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Abstract: Sensing the cloud movement information has always been a difficult problem in photo-
voltaic (PV) prediction. The information used by current PV prediction methods makes it challenging
to accurately perceive cloud movements. The obstruction of the sun by clouds will lead to a signifi-
cant decrease in actual PV power generation. The PV prediction network model cannot respond in
time, resulting in a significant decrease in prediction accuracy. In order to overcome this problem,
this paper develops a visual transformer model for PV prediction, in which the target PV sensor
information and the surrounding PV sensor auxiliary information are used as input data. By using the
auxiliary information of the surrounding PV sensors and the spatial location information, our model
can sense the movement of the cloud in advance. The experimental results confirm the effectiveness
and superiority of our model.

Keywords: photovoltaic prediction; visual transformer; auxiliary information

1. Introduction

When solar energy is used in the grid, the output of PV power generation is intermit-
tent due to some meteorological factors, such as changes in solar radiation. Solar energy
depends on local climatic conditions and cloud dynamics. This uncertainty affects the
accuracy of PV predictions, as clouds blocking sunlight will lead to a sharp drop in light
radiation intensity. The model cannot predict the situation at this time, resulting in a large
difference between the model’s prediction and the actual results, thereby reducing accuracy.

There are two primary PV prediction methods in current research: traditional machine
learning methods and deep learning algorithms. Traditional machine learning methods
generally include, but are not limited to, support vector machines, decision trees, random
forests, hidden Markov model methods, etc. The feature extraction of most machine
learning methods is independent of the network model. Known features or features [1]
that experts in specific fields believe are important for completing specific tasks need to be
manually extracted from the original data. In contrast, deep learning algorithms use an
end-to-end approach, using the neural network layer to extract deep or abstract features
from large complex datasets. Compared to traditional machine learning methods, most
deep learning algorithms do not rely on hand-selected features. Deep learning algorithms
extract relevant features from datasets in an unassuming manner, without requiring expert
domain-specific knowledge [2].

Although many models have achieved good results in PV prediction, their perfor-
mance in PV prediction is still insufficient. For example, previous PV prediction models
could not perceive that cloud movement blocking the sun causes a rapid decline in power
generation, which reduces the overall accuracy of the prediction. To overcome this problem,
in this paper, we propose a PV prediction model based on the vision transformer (VIT) [3]
model, which has been successfully applied in many computer vision tasks. In our model,
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we use the target PV sensor and surrounding PV sensors as input data. The PV sensor is
located in Panyu, Guangdong Province, China. Since our target sensor is located inside
these surrounding sensors, as shown in Figure 1, surrounding sensors can perceive the
cloud movement in advance. We used the number 1 sensor as the target sensor and the
remaining 8 as auxiliary sensors. The information collected by all sensors was utilized for
training and testing. To effectively capture this advanced information, we adopted the
multi-head self-attention (MSA) mechanism to exploit the auxiliary information from the
surrounding PV sensors. Moreover, we considered the impact of the positional information
of the surrounding PV sensors and the target PV sensor. In order to verify the validity
of the model, we conducted a large number of comparative experiments and ablation
experiments. Hence, the contributions of this paper are summarized as follows:

(1) We developed the VIT model for PV prediction, which utilizes the auxiliary infor-
mation from the surrounding PV sensors to help the target sensor in anticipating the cloud
movement in advance.

(2) Incorporating the geographic information of PV sensors into our model further
enhances the prior knowledge needed to improve the PV prediction performance.

(3) Many comparative and ablation experiments confirm the effectiveness and superi-
ority of our model.

The rest of the paper is organized as follows. Section 1 presents the literature review.
Section 2 presents the methodology. Section 3 presents the results. Section 4 presents the
conclusions and future prospects.

Figure 1. The positional distribution map of the PV sensor, where 1 is the target sensor and the rest
are the auxiliary sensors.

