
1.  Introduction
With the development of numerical weather prediction (NWP), various types of precipitation forecasts have been 
developed and the quality of precipitation forecasting has been continuously improved (Dance et al., 2019; North 
et al., 2013; Rodwell et al., 2010; Sharma et al., 2021). Generally, precipitation forecasts can be classified into 
deterministic forecasts, probabilistic forecasts and ensemble forecasts (Jolliffe & Stephenson, 2012, pp. 11–12; 
Shi et  al.,  2008; Xu et  al.,  2020). It should be noted that ensemble forecasts can also be regarded as proba-
bilistic forecasts that are expressed as a discrete approximation to a full forecast probability density function 
(Wilks, 2019, p. 433). In terms of data formats, they can also be classified into continuous forecasts and cate-
gorical (binary or multi-category) forecasts (Jolliffe & Stephenson,  2012,  p.  11; Murphy & Winkler,  1987). 
Probabilistic forecasts, which enhance useful uncertainty information, became available to the public in the 
United States for more than 50 years (Murphy, 1998). Nevertheless, probabilistic forecasts are still difficult to 
be correctly understood by the public (Davis et al., 2016, p. 95; Fundel et al., 2019; Ishikawa et al., 2005; Joslyn 
et  al.,  2009; Murphy,  1998). By contrast, deterministic forecasts are simpler and easier to use for end-users 
(Fundel et  al.,  2019). In particular, deterministic multi-category precipitation forecasts are commonly used 
in water resources management and other related fields, such as avalanche and flood warnings (Economou 
et al., 2016; Schirmer & Jamieson, 2015), reservoir operation (B. Wang & Zhou, 2006, p. 97; Cai et al., 2019; 
Ning et al., 2021; Peng et al., 2017; Xi et al., 2010; Zhou et al., 2011) and drought management (Łabędzki, 2017; 
Sigaroodi et al., 2014). However, the precipitation forecasts from the NWP are biased and uncertain in general, 
which may bring errors. Therefore, it is crucial to verify deterministic multi-category precipitation forecasts, 
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which can serve for administrative, scientific, and economic purposes (Brier & Allen,  1951,  pp.  841–842; 
Wilks, 2019, p. 369).

The very nature of weather forecasts and verifications and the way they are used make it impossible for one 
single or absolute standard of evaluation (Brier & Allen,  1951,  p.  843; Brooks & Doswell,  1996; Mason & 
Weigel,  2009). In previous studies, many techniques have been developed and applied in the verification of 
forecasts from the attributes of bias, association, accuracy, skill, reliability, resolution, sharpness, discrimination, 
and uncertainty (Bradley et  al.,  2016, pp. 7–9; Murphy, 1993). Proper verification methods for deterministic 
multi-category forecasts are mainly based on contingency tables and include the proportion correct (PC), bias 
ratio (BR), probability of detection (POD) or hit rate and skill scores (Jolliffe & Stephenson, 2012, p. 64), which 
are based on the attributes of accuracy, bias, discrimination and skill, respectively (Wilks, 2019, pp. 376–381). 
However, little research has been conducted on verifying deterministic multi-category forecasts, which is based 
on the attribute of uncertainty. Using the interquartile range (IQR), Brown and Murphy  (1987) verified the 
fire-weather forecasts from the attribute of uncertainty, which is defined as variability in the conditional distri-
butions of observed values given each distinct forecast value. Besides the IQR, the standard deviation (Std) are 
commonly used to measure the variability of distributions (Gong et al., 2013; Jolliffe & Stephenson, 2012, p. 19). 
However, the Std is neither robust nor resistant (Wilks, 2019, p. 27). Even one very large value would affect the 
Std very much because it is especially far away from the mean and the difference can be further magnified by the 
squaring process (Wilks, 2019, p. 27). The IQR is very easy to compute, but it has the disadvantage of not making 
much use of a substantial fraction of the data (Wilks, 2019, p. 27). In recent years, however, there has been 
no further development on verification methods for deterministic multi-category forecasts (Casati et al., 2008; 
Dorninger et al., 2020; Ebert et al., 2013; Gilleland et al., 2016, pp. 6–8; Wilks, 2019, pp. 388–394). There-
fore, more resistant and accurate verification methods are needed to measure the uncertainties in deterministic 
multi-category forecasts.

