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Low latency Parallel Turbo Decoding 
implementation for future terrestrial broadcasting 

systems 

Abstract—As a class of high-performance forward error 
correction codes, turbo codes, which can approach the channel 
capacity, could become a candidate of the coding methods in 
future terrestrial broadcasting (TB) systems. Among all the 
demands of future TB system, high throughput and low latency 
are two basic requirements that need to be met. Parallel turbo 
decoding is a very effective method to reduce the latency and 
improve the throughput in the decoding stage. In this paper, a 
parallel turbo decoder is designed and implemented in 
Field-Programmable Gate Array (FPGA). A reverse address 
generator is proposed to reduce the complexity of interleaver and 
also the iteration time. A practical method of modulo operation is 
realized in FPGA which can save computing resources compared 
with using division operation. The latency of parallel turbo 
decoder after implementation can be as low as 23.2us at a clock 
rate of 250 MHz and the throughput can reach up to 6.92Gbps. 

Index Terms— FPGA, interleave, low latency, parallel turbo 
decoding, terrestrial broadcasting 

I． INTRODUCTION 

ERRESTRIAL broadcasting technologies are facing a 
challenge that data rate demand from the users is 

increasing dramatically. The latest television standards such as 
HDTV (High Definition TV) and UHDTV (Ultra-High 
Definition TV) [1]-[3] require that the broadcasting system 
should support higher throughput and lower latency. Besides, 
future digital terrestrial TV broadcasting systems are expected 
to not only support traditional rooftop receivers but also 
mobile receivers. This makes the demand of mobile data 
traffic more urgent and drives the research of new digital 
terrestrial TV technologies [4]. Nowadays, people are not just 
satisfied with watching TV at home only, they also expect to 
enjoy broadcasting services with their mobile devices. 
Therefore the future broadcasting system has to support other 
services such as WiFi and Cellular Networks [5]. It is also a 
trend that the mobile broadband and broadcast services, 
indoor and outdoor services can converge together in the 
future [6].  

As a high performance forward error correction code, 
turbo codes [7]-[12] are believed to be one of the most robust 
channel coding methods for wireless communications. In 
particular, turbo codes are able to facilitate near-capacity 
transmission throughputs, leading to a wide deployment in the 
state-of-the-art communication standards such as WiMAX [13] 

and LTE [14] and could be employed in future potential 
broadcasting standard [15]. The Logarithmic 
Bahl-Cocke-Jelinek-Raviv (Log-BCJR) algorithm is 
employed for the iterative decoding of turbo codes. The 
decoding process is time-consuming because of the serial 
nature of Log-BCJR algorithm, which is caused by data 
dependencies of its forward and backward recursions [17]. 
This makes it hard to meet the demand of system throughput 
and latency. More specifically, the target transmission 
throughput should be multi-Gbps and ultra-low end-to-end 
latencies can be expected to be targets for future wireless 
communication standards [16]. Therefore, parallelization of 
traditional turbo decoding is a practical and effective way to 
improve the throughput and reduce the system latency at the 
decoding stage. 

Note that a number of parallel turbo decoders have been 
proposed previously, and most of them mainly tried to 
improve the level of parallelism in order to get a higher 
throughput and lower latency. In [18], a fully-parallel turbo 
decoder was implemented using analog decoder, but only 
short message lengths are supported. According to [19], a 
parallel turbo decoder algorithm that operates on the basis of 
stochastic bit sequences was proposed which requires more 
processing time than Log-BCJR algorithm. A high 
performance parallel turbo decoder was introduced in [20] 
with configurable interleaving network which is implemented 
on very-large-scale integration (VLSI). A fully-parallel turbo 
decoding algorithm was studied in [21] which can support all 
LTE and WiMAX standards. However, the computing 
complexity is too high and is not practical for hardware 
platform like FPGA.  

