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SSRL: Self-supervised Spatial-temporal
Representation Learning for 3D Action recognition
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Abstract—For 3D action recognition, the main challenge is to
extract long-range semantic information in both temporal and
spatial dimensions. In this paper, in order to better excavate
long-range semantic information from large number of unla-
belled skeleton sequences, we propose Self-supervised Spatial-
temporal Representation Learning (SSRL), a contrastive learning
framework to learn skeleton representation. SSRL consists of
two novel inference tasks that enable the network to learn global
semantic information in the temporal and spatial dimensions,
respectively. The temporal inference task learns the temporal
persistence of human actions through temporally incomplete
skeleton sequences. And the spatial inference task learns the
spatially coordinated nature of human action through spatially
partially skeleton sequence. We design two transformation mod-
ules to efficiently realize these two tasks while fitting the encoder
network. To avoid the difficulty of constructing and maintaining
high-quality negative samples, our proposed framework learns
by maintaining consistency among positive samples without the
need of any negative sample. Experiments demonstrate that our
proposed method can achieve better results in comparison with
state-of-the-art methods under a variety of evaluation protocols
on NTU RGB+D 60, PKU-MMD and NTU RGB+D 120 datasets.

Index Terms—self-supervised learning, contrastive learning,
skeleton action recognition.

I. INTRODUCTION

IN the field of computer vision, 3D action recognition as a
fundamental research topic, is closely related to people’s

lives, and has attracted more and more research attention.
Skeleton-based action recognition has become the focus of
research due to the robustness and excellent action represen-
tations of skeleton data. In recent years, the rapid development
of sensors such as Kinect [1] also makes it more convenient
to obtain skeleton data, promoting the research of skeleton-
based action recognition. In early years, many skeleton-based
supervised action recognition methods have been proposed
based on manual feature [2], [3]. In the past decade, more deep
learning based method utilizing RNN [4], [5], [6], CNN [7],
[8], [9] and GCN [10] also have been developed, among which
GCN-based methods have shown remarkable performance and
gain more and more attention. The variants of GCN-based
methods [11], [12], [13], [14], [15], [16] achieve state-of-the-
art results on many large-scale datasets.
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Fig. 1. Sequence (a) is the temporally incomplete sequence obtained by
removing 20% frames from the original skeleton sequence (b). Sequence
(c) is the spatially incomplete sequence obtained by removing one body
part from (b). Although incomplete in temporal and spatial dimension
they still have commonalities with the original sequences. By learning to
pull close the incomplete sequence and the complete sequence in feature
space, the network can extract more high-level semantic information of
human actions.

However, regardless of the structure used, these methods
have to use numerous labelled data to learn skeleton repre-
sentation. Fully supervised methods inevitably rely on a large
amount of annotated data, which is time-consuming, labor-
intensive, and resource-intensive. So, how to learn feature
representation from large-scale skeleton data without manual
annotation becomes an important problem. In recent years,
methods are proposed to learn representation in self-supervised
manner by designing pretext tasks [17], such as reconstruction
[18], auto-regression [19], etc. However the quality of the
learnt representation depends heavily on the design of the
pretext task. It can also be noted that feature representation
learned from pretext tasks is not necessarily favourable for
downstream tasks. Lately, since contrastive learning [20],
[21], [22], [23], [24], [25] has made good progress in self-
supervised learning field, some works [26], [27], [28] leverage
contrastive framework to learn skeleton representation. In
contrastive learning methods, the network is trained to pull
closer different views of the same sample (positive sample)
and to push away views of other samples (negative sample).
Based on this procedure, the network can learn discriminative
representations.

Although existing constrastive learning methods can extract
better feature representation to some extent, we argue that
there are two issues worthy of attention in previous works: (1)
Existing contrastive learning methods mainly help the network
extract information by applying various data augmentations.
However, the high-level spatio-temporal information of the
skeleton is difficult to be reflected by these data augmentation
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methods at the coordinate level. The rich semantic information
contained in human action is rarely explored. (2) These
methods rely on the quality of negative samples and they
should be treated carefully. It can be noted that for skeleton
action tasks, there are fewer categories in total than that in
image tasks, making it harder to guarantee the quality of
negative samples. Therefore, the feature representation learned
still lacks of discrimination and generality for skeleton-based
action recognition.