2. Related Works
2.1. Traditional Machine Learning for PV Prediction

Yang et al. proposed an autoregressive linear model, which was further extended to
include vector autoregressive and vector autoregression models, based on the traditional
autoregressive model [4]. Cavalcante et al. performed PV prediction by combining the
vector autoregressive model with the minimum absolute shrinkage and selection operator
framework [5]. Peder et al. used the autoregressive model with exogenous inputs to
predict hourly values for solar PV power generation [6]. Zeng et al. proposed a radial basis
function neural network-based model for short-term solar power prediction [7]. Hugo et
al. compared the k-nearest neighbor, artificial neural network, and other solar PV power
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prediction models [8]. Bouzerdoum et al. proposed a SARIMA-SVM hybrid model for
the time series forecasting of solar PV power generation [9]. Wu et al. combined the
autoregressive integrated moving average model, SVM, artificial neural network, and
fuzzy inference system to predict solar PV power generation [10]. The integration method
is also popular in PV forecasting. Rana et al. integrated neural networks and support
vector regression to make short-term predictions of PV power generation [11]. Asrari et al.
proposed an artificial neural network to forecast solar PV power generation one hour in
advance [12]. Shang et al. improved SVR and enhanced empirical mode decomposition for
predicting solar PV power generation [13]. Behera et al. used the extreme learning machine
to predict the PV power at intervals of 15 min, 30 min, and 60 min, respectively [14]. Eseye
et al. applied a hybrid prediction model combining particle swarm optimization and SVM
for the short-term power prediction of actual microgrid PV systems [15]. Although the
above models have achieved good results in PV prediction, there are still deficiencies. The
data used in machine learning methods need to be manually screened or supported by
prior knowledge, which is very troublesome. Compared to machine learning methods,
deep learning networks have good results in most cases.

2.2. Deep Learning for PV Prediction

Jeong et al. used a convolutional neural network (CNN) to extract spatiotemporal
correlations by superimposing PV signals into images and reordering them based on their
real-world locations [16]. In addition, Shih et al. introduced an attention mechanism to
capture the spatial correlation among PV nodes [17]. Simeunovi et al. used the graph-
convolutional transformer for PV prediction, which uses an attention mechanism [18].
Li et al. proposed a hybrid short-term PV power plant model, which combines a time-
series generative adversarial network, K-medoids, and CNN-GRU [19]. To address the
volatility and instability of PV power generation, Zhu et al. used a PV prediction model that
combines the k-means technique with a long short-term memory (LSTM) network [20]. By
using the attention layers of two LSTM neural networks, Zhou et al. found more important
input features in PV prediction [21]. Qu et al. proposed a new hybrid model based on
the gated recurrent unit to predict distributed PV power generation [22]. Basset et al.
introduced a new deep learning architecture called PV-Net for short-term forecasting of
day-ahead PV energy [23]. Perez et al. proposed an intra-day prediction model that does
not require training or real-time data measurements [24]. Guermoui et al. used a novel
decomposition method to decompose PV power into intrinsic functions and used extreme
learning machines for prediction [25]. Korkmaz proposed a new CNN structure model
called Solar-Net for the short-term prediction of PV output power under dissimilar weather
seasons and conditions [26]. Sharma et al. applied a hybrid deep learning framework for
PV prediction, which consists of a long short-term memory layer and maximum overlap
discrete wavelet transform model [27]. Cannizzaro et al. proposed a new method for
predicting solar radiation by combining variational mode decomposition, two CNNs,
random forests, and LSTM networks [28]. The above deep network models have greatly
improved the accuracy of PV prediction, but most of the network’s input only uses historical
PV information and local climate information. This makes it difficult for the network to
perceive cloud movement information. Perceiving cloud movement information is very
important for the PV prediction network.

2.3. Motivation

In order to solve the above problems, this paper develops a PV prediction model that
is based on the vision transformer framework. The model uses the PV power information
from both the target sensor and the auxiliary sensor as input, and integrates the geographic
information matrix into the self-attention layer to allocate the information weight of infor-
mation from the auxiliary sensor, so that the PV prediction network can perceive cloud
movement information and improve prediction accuracy.
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3. Materials and Methods
3.1. Model

The proposed model is shown in Figure 2. The input X ∈ Rl×w of the model is the
information of the PV sensor, where l is the length of time representing the sequence, and
w is the number of PV sensors. The output Y ∈ Rl×1 of the model is the PV prediction
sequence of the target PV sensor. We add a learnable sequence z0

