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Abstract: As an environmental semiconductor material, TiO2 has important applications in the
fields of environmental protection and water treatment. The preparation of P25 particles into nano-
functional material films with a high specific surface area has always been a bottleneck limiting its
large-scale application. In this paper, a one-step method of preparing TiO2 nanocomposites by doping
carbon nanotube (CNT) and carbon quantum dots (CQD) with tetrabutyltitanate and P25 TiO2 under
ultrasonic radiation is proposed to synthesize a novel antifouling material, which both eliminates the
bacterium of Escherichia coli and shows good photoelectric properties, indicating a great value for
the industrial promotion of TiO2/CNT. This mesoporous composite exhibits a high specific surface
area of 78.07 M2/g (BET) and a tested pore width range within 10–120 nm. The surface morphology
of this composite is characterized by TEM and the microstructure is characterized through XRD.
This preparation method can fabricate P25 particles into a nano-functional material film with a high
specific surface area at a very low cost.

Keywords: TiO2; carbon quantum dots; one-step synthesis; ultrasonic radiation; carbon nanotube;
mesoporous nanocomposites

1. Introduction

Photosynthesis in nature achieves a highly efficient solar energy conversion mainly
through combining several different molecules to arrange the nanoscale, which indicates the
importance of a technique for the site-selective coupling of different materials to realize ar-
tificially efficient devices [1–3]. TiO2 is a kind of safe, stable, and cheap material, which has
attracted significant research interest [4–9]. Photo-catalytic reactions on the semi-conductive
surfaces of TiO2 materials are widely investigated and reported for the purposes of
(1) water splitting to produce H2 and (2) eliminating pollutants from water and air [10–15].
Obviously, the direct splitting of water molecules through Photo-electrochemical (PEC)
processes is a sustainable green approach to convert water and sunlight to hydrogen and
oxygen to achieve [16,17]. Much effort has been made in the selection of efficient stable
semiconductor materials to build PEC cells, thus bringing silicon (Si), III–V compounds, and
various oxides into sight [18–23]. In the first-row of transition metal oxides, TiO2 is a poor
water oxidation catalyst with a large over potential for the sluggish kinetics and oxygen

Coatings 2023, 13, 145. https://doi.org/10.3390/coatings13010145 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13010145
https://doi.org/10.3390/coatings13010145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-8946-9328
https://orcid.org/0000-0002-4652-2395
https://orcid.org/0000-0003-3166-622X
https://orcid.org/0000-0002-0451-7045
https://doi.org/10.3390/coatings13010145
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13010145?type=check_update&version=2


Coatings 2023, 13, 145 2 of 9

evolution reaction [14]. Hence, it is essential to develop a TiO2-based visible light respon-
sive photo-catalyst, and much work has been done to develop “second-generation” TiO2
and other narrow band gap semiconductors to absorb visible light [17,24–27]. Though nano-
sized particles could be prepared by the sol-gel method for the film’s preparation, the size
of the particles is difficult to control [28–32]. The introduction of the graphene/graphene
derivatives (including graphene oxide (GO) and other forms of functionalized graphene),
the 3D single atom thick carbon layer, as the framework of the membrane, enables the
morphology of the nanostructured materials to be extended from 1D to 0D (nanoparticles).
The range of the nanostructured materials chosen is extended from only the photocatalytic
materials (TiO2, ZnO, CoS, CdS, CdSe, MoOx, etc.) to other functional materials (MnO2
for oxidation, Ag for disinfection, Pt for catalysis, etc.). Applying the 3D graphene-based
nanocomposite multicomposite membrane with an expected thickness < 100 nm for the
desalination applications will potentially create a new and promising industrial sector, and
these applications are still undeveloped.

It is known that TiO2 is a wide bandgap semiconductor, with a low-to-moderate
response rate to sunlight, and research has focused on reducing the absorption edge
energy to improve the utilization of sunlight [33,34]. Moreover, the large specific area of
mesoporous TiO2 nanoparticles is another favorable factor for generating large quantities
of active sites for a photocatalytic reaction, which has taken place on the surface of the
photocatalyst [35]. Additionally, the preparation of P25 particles into nano-functional
material films with a high specific surface area has always been a bottleneck limiting its
large-scale application.

