
1

Low latency Parallel Turbo Decoding
implementation for future terrestrial broadcasting

systems

Abstract—As a class of high-performance forward error
correction codes, turbo codes, which can approach the channel
capacity, could become a candidate of the coding methods in
future terrestrial broadcasting (TB) systems. Among all the
demands of future TB system, high throughput and low latency
are two basic requirements that need to be met. Parallel turbo
decoding is a very effective method to reduce the latency and
improve the throughput in the decoding stage. In this paper, a
parallel turbo decoder is designed and implemented in
Field-Programmable Gate Array (FPGA). A reverse address
generator is proposed to reduce the complexity of interleaver and
also the iteration time. A practical method of modulo operation is
realized in FPGA which can save computing resources compared
with using division operation. The latency of parallel turbo
decoder after implementation can be as low as 23.2us at a clock
rate of 250 MHz and the throughput can reach up to 6.92Gbps.

Index Terms— FPGA, interleave, low latency, parallel turbo
decoding, terrestrial broadcasting

I． INTRODUCTION

ERRESTRIAL broadcasting technologies are facing a
challenge that data rate demand from the users is

increasing dramatically. The latest television standards such as
HDTV (High Definition TV) and UHDTV (Ultra-High
Definition TV) [1]-[3] require that the broadcasting system
should support higher throughput and lower latency. Besides,
future digital terrestrial TV broadcasting systems are expected
to not only support traditional rooftop receivers but also
mobile receivers. This makes the demand of mobile data
traffic more urgent and drives the research of new digital
terrestrial TV technologies [4]. Nowadays, people are not just
satisfied with watching TV at home only, they also expect to
enjoy broadcasting services with their mobile devices.
Therefore the future broadcasting system has to support other
services such as WiFi and Cellular Networks [5]. It is also a
trend that the mobile broadband and broadcast services,
indoor and outdoor services can converge together in the
future [6].

As a high performance forward error correction code,
turbo codes [7]-[12] are believed to be one of the most robust
channel coding methods for wireless communications. In
particular, turbo codes are able to facilitate near-capacity
transmission throughputs, leading to a wide deployment in the
state-of-the-art communication standards such as WiMAX [13]

and LTE [14] and could be employed in future potential
broadcasting standard [15]. The Logarithmic
Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm is
employed for the iterative decoding of turbo codes. The
decoding process is time-consuming because of the serial
nature of Log-BCJR algorithm, which is caused by data
dependencies of its forward and backward recursions [17].
This makes it hard to meet the demand of system throughput
and latency. More specifically, the target transmission
throughput should be multi-Gbps and ultra-low end-to-end
latencies can be expected to be targets for future wireless
communication standards [16]. Therefore, parallelization of
traditional turbo decoding is a practical and effective way to
improve the throughput and reduce the system latency at the
decoding stage.

Note that a number of parallel turbo decoders have been
proposed previously, and most of them mainly tried to
improve the level of parallelism in order to get a higher
throughput and lower latency. In [18], a fully-parallel turbo
decoder was implemented using analog decoder, but only
short message lengths are supported. According to [19], a
parallel turbo decoder algorithm that operates on the basis of
stochastic bit sequences was proposed which requires more
processing time than Log-BCJR algorithm. A high
performance parallel turbo decoder was introduced in [20]
with configurable interleaving network which is implemented
on very-large-scale integration (VLSI). A fully-parallel turbo
decoding algorithm was studied in [21] which can support all
LTE and WiMAX standards. However, the computing
complexity is too high and is not practical for hardware
platform like FPGA.

For the sake of concept proving for future generation
terrestrial systems, it is important that the parallel turbo
decoding can be implemented on platform like FPGA due to
the high cost of VLSI or Application Specific Integrated
Circuits (ASIC). Besides, FPGA is believed to be a keystone
for the Centralized/Cloud Radio Access Network (C-RAN),
which is one of the promising evolution paths for future
mobile network architecture [27]. In this paper, a parallel
turbo decoder is implemented on a Testbed which is designed
to support multi-Gbps throughput and deployed with several
FPGA processors. A reasonable level of parallelism is chosen
in order to meet the demand of throughput, latency and
acceptable computing complexity as well. A reverse address

Hua Luo, Yue Zhang, Wei Li, Li-Ke Huang, John Cosmas, Dayou Li, Carsten Maple, Xun Zhang

T

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to
final publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

Copyright © 2017 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works by sending a request to pubs-permissions@ieee.org.
For more information, see https://www.ieee.org/publications/rights/rights-policies.html

2

generator is proposed in order to reduce the interleaver
complexity and reduce the iteration time at the same time.
Modulo operation is an essential part of interleave index
generation. We designed a practical method of modulo
operation which helps to reduce the complexity in FPGA
especially when the parallelism level is high. The contribution
of this paper is that we provided a feasible solution of parallel
turbo decoder implementation on FPGA with latency reduced
and throughput improved.