0 ∈ Rl×1 in front of the
input X for prediction. To fuse the sequence with the position embedding Apos, we add
a trainable linear projection A to map the input X. The procedure of adding position
embedding can be represented as follows:

Z0 = [z0
0, X]>A + Apos; A ∈ Rl×D, Apos ∈ R(w+1)×D (1)

where Z0 ∈ R(w+1)×D represents the complete sequence after adding a learnable predictive
token and position embedding. In the following, MSA is used to exploit the auxiliary
information of the surrounding PV sensors, which is represented as follows:

Z′ι = MSA(LN(Zι−1)) + Zι−1; ι = 1 . . . N (2)

Zι = MLP(LN(Z′ι )) + Z′ι ; ι = 1 . . . N (3)

where LN(·) is the layer normalization module, MSA(·) is the MSA module, and MLP(·)
is the multi-layer perception (MLP) module. Z′ι ∈ R(w+1)×D and Zι ∈ R(w+1)×D denote
the ι-th middle variable and output variable. Through the N transformer encoder, the PV
prediction of the target sensor is represented as Zι.

Y = LN(z0
N) (4)

where z0
N represents the output state of our learnable prediction token z0

0 in Z0 after passing
through the transformer encoder layer. Y is the output of the model, which is the PV
prediction sequence of the target PV sensor.

Figure 2. The structure of the network we propose. As shown in the figure, the input of the network
consists of X, Apos, and P, where X represents the information sequence of the photovoltaic sensor,
Apos is the position encoding of X, and z0

0 is the learnable predictive token that we added. The input
of the model is normalized by the layer norm in the transformer encoder.

3.2. Multi-Head Self-Attention

Self-attention [29] is a popular neural network module. For each sequence in the input
Z0 ∈ R(w+1)×D of the transformer encoder, we generate three learnable weight matrices,
denoted as UQKV = [WQ, WK, WV ], where WQ ∈ RD×Dh , WK ∈ RD×Dh , WV ∈ RD×Dh . We
calculate the weighted sum of all values V within the sequence.

[Q, K, V] = Z0UQKV ; UQKV ∈ RD×3Dh (5)
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where Q ∈ Rw×Dh , K ∈ Rw×Dh , V ∈ Rw×Dh are the three vectors obtained by multiplying
the input sequence Z0 and the corresponding three matrices in UQKV .

E1 = so f tmax(
Q1K>1√

Dh
); E1 ∈ R(w+1)×(w+1) (6)

SA1(x) = E1V1 (7)

where SA(·) is a self-attention computation. MSA denotes the splicing of multiple SA
operations. We perform k self-attention operations in parallel to form k heads and map the
splicing output of the k heads. In order to keep the number of calculations and parameters
unchanged when changing k, Dh in (5) is usually set to D/k.

MSA(x) = [SA1(x), SA2(x), . . . , SAk(x)]Umsa (8)

where Umsa ∈ RDh×D is a weight matrix.

3.3. Input Embedding and Position Embedding

We incorporate predictive input embedding and position embedding into the predic-
tive input sequence of our model. As mentioned above, we add predictive input embedding
and position embedding into the input sequence. When embedding, we not only add a
learnable blank label, such as the VIT model, we add a geographic location information
matrix for PV sensors. The geographic information matrix helps the model to predict at
the beginning, allowing the model to adjust the parameters according to the geographical
location of the PV sensor, to make the prediction more accurate. The definition of the
geographic location information matrix is as follows (9) and (10).

Sij =

{
dj

i > dk; 0
dj

i < dk; 1

}
; i, j = 1 . . . w (9)

S′ij =

{
dj

i > dk; 1
dj

i < dk; 0

}
; i, j = 1 . . . w (10)

where Sij denotes the value of row i and column j in the close-range geographic infor-
mation matrix, S′ij denotes the value of row i and column j in the long-range geographic
information matrix. Sij denotes the value of row i and column j in the short-range geo-

graphic information matrix. dj
i denotes the distance from the i sensor to the j sensor, and dk

denotes half of the distance between the target PV sensor and the furthest PV sensor. In the
experiment, we set four advanced times. When the prediction time was short, such as 60 s
or 180 s, the short-range PV sensor information was relatively useful; hence, we increased
the weight of the close-range PV sensor information. When the prediction time was long,
such as 300 s or 600 s, the long-range PV sensor information was relatively useful, so the
weight of the remote PV sensor information was increased.