Information entropy is a natural and fundamental measure of uncertainty in a number of fields, including water 
engineering (Singh, 2013, p. 310). The information entropy is calculated by the frequency (or probability) distri-
butions of the analyzed samples rather than directly calculated by the values of analyzed samples (like Std) or 
partly quantiles of the analyzed samples (like IQR). Therefore, compared with Std and IQR, information entropy 
is less sensitive to extreme values than Std, and can utilize more information from the analyzed samples than 
IQR. Further, information entropy can provide a more accurate characterization of uncertainty than Std, since the 
latter depends only on the second moment, whereas information entropy takes into account the effects of higher 
order moments (Gong et al., 2013). DelSole and Tippett (2007) pointed out that it is difficult to conceive of a 
measure better suitable for a general evaluation of uncertainty than information entropy. Mutual information, 
an entropy-based statistic, characterizes what one (uncertain) variable X can tell us about another (uncertain) 
variable Y; in other words, how much information is shared between the two, or how much of the uncertainty 
about Y can be reduced by knowing X (Gong et al., 2013). Mutual information has been used in the verification 
of probabilistic weather forecasts, such as the ranked mutual information scores (Ahrens & Walser, 2008) and the 
resolution component of divergence score (DS), which is the mutual information between forecasts and observa-
tions (Weijs, Schoups, et al., 2010; Weijs, van Nooijen, et al., 2010). Both the ranked mutual information scores 
and DS are metrics for the verification of probabilistic forecasts. However, they are not applied for deterministic 
forecasts. In addition, these previous studies have neglected the proper choice of bin width when calculating 
mutual information, which would bring extra errors because entropy estimates with inappropriate bin width are 
positively biased (Pechlivanidis et al., 2016; Ruddell & Kumar, 2009).

This paper aims to propose a new approach using two mutual information theory-based scores to assess the uncer-
tainties in deterministic multi-category precipitation forecasts, that can cover both the comprehensive uncertainty 
of all categories and the uncertainty of a certain category. The comprehensive uncertainty is defined as the 
average reduction in uncertainty about the observations resulting from the use of a predictive model to provide 
all categories forecasts; the uncertainty of a certain category is defined as the reduction in uncertainty about the 
observations resulting from the use of a predictive model to provide a certain category forecast. It should be noted 
that the two scores are for the verification purpose of forecasting products. The Dahuofang Reservoir was used 
as an example, as shown in Section 2, for the verification of daily precipitation forecasts. Section 3 presents the 
new scores and other reference scores. Section 4 shows the verification results. The discussion and conclusions 
are summarized in Sections 5 and 6, respectively.
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2.  Study Area and Data
2.1.  Study Area

The Dahuofang Reservoir Drainage Basin (DRDB), with a drainage area of 5,437  km 2, is located in Liaon-
ing Province, Northeast China, as shown in Figure 1. The Reservoir not only undertakes the flood control of 
protecting Shenyang city and Fushun city but also provides water to the cities of Shenyang, Fushun, Liaoyang, 
Anshan, Panjin, Yingkou, and Dalian (shown in Figure  1b). Six precipitation stations (shown in Figure  1a), 
namely Bianwaipuzi, Muqi, Yingemen, Yingpan, Yujiapuzi, and Zhaojiapuzi, were selected in the study. As 
shown in Figure 2a, the annual cycle of monthly precipitation at the six precipitation stations is consistent except 
for some differences in the summer months. Therefore, the spatial variability of precipitation across the DRDB 
is not significant. The average annual precipitation in the DRDB is 812 mm which is unevenly distributed during 
the year. As shown in Figure 2b, almost 85% of annual precipitation at the Muqi precipitation station (shown in 
Figure 1a) falls in the flooding season from May to October for the period 2007–2018, which resulted in most 
of the floods in the study area. It should be noted that the Muqi precipitation station in Figure 2b was randomly 
selected as one example.

2.2.  Forecast and Observation Data

The Observing System Research and Predictability Experiment Interactive Grand Global Ensemble (TIGGE) 
data set was used in this study, which is a global NWP data set and has been widely used in the scientific 
research because of its comprehensiveness and public availability (Swinbank et al., 2016). The control forecasts 
(single deterministic forecasts) of precipitation from the four data products were selected in this study, includ-
ing the China Meteorological Administration (CMA), European Centre for Medium-Range Weather Forecasts 
(ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom Meteorological Office 
(UKMO). More details of these products used in this paper are briefly given in Table 1.

All the observed precipitation data derived from the six precipitation stations (shown in Figure 1a) in the study 
were obtained from the Hydrological Yearbook of the People's Republic of China. To be consistent with the 

Figure 1.  Schematic of (a) the Dahuofang Reservoir Drainage Basin with the location of precipitation stations and (b) Liaoning Province.

 19447973, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032631 by B

runel U
niversity, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

NING ET AL.

10.1029/2022WR032631

4 of 24

observed precipitation, we only selected the forecasts on the base time of 
00:00 UTC. The range of lead time for forecast precipitation used in the study 
is from 1 to 7 days. As the horizontal resolution is different for the above 
four forecast products, it is inconvenient to compare them with the observed 
precipitation. Therefore, the original precipitation forecast data of CMA, 
ECMWF, NCEP, and UKMO are converted to a 0.1° × 0.1° grid using the 
bilinear interpolation software provided by the ECMWF TIGGE data portal 
(Su et al., 2014). The interpolated data grid, the center of which is closest to 
a specific precipitation station, is used as the source of forecast precipitation 
(H. Wang et al., 2021).

The study focuses on the flooding season from May to October over the 
period 2007–2018 with 2,208  days in total. At each precipitation station, 
there is no missing data and the observed sample size is 2,208. However, the 
number of missing values in the forecasts differs among different products 
and lead times. The detailed sample sizes are shown in Table 2 for different 
products and lead times.