For the sake of concept proving for future generation 
terrestrial systems, it is important that the parallel turbo 
decoding can be implemented on platform like FPGA due to 
the high cost of VLSI or Application Specific Integrated 
Circuits (ASIC). Besides, FPGA is believed to be a keystone 
for the Centralized/Cloud Radio Access Network (C-RAN), 
which is one of the promising evolution paths for future 
mobile network architecture [27]. In this paper, a parallel 
turbo decoder is implemented on a Testbed which is designed 
to support multi-Gbps throughput and deployed with several 
FPGA processors. A reasonable level of parallelism is chosen 
in order to meet the demand of throughput, latency and 
acceptable computing complexity as well. A reverse address 
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generator is proposed in order to reduce the interleaver 
complexity and reduce the iteration time at the same time. 
Modulo operation is an essential part of interleave index 
generation. We designed a practical method of modulo 
operation which helps to reduce the complexity in FPGA 
especially when the parallelism level is high. The contribution 
of this paper is that we provided a feasible solution of parallel 
turbo decoder implementation on FPGA with latency reduced 
and throughput improved. 

The rest of the paper is organized as follows. Section II 
provides the background knowledge of turbo encoding and 
traditional serial turbo decoding algorithm. In Section III, the 
parallel turbo decoder is introduced plus the proposed reverse 
interleaving address generator. The implementation of the 
decoder on FPGA is described in Section IV, in which the 
simplified modulo operation is introduced. Finally, the 
experimental results and latency/throughput comparisons are 
given in Section V and conclusions are made in Section VI. 

II. TURBO ENCODER AND DECODER

In this section, the background knowledge of turbo 
encoder and decoder is introduced.  

A. Turbo encoder

A turbo encoder is made up of two tail-biting recursive
systematic convolutional (RSC) encoders in parallel, as shown 
in Fig. 1(a). The second RSC encoder is placed after an 
interleaver ( ). These two encoders generate two N -bit 
encoded frames, named a parity frame and a systematic frame. 
Each RSC coding rate is =1/2R  with a codeword length of 
N  and a constraint length of 4l  . The encoder can also be 
represented by a trellis diagram as shown in Fig. 1(b) below. 
Since the message frame uses three encoded frames, the 
systematic frame ( ib ), the two parity frames ( 1,ip  and 2,ip ), 

the turbo encoder produces a total length of 3N  bits frame 

ix  and the overall coding rate is =1/3R . Following turbo 

encoder, the encoded frames are modulated and transmitted to 
the receiver. 
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Fig. 1.  (a) Turbo encoder; (b) trellis diagram; (c) turbo decoder 

The RSC encoder operates on the basis of an 8M  -state 
transition diagram as shown in Fig. 1(b). The encoder begins 
from an initial state of 0 0S   and transits into each 

subsequent state  0,1, 2,..., 1iS M   according to the 

corresponding message bit  0,1ib  . Since the message bit 

 0,1ib  has two possibilities, there will be 2 potential 

transitions from the previous state 1iS   to the current state 

iS . 

B. Turbo decoder

At the receiver side, the received frame iy  can be 

extracted into 3 encoded frames: systematic frame (sys1), 
parity frame 1 (par1) and parity frame 2 (par2), according to 
the encoder. Turbo decoder includes two sub-decoders to 
perform iterative decoding. The sys1 and par1 are transmitted 
into sub-decoder 1 while sys2, which is generated from sys1 
by interleave, and par2 is input into sub-decoder 2. The 
structure of the decoder is shown in Fig. 1(c). Firstly, 
sub-decoder 1 generates extrinsic information LLR1 
according to systematic, parity and a priori bits. LLR1 is 
utilized as a priori information by sub-decoder 2 after 
interleaving. Secondly, the new extrinsic information LLR2 
generated by sub-decoder 2 is fed back to decoder 1 after the 
process of deinterleaver ( 1 ). Therefore, the decoding 
iteration begins and after sufficient iterations, the performance 
of the decoder can approach to optimal. 

An algorithm named BCJR was proposed in [22] for 
decoding convolutional codes and was updated by the authors 
of [23] to process tail-biting codes. For the encoded 
sequence 1 2 3, , ,..., Nx x x x x , 1 2 3[ , , ]i i i ix x xx  is the code 

word for each input bit ib  and 1 2 3, ,i i ix x x  are the sys1, par1 

and par2 respectively. As the message bit ib  has two 

possible values: 0 or 1, we can define the log-likelihood ratio 
(LLR) as 

   
 

1
ln
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P b
L b

P b





(1) 

The received sequence 1 2 Ny = y ,y , ..., y  is delivered to 

the decoder for the estimation of the original bit ib . The 

decoding algorithm computes a posteriori LLR given by 
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The  |iL b y  can be converted to a bit value through 

hard decision afterwards. More specifically, if ( | ) 0iL b y , 

the estimation of the message bit will be 0ib 


 and 1ib 


 

if ( | ) 0iL b y . Therefore, the key problem of decoding is the 
calculation of LLR. After LLR calculation, the extrinsic 
information will be obtained.  

