
1

Energy Minimization for UAV-Enabled Wireless
Power Transfer and Relay Networks

Zhenyao He, Graduate Student Member, IEEE, Yukuan Ji, Kezhi Wang, Senior Member, IEEE, Wei Xu, Senior
Member, IEEE, Hong Shen, Member, IEEE, Ning Wang, Member, IEEE, and Xiaohu You, Fellow, IEEE

Abstract—In this paper, we consider an unmanned aerial
vehicle (UAV)-enabled wireless power transfer (WPT) and relay
communication network consisting of a base station (BS), a UAV,
and multiple ground users. The UAV acts as both a wireless
power transmission source and an uplink communication relay.
Specifically, an entire transmission period of the considered
system is divided into two stages. In the first stage, the UAV
transfers the power to the ground users along a well-optimized
flight trajectory and meanwhile the users transmit data to the
UAV using the harvested energy. Subsequently, in the second
stage, the UAV flies to the vicinity of the BS and forwards the data
to the BS. For the purpose of minimizing the energy consumed
by the UAV, we jointly optimize the time durations of the two
stages, the UAV’s transmit powers for WPT and data forwarding,
as well as its flight trajectory, subject to the constraints of the
quality of service (QoS), the information forwarding, the energy
causality, and the mobility of the UAV. The involved optimization
problem is non-convex and highly intractable. To this end, we
propose an efficient alternating algorithm to iteratively solve
two subproblems with respect to the time durations of the two
stages and the UAV’s transmit powers and trajectory, respectively.
The first subproblem has a closed-form optimal solution and
the second subproblem is handled by addressing a surrogate
convex problem based on the technique of successive convex
approximation. Finally, simulation results confirm the superiority
of our proposed algorithm.

Index Terms—Unmanned aerial vehicle (UAV), wireless power
transfer, mobile relay, trajectory design, joint optimization.
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I. INTRODUCTION

With the exponential growth of the number of network-
connected devices, various new technologies are becoming
the driving force of 5G/6G development. In particular, the
upsurge of Internet of Things (IoT) has significantly facilitated
the evolution of existing wireless networks [1]–[4]. It is
foreseeable that the IoT has a wide range of application
scenarios, such as home automation, industrial intelligence,
and healthcare, which provides much convenience for human
beings [5]. However, achieving the vision of IoT still faces
some challenges, one of which is the energy issue. Specif-
ically, the devices of IoT are usually small in size and have
finite battery capacity, resulting in extremely limited operation
time. Therefore, an efficient energy replenishment solution
is urgently required to prolong the worklife of devices and
support a sustainable system [6], [7]. Replacing the batteries
is the most direct way to recharge energy-constrained devices
[8], however, it is costly and inconvenient due to the fact that
a great number of devices are distributed over a wide range
area which are hard to reach. Alternatively, many studies have
pointed out that a more practical method is to let devices
harvest energy from surrounding environment. Among various
forms of energy sources, including solar, wind, and thermal,
ambient radio frequency (RF) signals are considered more
suitable for carrying energy to provide low-cost and stable
power for devices [8]–[10].

However, the performance of RF-based wireless power
transfer (WPT) is fundamentally affected by the severe prop-
agation loss, including path loss, fading, and attenuation [11].
In particular, for a long-distance WPT, the energy source
must increase the transmit power to ensure sufficient received
power at receiving nodes to perform energy harvesting (EH),
which reduces the energy efficiency [12]–[14] of the system
and violates the principle of green communications. On the
other hand, for traditional RF-based WPT systems, the energy
source, e.g., a base station (BS) or other entity, has a fixed
physical location and is inconvenient for dynamic deployment.
Therefore, to provide ubiquitous energy access for massive
devices, energy sources must be densely deployed, which
greatly increases the cost of system construction and hinders
the development of WPT systems [11]. In order to mitigate
the shortcomings of conventional RF-based WPT systems,
researchers have proposed various methods to improve the
efficiency of WPT. For example, multi-antenna beamforming
designs for efficient WPT have been investigated in [8], [15]–
[18]. The works [19], [20] took into account the multiuser
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scheduling scheme for the sake of improving the power
transfer efficiency.

Recently, unmanned aerial vehicles (UAVs) have been em-
ployed in a wide range of applications to assist wireless
networks [21]–[25]. In particular, due to the enlarged coverage
and better communication channel, e.g., a short range line-
of-sight (LoS) link, brought by the UAV, it is shown in
the literature [21], [22], [26]–[31] that the UAV-aided relay
can significantly improve the wireless communication perfor-
mance, especially when the distant ground nodes do not have
reliable direct links. Moreover, compared to the conventional
static relays with fixed location, the UAV-assisted relay tech-
nique offers new opportunities for performance enhancement
due to its flexible mobility, meanwhile requiring a careful
trajectory design. For example, the authors in [27] investigated
a point-to-point wireless communication relay system, where
a mobile UAV forwarded information from the source to the
destination. By jointly optimizing the UAV’s trajectory and
power allocations of the source and the UAV, a significant
throughput enhancement over the traditional static relays is
achieved. A similar joint optimization problem in terms of
outage probability minimization was further considered in
[28]. In [29], the authors investigated the joint optimization
of blocklength allocation and UAV location to minimize the
decoding error probability in UAV-relaying communications.
In addition, the authors in [30], [31] studied the enhancement
of multicell edge communications by a mobile UAV relay.
By properly optimizing the UAV mobility management, e.g.,
trajectory and velocity, the rate of the edge users is dramati-
cally increased. Besides, the multi-UAV cooperation [32] and
security performance [33] of UAV-relaying system have also
been addressed.