2.3.  Classification of Forecasts of Daily Precipitation

The objective of the study is to assess uncertainties in deterministic 
multi-category forecasts. However, the precipitation forecasts from the 
TIGGE data set are continuous and need to be classified. The classification of 
precipitation forecasts differs with its applications. In this study, we used the 
classification of deterministic multi-category precipitation forecasts, which 
are applied in reservoir operation as an example. Table 3 indicates the CMA 
classification standards for daily precipitation. Using the CMA classification 
standards, we can obtain the total number of samples for each category from 
observed precipitation from 2007 to 2018 (May to October), as shown in 
Table 4. It can be seen from Table 4 that the sample number is very small for 
heavy rain and higher categories. We combined the precipitation data greater 
than 25 mm into category L3 (𝐴𝐴 ≥ 25.0 mm). The events with no rain and light 
rain were combined into category L1 (0–9.9 mm) in this study because these 
two categories are often used together when applied in reservoir operation (B. 
Wang & Zhou, 2006, p. 98; Cai et al., 2019; Peng et al., 2017; Xi et al., 2010; 
Zhou et al., 2011). Finally, the events with medium rain were classified to 
category L2 (10.0–24.9 mm). The new classification is shown in Table 5.

3.  Methods
By using mutual information theory-based scores, a new approach was proposed to measure the comprehensive 
uncertainty of all categories and the uncertainty for a certain category, as shown in Section 3.1. We compared the 
proposed approach with several traditional methods in Section 3.2. To provide a better understanding for replica-

tion, we made one example to clearly show each step for using the proposed 
method. The access to the example data and MATLAB code is shown in Data 
Availability Statement.

3.1.  A Mutual Information Theory-Based Approach

3.1.1.  The Assessment of Comprehensive Uncertainty for All 
Categories

The normalized mutual information (NMI) for two variables, also called the 
“uncertainty coefficient” (Press et al., 1986), can be interpreted as the relative 
reduction in uncertainty about one variable from “getting to know another” 

Figure 2.  Monthly precipitation over the period of 2007–2018 in Dahuofang 
Reservoir Drainage Basin. (a) The Monthly precipitation from the six 
precipitation stations; and (b) the monthly precipitation and cumulative 
frequency estimates from the precipitation station at Muqi.

Products Time range (days) Resolution (°) Base time (UTC)

CMA 0–15 0.2815 × 0.2812 0/12

ECMWF 0–15 O640 (ORGG) 0/12

NCEP 0–16 1 × 1 0/6/12/18

UKMO 0–7.25 0.187 × 0.2815 0/6/12/18

Note. ORGG: octahedral reduced Gaussian grid.

Table 1 
Characteristics of the Four Forecast Products Used in This Study
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(Särndal, 1974; Topp et al., 2013). Thus, the NMI for observed precipitation 
and forecast precipitation is used to measure the comprehensive uncertainty 
of all categories and is defined in Equation 1

NMI =
𝐻𝐻(𝑂𝑂) −𝐻𝐻(𝑂𝑂|𝐹𝐹 )

𝐻𝐻(𝑂𝑂)
=

𝐼𝐼(𝑂𝑂;𝐹𝐹 )

𝐻𝐻(𝑂𝑂)
� (1)

where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  represent observed precipitation and corresponding forecast 
precipitation, respectively; 𝐴𝐴 𝐴𝐴(𝑂𝑂) is the entropy of 𝐴𝐴 𝐴𝐴 that represents the uncer-
tainty in 𝐴𝐴 𝐴𝐴 ; 𝐴𝐴 𝐴𝐴(𝑂𝑂|𝐹𝐹 ) is the conditional entropy of 𝐴𝐴 𝐴𝐴 given 𝐴𝐴 𝐴𝐴  that represents 
the amount of uncertainty remaining in 𝐴𝐴 𝐴𝐴 after 𝐴𝐴 𝐴𝐴  is known; 𝐴𝐴 𝐴𝐴(𝑂𝑂;𝐹𝐹 ) is the 
mutual information of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  , which represents the amount of uncertainty 
eliminated in 𝐴𝐴 𝐴𝐴 through observing 𝐴𝐴 𝐴𝐴  . Therefore, NMI represents a ratio of 
uncertainty eliminated about 𝐴𝐴 𝐴𝐴 resulting from the use of forecast precipita-
tion 𝐴𝐴 𝐴𝐴  (Topp et al., 2013).

When comparing the performance of forecasts under different climatologies, it is more reasonable to consider 
the degree of difficulty of forecasting (the uncertainties in the observed precipitation) than to not consider it. 
It should be noted that the word “climatology” refers to the empirical distribution functions of the observa-
ble precipitation based on a sample of past observations, that is, relative frequencies of past events (Jolliffe 
& Stephenson, 2012, p. 247). Thus, NMI is more appropriate than the mutual information for comparing the 
performance of forecasts of different climatologies, such as forecasts in different areas, because the relative value 
(NMI), rather than the absolute value (mutual information) can consider the effects of different climatologies.

3.1.2.  The Assessment of Uncertainty for a Certain Category

The mutual information can be decomposed by Equation 2 (Hughes et al., 2017; Topp et al., 2013).