The rest of the paper is organized as follows. Section II
provides the background knowledge of turbo encoding and
traditional serial turbo decoding algorithm. In Section III, the
parallel turbo decoder is introduced plus the proposed reverse
interleaving address generator. The implementation of the
decoder on FPGA is described in Section IV, in which the
simplified modulo operation is introduced. Finally, the
experimental results and latency/throughput comparisons are
given in Section V and conclusions are made in Section VI.

II. TURBO ENCODER AND DECODER

In this section, the background knowledge of turbo
encoder and decoder is introduced.

A. Turbo encoder

A turbo encoder is made up of two tail-biting recursive
systematic convolutional (RSC) encoders in parallel, as shown
in Fig. 1(a). The second RSC encoder is placed after an
interleaver (). These two encoders generate two N -bit
encoded frames, named a parity frame and a systematic frame.
Each RSC coding rate is =1/2R with a codeword length of
N and a constraint length of 4l  . The encoder can also be
represented by a trellis diagram as shown in Fig. 1(b) below.
Since the message frame uses three encoded frames, the
systematic frame (ib), the two parity frames (1,ip and 2,ip),

the turbo encoder produces a total length of 3N bits frame

ix and the overall coding rate is =1/3R . Following turbo

encoder, the encoded frames are modulated and transmitted to
the receiver.

D D D

D D D

ib
ib

1,ip

2,ip


0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1,i ib p
00

11

11
00

11
00

11
00

00
11

00
11

00
11

11
00

0ib 
1ib 

1iS  iS

 (a) (b)

(c)
Fig. 1. (a) Turbo encoder; (b) trellis diagram; (c) turbo decoder

The RSC encoder operates on the basis of an 8M  -state
transition diagram as shown in Fig. 1(b). The encoder begins
from an initial state of 0 0S  and transits into each

subsequent state  0,1, 2,..., 1iS M  according to the

corresponding message bit  0,1ib  . Since the message bit

 0,1ib  has two possibilities, there will be 2 potential

transitions from the previous state 1iS  to the current state

iS .

B. Turbo decoder

At the receiver side, the received frame iy can be

extracted into 3 encoded frames: systematic frame (sys1),
parity frame 1 (par1) and parity frame 2 (par2), according to
the encoder. Turbo decoder includes two sub-decoders to
perform iterative decoding. The sys1 and par1 are transmitted
into sub-decoder 1 while sys2, which is generated from sys1
by interleave, and par2 is input into sub-decoder 2. The
structure of the decoder is shown in Fig. 1(c). Firstly,
sub-decoder 1 generates extrinsic information LLR1
according to systematic, parity and a priori bits. LLR1 is
utilized as a priori information by sub-decoder 2 after
interleaving. Secondly, the new extrinsic information LLR2
generated by sub-decoder 2 is fed back to decoder 1 after the
process of deinterleaver (1). Therefore, the decoding
iteration begins and after sufficient iterations, the performance
of the decoder can approach to optimal.

An algorithm named BCJR was proposed in [22] for
decoding convolutional codes and was updated by the authors
of [23] to process tail-biting codes. For the encoded
sequence 1 2 3, , ,..., Nx x x x x , 1 2 3[, ,]i i i ix x xx is the code

word for each input bit ib and 1 2 3, ,i i ix x x are the sys1, par1

and par2 respectively. As the message bit ib has two

possible values: 0 or 1, we can define the log-likelihood ratio
(LLR) as

   
 

1
ln

0
i

i
i

P b
L b

P b





(1)

The received sequence 1 2 Ny = y ,y , ..., y is delivered to

the decoder for the estimation of the original bit ib . The

decoding algorithm computes a posteriori LLR given by

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

3

   
 

1 |
| ln

0 |
i

i
i

P b
L b

P b





y

y
y

 (2)

The  |iL b y can be converted to a bit value through

hard decision afterwards. More specifically, if (|) 0iL b y ,

the estimation of the message bit will be 0ib 


 and 1ib 


if (|) 0iL b y . Therefore, the key problem of decoding is the
calculation of LLR. After LLR calculation, the extrinsic
information will be obtained.