In order to address the above issues, a new framework
of Self-supervised Spatial-temporal Representation Learning
(SSRL) is proposed in this paper to learn skeleton representa-
tion. As human actions are highly consistent and persistent
in temporal sequence, the action recognition task can be
performed by only partial sequences in temporal dimension,
i.e. temporal partial action sequences contain information
that is already sufficient for the action recognition task. The
information contained in the complete sequence is redundant,
whereas the information shared in temporal partial sequences
is more discriminative for action recognition. If the network
can be made to learn to mine this property of the skeletal
sequence data, the network can learn more essential features
of human actions in the temporal dimension. In short, due to
the strong continuity of human action in time, the action itself
can be inferred given part of the action sequence. Utilizing
this property of human actions, we randomly remove part
of frames from the skeleton sequence to obtain temporally
partial sequences. And we train the network to pull closer
temporally complete and temporally partial skeleton sequence
from the same action, by minimizing the l2 distance between
them in feature space, enabling the network to extract high-
level temporal semantic information. Moreover, to fully utilize
the natural structure of skeleton, we extend the inference
task in the temporal dimension to the spatial dimension. The
human skeleton has a strong connection among the various
parts of the body that interact and co-ordinate with each
other in space to form the human action. Similar to the
findings in temporal dimension, spatially incomplete skeletal
sequences contain a wealth of information that is sufficient for
the task of action recognition, and we focus on uncovering
information in spatially incomplete skeletal sequences. We
divide the skeleton into five parts according to the natural
physiological structure of the human body. In order to obtain
a partial skeleton sequence in spatial dimension, we randomly
remove one part from the sequence. And we train the network
to minimize the l2 distance between the encoded feature
from spatial complete and spatial partial sequence. If the
network learns the consistency of spatially partially skeleton
sequences and complete sequences, the network can gain more
understanding of the role of each part of the human body in
human actions. Figure 1 briefly shows how our proposed two
inference tasks work. Furthermore, we introduce a contrastive
learning framework to implement these two tasks without the
need of any negative samples. Particularly, we combine our
proposed inference task with the contrasive learning frame-
work in such way that the network can coordinately learn both
basic and high-level semantic information.

Our contributions can be summarized as follows:

1) We developed two inference tasks in the temporal and
spatial dimension to learn temporal persistence and spatial
coordination of human actions in an unsupervised manner,
enabling the network to capture more discriminative spatial-
temporal feature representations.

2) We propose SSRL, a contrasive learning framework to
learn skeleton representation for 3D human action recognition.
Our proposed framework works in the manner that only
positive samples are needed for pairwise comparison, avoiding
the difficulties of constructing high quality negative samples.

3) We validate the representation learned by SSRL on NTU-
60, PKU-MMD and NTU-120 under several self-supervised
settings such as linear evaluation, semi-supervised evaluation
and finetune evaluation protocol, and achieve state-of-the-art
results.

II. RELATED WORK

A. Self-supervised representation learning

Self-supervised representation learning is to learn feature
representation from a large amount of unlabeled data, usually
by designing pretext tasks to generate supervision. In the
field of image self-supervised representation learning, many
pretext tasks have been designed to learn effective features,
such as jigsaw puzzles [29], [30], rotation prediction [31], etc.
For sequence data such as video, pretext task based methods
on temporal sequence prediction [32], [33], spatiotemporal
sequence prediction [34] and speed perception [35] are also
proposed. But these methods rely heavily on the quality of
the pretext tasks. In recent years, self-supervised methods
based on contrastive learning have been proposed for feature
learning, which has become a research focus. The main idea
of contrastive learning is instance identification, and generally
it is realized by pulling in the same sample from different
perspectives, and pushing away different samples [20], [21],
[22]. Ideally, all samples that are different from the current
sample should be compared, which is difficult to achieve,
and corresponding solutions have emerged. He et al. [24]
and Chen et al. [25] proposed to use a memory bank to
store the encoded negative samples, and a momentum update
mechanism is used. SimCLR [23] adopted a much larger batch
size to compute embeddings of negative samples in real-time.
Pan et al. [36] proposed VideoMoCo based on MoCo [24] for
unsupervised video representation learning. Dorkenwald et al.
[37] combined a shuffling pretext task with the contrastive
learning framework. Some researchers [38], [39] have also
proposed that negative samples are not necessarily needed
in contrastive learning. Caron et al. [38] propose to compare
cluster assignments under different views instead of directly
comparing features. Grill et al. [39] add a prediction head
to the siamese network structure and learn representation by
pulling closer the features of the positive samples without
using any negative sample.

B. Supervised skeleton-based action recognition

Early skeleton-based action recognition methods are gener-
ally based on hand-crafted features to extract information [40],
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Fig. 2. Total pipeline of SSRL. Skeleton sequence s1 and s2 are obtained by data augmentation from original sequence. Aside from augmentation,
we apply spatial-temporal transformations Tst to get incomplete sequence sst3 , the grey part of the skeleton sst3 represents the part removed by the
transformation. s2 and sst3 are then fed into the encoder and the projector q to obtain feature z2 and z3. The momentum updated target encoder
and projector q̂ extract feature z1 from s1. Instead of directly making comparison between features, we use a predictor p to further generate zp2
and zpst3 from z2 and z3. The final loss function L consists of Lbasic calculated by comparing between z1 and zp2 , and Linfer calculated by
comparing between zpst3 . By introducing additional spatial-temporal inference tasks, SSRL is able to extract high-level semantic features in both
the spatial and temporal dimensions while not requiring any negative samples.

[2], [3], [41]. With the rapid development of deep learning, re-
searchers began to use methods based on deep neural networks 
[4], [5], [6], [7], [8], [9]. Considering the sequence structure 
of skeleton data, some RNN-based skeleton action recognition 
methods emerged to better extract temporal information [4],
[5], [6]. Since recurrent neural networks suffer from gradient 
vanishing [42], some treat skeleton data as image-like data, and 
use CNN-based methods to fulfill skeleton action recognition 
tasks [7], [8], [9]. In recent years, due to the characteristics of 
graph convolutional networks that can effectively aggregate the 
spatial-temporal features of skeleton sequences, researchers 
began to use graph convolutional networks to extract features 
from skeleton data [10]. Based on the graph convolutional 
network structure, multi-stream structure was proposed to 
aggregate skeleton information from different views [11]. In 
order to better model the spatiotemporal information of the 
skeleton, many variants of graph convolutional networks have 
been developed [12], [13], [14], [15], [16]. Li et al. [12] 
dynamically models the structure of human skeleton graph to 
enhance the flexibility o f t he n etwork. L iu e t a l. [ 15] expand 
convolution range in time dimension to extract more spatial-
temporal information. In addition, based on modalities such as 
RGB images and optical flow, there are some researches [43],
[44] into the real-time application for action recognition. Luvi-
zon et al. [45] proposed a multi-task real-time framework using
RGB images for both pose estimation and action recognition.
However, we focus on skeleton-based action recognition in
unsupervised manner. In this paper, we adopt the widely-used
ST-GCN [10] as our backbone network to extract skeleton
feature.