Ageo = RELU(SOs); (11)

where S ∈ Rw×w is a geographic information matrix, which is mapped to the D dimension
by Os ∈ RD×D.

Apos = Alearn + Ageo (12)

where Alearn ∈ R(w+1)×D is a learnable position embedding, and Ageo ∈ R(w+1)×D is a
geographic information matrix calculated by using the distance between each PV sensor.
The initial dimension is w×w, which has been mapped to the D dimension. In input X, we
add a learnable predictive token. In order to keep the dimension consistent, we need to
add its position coding and geographic information on Alearn and Ageo. Here, we add the
initialized random value.
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3.4. Loss Function

Our loss function uses the MSE mean squared error loss function, and the loss is
propagated back to the model from the output of the model, adjusting the parameters of
the model. MSE is a good measure of the mean error and the degree of variation in the
evaluation data. The specific formula is as follows (13).

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (13)

where Yi is the truth value collected by the PV target sensor, and Ŷi is the PV prediction
value output of the model.

4. Results and Discussion
4.1. Experimental Detail

In order to prevent the results from being accidental due to the different initial values
of each model, we repeated the following experiments to ensure the stability of the results
and reduce uncertainty.

The flow chart of the prediction method is shown in Figure 3. Firstly, we used PV
sensors for data acquisition, and then cleaned and normalized the data. Data cleaning
includes deleting abnormal data and using the interpolation method to fill the values. We
used the max–min normalization method. During both the training and testing processes,
our model took as input the information from the target sensor, the auxiliary sensor, and
the geographic information matrix. For the geographic information matrix description,
please see Section 2.3.

Figure 3. Methodology proposed for forecasting.

4.2. Datasets

We used our own PV sensor to collect data to make a PV dataset. The dataset contained
data collected from seven PV sensors, every day, from 2019 to 2021, with a time resolution
of 1 s. Seven PV sensors were placed in Panyu, Guangzhou, Guangdong Province, China.
We used the PV sensor to collect data from Hebei Pingao Electronic Technology Co., Ltd.
(Handan, China); this PV sensor can collect real-time optical radiance data with a sampling
frequency of 1 s. Since the solar irradiance before sunrise and after sunset is negligible, we
used data from between 9:00 a.m. and 3:00 p.m. Out of the missing data, there were about
2 million data points in our PV data that could be predicted. We disrupted the number
of days on the total dataset and divided it into two datasets, on average (dataset1 and
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dataset2). In dataset1, we divide the dataset into the training set, validation set, and test
set, according to the ratio of 7:1:2. The processing of dataset2 was the same as dataset1.
During training, we disrupted the number of days but ensured the integrity and continuity
of daily data.

4.3. Comparing the Model Descriptions, Training, and Settings

We selected four time series forecasting methods for comparison: BP [30], LSTMs [21],
CNN [16] and RNN [31].

BP: BP neural networks can be divided into two parts, BP and neural networks. BP is
short for backpropagation.

CNN: The CNN network has structural characteristics, such as local area connection,
weight sharing, and downsampling. Weight sharing in a convolutional neural network
makes its network structure more similar to that of a biological neural network.

RNN: RNN networks, specifically recurrent neural networks with LSTM units, effi-
ciently handle sequence problems.

LSTMs: A combination forecasting model using the LSTM network, optimized by the
ant lion optimization algorithm, is based on the ensemble empirical mode decomposition
and K-means clustering algorithm.

We trained all models using the Adam optimizer [32], with the learning rate set at
0.0001; the learning rate was attenuated by the trained epoch number, which was 5× 10−5,
1× 10−5, 5× 10−6, 1× 10−6, 5× 10−7, 1× 10−7, and 5× 10−8; when the epoch numbers
were 2, 4, 6, 8, 10, 15, and 20, the learning rate decayed sequentially, compared to the SGD
optimizer. We found that the Adam optimizer worked well for various models in our setup.
The batch_size was generally set to 32, which can be reduced when the memory is low, and
has little impact on the prediction effect.