According to [28], the LLR can be defined by the joint 
probabilities of three parameters, the forward variable  , the 
backward variable  , and the transition probability  .   

and   can be computed by forward and backward 
recursions, which means that, to compute the LLR, at least 
4N  times of sampling periods are needed including 
interleaving and deinterleaving. Let I  be the iteration times 
of the decoding, the overall decoding latency can be given as: 

4D N I  . (3) 

This is the bottleneck of decoding in terms of latency. 
Therefore, parallel decoding is needed to reduce the decoding 
latency.  

III. PARALLEL TURBO DECODING

In this section, the principle of parallel turbo decoding is 
introduced. The structure of parallel interleaver, which is one 
of the most complex part of parallel decoding, is explained as 
well. Moreover, a reverse address generator is proposed for 
parallel interleaving, which can reduce the time of the 
decoding process. 

A. Parallel decoding

A parallel decoder is performing in parallel by separating
the whole block into P  sub-blocks, where P  is the level 
of parallelism. In this way, the decoding time is reduced 
because the length of sub-block /K N P  is much smaller 
than the whole block. Generally speaking, the higher the level 
of parallelism, the less decoding time is needed. According to 
the parallel decoding algorithm proposed in [23], as shown in 
Fig. 2, the last forward variable ( 1) , ( )p K j s   and backward 

variable 1, ( )pK j s  from the previous iteration of the 

neighbor sub-blocks ( ( 1)thp   and ( 1)thp  ) are utilized as 

the initial value of computation for this thp  sub-block. Here, 

, ( )i j s  and , ( )i j s  represent the forward and backward 

information at thj  trellis stage of the thi  decoding bit with 

state s . 0  and 0  denote the forward and backward 
initial variable values of each sub-block in the first iteration 
and also represents the first and last sub-blocks in the later 
iterations respectively. 

Note that between each iteration, the output LLR of the 
previous iteration will be processed by 
interleaving/deinterleaving. For simplicity, the 
interleaving/deinterleaving process is not shown in Fig. 2. All 

the decoders of each sub-block are performed in parallel and 
simultaneously so that the parallel decoder can reduce the 
decoding time to 1/ P  of the sequential decoding time. 

B. Interleave and deinterleaving

The interleaver is a very important part of channel coding
performance of turbo codes. For the cooperation of parallel 
decoding iteration, the interleaver/deinterleaver should be 
designed to be parallel as well. A memory access contention 
may occur during the interleaving of extrinsic information. 
Therefore, based on some algebraic constructions, 
contention-free interleavers have been proposed in [24], [25] 
and references therein. In our case, the block size is N , the 
interleaver is defined as  

2
1 2

( ) ( ) mod
, 0,1,2..., 1

( )
i A i N

i N
A i f i f i
     

,  (4) 

where 1f  is an odd number and 2f  is even, i  is the index 

number of input data iy  and ( )i  is the index number after 
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Fig. 2.  Parallel forward and backward computation 

interleaving. For the parallel interleaver, if the parallel level 
P  can divide block size N , then this interleaver is 
contention-free [20]. 

In order to generate the target interleaving address 
according to (4), the compute complexity is quite high if using 
realtime multiply operation to calculate ( )A i  because the 

index i  increases progressively till 1N  . Therefore, an 
optimized address generator is proposed in [20], which has 
low complexity. The address generation is accomplished by 
recursion and the derivation is as follows. According to (4), 

1 2

1 2 2

1 2 2

(0) 0, (1)
( 1) ( ) 2
( 2) ( 1) 3 2

A A f f
A i A i f f i f
A i A i f f i f

  
     
      

     (5) 

then 
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2( 2) 2 ( 1) ( ) 2A i A i A i f     .  (6) 

Since (0)A  and (1)A  are known initial factors, by recursion, 

the following interleaving index can be generated from (6). In 
this way, no multiplication is needed, which helps reduce 
complexity dramatically. This address generator cannot be 
used in a parallel interleaver directly because all the 
sub-blocks are processing simultaneously hence a parallel 
address generator is needed. 