On the other hand, UAVs are also considered promising
to be integrated into WPT systems as energy sources to
compensate for the limitations of traditional sources [11],
[34]–[40]. The advantages of deploying UAV for WPT mainly
lie in the following two aspects. On the one hand, due
to the high flight altitude, UAVs make it easier to shorten
the distance and construct LoS links with ground devices,
thus significantly reducing the pass loss and improving the
efficiency of WPT. On the other hand, owing to the mobility,
UAVs can dynamically adjust their positions according to the
distribution of devices, which can help realize the WPT in a
flexible manner. In [11], the authors studied the problem of
UAV’s trajectory design in a UAV-enabled WPT system. It
was shown that the power transfer efficiency can be greatly
improved with the assistance of UAV. From the fairness
perspective, the authors in [35] considered maximizing the
minimum harvested energy among all ground nodes by jointly
designing the trajectory and directional antenna orientation
of the UAV. The problems of throughput maximization and
energy minimization for a UAV-enabled WPT system were
investigated in [36] and [37], respectively, where the UAV acts
as a WPT transmitter and a data collector. Further, taking the
timeliness and covertness of data collection into account, the
authors in [38] optimized the transmit power and durations
in a UAV-aided WPT IoT network. In addition, the UAV-
assisted wireless powered mobile edge computation (MEC)

systems were investigated in [39], [40]. However, note that
the signal processing capability at the UAV is finite due to
its limited carrying capacity. Therefore, it is still necessary
for the UAV to forward data to a BS that has a much higher
computational capability, especially when the task exceeds the
UAV’s processing limits. This motivates us to investigate a
new scenario, where a dual-functional UAV acts as both a
WPT transmitter and a mobile relay. Such a scenario yields a
more challenging design problem and the algorithms proposed
in existing works cannot be straightforwardly employed to
address it, since they do not consider the incorporation of WPT
and data forwarding functions.

Based on the above discussion, this paper investigates a
UAV-enabled WPT and relay network, in which the UAV
serves as a wireless power transmission source and an uplink
relay simultaneously. The main contributions of this paper are
summarized as follows.

• In order to complete the WPT and wireless relaying, we
consider that a transmission period is divided into two
stages. In the first stage, the UAV charges the ground
users via RF WPT and receives the uplink data from the
users along a well-optimized flight trajectory. Then, in
the second stage, the UAV flies to the BS and forwards
the collected multiuser data to the BS.

• Under this setup, to minimize the energy consumed by
the UAV, we formulate a joint optimization problem with
respect to the time durations of the two stages and the
transmit powers and trajectory of the UAV, subject to the
quality of service (QoS) constraints of the ground users,
the causal constraints for both EH and data forwarding,
and the mobility constraints of the UAV.

• The considered optimization is a challenging non-convex
problem with highly coupled variables and complicated
constraints. To address it, we develop an alternating
optimization-based method. First, for the subproblem
with respect to time durations, we derive the optimal
solution in closed form. Then, for the intractable sub-
problem with respect to the UAV’s powers and trajectory,
we employ the technique of successive convex approxi-
mation (SCA) to handle the non-convexities brought by
the complicated constraints, where a locally approximate
surrogate convex problem is solved in each iteration.

Simulation results confirm the effectiveness of our proposed
algorithm compared to other benchmark schemes.

The rest of this paper is organized as follows. Section II
presents the system model of the considered UAV-enabled
WPT and relay network and formulates the joint optimization
problem. In Section III, an iterative algorithm is proposed
to handle the complicated optimization problem. Numerical
results are presented in Section IV. Finally, this paper is
concluded in Section V.

Notations: Boldface lower-case letters denote vectors. (·)T
and (·)H represent the transpose and the Hermitian transpose
operations, respectively. ∥ · ∥ denotes the ℓ2 norm of a vector.
| · | stands for the absolute value of a scalar. O(·) stands for
the big-O computational complexity notation.
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Fig. 1. The considered UAV-enabled WPT and relay network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a UAV-enabled WPT and relay communication
network consisting of an L-antenna BS, a single-antenna fixed-
wing UAV, and a set K = {1, · · · ,K} of single-antenna
users that are distributed far away from the BS, as shown in
Fig. 1. These involved users can be all kinds of cell-edge IoT
devices, such as sensors and actuators, and perform different
kinds of tasks, such as environmental monitoring and edge
computing. It is assumed that the ground users have limited
power resource and are capable of gaining energy through EH.
To handle the energy-limitations of these IoT devices, a UAV
is introduced and acts as an RF wireless power transmission
source to provide energy supplies. The own energy of each
user is used to collect data from the environment or conduct
the edge computing and the harvested energy is used to offload
its data to the UAV. On the other hand, it is assumed that the
direct communication links between the BS and the users are
neglected due to the large distance between them. Thus, the
UAV meanwhile works as an uplink mobile relay to forward
the communication data from the users to the BS.