According to [28], the LLR can be defined by the joint
probabilities of three parameters, the forward variable  , the
backward variable  , and the transition probability  . 

and  can be computed by forward and backward
recursions, which means that, to compute the LLR, at least
4N times of sampling periods are needed including
interleaving and deinterleaving. Let I be the iteration times
of the decoding, the overall decoding latency can be given as:

4D N I  . (3)

This is the bottleneck of decoding in terms of latency.
Therefore, parallel decoding is needed to reduce the decoding
latency.

III. PARALLEL TURBO DECODING

In this section, the principle of parallel turbo decoding is
introduced. The structure of parallel interleaver, which is one
of the most complex part of parallel decoding, is explained as
well. Moreover, a reverse address generator is proposed for
parallel interleaving, which can reduce the time of the
decoding process.

A. Parallel decoding

A parallel decoder is performing in parallel by separating
the whole block into P sub-blocks, where P is the level
of parallelism. In this way, the decoding time is reduced
because the length of sub-block /K N P is much smaller
than the whole block. Generally speaking, the higher the level
of parallelism, the less decoding time is needed. According to
the parallel decoding algorithm proposed in [23], as shown in
Fig. 2, the last forward variable (1) , ()p K j s  and backward

variable 1, ()pK j s  from the previous iteration of the

neighbor sub-blocks ((1)thp  and (1)thp ) are utilized as

the initial value of computation for this thp sub-block. Here,

, ()i j s and , ()i j s represent the forward and backward

information at thj trellis stage of the thi decoding bit with

state s . 0 and 0 denote the forward and backward
initial variable values of each sub-block in the first iteration
and also represents the first and last sub-blocks in the later
iterations respectively.

Note that between each iteration, the output LLR of the
previous iteration will be processed by
interleaving/deinterleaving. For simplicity, the
interleaving/deinterleaving process is not shown in Fig. 2. All

the decoders of each sub-block are performed in parallel and
simultaneously so that the parallel decoder can reduce the
decoding time to 1/ P of the sequential decoding time.

B. Interleave and deinterleaving

The interleaver is a very important part of channel coding
performance of turbo codes. For the cooperation of parallel
decoding iteration, the interleaver/deinterleaver should be
designed to be parallel as well. A memory access contention
may occur during the interleaving of extrinsic information.
Therefore, based on some algebraic constructions,
contention-free interleavers have been proposed in [24], [25]
and references therein. In our case, the block size is N , the
interleaver is defined as

2
1 2

() () mod
, 0,1,2..., 1

()
i A i N

i N
A i f i f i
     

, (4)

where 1f is an odd number and 2f is even, i is the index

number of input data iy and ()i is the index number after

1

2

P

1

2

P

1

2

P

0 0 0

0

0

0

0

 ,K j s

0 0 0

 1,K j s 

 ,K j s

 1,K j s 

Iteration

 (1) ,P K j s   (1) ,P K j s 

 2 1,K j s 
 2 1,K j s 

Fig. 2. Parallel forward and backward computation

interleaving. For the parallel interleaver, if the parallel level
P can divide block size N , then this interleaver is
contention-free [20].

In order to generate the target interleaving address
according to (4), the compute complexity is quite high if using
realtime multiply operation to calculate ()A i because the

index i increases progressively till 1N  . Therefore, an
optimized address generator is proposed in [20], which has
low complexity. The address generation is accomplished by
recursion and the derivation is as follows. According to (4),

1 2

1 2 2

1 2 2

(0) 0, (1)
(1) () 2
(2) (1) 3 2

A A f f
A i A i f f i f
A i A i f f i f

  
     
      

 (5)

then

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to
final publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

4

2(2) 2 (1) () 2A i A i A i f     . (6)

Since (0)A and (1)A are known initial factors, by recursion,

the following interleaving index can be generated from (6). In
this way, no multiplication is needed, which helps reduce
complexity dramatically. This address generator cannot be
used in a parallel interleaver directly because all the
sub-blocks are processing simultaneously hence a parallel
address generator is needed.

The memory of parallel interleaver is divided into P
banks corresponding to P sub-blocks. The thi extrinsic

information will be stored in the () / thi K bank at the

address of () modi K after interleaving. In addition,

deinterleaving is the inverse operation of interleaving for
which the principle of address generation is the same as
interleaving.