The memory of parallel interleaver is divided into P  
banks corresponding to P sub-blocks. The thi  extrinsic 

information will be stored in the ( ) / thi K  bank at the 

address of ( ) modi K  after interleaving. In addition, 

deinterleaving is the inverse operation of interleaving for 
which the principle of address generation is the same as 
interleaving. 

C. Reverse address generator

Based on the forward and backward computation structure
of turbo codes, the sequence of backward variables , ( )i j s  

should be reversed in order to calculate the extrinsic 
information. This process adds processing time by at least N  
clock cycles for sequential decoding or K  clock cycles for 
parallel decoding as shown in Fig. 3(a). Utilizing the 
characteristics of interleaving, the sequence of extrinsic 
information can remain reversed and does not affect 
interleaving while the processing time can be reduced to 3/4 
of the original sequence interleaving (see Fig. 3(b)). 

, , 1, 2,...,I kL k K  and ,O kL  represent the LLR of a 
sub-block before interleaving/deinterleaving and after 
interleaving/deinterleaving respectively. 

1 K

K 1
,I KL

,1IL

,1OL ,O KL

,1IL ,I KL
1/  

K 1

(a) 

1 K

K 1
,I KL

,1IL

,1OL
,O KL

1/  

K 1

(b) 
Fig. 3.  Timing diagram of each iteration; (a) original sequence interleaving; 
(b) reversed sequence interleaving. 

Since the sequence of interleaver input is reversed, the
address generator should be changed accordingly. Therefore, 
we proposed a reversed address generator for parallel turbo 
decoding to reduce the computation complexity and 
processing latency as well.  

The address of target memory bank ( ) modi K  can be 

modified as 

,

2
1 2

( ) mod
( ) mod , 1, 2,...,0, 1, 2,...,

( ) ( )

p k pk K
A pk K k K K p P

A pk f pk f pk

       
  

.

(7) 

Note that the first two addresses of each sub-block that need 
to be generated are , 1p K   and , 2p K  . According to (7), 

2
, 1 1 2

2
, 2 1 2

( 1) ( ( 1)) mod
( 2) ( ( 2)) mod

p K

p K

f p K f p K K
f p K f p K K





    
     ,  (8) 

since 1f , 2f  and p  are all integers, (8) can be simply 

modified to 

, 1 1 2

, 2 1 2

2 mod
2 4 mod

p K

p K

f f K
f f K





   
    .       (9) 

Using similar derivation as (5), the following address of each 
filter bank can be generated by recursion 

, 2 , 1 , 22 2 modp k p k p k f K       . (10) 

From (10), we can find that the recursion process and initial 
values have nothing to do with p  hence the addresses of all 
these sub-blocks are the same and only one channel of address 
generator is necessary for this parallel interleaver. 

2 1 22 2 modk k k f K       (11) 

The destination bank that the LLR of a sub-block should 
be mapped into is decided by the value of ( ) /i K . The 

division operation here is costly therefore recursive 
computation is needed for this reverse address generator. Let 

( ) /i K  be redefined as 

, ( ) /
[ ( ) mod ] /

p k pk K
A pk N K

  
  (12) 

The recursion has two dimensions. First, the recursion 
direction is from 1k K   to 0k  . , 1p K   and , 2p K   

are the initial values. Second, another recursion is 
performed from 1p   to p P  where 1,k  and 2,k  

are the initial values. In order to accomplish this two 
dimensional recursion, 1, 1K  , 1, 2K  , 2, 1K   and 2, 2K 

must be known before the computation. 

2
, 2 , 1 , 2

2
2, 1, , 2

2 [2 mod ] /
2 [2 mod ] /

p k p k p k

p k p k p k

p f N K
K f N K

 

 

    
    

  (13) 

Since the interleaver/deinterleaver is placed after the 
whole computation of , ( )i j s , 1, 1K  , 1, 2K  , 2, 1K   and 

2, 2K  can be calculated via pipeline of the multiplication 

cell before the address generator, as well as 
2

2[2 mod ] /p f N K  and 2
2[2 mod ] /K f N K . By this 

recursion, no realtime multiplication is needed during the 
address generation. With the reverse address generator 
mentioned above, the parallel interleaver/deinterleaver can 
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reduce processing time compared to the method in [20] 
even though it may cost a little more computation 
resources. 