C. Self-supervised skeleton-based action recognition

Although fully supervised skeleton-based action recognition
methods have shown promising performance, the expensive
cost of annotating numerous data can not be neglected. To
overcome this problem, efforts have been made for skeleton-
based action recognition methods under unsupervised man-
ner. Zheng et al. [18] proposed to use GAN for sequence
reconstruction and an encoder-decoder architecture to learn
skeleton representation. Su et al. [19] proposed to strengthen
the capability of the encoder by weakening the decoder. Based
on a multi-task framework, Lin et al. [17] designd two pretext
tasks and add a contrastive loss for representation learning.
Yang et al. red[46] introduced motion priors and attention
module to help the encoder extract information. Recently,
Li et al. [26] introduced the contrastive learning framework
into skeleton representation learning and designed a new self-
supervised skeleton action recognition framework CrosSCLR.
In CrosSCLR, a memory bank is introduced to store negative
embeddings and multi-stream information is aggregated for
more comprehensive information. Thoker et al. [47] used inter-
skeleton contrastive learning to aggregate information from
different skeleton sequences. Guo et al. [28] proposed to apply
more data augmentations to explore more movement pattern
in 3D action. However, existing contrastive learning methods
rarely manage to exploit high-level spatial-temporal informa-
tion contained in action which is crucial for action recognition,
and need careful treatment of negative samples. So, to learn
more discriminative feature we propose SSRL framework,
without the need of complicated data augmentations and any
negative sample.
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TABLE I
NOTATIONS AND DEFINITIONS

Notations Definitions
D the train set
N mini batch size
K the number of optimization steps
s skeleton sequence
xi i-th frame in sequence
T data augmentation
c the truncaction factor
L linear interpolation
Tst transformation for spatial-temporal inference
f the encoder
q the projector
p the predictor
θ the parameters of f , q and p
f̂ the target encoder updated by momentum
p̂ the momentum updated projector
q̂ the momentum updated predictor
θ̂ the parameters of f̂ , q̂ and p̂
z the encoded feature
zp the prediction
zpst the prediction for spatial-temporal inference
α momentum hyper-parameter

Lbasic
θ,θ̂

the loss function for basic branch

Linfer
θ,θ̂

the loss function for inference tasks
L the total loss
λ the weight parameter

III. METHOD

In this section, we represent our proposed self-supervised
learning framework SSRL. Firstly, we give a brief overview of
our proposed contrastive framework for skeleton-based action
recognition. Then, we introduce our proposed inference tasks
in temporal and spatial dimension respectively. Finally, we
describe how we combine these two tasks with our framework
and the training of the network. The most important symbols
are summarized in Table I.

A. Overview

Though self-supervised skeleton representation learning
methods have made progress. The existing contrastive learning
framework cannot fully utilize the characteristics of skeleton
data, and its potential in the field of action recognition remains
to be tapped.

Since long-term spatial-temporal information is very impor-
tant for action recognition task, we expect to exploit them by
pursuing consistency between transformed samples. As shown
in Figure 2, SSRL mainly contains two modules: 1) Inference
branch: it conveys high-level spatial-temporal information
for skeleton sequence 2) Basic learning framework: it aims
to learn low-level information though simple augmentations.
Finally, combining the information of these two modules, we
can get more discriminating skeleton representations.

B. Temporal inference task

Inspired by the observation that it is easy to infer action
class from temporally incomplete action sequences, we pro-
pose a temporal inference task to help the network learn long-
range temporal information.

Fig. 3. The transformation for temporal inference task. The upper
dashed box represents the truncated part from the original sequence, and
the lower sequence is the new sequence after linear interpolation. The
skeleton in dark green is the skeleton we inserted by linear interpolation.
The processed sequence still maintains the continuity of the action and
contains rich information.

Fig. 4. The transformation for spatial inference task. The human skeleton
on the left shows how we divide the body parts, with each color
representing a part. We select a random part and remove the selected
part from each frame of the original skeleton sequence a, producing a
spatially incomplete sequence b.

To formulate temporal inference task, firstly a set of data
augmentation T is applied to the original skeleton sequence
s = {x1, ..., xi}, and the augmented skeleton sequence is
sa = {xa1 , ..., xai }. Then we truncate c% of the augmented
sequence, discarding the rest of the sequence. The truncated
skeleton sequence is sa = {0, ..., , 0, xaj , ..., xak, 0, ...., 0}, k −
j = c% ∗n, where n is the total frame number of the original
skeleton sequence and c is the truncation factor.