In this work, sol was prepared with tetrabutyl titanate; commercial P25 TiO2 was
added to ensure the uniformity of the nanoparticles; and CNT and CQD were doped to
improve the light absorptivity of the semi-conductive materials. CQD also contributed to
the gel’s formation.

2. Experimental Section
2.1. Synthesis

Ti(O-i-C4H9)4 (TB, Aladdin, AR) (≥98% Ti) and ethanol absolute (EtOH, Aladdin,
Nanjing, China, AR) were blended with a 5% (wt.) multi-wall carbon nanotube (Nano-Com
Shanghai, China,) average particle size 10–20 nm) to make a mixture. Hydrochloride acid
was added as a catalyst to enhance the hydrolysis rate. Commercial P25 TiO2 (Innochem)
particles with an average particle size of 25 nm were dispersed into the Ti-based sol at
0.2 g/mL in vigorous magnetic stirring for 30 min. GQD nanomaterials with a diameter
of 15 nm were purchased from Aladdin (G196610-100 mL). GQDs were dispersed into
the tetra-n-butyl orthotitanate at 80 mg/mL in vigorous magnetic stirring for more than
5 min. The mixture was then stirred via vigorous mechanical stirring and subsequently
placed in an 80 ◦C water bath with an ultrasonic (Dakou, Kongshan, China, KQ-300VDE,
45 kHz) for 5 h. After that, the sonicated mixture was dried overnight at a temperature
of 80 ◦C and then calcined in an Ar atmosphere at 450 ◦C for 6 h before the grounding
procedure to obtain an anatase phase. The schematic of the formation of the mesoporous
TiO2/CNT/CQD nanocomposites membrane is shown in Scheme 1.
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Scheme 1. Formation of mesoporous TiO2/CNT/CQD nanocomposites membrane by sol-gel ultra-
sonic irradiation method.

2.2. Characterization

Various characterizing techniques, including a transmission electron microscope (FEI
Talos-F200S TEM), pore structure determination (Brunauer–Emmett–Teller, BET method),
and X-ray diffraction (XRD), were applied to analyze the material. A transmission electron
microscope (JEOL, JEOL-2100F, Tokyo, Japan) was used to characterize the microstruc-
ture. UV–vis DRS was performed on a spectrophotometer (Lambda750, PerkinElmer, Inc.,
Waltham, MA, USA). The absorbance was tested using a UV–vis spectro-photometer (722,
Weimipai Technology Co., Ltd., Hangzhou, China). The light absorption properties were
measured using a Fourier Infrared Instrument (PerkinElmer Spectrum, Akron, OH, USA).
The absorbance properties were measured using the Zolix SS150 (Zolix Instruments Co.,
Ltd., Beijing, China). The light intensity and photoluminescence spectrum’s structure were
determined using a fluorescence spectrometer (F-4500, Hitachi, Ibaraki, Japan). The photo-
electrochemical properties were measured on an electrochemical workstation (Chenhua,
CHI660E, Shanghai, China).

2.3. Antibacterial Tests

To test the materials with the bacterium of Escherichia coli, typically, the sample
(10 mg) was added to 10 mL of pure water to make a TiO2 solution (solution T) with TiO2
suspended within. To remove the microorganisms from the system, the whole set was
sterilized in an automatic high-temperature sterilization pot. Then, using a conventional
bacterial solution with its original concentrate of 1.15 g/L, a 0.01% diluted solution was
prepared and 100 µL of this solution was added into the TiO2 solution (solution T) as a
source of Escherichia coli. The mixture was irritated under 34.4 Klux solar light for 1 h.
After lighting, the antibacterial solution was coated on the prepared solid medium (10 g of
pancreatic protein, 5 g of yeast powder, 10 g of NaCl, and 20 g of agar diluted with 1 L of
pure water) and was tested after 8 h for its anti-bacterial performance.