C. Reverse address generator

Based on the forward and backward computation structure
of turbo codes, the sequence of backward variables , ()i j s

should be reversed in order to calculate the extrinsic
information. This process adds processing time by at least N
clock cycles for sequential decoding or K clock cycles for
parallel decoding as shown in Fig. 3(a). Utilizing the
characteristics of interleaving, the sequence of extrinsic
information can remain reversed and does not affect
interleaving while the processing time can be reduced to 3/4
of the original sequence interleaving (see Fig. 3(b)).

, , 1, 2,...,I kL k K and ,O kL represent the LLR of a
sub-block before interleaving/deinterleaving and after
interleaving/deinterleaving respectively.

1 K

K 1
,I KL

,1IL

,1OL ,O KL

,1IL ,I KL
1/  

K 1

(a)

1 K

K 1
,I KL

,1IL

,1OL
,O KL

1/  

K 1

(b)
Fig. 3. Timing diagram of each iteration; (a) original sequence interleaving;
(b) reversed sequence interleaving.

Since the sequence of interleaver input is reversed, the
address generator should be changed accordingly. Therefore,
we proposed a reversed address generator for parallel turbo
decoding to reduce the computation complexity and
processing latency as well.

The address of target memory bank () modi K can be

modified as

,

2
1 2

() mod
() mod , 1, 2,...,0, 1, 2,...,

() ()

p k pk K
A pk K k K K p P

A pk f pk f pk

       
  

.

(7)

Note that the first two addresses of each sub-block that need
to be generated are , 1p K  and , 2p K  . According to (7),

2
, 1 1 2

2
, 2 1 2

(1) ((1)) mod
(2) ((2)) mod

p K

p K

f p K f p K K
f p K f p K K





    
     , (8)

since 1f , 2f and p are all integers, (8) can be simply

modified to

, 1 1 2

, 2 1 2

2 mod
2 4 mod

p K

p K

f f K
f f K





   
    . (9)

Using similar derivation as (5), the following address of each
filter bank can be generated by recursion

, 2 , 1 , 22 2 modp k p k p k f K       . (10)

From (10), we can find that the recursion process and initial
values have nothing to do with p hence the addresses of all
these sub-blocks are the same and only one channel of address
generator is necessary for this parallel interleaver.

2 1 22 2 modk k k f K      (11)

The destination bank that the LLR of a sub-block should
be mapped into is decided by the value of () /i K . The

division operation here is costly therefore recursive
computation is needed for this reverse address generator. Let

() /i K be redefined as

, () /
[() mod] /

p k pk K
A pk N K

  
 (12)

The recursion has two dimensions. First, the recursion
direction is from 1k K  to 0k  . , 1p K  and , 2p K 

are the initial values. Second, another recursion is
performed from 1p  to p P where 1,k and 2,k

are the initial values. In order to accomplish this two
dimensional recursion, 1, 1K  , 1, 2K  , 2, 1K  and 2, 2K 

must be known before the computation.

2
, 2 , 1 , 2

2
2, 1, , 2

2 [2 mod] /
2 [2 mod] /

p k p k p k

p k p k p k

p f N K
K f N K

 

 

    
    

 (13)

Since the interleaver/deinterleaver is placed after the
whole computation of , ()i j s , 1, 1K  , 1, 2K  , 2, 1K  and

2, 2K  can be calculated via pipeline of the multiplication

cell before the address generator, as well as
2

2[2 mod] /p f N K and 2
2[2 mod] /K f N K . By this

recursion, no realtime multiplication is needed during the
address generation. With the reverse address generator
mentioned above, the parallel interleaver/deinterleaver can

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

5

reduce processing time compared to the method in [20]
even though it may cost a little more computation
resources.

IV. TURBO DECODER IMPLEMENTATION

Due to its low cost and short development cycle, FPGA is
one of best hardware platform choices for a real-time proof of
concept system. In this work, the parallel LTE turbo decoder
including the proposed interleaving address generator is
implemented on Xilinx Virtex VII. In this section, the detail of
decoding implementation is introduced. This decoder can
support all the block sizes of the LTE standard. Different
parallel level P can be configured according to the specific
block size. Considering that the higher the parallel level is, the
more complex the decoder will be and the more computing
resources will be used, P is set to be 64 when the block size
N ranges from 2048 to 6144 and 8P when

2048256  N , otherwise 1P .

A. Extraction

The LTE received data before turbo decoding has a certain
format, with all the systematic bits and two frames of parity
bits included. Therefore, before the calculation of LLR, the
extraction of the received data frame is needed. An interleaver
is located here as well in order to generate sys2 to match par2
for sub-decoder 2, as shown in Fig. 4. A FIFO is placed after
interleaver in order to synchronize with par2.