It should be recalled that we adopt ST-GCN as our backbone
network, and the input skeleton data of ST-GCN need to be a
uniform fixed-length sequence data. After the truncation, there
would be some empty frames in the skeleton sequence which
can be disadvantageous. So we apply linear interpolation L to
fill the entire sequence. The whole transformation process is
shown in Figure 3. We can represent the whole transformation
as Ttem

Ttem = L(trun(s = {x1, ..., xi})) (1)

where trun represent the truncation operation. Though the
interpolated action sequence will be changed to a certain
extent in terms of timing rate, but since the coherence of the
action itself is not destroyed, the information is still preserved
well enough for action recognition task. Finally, the sequence
is encoded into feature representation. By learning that the
temporally incomplete sequence and the original complete
sequence belong to the same action, the network can extract
more long-range temporal information.
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It should be mentioned here that our design has some
similarities with action prediction task. In fact, the action pre-
diction task can be regarded as a special case of our temporal
inference task. The sequence used for action prediction is a
partial time series starting from the occurrence of an action,
whereas the sequence used by our proposed inference task is
a partial time series starting at an arbitrary position. Both the
action prediction task and our proposed temporal inference
task share the consensus that long-range global information
in temporal dimension is one of the key factors for action
recognition.

C. Spatial inference task

Although skeleton data and video data are both sequence
data, the difference is that the skeleton data itself has an
obvious regular structure in the spatial structure. The structure
of the skeleton data itself is from the physical structure of
the human body, and each part of the body needs to abide
by certain physical rules, that is to say, there are mutual
constraints and constraints between the various parts of the
skeleton data; at the same time, the human action itself is
achieved through the cooperation of various parts. In order to
make the action happen, there is also a cooperative relationship
between the various parts of the skeleton data. Combining
the above two points, we can conclude that in the process of
human action, each part of the skeleton data is closely related
to other parts. From another perspective, the action information
of each body part itself implies certain information of other
parts.

Based on the above considerations and observations, we
further analogize the inference task in time to space, and
propose an inference task in the spatial dimension. In our
work, the network is to make inferences through spatial
incomplete skeleton sequence. To generate spatial incomplete
samples, we divide the 3D skeleton into five parts from the
spatial structure of the limbs and the torso, which are the main
parts of the human body movement and can reflect the human
body movement more concisely. Then we randomly pick one
of these part and mask all the joints of the picked body part
with zero. Figure 4 shows how we divide skeleton structure
into five parts and the whole process of the transformation
Tspa. Our purpose is to enable the network to learn and use
the information of the four parts existed under such conditions
to understand how the various parts of the human body work
together in human action.

D. Full scheme of SSRL

Since negative samples are not necessary in contrastive
learning, our proposed method is based on a siamese network
structure without negative samples. At the same time, for our
proposed inference tasks, since the skeleton data is unlabelled,
we can not make inference at category level directly, so we
propose to perform the inference tasks in the feature space.

Specifically, given a skeleton sequence s, we first apply
random augmentation T to generate s1, s2, s3, using shear
and random rotation. We feed s2 into the encoder and get
representation f(s2), then we project the representation into

lower dimension feature space through a MLP projector q and
get representation z2. Likewise, we feed the view s1 into the
target encoder branch to produce representation z1. We aim
to maximize the similarity between these two representations
from different views of the same sample. Instead of directly
comparising between z1 and z2, we use an additional predictor
to further reproduce z2 into zp2

zp2 = p(q(f(s2; θ)), z1 = q̂(f̂(s1; θ̂)) (2)

where θ,θ̂ are the parameters corresponding to the encoder f
and the target encoder f̂ , p represents the predictor. f̂ does
not do back-propagation and is momentum updated by f

θ̂ ← αθ̂ + (1− α)θ, α ∈ [0, 1] (3)

where α is the momentum hyper-parameter. In SSRL, we use
a two-layer MLP for the projector and the predictor. For the
third view s3, before feeding it into the encoder, we apply our
transformation module Tst on it and generate sst3 , where Tst is
the combination of Ttem and Tspa. After the transformation,
the information of sst3 in either spatial or temporal dimension
has been partially removed. Then we can get the representation
zpst3 in the same way as the other two views.

zpst3 = p(q(f(Tst(s3); θ))) (4)

Our proposed SSRL aims to train the network to learn both 
common-level information and long-term spatial-temporal in-
formation simultaneously, and our optimization objective con-
sists of two parts correspondingly. Firstly the network mini-
mizes the normalized l2 distance between z2

p and z1 [48]

Lθ,θ̂(z1, z2) , ‖z
p
2 − z1‖22

= (zp2 − z1)T (z
p
2 − z1)

= zp2
T
zp2 + z1

T z1 − 2zp2
T
z1

= 2− 2 · CosineSimilarity(zp2 , z1)

= 2− 2 · 〈zp2 , z1〉
‖zp2‖2 · ‖z1‖2

(5)

Symmetrically, we separately feed z1 into the encoder
branch and feed z2 into the target encoder branch to compute
Lθ,θ̂(z2, z1). The loss function of the basic part is obtained by

Lbasic
θ,θ̂

= Lθ,θ̂(z1, z2) + Lθ,θ̂(z2, z1) (6)

For the second part, we aim to accomplish the inference
task by pulling close the representations of the complete
sequence and the incomplete sequence. The network is trained
to minimize the difference between z1 and zpst3 , and the
difference between z2 and zpst3 . The loss of the inference task
can be represented as