�(�;� ) =
∑�

�=1
�̂� × [�(�) −�(�|��)]� (2)

In Equation 2, 𝐴𝐴 𝐴𝐴 is the number of categories of forecasts and equal to 3 in the study. 𝐴𝐴 𝐴𝐴 is the index of a forecast 
category and represents category L1, L2, and L3 if 𝐴𝐴 𝐴𝐴 takes a value 1, 2, and 3, respectively. 𝐴𝐴 𝐴𝐴𝑘𝑘 is the 𝐴𝐴 𝐴𝐴 th category 
forecast precipitation. 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 is the frequency of the occurrence of 𝐴𝐴 𝐴𝐴𝑘𝑘 . 𝐴𝐴 𝐴𝐴|𝐹𝐹𝑘𝑘 is the observed precipitation 𝐴𝐴 𝐴𝐴 given 𝐴𝐴 𝐴𝐴𝑘𝑘 . 
�(�|��) is the entropy of 𝐴𝐴 𝐴𝐴|𝐹𝐹𝑘𝑘 and represents the amount of uncertainty remaining about 𝐴𝐴 𝐴𝐴 , after receiving the 

𝐴𝐴 𝐴𝐴 th category precipitation forecast information.

With Equation 2, we can decompose NMI in Equation 1 as follows

NMI =
∑𝐾𝐾

𝑘𝑘=1
𝑝̂𝑝𝑘𝑘 × NMI𝑘𝑘� (3)

NMI� =
�(�) −�(�|��)

�(�)� (4)

where 𝐴𝐴 NMI𝑘𝑘 represents a ratio of uncertainty eliminated about 𝐴𝐴 𝐴𝐴 after receiv-
ing the 𝐴𝐴 𝐴𝐴 th category precipitation forecast information and is used to measure 
the uncertainty of a certain category, namely the 𝐴𝐴 𝐴𝐴 th category. The larger 

𝐴𝐴 NMI𝑘𝑘 , the smaller uncertainty forecasts in the 𝐴𝐴 𝐴𝐴 th category.

3.1.3.  The Calculation Procedures of Two Mutual Information 
Theory-Based Scores

The calculation of two mutual information theory-based scores at a certain 
precipitation station contains four steps, as shown in Figure 3. The values of 
observed precipitation and the categories of forecast precipitation are pseudo 
which are taken just for an example.

3.1.3.1.  Step 1: Calculate the Bin Width

The calculation of entropy requires a careful choice of bin width (Gong 
et  al.,  2014) and the methods to properly estimate the bin width include 

Products

Lead times (day)

1 2 3 4 5 6 7

CMA 2,083 1,989 1,998 2,000 2,017 1,994 1,994

ECMWF 2,208 2,085 2,085 2,085 2,085 2,085 2,085

NCEP 2,177 2,177 2,037 2,037 2,148 2,061 2,090

UKMO 2,100 1,946 1,946 1,977 1,977 1,977 1,824

Table 2 
Sample Size of Different Products and Lead Times From 2007 to 2018 (May 
to October)

Magnitude
Classification standard of 

precipitation
Amount of daily 

precipitation (mm)

1 No rain 0–0.1

2 Light rain 0.1–9.9

3 Medium rain 10.0–24.9

4 Heavy rain 25.0–49.9

5 Rainstorm 50.0–99.9

6 Heavy rainstorm 100.0–249.9

7 Extreme rainstorm ⩾250.0

Table 3 
Classification Standard of Daily Precipitation by China Meteorological 
Administration (CMA)
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binning with fixed mass, fixed width or hybrid fixed width–mass interval partitions (Pechlivanidis et al., 2016). 
Fixed width bins have the advantage of being simple and computationally efficient (Pechlivanidis et al., 2016; 
Ruddell & Kumar, 2009; Thiesen et al., 2019, 2020). In this study, we introduce five fixed width binning meth-
ods, as shown in Table 6.

In Table 6, the relationship between 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 NC is shown in Equation 5

𝑊𝑊 =
𝑅𝑅

NC
� (5)

where 𝐴𝐴 𝐴𝐴 is the range of distribution.

When calculating mutual information (or NMI) of two variables, there is often only one binning strategy for 
any variable (Alfonso et al., 2010; Babel et al., 2015; Mogheir et al., 2003). In the study, because 𝐴𝐴 𝐴𝐴|𝐹𝐹𝑘𝑘 is a part 
of 𝐴𝐴 𝐴𝐴 , the bin width to calculate 𝐴𝐴 𝐴𝐴(𝑂𝑂) and �(�|��) should be the same. Therefore, the data of 𝐴𝐴 𝐴𝐴 at each station 
which contain all observed precipitation are used to calculate the bin width. With the bin width, the range of 
each bin can be obtained. It should be noted that the bin width calculated by fixed width binning methods may 
differ among different precipitation stations. In addition to the fixed width binning method, the authors also 
studied one non-fixed binning method (denoted as M0). The binning strategy of M0 in the study is the same as 
the classification of forecasts. Therefore, the binning method M0 contains three bins, namely L1 (0–9.9 mm), L2 
(10.0–24.9 mm), and L3 (𝐴𝐴 ≥ 25.0 mm), as summarized in Table 5.