IV. TURBO DECODER IMPLEMENTATION

Due to its low cost and short development cycle, FPGA is 
one of best hardware platform choices for a real-time proof of 
concept system. In this work, the parallel LTE turbo decoder 
including the proposed interleaving address generator is 
implemented on Xilinx Virtex VII. In this section, the detail of 
decoding implementation is introduced. This decoder can 
support all the block sizes of the LTE standard. Different 
parallel level P  can be configured according to the specific 
block size. Considering that the higher the parallel level is, the 
more complex the decoder will be and the more computing 
resources will be used, P  is set to be 64 when the block size 
N  ranges from 2048 to 6144 and 8P  when 

2048256  N , otherwise 1P . 

A. Extraction

The LTE received data before turbo decoding has a certain
format, with all the systematic bits and two frames of parity 
bits included. Therefore, before the calculation of LLR, the 
extraction of the received data frame is needed. An interleaver 
is located here as well in order to generate sys2 to match par2 
for sub-decoder 2, as shown in Fig. 4. A FIFO is placed after 
interleaver in order to synchronize with par2. 

Since during the iteration of decoding, all these systematic 
and parity frames that are going to be reused, sys1, par1 and 
par2, are stored in block RAMs and the read of RAMs is 
controlled by the request signals (req_1 and req_2) from the 
LLR calculation module. As the extraction will generate a 
group of parallel input data for LLR calculation, a 
configurable parameter is used here to make this decoder 
compatible with different parallelism levels. Moreover, to 
produce the same number of block RAMs according to the 
parallel level, the method of source code generation is utilized. 
For example, this generate operation was created in Verilog 
HDL. 

0 1 1, ,..., ,N taily y y y

sys1

par1

par2

RAM

RAM

RAM

LLR

req_1

req_2 FIFO

req_1

req_2


sys2

Fig. 4.  Extraction of received data. 

B. Extrinsic information

Extrinsic information calculation includes forward
variable   and backward variable   calculation. As 

shown in Fig. 5, a block RAM is placed after   module in 
order to reverse the sequence as mentioned in Section III. 
Source code generation is used here as well to produce P  
groups of   modules,   modules and LLR modules. 

RAM
LLRSystematic, 

parity & LLR

RAM
LLR

1
IL

P
IL

1
k

1
k

P
k

P
k

Fig. 5.  Parallel extrinsic information calculation. 

Note that in the theoretical calculation of   and  , 

,

,

( ) , 1
( ) , 1

i j

i j

s s
s s




  
    (14). 

However, minus infinity does not exist in practical fixed-point 
calculation. A logical comparitor is utilized because if 
   , then x     where x  can be any value 
except infinity. Hence   in FPGA is replaced by a least 
signed value. More specifically, in our case, a 16 bit 
hexadecimal 2’s complement value 8000H is used. By 
comparison, if   equals 8000H, then x   is still 8000H. 
The same method is used to deal with  . 

C. Interleaver/Deinterleaver

As mentioned in Section III, the interleaver is
contention-free as long as the parallel level P  can divide the 
block size N . Memory contention does not happen in our 
study because all the block sizes can be divided by P . The 
interleaver/deinterleaver is a memory dynamic mapping 
process. The target address and memory bank are generated 
by the proposed reverse address generator. As shown in Fig. 6, 
for the interleaving process, using multiplexer in FPGA, the 
realtime LLR can be written into the related block RAMs and 
read from them sequentially after writing has been completed. 

As mentioned in Section III, the RAM write address ,p k

of each sub-block is independent of p  so only 1,k  is 
produced from the address generator. The LLR results of LLR 
modules are mapped to different RAMs according to ,p k . 

On the other hand, the write process is sequential for 
deinterleaver while read address ( )i  and bank number 

( )i  are generated by the address generator.  
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,O kL

1
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Address 
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1,k
,p k

M
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Fig. 6.  Parallel Interleaving. 