Linfer
θ,θ̂

= ‖zpst3 − z1‖22 + ‖z
pst
3 − z2‖22 (7)

The total loss function of our network can be formulated as

L = Lbasic
θ,θ̂

+ λLinfer
θ,θ̂

(8)
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Algorithm 1 Training for SSRL
Input:

set of skeleton data D
parameters of encoder network θ, encoder f projector q and
predictor p
parameters of target encoder network θ̂, target encoder f̂
and target projector q̂
momentum hyper-parameter α, weight parameters λ1 and
λ2
number of optimization steps K and batch size N
Initialization:

randomly initialize θ and copy θ to θ̂
for k = 1 to K do
B ← {si ∈ D}Ni=1

for xi ∈ B do
s1 ∼ T , s2 ∼ T , s3 ∼ T
transform for inference tasks sst3 = Tst(s3)
zp2 = p(q(f(s2; θ)), z1 = q̂(f̂(s1; θ̂))
zp1 = p(q(f(s1; θ)), z2 = q̂(f̂(s2; θ̂))
zpst3 = p(q(f(Tst(s3); θ)))
Lbasic
θ,θ̂

= ‖zp2 − z1‖22 + ‖z
p
1 − z2‖22

Linfer
θ,θ̂

= ‖zpst3 − z1‖22 + ‖z
pst
3 − z2‖22

L = λ1Lbasicθ,θ̂
+ λ2Linfer

θ,θ̂
end
update θ by back-propagation
momentum update θ̂

end
Output: encoder f

where λ is the weight parameter used to reflect the proportion
of basic contrastive learning tasks and spatial-temporal infer-
ence tasks in the entire optimization process. The Algorithm
1 provides the training procedure of our proposed framework.

IV. EXPERIMENTAL RESULTS

A. Dataset

NTU RGB+D 60 Dataset [49] is a large-scale benchmark
for action recognition including 56,578 videos with 60 action
labels and 25 joints for each skeleton body. There are two
recommended evaluation protocols: cross-subject (xsub) and
cross-view (xview). For xsub setting, the subject IDs of
training subjects are: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18,
19, 25, 27, 28, 31, 34, 35, 38, and the remaining half are used
as testing set. In xview setting, samples captured by camera
2 and camera 3 are used for training, and those captured by
camera 1 are used for testing.

PKU-MMD Dataset [50] is a new large-scale benchmark
for 3D human action analytics. It consist of almost 20,000
action instance and more than 5 million frames in 51 action
classes. For skeleton sequence data, each skeleton sample
contains 25 joints. PKU-MMD comprises two subsets under
different settings Part I and Part II. Compared to Part I,
Part II is more challenging due to more complex views. We
conduct experiments under the cross subject protocol on the
two subsets respectively.

Fig. 5. Ablation study on the effects of the proposed framework. SSRL*
represents a variant of SSRL without our proposed inference tasks, and
it applies the data augmentations in AimCLR[28].

NTU RGB+D 120 Datase[51] is an extended version of
NTU RGB+D 60 Dataset and is the largest benchmark for
3D action recognition currently. It contains 113, 945 skeleton
sequences in 120 action categories. There are two evaluation
protocols recommended: cross-subject (xsub) and cross-set
(xset). In xsub, 53 subjects are used for training and the rest
are for testing. In xset setting, 32 sets are divided evenly into
two parts for training and testing respectively.

B. Experimental Settings

All the experiments are conducted on the PyTorch [52]
framework. We pre-process the skeleton data following CrosS-
CLR [26] and AimCLR [28] for fair comparison. We train the
network on one NVIDIA RTX 3090 GPU with a mini-batch
size of 128. The number of model parameters is 2.007M, and
GFLOPs is 2.8. For all datasets and evaluation protocols, we
report the top-1 accuracy.

Self-supervised Pretext Training We adopt ST-GCN [10]
as our encoder, and reduce the number of the channels in
each layer into 1/4 of the original setting following CrosSCLR
[26] and AimCLR [28]. For data augmentation setting, we
set shear amplitude β = 0.5. The weight parameters λ is set
to 1. For optimization, we use SGD with momentum (0.9)
and weight decay (0.0001). We use 0.99 for the momentum
hyper-parameter α. The model is trained for 300 epochs
with learning rate of 0.1 with no learning rate adjustment,
and it takes about 460 minutes to pre-train the model. We
also generate bone and motion stream data from the skeleton
sequence to adopt three-stream fusion. For our reported three-
stream results, we use the weights of [0.6, 0.6, 0.4] for stream
fusion following other GCN-based multi-stream methods. For
temporal inference task, we use 0.8 as the truncation factor.
For spatial inference task on motion stream, we reverse the
temporal order of the randomly selected body part instead of
setting the coordinates to zero.

Linear Evaluation Protocol The models are verified by
linear evaluation for action recognition task. Specifically, we
freeze the weights of the encoder and train a linear classifier

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final 
publication. Citation information: DOI10.1109/TCSVT.2023.3284493, IEEE Transactions on Circuits and Systems for Video Technology



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE II
LINEAR EVALUATION RESULTS COMPARED WITH AIMCLR ON NTU-60, PKU-MMD, AND NTU-120 DATASET. “3S” MEANS USING THREE

STREAM FUSION.