4.4. Experimental Results

In order to ensure the stability and authenticity of the experimental results, we con-
ducted several experiments on the two datasets. The experimental results are shown in
Tables 1 and 2. As can be seen from the table, we list the mean and variance of the errors for
each model on the two datasets. When the prediction time was 60 s, the error of our model
was not much different from the comparison model. This is because the prediction time
was short, the model increased the weight of the target sensor information and paid less
attention to the auxiliary sensor information. However, as the prediction time increased,
our model had much lower errors than the comparison model. In terms of stability, we
used the standard deviation. It can be seen that our model has high stability. The effect
of our model greatly improved after adding auxiliary information from surrounding PV
sensors; in particular, as the delay time increased, our model exhibited a slower decline in
prediction accuracy compared to the other models in the comparison. As the prediction
times increased to 300 s and 600 s, there was a significant gap between the MSE and MAPE
values in each model. The reason for this huge gap is that there was a gap among the
models in their ability to assess the decline time of the PV forecast curve. As shown in
Figure 4, one can see how each model predicts the curve at 300 s. When the real PV curve
fell, our model reacted more quickly to sense the drop compared to other models. Other
models require a delay of about 200–250 s to sense a drop. When the prediction time
reached 600 s, as seen in Figure 5, the time gap between the models in sensing the decline
of the real PV curve was greater. However, our model incorporates information from PV
auxiliary sensors, reducing the time it takes for the model to sense the decline in the PV
curve, and even anticipate it in advance. The x coordinates of all pictures represent Beijing
time (UTC + 8:00), and the y coordinates represent power generation.
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Table 1. The average MSE value and MSE standard deviation for the two datasets; the STD represents
the standard deviation of MSE, and AMSE represents the average MSE (both the MSE and the
standard deviation are calculated using denormalized values. The number of trials is 10).

Dataset Dataset1 Dataset2

Predict Time 60 s 180 s 300 s 600 s 60 s 180 s 300 s 600 s

Metric AMSE STD AMSE STD AMSE STD AMSE STD AMSE STD AMSE STD AMSE STD AMSE STD

our 8097.39 1648.91 13,349.34 1909.11 9022.29 1976.04 23,116.01 2065.71 5065.31 1523.42 10,032.25 1746.21 9479.44 1721.09 22,109.77 1999.65

CNN 9412.54 2254.74 18,892.89 3791.05 25,006.58 5862.31 30,065.47 5488.19 4268.51 1164.76 8013.54 1564.29 10,385.9 2011.54 28,647.01 2617.93

LSTMs 7932.59 2615.73 13,478.13 5002.18 13,303.78 5611.20 24,887.52 6138.17 4599.46 2207.84 9371.86 4617.81 11,670.73 5002.66 25,017.65 6002.55

RNN 14,178.05 2005.76 20,396.15 2716.71 23,097.42 4613.68 45,194.02 6061.74 5016.83 1871.56 11,538.06 2164.79 15,761.25 4509.69 42,174.05 7251.6

BP 8561.86 2571.92 13,880.32 4948.32 17,752.83 5032.25 42,652.12 6002.12 4765.14 2051.88 9287.19 2578.47 11,579.32 4076.21 46,521.82 5310.6

Table 2. The average MAPE value and MAPE standard deviation for the two datasets; the STD
represents the standard deviation of MAPE, and AMAPE is the average MAPE (both MAPE and the
standard deviation are calculated using denormalized values. The number of trials is 10).