D. Modulo operation

Modulo operation %C D  is a costly part of the address
generator. The result of modulo is the remainder of a division 
operation. For Xilinx FPGA, the only existing function for 
modulo operation is the division intellectual property (IP) core 
which takes many logic units. Some other faster methods like 
the bitwise operation also exist but they assume D  as a 
constant or the number of powers of 2 [26]. In our study, D  
is not a constant or a power of 2. A modulo function based on 
Verilog HDL should be designed with less computing 
resource and fast speed as well.  

Inspired by the bitwise operation, we designed a modulo 
function that uses a shifter and comparator to get the 
remainder of the division but not the quotient. Let E  be the 
maximum bit width of C , F  be the maximum bit width of 
D . The procedure of the proposed modulo function is as Fig. 
7 below. 

 Input   ,C D

2E F eC D   

2E F eC C D    
1e e 

e E F 

C C
1e e 

start

end

Y N

Y

N

 Output   C

Fig. 7.  Modulo function flowchart. 

E. Double buffering

In order to maximize the throughput of the turbo decoder,
double buffering is utilized in this design. Since the 
calculation of  ,   and LLR is sequential, the previous 
module is idle when the latter module is working. For instance, 
as shown in Fig. 3,   module works after the whole 

sub-block calculation of  . Obviously, another sub-block of 
  can keep calculating during that period, as shown in Fig.8 
below. In this way, the whole decoder can decode two frames 
simultaneously which can nearly double the throughput. 
Double buffering is very functional as only double storage 
space is used, however the logic and compute resources, e.g. 
lookup tables (LUTs), Flip-Flop, Multipliers, are reused so the 
utilization of FPGA resource is more efficient. 

1 K

K 1

,I KL ,1IL

,1OL ,O KL

1/  

K 1
1 K

1K

1K

1/  

,I KL ,1IL

,1OL
,O KL

Fig. 8. Double buffering 

   Based on the proposed reverse address generator and the 

double buffering technique, the parallel decoding latency after 

implementation can be give as: 

(3 12) / 4 (3 / ) ( 1)D N N P I t        ,  (15) 

where t  is the latency brought by the FPGA modules 

such as RAMs, multipliers, FIFOs, modulo operation, and 

so forth. The value of t  depends on how the decoder is 

implemented. 

V. EXPERIMENT RESULTS

In this Section, the Testbed system and the results of 
parallel turbo decoder implementation are introduced. In order 
to meet the requirements of future broadcasting system, this 
Testbed is designed to support multi-Gbps decoding 
throughput. The structure of it can be found in Fig. 9.  

X86 Server

BEE7

RF frontend

PCIe

Fig. 9.  Testbed system structure. 

The X86 Server is the control center of this Testbed, which 
is connected via Peripheral Component Interconnect Express 
(PCIe) with BEE7. BEE7 is a programmable hardware 
platform used for algorithm exploration, research, prototyping 
and so on. Four Xilinx Virtex-7 FPGAs are allocated on this 
platform. With one FPGA processor, the throughput 
requirement cannot be met. BEE7 is linked with several RF 
frontends to build a MIMO transceiver.  

As we know that higher parallelism means lower latency, 
it also takes more computing resources especially logic 
resources such as LUTs and Flip-Flops. For one FPGA in 
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BEE7, the parallel level can reach to 64P   with a latency 
of 23.2 us at 250 MHz clock rate where the iteration times is 8. 
Although the latency is quite low compared to lower 
parallelism, the throughput of this system is only 2.12 Gbps 
which is not enough. The throughput and latency comparison 
of different parallel levels are listed in Table I. 

Table I. Throughput and latency comparison 

The results above are obtained via ModelSim simulation 
after placement and routing. This simulation can measure how 
many clock cycles are needed for a whole decoding process. 
By some simple calculation, the latency and throughput can 
be calculated. It can be seen that when the parallel level is 8, 
which is 8 times lower than 64, then the latency is not 8 times 
larger. This is because the extraction of the received data takes 
a fixed amount of time. Moreover, since it takes much fewer 
resources when 8P  , 8 parallel turbo decoders can be put 
on a single FPGA at the same time, which makes the 
throughput reach to 6.92Gbps. Even though the throughput is 
low when 64P   because only one decoder can be put on 
the FPGA, its good latency performance can still be used for 
the case of a strict latency requirement. 