Method Stream
NTU-60(%) PKU(%) NTU-120(%)

xsub xview part I xsub xset
acc. gain acc. gain acc. gain acc. gain acc. gain

AimCLR(AAAI 22)[28] joint 74.3 79.7 83.4 63.4 63.4
SSRL(ours) 80.4 6.1↑ 82.0 2.3↑ 89.9 6.5↑ 68.0 4.6↑ 68.6 5.2↑
AimCLR(AAAI 22)[28] bone 73.2 77.0 82.0 62.9 63.4
SSRL(ours) 78.5 5.3↑ 80.5 3.5↑ 87.0 5.0↑ 65.1 2.2↑ 65.1 1.7↑
AimCLR(AAAI 22)[28] motion 66.8 70.6 72.0 57.3 54.4
SSRL(ours) 68.8 2.0↑ 76.7 6.1↑ 81.5 9.5↑ 58.6 1.3↑ 58.3 3.9↑
AimCLR(AAAI 22)[28] three stream 78.9 83.8 87.8 68.2 68.8
SSRL(ours) 81.6 2.7↑ 85.1 1.3↑ 90.9 3.1↑ 69.2 1.0↑ 71.5 2.7↑

TABLE III
LINEAR EVALUATION RESULTS OF DIFFERENT SETTING, W MEANS

USING THE MODULE

w/TI w/SI NTU-60(%)
xsub xview
66.1 71.0

X 76.4 79.0
X 77.5 80.6

X X 80.4 82.0

Fig. 6. Results of pre-trained SSRL with various truncation factors on
NTU-60. The models are linear evaluated on joint stream.

TABLE IV
ABLATION STUDY OF SSRL WITH VARIOUS SPATIAL

TRANSFORMATION METHODS ON NTU-60

spatial transformation NTU-60(%)
xsub xview

randomly remove 5 joints 75.1 79.1
randomly remove 6 joints 75.9 79.8
randomly remove 7 joints 76.2 79.3
randomly remove 1 part 80.4 82.0

TABLE V
ABLATION STUDY OF SSRL WITH TEMPORAL TRANSFORMATION

METHODS ON NTU-60

temporal transformation NTU-60(%)
xsub xview

without linear interpolation 77.0 80.5
with linear interpolation 80.4 82.0

TABLE VI
ABLATION STUDY ON MOMENTUM PARAMETER α AND WEIGHT

PARAMETER λ ON NTU-60

α λ NTU-60(%)
0.9 1.0 77.25
0.99 1.0 80.4

0.995 1.0 79.5
0.999 1.0 74.1
0.99 0.6 76.8
0.99 0.8 79.7
0.99 1.2 78.7
0.99 1.4 79.6

composed of a fully-connected layer and a softmax layer.
We train the classifier for 100 epochs with learning rate 3
(multiplied by 0.1 at epoch 80).

Finetune Protocol We append a linear classifier to the train-
able encoder, and train the whole model for action recognition
task in comparison with fully-supervised methods.

Semi-supervised Evaluation Protocol After pre-training
with all data, we finetune the model with only 1% or 10%
randomly selected data for action recognition task.

C. Ablation Study

We conduct ablation studies to verify the effectiveness of
different components of our method.

The effectiveness of SSRL To verify the effectiveness
of our proposed method against recent contrastive learning
method AimCLR [28], we conduct experiments for all three
streams on three benchmarks. As shown in TABLE II, for all
the three streams of the three datasets, SSRL outperforms the
AimCLR. The performance of our SSRL in joint stream is out-
standing and can achieve the performance of AimCLR using
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Fig. 7. Confusion matrix on NTU-60 under xsub setting.

three streams. It should be noted that AimCLR uses 8 different
data augmentations to help learn skeleton representations. In
our SSRL, we simply use two basic data augmentations and
it is the inference tasks that effectively help the network learn
more advanced semantic information.

We also conduct experiments to analyse the effectiveness
of our proposed network framework without negative samples.
For fair comparison, we remove our proposed inference tasks
and replace the data augmentations in SSRL with those in
AimCLR [28], which is named SSRL*. The linear evalution
results on NTU-60 and PKU-MMD part I are shown in Figure
5. It can be seen that SSRL* without inference tasks still
outperforms AimCLR in all three streams on both benchmarks.
This proves that it is necessary to remove negative samples
for the skeleton-based action recognition task. In addition,
the performance of SSRL is higher than that of SSRL*,
indicating a further improvement in the network’s ability to
extract discriminative features with the help of the inference
tasks.

We plot confusion matrix results on NTU-60 and PKU-
MMD part I datasets respectively in Figure 6 and Figure 7.
It can be seen from the confusion matrix, recognition errors
are mainly concentrated in hand movements such as reading,
writing, using a mobile phone and using a keyboard, which
are more difficult to recognize for subtle movements with
little body variation, while our proposed method achieves good
accuracy in the remaining categories.

The effectiveness of the inference tasks To verify the
effect of our proposed inference tasks, we conduct linear

evaluation on NTU-60 on several settings. From Table III, the
performance of the network without any inference tasks drop
severely, because the network learns only at the underlying
coordinate level which does not contain enough semantic
information. The models with temporal inference task and
spatial inference task are allowed to learn high-level semantic
information and the effects improve significantly. It should be
noted that the effect of the model with only spatial inference
task outperforms that with only temporal inference task both
in xsub and xview, we suppose the spatial inference task
itself contains certain temporal information which gives some
edge. Combined with both these two inference tasks, the
performance of our SSRL improves over the performance of
the model with single task by about 4%. In summary, the
proposed inference tasks can help the network to learn more
semantic information in temporal and spatial dimension and
extract more discriminating representations.