In the considered system, for the purpose of accomplishing
the simultaneous functionalities of WPT and communication
relaying, a complete transmission period is divided into two
stages of length t1 and t2, respectively. During the first stage,
the UAV flies above the ground users along a well-designed
trajectory and charges the users through RF signals. At the
same time, the users transmit data to the UAV utilizing the
harvested energy. While during the second stage, the UAV flies
to a predetermined location near the BS and forwards the data
to the BS1. Without loss of generality, we consider a three-
dimensional (3D) Cartesian coordinate system, where the BS
and the users are located on the ground with zero altitude. The
fixed horizontal locations of the BS and user k are denoted

1Apart from the aforementioned two stages, there exists another interme-
diate process, where the UAV flies from the final location of the first stage to
the vicinity of the BS to proceed with the second stage. Note that during this
intermediate stage, the UAV is far away from both the users and the BS, such
that it does not perform the tasks of WPT nor communication and works in a
predetermined flight-only strategy. As a result, we ignore the impacts of this
flight process and only focus on the design of the other two stages where the
UAV is close to the BS or the users.

as b = (xb, yb) and ek = (xk, yk), k ∈ K, respectively. The
UAV flies horizontally at fixed height H . Moreover, we assume
that the locations of the BS and the users are known to the
UAV for designing trajectory [11]. The detailed descriptions
of the two stages are given as follows.

1) Stage 1 - Power Transfer and Data Collection: During
the first stage, the UAV transfers power and receives data
from the users simultaneously in frequency division duplex
(FDD) mode [18]. Further, in order to allow each user to
send data to the UAV and suppress the interference, the users
are assumed to associate with the UAV in a time division
multiple access (TDMA) manner [18], [40]. Specifically, the
finite duration t1 can be discretized into N equal-length time
intervals. N is large enough such that the location of the UAV
is approximately unchanged during each time interval, which
is denoted as u[n] = (x[n], y[n]) for n ∈ {1, · · · , N} , N .
Each time interval with length t1

N is further split into K time
slots for K users sequentially associating with the UAV, each
of which lasts for τ = t1

NK seconds.
Let u0 denote the the predetermined initial point of the UAV

trajectory during the first stage. Assuming that we use a fixed-
wing UAV which cannot hover in a fixed position, apart from
the maximum flight speed limit, there also exists a minimum
flight speed constraint [21]. Then, the mobility constraints of
the UAV can be modeled as

u[1] = u0, (1)
Vmin ≤ v[n] ≤ Vmax, n = 1, · · · , N − 1, (2)

where

v[n] , ∥u[n+ 1]− u[n]∥
t1/N

(3)

denotes the average flight speed during the n-th time interval,
Vmin and Vmax represent the minimum and the maximum flight
speed of the UAV, respectively.

We consider an open-air environment and assume that
the wireless channels between the UAV and the users are
dominated by the LoS links due to the high flight altitude
of the UAV [11], [21], [40]. Without loss of generality, we
consider the n-th time interval. Adopting the free-space path-
loss model in [21], the channel power gain between the UAV
and user k is expressed as

huk[n] = α0d
−2
uk [n]

=
α0

H2 + ∥u[n]− ek∥2
, (4)

where α0 is the reference channel power at d0 = 1 m and
duk[n] denotes the distance between the UAV and user k.
Further, following [8], [40], we consider a linear EH model
at each user. Mathematically, let p1[n] ≤ Pmax denote the
transmit power of the UAV when charging the users during the
n-th time interval, where Pmax is the allowed maximum power.
With the channel power gain huk[n], the energy harvested by
user k during the n-th time interval is given by [40]

EEH
k [n] = ηp1[n]huk[n]

t1
N

, (5)

where 0 < η ≤ 1 represents the energy conservation efficiency.
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By leveraging the harvested energy, each user offloads its
data to the UAV through the uplink communication. Denoting
the constant transmission power of user k by P user

k , the
transmission data rate is correspondingly given by

Rk[n] = B log2

(
1 +

P user
k huk[n]

σ2
u

)
, ∀k ∈ K, (6)

where B stands for the communication bandwidth and σ2
u

represents the variance of the additive white Gaussian noise
(AWGN) at the UAV. Assuming that the energy consumed for
uplink offloading at each user is obtained from EH only, the
energy consumed by each user for data transmission cannot
exceed the energy that it has collected. This results in a group
of energy causality constraints as follows:

nτP user
k ≤

n∑
i=1

EEH
k [i], ∀k ∈ K, ∀n ∈ N . (7)

In (7), the constraint with arbitrary (k, n) guarantees that user
k can successfully offload data to the UAV during the previous
n time slots by employing the harvested energy.

2) Stage 2 - Communication Relaying: During the second
stage of length t2, the UAV flies near the BS and forwards
the data to the BS with transmit power p2. Since the BS is
located in a fixed location, the speed and trajectory of the
UAV during this stage can be predetermined and are no longer
needed to be optimized. As such, when communicating with
the BS, we assume that the UAV files in a circular trajectory
with a constant speed and the distance between the UAV and
the receive antenna array at the BS, denoted as dub, remains
unchanged. Let D be this constant distance. The channel
power gain between the UAV and the BS is similarly evaluated
as

hub = α0d
−2
ub =

α0

D2
. (8)

On the other hand, let us define the small-scale fading channel
between the UAV and the BS by g ∈ CL×1. The BS adopts
a receive beamforming vector w ∈ CL×1 to recover the data
from the received signal. As a result, the data rate of the UAV-
BS link is obtained by

Rub = B log2

(
1 +

p2hub|gHw|2

σ2
bw

Hw

)
, (9)

where σ2
b represents the variance of the AWGN at the BS.