3.1.3.2.  Step 2: Bin Each Observation and Classify Each Forecast

With the bin width, observed precipitation can be put into individual bins. Take the case in Figure 3 as an exam-
ple. If the bin width calculated is 3 mm, the intervals of the bins are 0–2.9 mm (C1), 3–5.9 mm (C2), 6–8.9 mm 
(C3), 9–11.9 mm (C4), 12–14.9 mm (C5), 15–17.9 mm (C6), 18–20.9 mm (C7)…. Therefore, the observed precip-
itation {0, 20, 11, 2} mm are put into bins {C1, C7, C4, C1}, respectively. Similarly, the forecasts can be classified 
into different categories with the classification of forecasts. The observations and corresponding forecasts each 
day are put into one certain bin and category, respectively, as shown in Figure 3.

3.1.3.3.  Step 3: Calculate the Normalized Contingency Table

With the binning results and classification of forecasts, we can calculate 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 
(𝐴𝐴 𝐴𝐴  = L1, L2, L3; 𝐴𝐴 𝐴𝐴  = C1, C2, C3, …, CNC), which represents the number of 
the samples (days) when forecasts and observed precipitation belong to the 

𝐴𝐴 𝐴𝐴 th category and the 𝐴𝐴 𝐴𝐴 th class interval, respectively. Thus, the contingency 
table can be obtained, which gives the discrete joint sample distribution of 
deterministic forecasts and categorical observations in terms of cell counts 
(Jolliffe & Stephenson,  2012,  pp.  62–63, 243). Furthermore, 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 can be 
obtained by Equation 6

Precipitation 
station No rain

Light 
rain

Medium 
rain

Heavy 
rain Rainstorm

Heavy 
rainstorm

Extreme 
rainstorm

Sum of 
samples

Bianwaipuzi 1,414 552 156 70 14 2 0 2,208

Muqi 1,456 522 149 56 22 3 0 2,208

Yingemen 1,412 568 163 48 16 1 0 2,208

Yingpan 1,444 541 147 57 15 4 0 2,208

Yujiapuzi 1,383 560 181 64 15 4 1 2,208

Zhaojiapuzi 1,418 552 144 72 19 3 0 2,208

Table 4 
The Number of Samples of Observed Precipitation From 2007 to 2018 (May to October) at the Six Precipitation Stations

Classification standard of precipitation
Amount of daily 

precipitation (mm)

L1 0–9.9

L2 10.0–24.9

L3 ⩾25.0

Table 5 
Classification of the Forecasts of Daily Precipitation Used in the Study
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𝑝𝑝𝑘𝑘𝑘𝑘𝑘 =
𝑛𝑛𝑘𝑘𝑘𝑘𝑘

𝑁𝑁
� (6)

where 𝐴𝐴 𝐴𝐴 denotes the sample size; 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 is the joint frequency when the forecasted precipitation and observed 
precipitation belong to 𝐴𝐴 𝐴𝐴 th category and 𝐴𝐴 𝐴𝐴 th class interval, respectively. With 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 , the normalized contingency 
table can be obtained, as shown in Table 7.

3.1.3.4.  Step 4: Calculate the Two Proposed Scores

In Equations 3 and 4, 𝐴𝐴 NMI𝑘𝑘 and NMI can be obtained after 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 , 𝐴𝐴 𝐴𝐴(𝑂𝑂) and �(�|��) are known. 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 can be estimated 
by the proportion 𝐴𝐴 𝐴𝐴𝑘𝑘 in all forecasts. Based on a normalized contingency table (Table 7), 𝐴𝐴 𝐴𝐴(𝑂𝑂) and �(�|��) can 
be obtained by Equations 7 and 8, respectively.

Figure 3.  The schematic of the procedure to calculate the two proposed scores.

Binning 
methods 
ID Binning methods Related studies

M1
𝐴𝐴 𝐴𝐴 = 3.49 × 𝜎𝜎 × 𝑆𝑆

−
1

3  Gong et al. (2014), Loritz et al. (2019), 
Scott (1979), and Singh (2013, p. 544)

M2 NC = Int
(

1 + log2 �
)

  Sturges (1926) and W. Wang et al. (2018)

M3 NC = Int
(

1 + 1.33 × log2 �
)

  Masoumi and Kerachian (2010), Mogheir 
et al. (2003), and Ridolfi et al. (2011, 2016)

M4 𝐴𝐴 NC = Int(
√
𝑆𝑆)  Hao and Singh (2013) and Montgomery and 

Runger (2014, p. 135)

M5 The method based on maximum a posteriori estimation and Bayes' theorem (also called the 
Generalized Knuth method)

Gencaga et al. (2015), Knuth (2013), and Tovo 
et al. (2016)

Note. 𝐴𝐴 𝐴𝐴  : the bin width; 𝐴𝐴 NC : the number of classes (bins); 𝐴𝐴 𝐴𝐴 : the standard deviation of the distribution; 𝐴𝐴 𝐴𝐴 : the number of available samples belonging to the distribution; 
𝐴𝐴 Int(⋅) : the decimal integer function; The MATLAB code of M5 can be found in Knuth (2013).