Since during the iteration of decoding, all these systematic
and parity frames that are going to be reused, sys1, par1 and
par2, are stored in block RAMs and the read of RAMs is
controlled by the request signals (req_1 and req_2) from the
LLR calculation module. As the extraction will generate a
group of parallel input data for LLR calculation, a
configurable parameter is used here to make this decoder
compatible with different parallelism levels. Moreover, to
produce the same number of block RAMs according to the
parallel level, the method of source code generation is utilized.
For example, this generate operation was created in Verilog
HDL.

0 1 1, ,..., ,N taily y y y

sys1

par1

par2

RAM

RAM

RAM

LLR

req_1

req_2 FIFO

req_1

req_2


sys2

Fig. 4. Extraction of received data.

B. Extrinsic information

Extrinsic information calculation includes forward
variable  and backward variable  calculation. As

shown in Fig. 5, a block RAM is placed after  module in
order to reverse the sequence as mentioned in Section III.
Source code generation is used here as well to produce P
groups of  modules,  modules and LLR modules.

RAM
LLRSystematic,

parity & LLR

RAM
LLR

1
IL

P
IL

1
k

1
k

P
k

P
k

Fig. 5. Parallel extrinsic information calculation.

Note that in the theoretical calculation of  and  ,

,

,

() , 1
() , 1

i j

i j

s s
s s




  
   (14).

However, minus infinity does not exist in practical fixed-point
calculation. A logical comparitor is utilized because if
   , then x    where x can be any value
except infinity. Hence  in FPGA is replaced by a least
signed value. More specifically, in our case, a 16 bit
hexadecimal 2’s complement value 8000H is used. By
comparison, if  equals 8000H, then x  is still 8000H.
The same method is used to deal with  .

C. Interleaver/Deinterleaver

As mentioned in Section III, the interleaver is
contention-free as long as the parallel level P can divide the
block size N . Memory contention does not happen in our
study because all the block sizes can be divided by P . The
interleaver/deinterleaver is a memory dynamic mapping
process. The target address and memory bank are generated
by the proposed reverse address generator. As shown in Fig. 6,
for the interleaving process, using multiplexer in FPGA, the
realtime LLR can be written into the related block RAMs and
read from them sequentially after writing has been completed.

As mentioned in Section III, the RAM write address ,p k

of each sub-block is independent of p so only 1,k is
produced from the address generator. The LLR results of LLR
modules are mapped to different RAMs according to ,p k .

On the other hand, the write process is sequential for
deinterleaver while read address ()i and bank number

()i are generated by the address generator.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

6

1,k

,
P
I kL

RAM

RAM

RAM

2
,I kL

1
,I kL

,
P
O kL

2
,O kL

1
,O kL

Address
generator

1,k
,p k

M
ultiplexer

,p k

Fig. 6. Parallel Interleaving.

D. Modulo operation

Modulo operation %C D is a costly part of the address
generator. The result of modulo is the remainder of a division
operation. For Xilinx FPGA, the only existing function for
modulo operation is the division intellectual property (IP) core
which takes many logic units. Some other faster methods like
the bitwise operation also exist but they assume D as a
constant or the number of powers of 2 [26]. In our study, D
is not a constant or a power of 2. A modulo function based on
Verilog HDL should be designed with less computing
resource and fast speed as well.

Inspired by the bitwise operation, we designed a modulo
function that uses a shifter and comparator to get the
remainder of the division but not the quotient. Let E be the
maximum bit width of C , F be the maximum bit width of
D . The procedure of the proposed modulo function is as Fig.
7 below.

 Input ,C D

2E F eC D   

2E F eC C D    
1e e 

e E F 

C C
1e e 

start

end

Y N

Y

N

 Output C

Fig. 7. Modulo function flowchart.

E. Double buffering

In order to maximize the throughput of the turbo decoder,
double buffering is utilized in this design. Since the
calculation of  ,  and LLR is sequential, the previous
module is idle when the latter module is working. For instance,
as shown in Fig. 3,  module works after the whole

sub-block calculation of  . Obviously, another sub-block of
 can keep calculating during that period, as shown in Fig.8
below. In this way, the whole decoder can decode two frames
simultaneously which can nearly double the throughput.
Double buffering is very functional as only double storage
space is used, however the logic and compute resources, e.g.
lookup tables (LUTs), Flip-Flop, Multipliers, are reused so the
utilization of FPGA resource is more efficient.