To maximize the receive signal-to-noise ratio (SNR), the
maximum ratio combining (MRC) strategy is adopted at the
BS with w = g

∥g∥ . Substituting w = g
∥g∥ into the rate in (9)

yields

Rub = B log2

(
1 +

p2hub∥g∥2

σ2
b

)
. (10)

Also, assuming that there only exists a LoS path between the
BS and the UAV due to the high flight altitude, we thus have
∥g∥2 = L.

Moreover, to ensure that all the data received from the users
can be successfully forwarded to the BS, we introduce the
following information constraint

Rubt2 ≥
K∑

k=1

N∑
n=1

Rk[n]τ, (11)

which couples the designs of the considered two stages.

B. UAV Energy Consumption

In this part, we character the total energy consumption
model at the UAV, which includes the energy consumed to
charge the users, the energy used for communicating with the
BS, and the propulsion energy used to maintain the flight.

1) Energy Consumption for Power Transfer and Commu-
nication: Recall that in the processes of charging users and
communicating with the BS, the UAV’s transmit powers are
{p1[n]}Nn=1 and p2, respectively. Then, the consumed energy
for WPT and communication is related to the transmit powers
and time durations of these two stages and is given by

E1
u =

N∑
n=1

p1[n]
t1
N

+ p2t2. (12)

2) Energy Consumption for Flight: As for the propulsion
energy consumption for the flight, we consider a simplified
model commonly applied in existing works [24], [40]. Specif-
ically, in the first stage, the propulsion energy consumed in the
n-th time interval is determined by the UAV’s velocity v[n]
and it is given by [24]

Efly
u [n] = κf (v[n])

2

=
0.5MN

t1
∥u[n+ 1]− u[n]∥2 (13)

where κf , 0.5M t1
N and M denotes the mass of the UAV. In

the second stage, the UAV performs a uniform circular motion
near the top of the BS, which consumes a constant propulsion
power, denoted by Pc, and the corresponding flight energy
consumption is Pct2.

According to the above analysis, we obtain the total energy
consumption of the UAV during a complete transmission
period by

Etotal
u =

N∑
n=1

p1[n]
t1
N︸ ︷︷ ︸

WPT

+ p2t2︸︷︷︸
communication

+
N−1∑
n=1

Efly
u [n] + Pct2︸ ︷︷ ︸

flight

.

(14)

C. Problem Formulation

In this paper, the design goal is to minimize the total
energy consumption of the UAV during the whole transmission
period, by jointly optimizing the time durations of two stages,
T , {t1, t2}, the transmit powers of UAV at two stages,
P , {p1[n], p2, ∀n ∈ N}, and the UAV’s trajectory,
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U , {u[n], ∀n ∈ N}. Accordingly, the optimization problem
is formulated as

minimize
U ,T ,P

Etotal
u (15)

subject to
N∑

n=1

Rk[n]τ ≥ rk, ∀k ∈ K, (15a)

nτP user
k ≤

n∑
i=1

EEH
k [i], ∀k ∈ K, ∀n ∈ N , (15b)

Rubt2 ≥
K∑

k=1

N∑
n=1

Rk[n]τ, (15c)

u[1] = u0, (15d)
Vmin ≤ v[n] ≤ Vmax, n = 1, · · · , N − 1. (15e)

The objective function of problem (15) represents the total
energy consumption at the UAV. The constraints in (15a) stand
for the communication QoS constraints of all the users, where
rk is the total bits of data at user k that needs to be transmitted.
Energy causality constraints (15b) ensure that the transmit
energy consumed at each user cannot exceed its harvested
energy. The information constraint in (15c) guarantees that all
the data received by the UAV can be successfully forwarded
to the BS. Mobility constraints (15d) and (15e) are used for
limiting the initial point and the flight speed of the UAV.

Note that in problem (15) the optimization variables
{U ,T ,P } are tightly coupled with each other and the in-
volved constraints have complicated forms. These make prob-
lem (15) non-convex and highly intractable, whose optimal
solution is challenging to be obtained in general.

III. JOINT TIME DURATION, TRANSMIT POWER, AND
TRAJECTORY OPTIMIZATION

In this section, we provide an efficient algorithm to handle
problem (15) by optimizing the time durations and the transmit
powers as well as the trajectory of the UAV in an alternating
manner. Specifically, with the fixed {U ,P }, the optimal
solution of T is derived in closed form. Given T , we update
{U ,P } by solving a locally approximate convex problem
based on the technique of SCA.

A. Time Duration Optimization

We first focus on the time duration optimization with
fixed UAV trajectory and transmit powers. By removing the
constraints that are irrelevant to T in (15), we reformulate the

subproblem with respect to T as

minimize
t1≥0,t2≥0

p̄1t1 + (p2 + Pc)t2

+
N−1∑
n=1

0.5MN

t1
∥u[n+ 1]− u[n]∥2

subject to
N∑

n=1

Rk[n]
t1

NK
≥ rk, ∀k ∈ K,

Rubt2 ≥
K∑

k=1

N∑
n=1

Rk[n]
t1

NK
,

Vmin ≤ ∥u[n+ 1]− u[n]∥
t1/N

≤ Vmax,

n = 1, · · · , N − 1, (16)

where p̄1 ,
∑N

n=1 p1[n]/N . Focusing on this problem, it
is easily verified that the objective function is convex for
t1 > 0 and all the constraints can be transformed into linear
constraints with respect to T . This confirms that (16) is a
convex problem and its globally optimal solution can be found,
e.g., via the interior point method [41] or the off-the-shelf
convex optimization tools such as CVX [42]. In fact, the
optimal solution of problem (16) can be directly obtained in
closed form with lower computational complexity, which will
be shown in the following proposition.