Table 6 
Five Fixed Width Binning Methods to Calculate Entropy
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𝐻𝐻(𝑂𝑂) = −
∑NC

𝑗𝑗=1
𝑝𝑝𝑗𝑗 log2𝑝𝑝𝑗𝑗� (7)

�(�|��) = −
∑NC

�=1
��|�� log2��|��� (8)

The logarithm of base two was chosen so that the entropy is expressed in bits; 
the meaning of 𝐴𝐴 𝐴𝐴𝑗𝑗 is shown in Table 7; 𝐴𝐴 𝐴𝐴𝑗𝑗|𝐹𝐹𝑘𝑘 is the conditional frequency when 
observed precipitation belongs to the 𝐴𝐴 𝐴𝐴 th class interval given 𝐴𝐴 𝐴𝐴𝑘𝑘 and can be 
calculated by Equation 9

𝑝𝑝𝑗𝑗|𝐹𝐹𝑘𝑘 =
𝑝𝑝𝑘𝑘𝑘𝑘𝑘

𝑝̂𝑝𝑘𝑘
� (9)

3.1.4.  The Values of the Proposed Scores for Optimal Forecasts

In the study, the optimal forecasts denote the forecasts whose values are equal 
to the values of corresponding observations.

3.1.4.1.  The Value of the  for Optimal Forecasts

𝐴𝐴 NMI𝑘𝑘 may be positive (�(�) > �(�|��) ), in which case uncertainty has decreased, or negative (�(�) < �(�|��) ), 
in which case uncertainty has increased (Hughes & McRoberts, 2014; Hughes et al., 2017; Topp et al., 2013). 

𝐴𝐴 NMI𝑘𝑘 is equal to 0 when the forecasts in 𝐴𝐴 𝐴𝐴 th category are independent with observed precipitation (DelSole 
& Tippett, 2007). From Equation 3, we found that at least one of the three variables NMIL1, NMIL2, NMIL3 is 
non-negative, because the NMI and 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 are non-negative. When forecasts in 𝐴𝐴 𝐴𝐴 th category are optimal, the distri-
bution of 𝐴𝐴 𝐴𝐴|𝐹𝐹𝑘𝑘 is the same as 𝐴𝐴 𝐴𝐴𝑘𝑘 , which are the observed precipitation in 𝐴𝐴 𝐴𝐴 th category. Therefore, the 𝐴𝐴 NMI𝑘𝑘 for 
optimal forecasts, namely 𝐴𝐴 NMI

opt

𝑘𝑘
 , can be calculated as follows

NMIopt� =
�(�) −�(��)

�(�)� (10)

where �(��) is the entropy of 𝐴𝐴 𝐴𝐴𝑘𝑘 .

3.1.4.2.  The value of the NMI for optimal forecasts

In Equation (1), 𝐴𝐴 𝐴𝐴(𝑂𝑂) , �(�|� ) , 𝐴𝐴 𝐴𝐴(𝑂𝑂;𝐹𝐹 ) and NMI are all non-negative values. NMI has a value of 0 when the 
forecasts and observations are independent (Hughes et al., 2017).

Based on Equations  3 and  10, the value of NMI for optimal forecasts, namely 𝐴𝐴 NMIopt , can be calculated by 
Equation 11

NMIopt =
∑𝐾𝐾

𝑘𝑘=1
𝑝̂𝑝𝑘𝑘 × NMI

opt

𝑘𝑘
� (11)

From Equations 7, 8, 10 and 11, we can find that the binning method also affects the values of 𝐴𝐴 NMI
opt

𝑘𝑘
 and 𝐴𝐴 NMIopt , 

which are no more than 1. 𝐴𝐴 NMI
opt

𝑘𝑘
 is equal to 1 when the observed precipitation in category 𝐴𝐴 𝐴𝐴 are completely 

within a certain bin while the 𝐴𝐴 NMIopt is equal to 1 only if the observed precipitation in each forecast category are 
completely within a different bin. For example, the binning strategy M0 is adopted.

Observed

Forecast 𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 𝐴𝐴 𝐴𝐴3 𝐴𝐴 𝐴𝐴4 𝐴𝐴 ⋯ 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 𝐴𝐴
∑

 

𝐴𝐴 𝐴𝐴1  𝐴𝐴 𝐴𝐴𝐿𝐿1,1 𝐴𝐴 𝐴𝐴𝐿𝐿1,2 𝐴𝐴 𝐴𝐴𝐿𝐿1,3 𝐴𝐴 𝐴𝐴𝐿𝐿1,4 𝐴𝐴 ⋯ 𝐴𝐴 𝐴𝐴𝐿𝐿1,𝑁𝑁𝑁𝑁 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿1 