1 K

K 1

,I KL ,1IL

,1OL ,O KL

1/  

K 1
1 K

1K

1K

1/  

,I KL ,1IL

,1OL
,O KL

Fig. 8. Double buffering

 Based on the proposed reverse address generator and the

double buffering technique, the parallel decoding latency after

implementation can be give as:

(3 12) / 4 (3 /) (1)D N N P I t        , (15)

where t is the latency brought by the FPGA modules

such as RAMs, multipliers, FIFOs, modulo operation, and

so forth. The value of t depends on how the decoder is

implemented.

V. EXPERIMENT RESULTS

In this Section, the Testbed system and the results of
parallel turbo decoder implementation are introduced. In order
to meet the requirements of future broadcasting system, this
Testbed is designed to support multi-Gbps decoding
throughput. The structure of it can be found in Fig. 9.

X86 Server

BEE7

RF frontend

PCIe

Fig. 9. Testbed system structure.

The X86 Server is the control center of this Testbed, which
is connected via Peripheral Component Interconnect Express
(PCIe) with BEE7. BEE7 is a programmable hardware
platform used for algorithm exploration, research, prototyping
and so on. Four Xilinx Virtex-7 FPGAs are allocated on this
platform. With one FPGA processor, the throughput
requirement cannot be met. BEE7 is linked with several RF
frontends to build a MIMO transceiver.

As we know that higher parallelism means lower latency,
it also takes more computing resources especially logic
resources such as LUTs and Flip-Flops. For one FPGA in

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

7

BEE7, the parallel level can reach to 64P  with a latency
of 23.2 us at 250 MHz clock rate where the iteration times is 8.
Although the latency is quite low compared to lower
parallelism, the throughput of this system is only 2.12 Gbps
which is not enough. The throughput and latency comparison
of different parallel levels are listed in Table I.

Table I. Throughput and latency comparison

The results above are obtained via ModelSim simulation
after placement and routing. This simulation can measure how
many clock cycles are needed for a whole decoding process.
By some simple calculation, the latency and throughput can
be calculated. It can be seen that when the parallel level is 8,
which is 8 times lower than 64, then the latency is not 8 times
larger. This is because the extraction of the received data takes
a fixed amount of time. Moreover, since it takes much fewer
resources when 8P  , 8 parallel turbo decoders can be put
on a single FPGA at the same time, which makes the
throughput reach to 6.92Gbps. Even though the throughput is
low when 64P  because only one decoder can be put on
the FPGA, its good latency performance can still be used for
the case of a strict latency requirement.

The implementation validity is evaluated by Integrated
Logic Analyzer (ILA) of Xilinx. A fixed test block is stored in
a block RAM. By capturing the output of the turbo decoder,
the decoding results can be examined. As shown in Fig. 10,
the original frame before turbo encoding is a square wave, and
we can see that the output is a square wave that matches the
original frame.

Fig. 10. Decoding results capture

For LTE standard, the maximum number of C is
(6143)A in (4), the bit width E cannot be larger than 35

and F cannot be greater than 13. Therefore, it only takes 22
clock cycles to finish modulo operation. The latency and
complexity comparison between this function and the division

IP can be found in Table II.

Table II. Modulo operation comparison

Modulo function IP

Latency (clock) 22 38

Complexity

(1 module)

Slice

LUT

Slice

register

Slice

LUT

Slice

register

754 539 627 2407

Complexity

(64 modules)

48256 34496 40128 154048

Table II shows that modulo function we designed can save
nearly 3/4 slice registers compared to the IP from Xilinx
although it takes a little more slice LUTs. It is significant that
modulo function can save much more slice registers when the
parallel level is high, e.g. 64P  , and it uses less clock
cycles to complete the computation.

For LTE standard, block error rate (BLER) is used to test
the decoder performance. The BLER of this decoder is
evaluated via MATLAB simulation and ModelSim simulation.
MATLAB simulation results are used as the reference of
decoding BLER. The encoded frames with Gaussian white
noise are first written into a test file and then read by Verilog
test file. By Monte Carlo simulation, 1000 random frames for
each signal-to-noise ratio (SNR) value, the BLER of different
SNR can be obtained as shown in Fig. 11. Since the
simulation is performed without rate mapping and modulation,
it works well even at very low SNR. The purpose of this
simulation is to make sure that the decoder implementation is
working as expected. We can see that the BLER results of our
FPGA parallel decoder are similar to its MATLAB theoretical
simulation. The BLER is slightly higher because of the fixed
point quantification error. Moreover, although the parallel
decoder can increase system throughput and reduce latency,
the BLER performance will be degraded.