Proposition 1: The optimal solution of problem (16) takes
the form:

t∗1 =


maxt1 , if maxt1 ≤ t̃1,

t̃1, if maxt1 > t̃1 and mint1 ≤ t̃1,

mint1 , if mint1 > t̃1,

t∗2 =

∑K
k=1

∑N
n=1 Rk[n]

RubNK
t∗1. (17)

where the definitions of t̃1, mint1 , and maxt1 are respectively
given by

t̃1 ,

√√√√ MN
∑N−1

n=1 ∥u[n+ 1]− u[n]∥2

2
(
p̄1 +

p2+Pc

RubNK

∑K
k=1

∑N
n=1 Rk[n]

) ,
mint1 , max(lb0, lb1, · · · , lbN−1),

maxt1 , min(ub1, · · · , ubN−1). (18)

The detailed calculations of {lbn}N−1
n=0 and {ubn}N−1

n=1 are
given by (42)–(44) in Appendix A.

Proof: Please see Appendix A.

B. UAV Transmit Power and Trajectory Optimization

In this part, we perform the optimization to the transmit
powers and the trajectory of the UAV. Specifically, given
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T , the corresponding subproblem with respect to {U ,P } is
formulated as

minimize
U,{Pmax≥p1[n]≥0},

p2≥0

N∑
n=1

p1[n]
t1
N

+ p2t2

+
N−1∑
n=1

0.5MN

t1
∥u[n+ 1]− u[n]∥2

subject to (15a)− (15e). (19)

Different from (16), the problem in (19) is more challenging to
solve due to the non-convex constraints. To handle this issue,
we consider transforming these non-convex constraints into
approximate convex forms and iteratively solving the surrogate
problem based on the technique of SCA.

Firstly, we focus on the QoS constraints in (15a). By
substituting the channel formulation of (4) into (6), we rewrite
the communication rate of user k during the n-th time interval,
i.e., Rk[n], as

Rk[n] = B log2

(
1 +

α0P
user
k

σ2
u(H

2 + ∥u[n]− ek∥2)

)
, (20)

which is not concave with respect to u[n]. To address this
issue, we exploit the convexity of the function f(x) , log2(1+
A
x ) for arbitrary A > 0, which can be verified by checking
the second-order derivatives, to lower bound Rk[n] by its first-
order Taylor expansion [43]. More precisely, since Rk[n] is
convex with respect to ∥u[n]− ek∥2, in the l-th iteration we
have the following lower bound:

Rk[n] ≥ − a
(l−1)
k [n](∥u[n]− ek∥2 − ∥u(l−1)[n]− ek∥2)

+ b
(l−1)
k [n]

, Rk[n], (21)

where the superscript (l − 1) represents the iteration index,
and

a
(l−1)
k [n] =

BPkα0σ
2

[σ2(H2+∥u(l−1)[n]−ek∥2)]2
log2 e

1 + Pkα0

σ2(H2+∥u(l−1)[n]−ek∥2)

≥ 0, (22)

b
(l−1)
k [n] = B log2

(
1 +

Pkα0

σ2(H2 + ∥u(l−1)[n]− ek∥2)

)
,

(23)

with u(l−1)[n] being the optimal solution to u[n] obtained in
the (l−1)-th iteration. Note that the lower bound Rk[n] in (21)
is concave with respect to u[n] since a

(l−1)
k [n] is nonnegative.

Thereby, by invoking (21) for all n ∈ N , we obtain a set of
convex subsets of the non-convex constraints in (15a) as

C1 :
N∑

n=1

Rk[n]
t1

NK
≥ rk, ∀k ∈ K. (24)

Next, we deal with the non-convex constraints in (15b). By
plugging (5), this group of constraints becomes

nP user
k

ηK
≤

n∑
i=1

p1[i]huk[i],

=
n∑

i=1

α0p1[i]

H2 + ∥u[i]− ek∥2
, ∀k ∈ K, ∀n ∈ N . (25)

In general, the fractional forms in (25) are challenging to be
handled. Fortunately, due to the fact that p1[n] ≥ 0, we can
denote q1[n] ,

√
p1[n], ∀n ∈ N , and transform p1[i]huk[i]

into

p1[i]huk[i] =
α0q

2
1 [i]

H2 + ∥u[i]− ek∥2
. (26)

Note that this belongs to a quadratic-over-linear function
f(x, y) , x2

y , which is jointly convex with respect to x and
y > 0 [41]. We thus lower bound it by exploiting the first-
order Taylor expansion on q1[i] and H2 + ∥u[i]− ek∥2 as

α0q
2
1 [i]

H2 + ∥u[i]− ek∥2

≥ c
(l−1)
k [i]q1[i]− d

(l−1)
k [i](H2 + ∥u[i]− ek∥2)

, huk[i], (27)

where

c
(l−1)
k [i] =

2α0q
(l−1)
1 [i]

H2 + ∥u(l−1)[i]− ek∥2
, (28)

d
(l−1)
k [i] = α0

(
q
(l−1)
1 [i]

H2 + ∥u(l−1)[i]− ek∥2

)2

≥ 0, (29)

with q
(l−1)
1 [i] =

√
p
(l−1)
1 [i] being calculated based on the

solution obtained in the (l − 1)-th iteration. The nonneg-
ative d

(l−1)
k [i] guarantees that huk[i] is a concave lower

bound. Therefore, by performing the similar procedure to each
p1[i]huk[i], (25) can be replaced with the following convex
approximation as