The implementation validity is evaluated by Integrated 
Logic Analyzer (ILA) of Xilinx. A fixed test block is stored in 
a block RAM. By capturing the output of the turbo decoder, 
the decoding results can be examined. As shown in Fig. 10, 
the original frame before turbo encoding is a square wave, and 
we can see that the output is a square wave that matches the 
original frame. 

Fig. 10. Decoding results capture 

For LTE standard, the maximum number of C  is 
(6143)A  in (4), the bit width E  cannot be larger than 35 

and F  cannot be greater than 13. Therefore, it only takes 22 
clock cycles to finish modulo operation. The latency and 
complexity comparison between this function and the division 

IP can be found in Table II. 

Table II. Modulo operation comparison 

Modulo function IP 

Latency (clock) 22 38 

Complexity 

(1 module) 

Slice 

LUT 

Slice 

register 

Slice 

LUT 

Slice 

register 

754 539 627 2407 

Complexity 

(64 modules) 

48256 34496 40128 154048 

Table II shows that modulo function we designed can save 
nearly 3/4 slice registers compared to the IP from Xilinx 
although it takes a little more slice LUTs. It is significant that 
modulo function can save much more slice registers when the 
parallel level is high, e.g. 64P  , and it uses less clock 
cycles to complete the computation. 

For LTE standard, block error rate (BLER) is used to test 
the decoder performance. The BLER of this decoder is 
evaluated via MATLAB simulation and ModelSim simulation. 
MATLAB simulation results are used as the reference of 
decoding BLER. The encoded frames with Gaussian white 
noise are first written into a test file and then read by Verilog 
test file. By Monte Carlo simulation, 1000 random frames for 
each signal-to-noise ratio (SNR) value, the BLER of different 
SNR can be obtained as shown in Fig. 11. Since the 
simulation is performed without rate mapping and modulation, 
it works well even at very low SNR. The purpose of this 
simulation is to make sure that the decoder implementation is 
working as expected. We can see that the BLER results of our 
FPGA parallel decoder are similar to its MATLAB theoretical 
simulation. The BLER is slightly higher because of the fixed 
point quantification error. Moreover, although the parallel 
decoder can increase system throughput and reduce latency, 
the BLER performance will be degraded.  

There exist better ways to test the decoder, such as transfer 
the decoding results back to the server. By comparing the 
original bits and the decoded bits at the server side, the 
realtime block error rate (BLER) can be obtained. However, 
this part is not available at this moment and will be a part of 
our further research in the near future. 

Fig. 11. BLER simulation results 

This work [20] 

Iteration 8 

Block size 6144 

P 8 64 8 64 

Clock(MHz) 250 

Extraction time (us) 18.4 

Latency (us) 56.8 23.2 69.6 24.8 

Iteration time (us) 38.4 4.8 51.2 6.4 

Throughput (Gbps) 6.92 2.12 2.82 0.99 
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VI. CONCLUSION

Parallel turbo decoding is a practical way to increase the 
system throughput and reduce the latency in order to meet the 
requirements of future terrestrial broadcasting systems. In this 
paper, the implementation on FPGA of the parallel turbo 
decoder is introduced. A reverse address generator of 
interleaver/deinterleaver is proposed to reduce the processing 
time of each iteration and decrease latency further. The 
address generator uses recursion to generate the realtime 
address needed by the interleaver, which saves computing 
resources. A modulo function, that uses fewer clock cycles 
and logic resources compared to the Xilinx division IP, is 
designed to perform modulo operation. Moreover, in order to 
utilize the limited FPGA resources more efficiently, a double 
buffering technique is used to double the throughput in this 
parallel turbo decoder, which needs more storage space but 
reuses the logic resources. 

The implementation of this decoder is accomplished on a 
Testbed system with 4 FPGA processors. On the one hand, by 
capturing the decoding results via Xilinx ILA, the validity of 
the parallel decoder is evaluated. On the other hand, the 
latency and BLER is tested by ModelSim simulation after 
placement and routing. The system decoding throughput is 
calculated based on the latency measured. Although the 
throughput of this Testbed is less than 10Gbps, which is the 
demanded requirement of next generation wireless 
communication systems, our research gives a clue that parallel 
turbo decoder can be implemented on FPGA and meet 
multi-Gbps throughput requirement at the same time and that 
the throughput can be further improved by using more 
hardware resources.  
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