Dataset Dataset1 Dataset2

Predict Time 60 s 180 s 300 s 600 s 60 s 180 s 300 s 600 s

Metric AMAPE STD AMAPE STD AMAPE STD AMAPE STD AMAPE STD AMAPE STD AMAPE STD AMAPE STD

our 8.06 0.64 11.73 1.03 9.77 1.06 16.01 2.34 7.59 0.88 10.52 1.78 10.41 1.35 17.22 3.01

CNN 8.34 1.15 14.92 3.07 21.31 3.65 22.87 4.64 7.12 1.14 12.36 2.04 16.44 3.84 25.91 6.23

LSTMs 7.28 1.06 13.88 1.34 18.27 2.22 21.31 2.88 7.31 0.76 11.52 1.71 14.14 2.03 22.16 4.41

RNN 10.3 3.94 18.54 6.74 23.14 4.17 32.61 5.13 8.12 0.96 15.75 3.05 26.57 4.36 31.65 3.76

BP 8.41 0.96 16.43 3.61 20.88 4.52 33.76 5.21 9.03 1.01 19.33 4.04 27.43 4.11 30.76 5.06
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Figure 4. Cont.
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Figure 4. (a–f) display the prediction curves of each model at a prediction time of 300 s.
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Figure 5. (a–d) display the prediction curves of each model at a prediction time of 600 s.

4.5. Ablation Experiments

Verify the validity of the auxiliary information:In order to verify the effectiveness of
our proposed fusion auxiliary sensor, we performed an ablation experiment and compared
the network prediction results with auxiliary sensor information and the network prediction
results without auxiliary sensor information. We placed the predicted comparison results in
Tables 3 and 4. The model prediction curve results are shown in Figures 6 and 7. From the
results, it can be seen that when the model does not add auxiliary information as input, the
prediction accuracy will be greatly reduced, which is similar to other comparison models.

Table 3. The average MSE value and MSE standard deviation of the model with or without auxiliary
information were included in the two datasets; the STD represents the standard deviation of MSE,
and AMSE represents the average MSE (both MSE and the standard deviation are calculated using
denormalized values; the number of trials is 10).

Dataset Dataset1 Dataset2

Predict Time 300 s 600 s 300 s 600 s

Metric AMSE STD AMSE STD AMSE STD AMSE STD

have auxiliary information 8817.62 1703.53 22,395.40 2022.12 10,096.62 1814.62 23,836.40 1981.49

no auxiliary information 11,284.16 3285.06 29,626.88 4271.47 10,928.16 3060.17 26,453.81 5001.76
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Table 4. The average MAPE value and MAPE standard deviation of the model with or without
auxiliary information were included in the two datasets; the STD represents the standard deviation
of MAPE, and AMAPE is the average MAPE (both MAPE and the standard deviation are calculated
using denormalized values; the number of trials is 10).

Dataset Dataset1 Dataset2

Predict Time 300 s 600 s 300 s 600 s

Metric AMAPE STD AMAPE STD AMAPE STD AMAPE STD

have auxiliary information 8.31 0.92 16.51 2.09 10.31 1.03 19.51 2.13

no auxiliary information 12.61 1.78 23.82 3.23 18.61 1.98 24.82 2.79
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Figure 6. (a,b) show the model prediction curves with and without auxiliary information input,
respectively, at a prediction time of 300 s (line A represents the prediction with auxiliary information
and line B represents the prediction without auxiliary information).

10.23 10:4010.23 10:4410.23 10:4810.23 10:5210.23 10:5610.23 11:00

Time(min)

100

200

300

400

500

600

P
o
w

e
r(

W
)

A

truth

B

(a)

11.25 12:10 11.25 12:15 11.25 12:20 11.25 12:25 11.25 12:30

Time(min)

500

600

700

800

900

P
o

w
e

r(
W

)

A

truth

B

(b)

Figure 7. (a,b) show the model prediction curves with and without auxiliary information input,
respectively, at a prediction time of 600 s (line A represents auxiliary information and line B without
auxiliary information).

What if the model output is better? In the VIT model, the output of the model is a
token added to the image’s input sequence, which contains the classification information of
the image. However, this method is not necessarily suitable for PV forecasting. In order to
verify the effectiveness of this method, we used three outputs of the model for comparison,
namely the output token, the mean sequence of the output time input sequence, and the
output sequence obtained by maximum pooling of the time input sequence. The detailed
comparison results are shown in Tables 5 and 6.
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Table 5. The average MSE value and MSE standard deviation of different output modes in two
datasets; the STD represents the standard deviation of MSE, and AMSE represents the average MSE
(both MSE and the standard deviation are calculated using denormalized values; the number of trials
is 10).