C2 :
nP user

k

ηK
≤

n∑
i=1

huk[i], ∀k ∈ K, ∀n ∈ N . (30)

To proceed, we concentrate on the constraint in (15c).
Recall that Rk[n] is convex with respect to ∥u[n] − ek∥2,
which, however, is not convex to u[n]. To handle this issue,
we introduce a group of auxiliary optimization variables,
ωk[n] > 0, ∀k ∈ K, ∀n ∈ N , and rewrite constraint (15c)
equivalently as the following two separate constraints:

Rubt2 ≥
K∑

k=1

N∑
n=1

log2

(
1 +

1

ωk[n]

)
t1

NK
, (31)

1

ωk[n]
≥ α0P

user
k

σ2
u(H

2 + ∥u[n]− ek∥2)
, ∀k ∈ K, ∀n ∈ N ,

(32)

where 1
ωk[n]

can be interpreted as a copy of the signal-to-
noise ratio in Rk[n]. The equivalence is established in the
sense that the feasible range of U restricted by (31) and (32)
keeps the same as that limited by (15c). It is easily seen that
the constraint in (31) is already convex and it remains to deal
with the non-convex (32). To do this, by taking the inverse of
both sides, we first convert (32) to

ωk[n] ≤
σ2
u(H

2 + ∥u[n]− ek∥2)
α0P

user
k

, ∀k ∈ K, ∀n ∈ N . (33)
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Then, for the convex function ∥u[n] − ek∥2, exploiting the
first-order Taylor expansion yields

∥u[n]− ek∥2 ≥ ∥u(l−1)[n]− ek∥2

+ 2(u(l−1)[n]− ek)
T (u[n]− u(l−1)[n])

, uk[n]. (34)

Combining (33) and (34), we have found the convex approx-
imations of constraint (32) as

ωk[n] ≤
σ2
u(H

2 + uk[n])

α0P
user
k

, ∀k ∈ K, ∀n ∈ N . (35)

Consequently, (15c) can be replaced by two convex constraints
given by

C3 : (31) and (35). (36)

Finally, the considered minimum flight speed constraints in
(15e) is non-convex. To tackle this issue, we perform the first-
order two-dimensional Taylor expansion to ∥u[n+1]−u[n]∥,
which yields

∥u[n+ 1]− u[n]∥
≥ ∥u(l−1)[n+ 1]− u(l−1)[n]∥

+
(u(l−1)[n+ 1]− u(l−1)[n])T

∥u(l−1)[n+ 1]− u(l−1)[n]∥
(u[n+ 1]− u(l−1)[n+ 1])

+
(u(l−1)[n]− u(l−1)[n+ 1])T

∥u(l−1)[n+ 1]− u(l−1)[n]∥
(u[n]− u(l−1)[n])

, d[n]. (37)

The derived linear bound d[n] is jointly convex with respect
to u[n+ 1] and u[n]. Applying this result, the constraints in
(15e) can be replaced with

C4 :
d[n]

t1/N
≥ Vmin, n = 1, · · · , N − 1,

∥u[n+ 1]− u[n]∥
t1/N

≤ Vmax, n = 1, · · · , N − 1.

(38)

Arming with these obtained convex approximations, we
have successfully converted the non-convex constraints in
problem (19) into convex ones by introducing lower bound
Rk[n], lower bound huk[n], lower bound uk[n], and lower
bound d[n], respectively. In this way, in the l-th iteration, a
convex surrogate problem of (19) is given by

minimize
U ,V ,Q,p2

N∑
n=1

q21 [n]
t1
N

+ p2t2

+
N−1∑
n=1

0.5MN

t1
∥u[n+ 1]− u[n]∥2

subject to C1, C2, C3, C4,

u[1] = u0, (39)

where Q , {0 ≤ q1[n] ≤
√
Pmax, ∀n ∈ N} and

V , {ωk[n] ≥ 0, ∀k ∈ K, n ∈ N}. The optimal
solution of this convex problem can be readily found by
using CVX toolbox [42]. Then, with the optimized Q, we

Algorithm 1: Proposed Algorithm for Problem (15)

1 Initialize U , P , and set l = 0;
2 repeat
3 Set l = l + 1;
4 Given U (l−1) and P (l−1), calculate T (l) according to

(17);
5 Given T (l), update U (l) and P (l) by solving problem

(39);
6 until convergence;
7 Return the optimal time durations T ∗, and the optimal

trajectory U∗ and transmit powers P ∗ of the UAV.

update the transmit powers {p1[n]}Nn=1 during the first stage
as p1[n] = q21 [n], ∀n ∈ N .

In summary, the original non-convex optimization problem
in (15) is tackled in an alternating manner, by iteratively
invoking the closed-form solution in (17) for the time duration
optimization and solving the problem in (39) for the UAV’s
power and trajectory optimization. We summarize the iterative
joint optimization algorithm in Algorithm 1.

C. Convergence and Complexity Analysis

For Algorithm 1, it can be verified that the objective value
of the total energy consumption is non-increasing over the
iterations and it must have a finite lower bound. Thus, the
proposed algorithm is guaranteed to converge.

Moreover, the computational cost of Algorithm 1 mainly lies
in iteratively updating T and solving (39). In particular, in each
iteration, the complexity of updating T with the closed-form
expression in (17) is given by O(KN). As for solving (39),
according to the works in [30], [39] and [41], the complexity
is given by O(K3N3).

