained from biogasoline and ethanol blends when 
the fuel injection parameters optimised for gasoline were used.  

At the low load operation of 4 bar IMEP at 2000rpm, the combustion 
duration remained constant as the injection pressure was increased 
from 50 bar to 200 bar for a given start of fuel injection, whilst the 
most prolonged burn duration occurred at 300ca BTDCf irrespective 
of the injection pressure and independent of the ethanol content. That 
maximum indicated thermal efficiency increased slightly. Overall, the 
variation of the thermal efficiency was within 1% when the fuel 
injection pressure and start injection timings were varied.  

When the engine was operated at the high load of 16 bar IMEP at 
3000rpm, the injection timing and pressure effect had a more apparent 
impact on the thermal efficiency at the high load operation than the 
low load operation. The variation was about 6%, much higher than the 
4.6 bar IMEP.  It is noted that E20 was the most knock resistant and 
exhibited more stable combustion. For all three fuels tested, the most 
stable combustion was obtained with the start of fuel injection at 
around 300 ca BTDCf, but there was no consistent trend in the change 
of combustion stability with injection pressure. The burn duration 
results show a similar trend for the three biofuels. When the 
combustion was most stable, the minimum burn duration was obtained 

with 300ca BTDCf injection timing. As the ethanol content was 
increased, the thermal efficiencies were increased slightly across the 
range of injection pressures and injection timings tested. 
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