There exist better ways to test the decoder, such as transfer
the decoding results back to the server. By comparing the
original bits and the decoded bits at the server side, the
realtime block error rate (BLER) can be obtained. However,
this part is not available at this moment and will be a part of
our further research in the near future.

Fig. 11. BLER simulation results

This work [20]

Iteration 8

Block size 6144

P 8 64 8 64

Clock(MHz) 250

Extraction time (us) 18.4

Latency (us) 56.8 23.2 69.6 24.8

Iteration time (us) 38.4 4.8 51.2 6.4

Throughput (Gbps) 6.92 2.12 2.82 0.99

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

8

VI. CONCLUSION

Parallel turbo decoding is a practical way to increase the
system throughput and reduce the latency in order to meet the
requirements of future terrestrial broadcasting systems. In this
paper, the implementation on FPGA of the parallel turbo
decoder is introduced. A reverse address generator of
interleaver/deinterleaver is proposed to reduce the processing
time of each iteration and decrease latency further. The
address generator uses recursion to generate the realtime
address needed by the interleaver, which saves computing
resources. A modulo function, that uses fewer clock cycles
and logic resources compared to the Xilinx division IP, is
designed to perform modulo operation. Moreover, in order to
utilize the limited FPGA resources more efficiently, a double
buffering technique is used to double the throughput in this
parallel turbo decoder, which needs more storage space but
reuses the logic resources.

The implementation of this decoder is accomplished on a
Testbed system with 4 FPGA processors. On the one hand, by
capturing the decoding results via Xilinx ILA, the validity of
the parallel decoder is evaluated. On the other hand, the
latency and BLER is tested by ModelSim simulation after
placement and routing. The system decoding throughput is
calculated based on the latency measured. Although the
throughput of this Testbed is less than 10Gbps, which is the
demanded requirement of next generation wireless
communication systems, our research gives a clue that parallel
turbo decoder can be implemented on FPGA and meet
multi-Gbps throughput requirement at the same time and that
the throughput can be further improved by using more
hardware resources.

VII. REFERENCE

[1]. S. I. Park, G. Lee, H. M. Kim, N. Hur, S. Kwon and J. kim, "ADT-Based
UHDTV Transmission for the Existing ATSC Terrestrial DTV
Broadcasting," IEEE Trans. Broadcast., vol. 61, no. 1, pp. 105-110, March
2015.

[2]. T. Biatek; W. Hamidouche; J. F. Travers; O. Deforges, "Optimal Bitrate
Allocation in the Scalable HEVC Extension for the Deployment of UHD
Services.” IEEE Trans. Broadcast., vol.PP, no.99, pp.1-16, Sep. 2016.

[3]. S. Saito et al., "8K Terrestrial Transmission Field Tests Using
Dual-Polarized MIMO and Higher-Order Modulation OFDM," IEEE
Trans. Broadcast., vol. 62, no. 1, pp. 306-315, Mar. 2016.

[4]. D. Vargas, Y. J. D. Kim, J. Bajcsy, D. Gómez-Barquero, and N. Cardona,
"A MIMO-Channel-Precoding Scheme for Next Generation Terrestrial
Broadcast TV Systems." IEEE Trans. Broadcast., vol.61, no.3, pp.
445-456, 2015.

[5]. J. Calabuig, J. F. Monserrat and D. Gómez-Barquero, "5th generation
mobile networks: A new opportunity for the convergence of mobile
broadband and broadcast services," IEEE Comm. Mag., vol. 53, no. 2, pp.
198-205, Feb. 2015.

[6]. L. Dai, Z. Wang and Z. Yang, "Next-generation digital television
terrestrial broadcasting systems: Key technologies and research trends,"
IEEE Comm. Mag., vol. 50, no. 6, pp. 150-158, June 2012.

[7]. J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding
techniques: An overview,'' IEEE Trans. Veh. Technol., vol. 49, no. 6, pp.
2208-2233, Nov. 2000.

[8]. Y. G. Debessu, H. C. Wu, H. Jiang and S. Mukhopadhyay, "New
Modified Turbo Decoder for Embedded Local Content in
Single-Frequency Networks," IEEE Trans. Broadcast., vol. 59, no. 1, pp.
129-135, March 2013.