IV. NUMERICAL RESULTS

In this part, we provide numerical results to evaluate the
performance of the proposed algorithm.

A. Parameter Setup

We consider a UAV-enabled WPT and communication net-
work consisting of a BS, a fixed-wing UAV, and K = 4 users.
The positions of the users and the BS are fixed and the users
are located far way from the BS, such that the communication
process between them needs to be accomplished with the as-
sistance of the UAV. Without loss of generality, we assume that
the BS is horizontally located at (100 m, 0 m) and the users are
distributed on the vertexes of a square with coordinates (0 m,
0 m), (8 m, 0 m), (8 m, 8 m), and (0 m, 8 m), respectively, as
depicted in Fig. 2. The transmission requirements of the four
users are set to r = [r1, r2, r3, r4] = [6, 8, 8, 4] Mbits. During
the first stage, the initial point of the UAV’s trajectory is set
to u0 = (0 m, 8 m). Other specific values of the simulation
parameters are presented in Table I.
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User

BS

x

y

Fig. 2. Simulation setup.

TABLE I
SIMULATION PARAMETERS

Notation Parameter Value
B Bandwidth 1 MHz
L Number of antennas at the BS 4
M Mass of the UAV 9.65 kg
N Number of time intervals 30

Pmax Maximum transmit power for WPT 50 dBm
Pc Propulsion power of uniform circular flight 43 dBm
Pk Transmit power of each user 10 dBm
Vmax Maximum flight speed of the UAV 10 m/s
Vmin Minimum flight speed of the UAV 1 m/s
η Energy harvesting efficiency 0.9
H Flight altitude of the UAV 10 m
D Distance between the UAV and the BS 15 m
α0 Reference channel power at d0 = 1 m -20 dB
σ2 Noise power -70 dBm

B. Benchmark Schemes

In order to validate the performance obtained by the pro-
posed algorithm, we consider the following two benchmark
schemes for comparisons.

• Fly-hover-communicate: We consider the popular fly-
hover-communicate strategy [36], [37] as the first bench-
mark scheme. Specifically, the task of WPT and data
collection in the first stage is completed in K continuous
substages. During the k-th substage, the UAV flies to a
position close to the k-th user and then the UAV hovers
and transfers energy while the user transmits data. After
that, the UAV proceeds with the next substage to serve
user k+ 1. In particular, to increase the WPT efficiency,
the UAV stays stably at point uk = (xk, yk, H) when
serving user k [37], where the charging power and
duration are determined to minimize the corresponding
energy consumption under the QoS constraint of user k.
In addition, a constant speed V = 3 m/s is adopted when
the UAV flies from uk to uk+1.

• Fixed trajectory: Similarly to the previous works [24],
[39], we additionally consider a benchmark scheme with
fixed UAV trajectory. Since user 1, user 2, and user 3
have higher data transmission requirements, we assume
that the UAV flies along a semi-circle trajectory from u0

with a radius of 4 m (as shown in Fig. 4), which is closer
to these three users to better fulfill their transmission
requirements.
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Fig. 3. Total energy consumptions of different schemes versus the number
of iterations.

0 1 2 3 4 5 6 7 8

x (m)

0

1

2

3

4

5

6

7

8

y 
(m

)

User
Proposed scheme
Fixed trajectory
Fly-hover-communicate

User 3

User 2User 1

User 4

Fig. 4. Optimized trajectory and benchmark trajectories.

C. Simulation Results

Fig. 3 illustrates the convergence behaviours of different
schemes. First, it is seen that both the proposed scheme and
the fixed trajectory scheme converge within several itera-
tions, while the performance of the non-iterative fly-hover-
communicate scheme remains the same. Second, when the
convergence is reached, the energy consumptions of the pro-
posed and fixed trajectory schemes are much lower than that
of the benchmark fly-hover-communicate scheme, due to the
more flexible mobility of the UAV. Finally, compared to the
scheme with fixed trajectory, the proposed scheme saves 23%
energy, which validates its effectiveness.

Fig. 4 shows the UAV’s flying trajectories during the first
stage obtained in different schemes. The UAV flies from the
specified initial location u0 = (0 m, 8 m) while keeping
charging the users and collecting users’ data along the flight.
As discussed in the previous subsection, to increase the WPT
efficiency, the UAV in the fly-hover-communicate scheme
hovers above the grounds users successively and flies along
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Fig. 5. Cumulative energy consumed by the UAV over time.
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Fig. 6. Specific energy consumptions for WPT, flight, and communication.

the straight trajectories among these hovering positions. Under
the proposed scheme, the optimized trajectory is a curve
biased towards user 2. This is because user 2 has the highest
data communication requirement, such that the UAV will fly
closer to it to facilitate the fulfillment of the QoS constraints.
Different from our proposed scheme, the trajectories of two
benchmark schemes are not biased towards any users.

The cumulative energy consumed by the UAV over time
is shown in Fig. 5. First, we can see that the fly-hover-
communicate scheme has the longest transmission period with
the highest energy consumption, as it is a simple baseline
strategy with low design complexity. Then, focusing on the
other two curves, we can observe that in the proposed scheme
both the total time length and the total energy consumption are
lower than those of the fixed trajectory scheme. This verifies
the effectiveness of the proposed algorithm. In addition, the
average slope in the first stage of these two curves is larger
than that in the second stage. This is because the UAV
needs to transfer energy to the users at stage 1, yielding a
higher transmission power. Moreover, compared to the fixed
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Fig. 7. Optimized charging powers in different time intervals.

trajectory scheme, although our proposed algorithm has a
higher average power, the time length of stage 1, the length
of the entire mission, and the total energy consumption are
significantly reduced.