𝐴𝐴 𝐴𝐴2  𝐴𝐴 𝐴𝐴𝐿𝐿2,1 𝐴𝐴 𝐴𝐴𝐿𝐿2,2 𝐴𝐴 𝐴𝐴𝐿𝐿2,3 𝐴𝐴 𝐴𝐴𝐿𝐿2,4 𝐴𝐴 ⋯ 𝐴𝐴 𝐴𝐴𝐿𝐿2,𝑁𝑁𝑁𝑁 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿2 

𝐴𝐴 𝐴𝐴3  𝐴𝐴 𝐴𝐴𝐿𝐿3,1 𝐴𝐴 𝐴𝐴𝐿𝐿3,2 𝐴𝐴 𝐴𝐴𝐿𝐿3,3 𝐴𝐴 𝐴𝐴𝐿𝐿3,4 𝐴𝐴 ⋯ 𝐴𝐴 𝐴𝐴𝐿𝐿3,𝑁𝑁𝑁𝑁 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿3 

𝐴𝐴
∑

  𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 𝐴𝐴 𝐴𝐴3 𝐴𝐴 𝐴𝐴4 𝐴𝐴 ⋯ 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁  1

Note. 𝐴𝐴 𝐴𝐴𝑗𝑗 : the 𝐴𝐴 𝐴𝐴 th class interval of observed precipitation; 𝐴𝐴 𝐴𝐴𝑗𝑗 : the climatology 
probability when observed precipitation of the 𝐴𝐴 𝐴𝐴 th class interval occurs; 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘 : 
the joint frequency when forecasts and observed precipitation belong to the 

𝐴𝐴 𝐴𝐴 th category and the 𝐴𝐴 𝐴𝐴 th class interval, respectively.

Table 7 
Schematic of Normalized Contingency Table in the Study
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3.2.  Comparison of the Proposed Scores and Traditional Scores

3.2.1.  Traditional Verification Methods

3.2.1.1.  To Assess the Comprehensive Uncertainty of All Categories

Jolliffe and Stephenson (2012, p. 73) pointed out that the GS (the Gerrity score) is an appropriate choice for most 
ordinal categories event forecast verification problems, which has many desirable properties and is used as a 
reference verification method for NMI in this study. The GS can be calculated by Equation 12

GS =
∑𝐾𝐾

𝑘𝑘=1

∑𝐾𝐾

𝑗𝑗=1
𝑝𝑝(𝑘𝑘𝑘 𝑘𝑘) × 𝑠𝑠(𝑘𝑘𝑘 𝑘𝑘)� (12)

where 𝐴𝐴 𝐴𝐴 is the index of an observed category; 𝐴𝐴 𝐴𝐴(𝑘𝑘𝑘 𝑘𝑘) and 𝐴𝐴 𝐴𝐴(𝑘𝑘𝑘 𝑘𝑘) are the frequency and the corresponding 
element of scoring matrix when the forecasts belong to the 𝐴𝐴 𝐴𝐴 th category and observed precipitation belong 
to the 𝐴𝐴 𝐴𝐴 th category, respectively. The details to calculate the scoring matrix of GS can be seen in Jolliffe and 
Stephenson (2012, pp. 69–71).

3.2.1.2.  To Assess the Uncertainty for a Certain Category

The Std (or variance) and 50% IQR (Wilks, 2019, p. 27), that is, the range between the 25th and the 75th percen-
tiles of the samples, are commonly used to measure uncertainty (Gong et al., 2013) and used as reference verifi-
cation methods for 𝐴𝐴 NMI𝑘𝑘 in this study. In particular, the IQR and Std for a certain category can be calculated by 
Equations 13 and 14, respectively.

IQR𝑘𝑘 = 𝑓𝑓
𝑢𝑢

𝑘𝑘
− 𝑓𝑓

𝑙𝑙

𝑘𝑘
� (13)

Std𝑘𝑘 =

√
1

𝑚𝑚 − 1

∑𝑚𝑚

𝑗𝑗=1

(

𝑂𝑂
𝑗𝑗

𝑘𝑘
− 𝑂𝑂𝑘𝑘

)2

� (14)

In Equations 13 and 14, the 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 indicate that the 50% IQR and Std of observed precipitation given 
𝐴𝐴 𝐴𝐴𝑘𝑘 , respectively; 𝐴𝐴 𝐴𝐴

𝑢𝑢

𝑘𝑘
 and 𝐴𝐴 𝐴𝐴

𝑙𝑙

𝑘𝑘
 are the 75th and 25th percentiles of observed precipitation given 𝐴𝐴 𝐴𝐴𝑘𝑘 ; 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝑘𝑘
 denotes 

the observed precipitation given 𝐴𝐴 𝐴𝐴𝑘𝑘 ; 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝑂𝑂𝑘𝑘 are the number and mean of observed precipitation given 𝐴𝐴 𝐴𝐴𝑘𝑘 , 
respectively.

3.2.2.  Comparison of the Proposed Scores and Traditional Scores

The proposed score NMI and the traditional score GS are used to assess the comprehensive uncertainty of all 
categories. Both the NMI and GS are calculated by the normalized contingency table, though the corresponding 
normalized contingency tables are different. Therefore, the two scores are not susceptible to extreme values. The 
scoring matrix of GS in this study is determined by the daily climatological precipitation frequency in each cate-
gory (Jolliffe & Stephenson, 2012, pp. 69–71). Therefore, same with NMI, GS is also suitable for comparing the 
forecasting performance under different climatologies.