3. Results and Discussion

Figure 1 presents the results of the BET test of the TiO2/CNT/CQD nanocomposites.
The surface area of TiO2/CNT/CQD is as high as 78.07 m2/g and the pore width range is
10–120 nm, indicating that an ultrasonic radiation treatment is a useful technique to prepare
mesoporous materials [36–39]. Bai has reported that the surface area of the TiO2/CNT
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mesoporous composite material is 42.90 m2/g [40]. Therefore, the doping of CQD is
beneficial to increase the surface of the TiO2/CNT/CQD nanocomposites. It attributes to
the small particle size.
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Figure 1. Isotherms of nitrogen adsorption–desorption and pore width of the TiO2/CNT/CQD meso-
porous composite. (a) Nitrogen adsorption–desorption isotherms and pore width of TiO2/CNT/CQD,
(b) aperture distribution map.

Figure 2 shows the energy disperse spectroscopy (EDS) mapping results of the
TiO2/CNT/CQD mesoporous nanocomposites prepared under ultrasonic radiation. Small
TiO2 particles appear to cluster around the carbon nanotube, indicating that the nanotube is
a sufficient support material for a better TiO2/CNT dispersion in this specific preparation.
Although the composite interface between TiO2 and the carbon nanotube, which appears
to be a loose one, needs to be further improved, the doping of TiO2 with CNT and CQD
obviously improves the dispersion of TiO2 as well as promotes the formation of hetero
junctions at the TiO2-CNT interface, which favors the improvement of the absorption
efficiency of visible light [41,42].

The TEM results of TiO2/CNT/CQD prepared with the ultrasonic treatment are shown
in Figure 3. Figure 3a depicts the agglomeration of small particles in the TiO2/CNT/CQD
mesoporous nanocomposites. In Figure 3b, the interface between the two main phases,
namely the TiO2 and the CNT, has been remarkably enhanced through a high temperature.
The high-resolution diagrams, Figure 3c,d, correspond to anatase TiO2 [43,44], which clearly
represent the relevant information at the atomic scale. Figure 3e,f are high-resolution TEM
diagrams of CQD. From Figure 4, it can be seen that the morphology and spacing between
the crystal planes are CQD, and CQD is successfully doped into P25 and CNT by sol-gel,
but there is only a small amount of reunion.

The FTIR spectra have indicated that the characteristic bands at 3400 cm−1 and
1630 cm−1 correspond to the surface water and hydroxyl group [45]. Figure 4 shows
the XRD results of the TiO2/CNT/CQD mesoporous composite. As shown in Figure 4,
it can be found that the TiO2/CNT/CQD mesoporous composite is an obvious anatase
phase and C phase, which is conducive to improving the photoelectric properties of the
material. TiO2 nanoparticles have attracted great interest because of their special physical
and chemical properties, especially as photocatalytic oxidation catalysts in corresponding
device materials and environmental pollution control [46].

Marine fouling is a critical issue in modern marine science and technology, which
strictly determines marine transportation and farming. The existing antifouling approaches,
such as antifouling hydrogel coatings and organic tin coating [47–49], always demonstrate
an unsatisfactory performance. In our system, the material shows the CV curves and
anti-bacterial properties of the control, TiO2/CNT and TiO2/CNT/CQD, using Escherichia
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coli bacteria (Figure 5). Comparing the bacteriostasis processes uses TiO2/CNT (Figure 5c)
and TiO2/CNT/CQD (Figure 5d) as anti-bacterium agents, respectively. In this experiment,
obviously, the number of Escherichia coli bacterial colonies in Petri dishes all increased with
time. The sample (c) with TiO2/CNT/CQD as an anti-bacterium agent got the bacterium of
Escherichia coli under control, while the sample using TiO2 as an anti-bacterium agent just
grew more bacterial colonies, indicating that doping TiO2 with CNT and CQD contributes
to boosting the TiO2s performance in an environmental pollution control.
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4. Conclusions

The main conclusions were as follows:

(1) The composites prepared exhibit a large specific surface area of 78.07 m2/g and a pore
width of 10–120 nm, indicating that an ultrasonic radiation treatment contributes to
forming nanocomposites with a high specific surface area.

(2) Commercial P25 particles can be prepared into gel films at a low cost by sol-gel
ultrasonic radiation.

(3) TiO2/CNT/CQD nanocomposites prepared by doping CNT/CQD can significantly
improve the visible light absorption efficiency and bactericidal efficiency.
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and agreed to the published version of the manuscript.
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