To show more details, in Fig. 6 we compare separately the
specific energy consumptions for WPT, flight, and communi-
cation of the proposed scheme and the fixed trajectory scheme.
Specifically, it is found that our proposed algorithm saves 22%
and 24% energy from the perspectives of WPT and flight
compared to the fixed trajectory scheme, respectively. Fig. 7
illustrates the optimized charging power during the first stage
in different time intervals. It is found that at the first half of
stage 1, a relatively medium and decreasing power is adopted
to charge the users. When the time interval n gets larger
than 15, the UAV works in full-power transmission, since at
this time the UAV is located at the position with the highest
average WPT efficiency for four users. Consequently, at the
end of the first stage the UAV no longer charges users since
the harvested energy at the users is sufficient for completing
the remaining uplink data transmission.

Finally, we show the impacts of the communication re-
quirements at the users. Specifically, we illustrate the total
energy consumed by the UAV versus the increasing data
requirements r′ , ξr in Fig. 8. First, it is seen that our
proposed scheme significantly outperforms two benchmark
schemes under different ξ. In addition, with the increase of ξ,
the total energy consumptions of all three schemes get larger.
This is because more energy is needed to be transferred at the
UAV to ensure that the harvested energy at the users can still
guarantee the more stringent communication requirements.

V. CONCLUSION

We investigated a UAV-enabled energy harvesting and re-
laying network. The UAV not only serves as a wireless power
transmission source, but also acts as an uplink relay to forward
users’ data to the BS. We jointly optimized the time durations
and the corresponding UAV’s transmit powers and trajectory
of the system to minimize the total energy consumption at
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Fig. 8. Total energy consumed by the UAV versus the increasing data
communication requirements r′ , ξr, with ξ increasing from 1 to 2.

the UAV. An efficient iterative algorithm was proposed to
tackle the original highly intractable non-convex problem by
decomposing it into two subproblems and solving them al-
ternatingly. Simulation results verified that the algorithm only
takes a few number of iterations to converge and outperforms
the benchmark schemes.

APPENDIX A
PROOF OF PROPOSITION 1

It is observed that the decision variable t2 is involved in the
objective function and the second constraint. Moreover, since
the objective function is monotonically increasing with respect
to t2, it follows that the second inequality constraint must keep
active at the optimality, which can be proved by contradiction.
In other words, the optimal solution with respect to t2 obeys

t∗2 =

∑K
k=1

∑N
n=1 Rk[n]

RubNK
t∗1. (40)

Consequently, substituting (40) into (16) yields a new problem
with respect to t1, which is given by

minimize
t1≥0

(
p̄1 +

p2 + Pc

RubNK

K∑
k=1

N∑
n=1

Rk[n]

)
t1

+
N−1∑
n=1

0.5MN

t1
∥u[n+ 1]− u[n]∥2

subject to
N∑

n=1

Rk[n]
t1

NK
≥ rk, ∀k ∈ K,

Vmin ≤ ∥u[n+ 1]− u[n]∥
t1/N

≤ Vmax,

n = 1, · · · , N − 1. (41)

In what follows, we discuss the solution to problem (41).
To begin with, we first determine the feasible range of

t1 by manipulating the linear constraints of problem (41).

Specifically, we rearrange the first set of constraints in (41)
and obtain the following restriction of t1 as

t1 ≥ maximize
∀k∈K

rkKN∑N
n=1 Rk[n]

, lb0. (42)

Then, the set of flight speed constraints is equivalent to

t1 ≥∥u[n+ 1]− u[n]∥N
Vmax

, lbn, (43)

t1 ≤∥u[n+ 1]− u[n]∥N
Vmin

, ubn, (44)

for n = 1, · · · , N − 1. Combining these results, the fea-
sible range of t1 can be expressed as t1 ∈ [mint1 ,maxt1 ],
where mint1 = max(lb0, lb1, · · · , lbN−1) and maxt1 =
min(ub1, · · · , ubN−1).

Next, we pay our attention to the objective function of (41),
which is defined by f(t1) to simplify the presentation. The
first-order derivative of f(t1) is calculated as

f ′(t1) = p̄1 +
p2 + Pc

RubNK

K∑
k=1

N∑
n=1

Rk[n]

− 0.5MN

t21

N−1∑
n=1

∥u[n+ 1]− u[n]∥2. (45)

By letting f ′(t1) = 0, it is straightforward to acquire the
unique positive stationary point of f(t1) by

t̃1 =

√√√√ MN
∑N−1

n=1 ∥u[n+ 1]− u[n]∥2

2
(
p̄1 +

p2+Pc

RubNK

∑K
k=1

∑N
n=1 Rk[n]

) . (46)

Moreover, it follows that f ′(t1) > 0 when t1 > t̃1 and
f ′(t1) < 0 when t1 < t̃1. This admits that f(t1) is
monotonically decreasing and increasing over t1 ∈ (0, t̃1)
and t1 ∈ (t̃1,+∞), respectively, i.e., t1 = t̃1 is the unique
minimizer of f(t1) for t1 > 0.

Based on the obtained equivalent feasible range and the first-
order optimality property of the objective function, we finally
arrive at the closed-form solution of (16) as shown in (17).
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