Dataset Dataset1 Dataset2

Predict Time 300 s 600 s 300 s 600 s

Metric AMSE STD AMSE STD AMSE STD AMSE STD

output token 9242.11 1627.49 21,305.40 2075.19 10,077.62 1474.81 23,024 2099.16

average output 10,284.16 1835.08 26,626.88 2267.71 11,204.16 1502.16 22,943.37 2076.93

maximum pooling output 9967.36 1727.59 24,112.7 2109.75 12,683.33 1536.67 21,670.19 1993.29

Table 6. The average MAPE value and the standard deviation of the model with or without auxiliary
information were included in the two datasets; the STD represents the standard deviation of MAPE,
and AMAPE is the average MAPE (both MAPE and the standard deviation are calculated using
denormalized values; the number of trials is 10).

Dataset Dataset1 Dataset2

Predict Time 300 s 600 s 300 s 600 s

Metric AMAPE STD AMAPE STD AMAPE STD AMAPE STD

output token 11.31 0.95 16.51 2.07 10.71 1.03 17.91 1.95

average output 11.61 0.93 18.23 2.36 11.96 1.26 18.01 1.98

maximum pooling output 12.74 1.15 18.67 2.17 12.23 1.18 17.21 1.92

The number of encoder layers used to extract features: In the experimental results,
after adding the auxiliary information of the peripheral PV sensor, the advanced amount
predicted by the model greatly improved, but it did not improve to the point of satisfaction.
We assume that this could be due to insufficient layers in the feature extraction layer of the
encoder. Thus, we set up this ablation experiment, hoping to find out the number of layers
suitable for feature extraction; the experimental results are shown in Figures 8 and 9. In
this experiment, we fixed the parameters of the model and then changed the number of
layers in the encoder to prevent unfair results from different initial values.
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Figure 8. (a) The MSE and (b) the MAPE of our model on different encoder layers (prediction time
300 s; both MSE and MAPE are calculated using denormalized values).
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Figure 9. (a) The MSE and (b) MAPE of our model on different encoder layers (prediction time 600 s;
both MSE and MAPE are calculated using denormalized values).

5. Conclusions

In this paper, the VIT model was improved to enable it to predict PV directly. In order
to deal with the problem of reduced light radiation intensity caused by the occlusion of
sunlight due to cloud motion, which leads to a decrease in prediction accuracy, auxiliary
PV sensor information was added to the network input to effectively improve the accuracy
of PV prediction; it was found from the actual prediction map that the network can
perceive the cloud motion in advance and make responsive predictions. In the comparison
experiments of each network, when the prediction time was 300 s, our MSE and MAPE
were 9245.2 and 8.94%, respectively. Compared to the best network, our MSE was reduced
by 18% and the accuracy improved by 4%. When the prediction time was 600 s, our MSE
and MAPE were 23,763 and 16.45%, respectively. Compared to the best network, our MSE
decreased by 11% and the accuracy increased by 4%.

Although these results are encouraging, there are still some shortcomings. For example,
the network’s ability to predict significant decreases in light radiation intensity is not yet
at a satisfactory level. We hope to further explore the fusion between auxiliary PV sensor
information and target PV sensor information in the future, to enhance the network’s ability
to predict more accurately and improve the overall accuracy of PV forecasting.
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Nomenclatures

l time length of PV sequence
w the number of PV sensors
X ∈ Rl×w information sequence of PV sensor
Y ∈ Rl×1 PV prediction sequence output by the model
Z0 ∈ R(w+1)×D model initial input
z0

0 ∈ Rl×1 a learnable sequence
Zι ∈ R(w+1)×D the sequence after through the ι-th layer encoder layer
Apos ∈ R(w+1)×D position encoding of model input



Energies 2023, 16, 4737 13 of 14

LN(·) normalization
SA(·) self-attention computation
MSA(·) multi-head self-attention
MLP(·) multi-layer perception
UQKV = [WQ, WK , WV ] the weight matrix of Q, K, V in self-attention
S ∈ Rw×w geographic information matrix
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