The effects of transformation methods We conduct ex-
periments on the spatial transformation and the temporal
transformation. For spatial transformation, we try to remove
some joints in a completely random way. It is shown in Table
IV, compared to randomly removing one part as in SSRL,
the performance of randomly removing some joints from the
skeleton are lower of about 5% and 3% respectively in xsub
and xview setting. And from Table V, we can see when
applying temporal inference task without linear interpolation,
the results decreases since there are empty frames in the input
sequence which may influence the performance of the back-
bone. It can be concluded that our proposed transformation
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Fig. 8. Confusion matrix on PKU-MMD part I.

Fig. 9. The t-SNE visualization of embeddings on NTU-60 xsub.

methods generate better inputs for the downstream task.
The effects of truncation factor Hyper-parameter c deter-

mines in what proportion of the sequence is truncated, and the
selection of this parameter directly affects whether the network
can learn enough temporal information from the sequence. Too
large parameter will degrade the network into that with only
spatial inference task, while too small parameter will cause
too much timing information to be removed. From existed
works on action prediction [53], [54], [55], [56], it can be
concluded that about 80% of the sequences can achieve the
same classification accuracy as the complete sequences. This
means that for most actions, 80% of the sequence length con-
tains sufficient information to perform the action recognition
task. Based on this finding, we conduct experiments to find the
most suitable truncation factor for temporal inference task. As
shown in Figure 6, the performance at 80% is the best overall.

TABLE VII
LINEAR EVALUATION RESULTS ON NTU-60 DATASET.

Method Backbone NTU-60(%)
xsub xview

single-stream
LongT GAN(AAAI 18) [58] RNN 39.1 48.1
MS2L(ACM MM 20) [17] RNN 52.6 -
P&C(CVPR 20) [19] RNN 50.7 76.3
SeBiReNet(ECCV 20) [59] RNN - 79.7
PCRP(TMM 21) [60] RNN 53.9 63.5
AS-CAL(Information Sciences 21) [27] RNN 58.5 64.8
CRRL(21) [61] RNN 67.6 73.8
MG-AL(TCSVT 22) [46] GCN 58.6 59.1
SkeletonCLR(CVPR 21) [26] GCN 68.3 76.4
AimCLR(AAAI 22) [28] GCN 74.3 79.7
SSRL(ours) GCN 80.4 82.0
three-stream:
3s-SkeletonCLR(CVPR 21) [26] GCN 75.0 79.8
3s-Colorization(ICCV 21) [62] CNN 75.2 83.1
3s-CrosSCLR(CVPR 21) [26] GCN 77.8 83.4
3s-AimCLR(AAAI 22) [28] GCN 78.9 83.8
3s-SSRL(ours) GCN 81.6 85.1

The effects of hyper-parameters From the data in Table
VI, a momentum parameter of 0.99 reaches the best perfor-
mance over other settings. And for the weight parameter λ, we
choose 1.0 for SSRL for a better balance of the information
from different inputs.

Qualitative Results We apply t-SNE [57] with fix settings
to show the embedding distribution of SSRL and AimCLR on
300 epochs of pre-training in Figure 9. From the visualized
results, embeddings of SSLR are more closely clustered than
AimCLR on three streams, which indicates that SSRL can
generate more discriminative features.
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TABLE VIII
LINEAR EVALUATION RESULTS ON PKU-MMD DATASET.

Method part I(%) part II(%)
Fully-supervised:
ST-GCN(AAAI 18)[10] 84.1 48.2
VA-LSTM(TPAMI 19)[63] 84.1 50.0
Self-supervised
LongT GAN(AAAI 18)[58] 67.7 26.0
MS2L(ACM MM 20)[17] 64.9 27.6
3s-CrosSCLR(CVPR 21)[26] 84.9 21.2
ISC(ACM MM 21)[47] 80.9 36.0
3s-AimCLR(AAAI 22)[28] 87.8 38.5
3s-SSRL(ours) 90.9 50.2

TABLE IX
LINEAR EVALUATION RESULTS ON NTU-120 DATASET.

Method NTU-120(%)
xsub xset

P&C(CVPR 20)[19] 42.7 41.7
AS-CAL(Information Sciences 21)[27] 48.6 49.2
CRRL(21)[61] 56.2 57.0
3s-CrosSCLR(CVPR 21)[26] 67.9 66.7
ISC(ACM MM 21)[47] 67.9 67.1
3s-AimCLR(AAAI 22)[28] 68.2 68.8
3s-SSRL(ours) 69.2 71.5

D. Comparison with State-of-the-art Methods

We compare our proposed SSRL with other existed state-
of-the-art methods under linear evaluation, finetune protocol 
and semi-supervised evaluation. We also conduct experiments 
on its inference speed.

Linear Evaluation Results on NTU-60 As shown in Table 
VII, our proposed SSRL outperforms all other methods in both 
single stream setting and three-stream setting. It is noted that, 
compared to recent contrastive learning method 3s-CrosSCLR
[26] and 3s-AimCLR [28], 3s-SSRL leads by 2.7% and 1.3%
respectively in xsub and xview. The performance of single-
stream SSRL in xsub setting surpasses the performance of
other three-stream methods, indicating the effectiveness of our
proposed method.