[9]. I. A. Chatzigeorgiou, M. R. D. Rodrigues, I. J. Wassell and R. A.
Carrasco, "Comparison of Convolutional and Turbo Coding for
Broadband FWA Systems," IEEE Trans. Broadcast., vol. 53, no. 2, pp.
494-503, June 2007.

[10]. M. Brejza, L. Li, R. Maunder, B. Al-Hashimi, C. Berrou, and L. Hanzo,
20 years of turbo coding and energy-aware design guidelines for
energy-constrained wireless applications,'' IEEE Commun. Surveys Tuts.,
vol. PP, no. 99, pp. 11, Jun. 2015.

[11]. Z. He, P. Fortier, and S. Roy, ``Highly-parallel decoding architectures for
convolutional turbo codes,'' IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 10, pp. 11471151, Oct. 2006.

[12]. O. Muller, A. Baghdadi, and M. Jezequel, “From parallelism levels to a
multi-ASIP architecture for turbo decoding,'' IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 1, pp. 92102, Jan. 2009.

[13]. “IEEE Standard for Air Interface for Broadband Wireless Access
Systems," IEEE Std 802.16-2012 (Revision of IEEE Std 802.16-2009), vol.,
no., pp.1-2542, Aug. 17, 2012.

[14]. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Multiplexing and Channel Coding, ETSI, Sophia Antipolis, France, Feb.
2013.

[15]. L. Christodoulou, O. Abdul-Hameed, A. M. Kondoz and J. Calic,
"Adaptive Subframe Allocation for Next Generation Multimedia Delivery
Over Hybrid LTE Unicast Broadcast," IEEE Trans. Broadcast., vol. 62, no.
3, pp. 540-551, Sep. 2016.

[16]. “5G Radio Access,” Ericsson White Paper, Tech. Rep., June 2013.
[17]. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and

sub-optimal MAP decoding algorithms operating in the log domain,”
IEEE Int. Conf. on Communications, vol. 2, Seattle, WA, USA, June 1995,
pp. 1009–1013.

[18]. D. Vogrig, A. Gerosa, A. Neviani, A. Graell I Amat, G. Montorsi, and S.
Benedetto, “A 0.35-µm CMOS analog turbo decoder for the 40-bit rate 1/3
UMTS channel code,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp.
753–762, 2005.

[19]. Q. T. Dong, M. Arzel, C. J. Jego, and W. J. Gross, “Stochastic decoding
of turbo codes.” IEEE Trans. Signal Processing, vol. 58, no. 12, pp.
6421–6425, Dec. 2010.

[20]. Z. Yan, G. He, We. He, S. Wang, Z. Mao, “High performance parallel
turbo decoder with configurable interleaving network for LTE application”,
Integration, the VLSI Journal, Vol. 52, pp. 77-90, Jan. 2016.

[21]. R. G. Maunder, "A Fully-Parallel Turbo Decoding Algorithm," IEEE
Trans. Communications, vol. 63, no. 8, pp. 2762-2775, Aug. 2015.

[22]. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20,
no. 2, pp. 284–287, Mar. 1974.

[23]. Seokhyun Yoon and Y. Bar-Ness, "A parallel MAP algorithm for low
latency turbo decoding," IEEE Communications Letters, vol. 6, no. 7, pp.
288-290, July 2002.

[24]. A. Tarable, G. Montorsi, and S. Benedetto, “Mapping of interleaving laws
to parallel turbo decoder architectures,” in Proc. 3rd Int. Symp. Turbo
Codes and Related Topics, Brest, France, pp. 153–156, Sep. 2003.

[25]. O. Y. Takeshita, "On maximum contention-free interleavers and
permutation polynomials over integer rings," IEEE Trans. on Info. Theory,
vol. 52, no. 3, pp. 1249-1253, March 2006.

[26]. Butler, J.T., Sasao, T., “Fast hardware computation ofx mod z”. Proc.
18th Reconfigurable Architectures Workshop (RAW 2011), Anchorage,
Alaska, USA, pp. 294–267, May 2011.

[27]. Altera, “Baseband-C-RAN”,
https://www.altera.com/solutions/industry/wireless/applications/baseband/
c-ran.html, Jun. 2016.

[28]. Hamid R. Sadjadpour, “Maximum a posteriori decoding algorithms for
turbo codes”, Proc. SPIE 4045, Digital Wireless Communication II, 73
July 26, 2000.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TBC.2017.2704425, IEEE Transactions on Broadcasting