Linear Evaluation Results on PKU-MMD From Table
VIII, it can be witnessed that our proposed SSRL is ahead of
other state-of-the-art methods. For PKU-MMD part I, SSRL
takes a lead of 3.1%. And it is worth noting that for the more
difficulty part II, the performance of SSRL reaches the level
of some supervised methods, which proves that the inference
tasks help the model to learn high-level semantic information
in skeleton sequences.

Linear Evaluation Results on NTU-120 As shown in TA-
BLE IX, our 3s-SSRL outperforms the other self-supervised
methods on both xsub and xset settings. Compared to the
advanced contrastive learning method AimCLR, our method
leads 1% and 2.7% in the two settings respectively. It indicates
that our proposed method can perform well on large-scale
datasets with more categories.

Finetuned Evaluation Results For fair comparison, the ST-
GCN [10] in Table VI has the same number of parameters
as our encoder network. From Table X, for single-stream, our
proposed SSRL perform better than other contrastive methods.
And for three-stream, the results of SSRL are also competitive

TABLE X
FINETUNE RESULTS ON NTU-60 AND NTU-120 DATASET.

Method NTU-60(%) NTU-120(%)
xsub xview xsub xset

single-stream
SkeletonCLR(CVPR 21)[26] 82.2 88.9 73.6 75.3
AimCLR(AAAI 22)[28] 83.0 89.2 76.4 76.7
SSRL(ours) 83.2 90.3 76.5 77.2
three-stream
3s-ST-GCN(AAAI 18)[10] 85.2 91.4 77.2 77.1
3s-CrosSCLR(CVPR 21)[26] 86.2 92.5 80.5 80.4
AimCLR(AAAI 22)[28] 86.9 92.8 80.1 80.9
SSRL (ours) 87.0 93.0 80.3 81.7

TABLE XI
SEMI-SUPERVISED RESULTS ON NTU-60 DATASET.

Method
NTU-60(%)

xsub xview
(1%) (10%) (1%) (10%)

LongT GAN(AAAI 18)[58] 35.2 62.0 - -
MS2L(ACM MM 20)[17] 33.1 65.2 - -
ISC(ACM MM 21)[47] 35.7 65.9 38.1 72.5
3s-CrosSCLR(CVPR 21)[26] 51.1 74.4 50.0 77.8
3s-Colorization(ICCV 21)[62] 48.3 71.7 52.5 78.9
3s-AimCLR(AAAI 22)[28] 54.8 78.2 54.3 81.6
3s-SSRL(ours) 61.2 79.4 56.3 82.0

compared to state-of-the-art methods including supervised ST-
GCN, indicating the effectiveness of our method.

Semi-supervised Evaluation Results We conduct experi-
ments under semi-supervised evaluation on NTU-60 and PKU-
MMD. From Table XI and Table XII, either using 1% or 
10% of labelled data, our proposed method outperform other 
unsupervised method by a considerable margin on each bench-
mark. And as shown in the table, in the case of using only 
1% labelled data, the improvement of our method over other 
methods is more significant. T his s hows t he a bility o f SSRL 
on extracting more discriminative skeleton representations. 
Inference Speed We also evaluate the inference speed of 
SSRL, considering the potential need for the model to be de-
ployed in real-world application. We used one single NVIDIA 
GTX 1080ti for the inference experiment, and obtained the 
speed of 105 frame per second for SSRL, which is more than 
good enough for many real-time applications. Recently there 
are some real-time action recognition methods in supervised 
manner [43], [44], [45] with excellent performance. However, 
we could not compare our method with these methods directly

TABLE XII
SEMI-SUPERVISED RESULTS ON PKU-MMD DATASET.

Method
PKU-MMD(%)

part I part II
(1%) (10%) (1%) (10%)

LongT GAN(AAAI 18)[58] 35.8 69.5 12.4 25.7
MS2L(ACM MM 20)[17] 36.4 70.3 13.0 26.1
ISC(ACM MM 21)[47] 37.7 72.1 - -
3s-CrosSCLR(CVPR 21)[26] 49.7 82.9 10.2 28.6
3s-AimCLR(AAAI 22)[28] 57.5 86.1 15.1 33.4
3s-SSRL(ours) 63.1 87.7 21.2 36.7
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as they used modalities such as RGB images or optical flow 
while we used skeleton. Of course, skeleton can be extracted 
from videos, but it is out of the scope of this paper. By the 
way, it can be noted that the decisive factor in inference speed 
of our proposed method is the encoder network. However, our 
proposed framework can be used flexibly with other encoders 
as well, and the inference speed can be further improved if 
another efficient encoder is chosen and integrated into our 
framework.

V. CONCLUSION

In this paper, we propose a contrastive learning framework
for self-supervised 3D skeleton-based action representation. To
mine the spatial-temporal features of human actions, it inte-
grates two novel inference tasks to help exploiting high-level
semantic information in both spatial and temporal dimension.
By pursuing consistency of samples, it can learn effective
skeleton representation without the need of negative samples.
Experiments on a variety of evaluation protocols show that
our SSRL outperforms significantly against state-of-the-art
methods, verifying the high quality of skeleton representation.
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