The proposed score 𝐴𝐴 NMI𝑘𝑘 and the traditional score 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 are used to assess the uncertainty in a certain 
category. The 𝐴𝐴 IQR𝑘𝑘 is only affected by the samples at the 25th and 75th percentiles and cannot fully represent 
the uncertainty of the samples. The 𝐴𝐴 Std𝑘𝑘 is susceptible to extreme values. Unlike the 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 , the 𝐴𝐴 NMI𝑘𝑘 is 
calculated by the entropy of the relative distribution of forecasting and the distribution of observed precipitation 
(as shown in Equation 4). Thus, the 𝐴𝐴 NMI𝑘𝑘 makes full use of the information of all the samples and is less impacted 
by the extreme values. In addition, the 𝐴𝐴 NMI𝑘𝑘 can take account of both the uncertainties in the observed precipi-
tation and the eliminated uncertainties (or remaining uncertainties) given the forecasts while both 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 
only calculate the latter. Therefore, the 𝐴𝐴 NMI𝑘𝑘 is more suitable for comparing the forecasting performance under 
different climatologies than the 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 .

From Equation 3, we can find that the NMI is the weighted average value of 𝐴𝐴 NMI𝑘𝑘 among all categories if we take 
𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 as the weight of 𝐴𝐴 NMI𝑘𝑘 . Therefore, the score NMI for assessing the comprehensive uncertainty also represents 

the weighted average uncertainty among all categories. Thus, the new mutual information theory-based approach, 
as shown in Equations 1, 3 and 4, could verify both the comprehensive performance of all categories of forecast 
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and the forecast performance for a certain category and establish the linkage between these two parts in determin-
istic multi-category forecasts. However, it is hard for traditional scores to establish the linkage.

4.  Results
In this section, we compared the proposed method with traditional verification methods using three criteria:

1.	 �First, a good verification method should clearly distinguish the forecasting performance among different fore-
cast products because selecting the higher quality product or rejecting the lower quality product is important 
for end-users.

2.	 �Second, a suitable verification method should be stable. Thus, it should not fluctuate much with lead times 
and can well capture the changing patterns of uncertainties with lead times.

3.	 �Third, a good score should be resistant to extreme bias because a small number of extreme values can have 
undue influence on the values of scores, and mask the quality of forecasts for non-extreme values (Jolliffe & 
Stephenson, 2012, p. 7).

It should be pointed out that these three criteria are related. For example, it is difficult for verification methods 
with poor stability or poor resistivity to clearly distinguish the forecasting performance among different forecast 
products and well capture the changing patterns of uncertainties with lead times.

4.1.  Extreme Bias in the Forecasts

The box and whisker plots of forecast errors with the lead times of +1, +3, +5, and +7 days at Muqi are presented 
in Figure 4a. Figure 4b shows the corresponding mean error (ME). It should be noted that the monthly precip-
itation and the forecasting performance at the six precipitations are similar. Therefore, the Muqi precipitation 
station was randomly selected as one example. The ME values in Figure 4b are positive but no more than 1.4 mm. 
Therefore, the precipitation from the four forecasting products is not significantly larger than the observed precip-
itation. However, we can find that a few outliers, that is, extreme bias, exist in Figure 4a. Therefore, the extreme 
bias cannot be ignored and should be taken into consideration in the following analysis.

4.2.  Verification for Comprehensive Uncertainty of All Categories

The proposed score NMI and the GS were used to assess the comprehensive uncertainty of all categories. Figure 5 
shows the NMI and GS of four forecast products at the six precipitation stations. The NMI and GS show similar 
results: (a) ECMWF performs best and NCEP performs worst, interpretation shown as follows. The larger NMI or 
GS, the better the forecasts. We can find that ECMWF is the largest among the four products both in Figures 5a 
and 5b. In comparison, NCEP is the smallest in most of the six subfigures of Figure 5a and most of the six 

Figure 4.  The bias analyses for the four forecast products with the lead times of +1, +3, +5, and +7 days at Muqi: (a) the box and whisker plots of forecast errors; and 
(b) the mean error of forecasts.
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subfigures of Figure 5b. (b) The performance of forecasts decreases with the increase of lead times and the down-
trend is approximately linear. The conclusion (b) can help to estimate the performance of forecasts with a certain 
lead time if only limited data is available. Therefore, by comparing the results (a) and (b), we can get the conclu-
sion that the NMI is as good as GS in terms of distinguishing the performance of different forecast products and 
capturing the changing patterns of uncertainties with lead times; and (c) Both NMI and GS are close to 0 when 
the lead time is +7 days. Therefore, the daily precipitation forecasts with a lead time more than 7 days almost have 
no practical meaning, which was also found by H. Wang et al. (2021) in the Huaihe River Basin, China.

4.3.  Verification of the Uncertainty of a Certain Category

The proposed score 𝐴𝐴 NMI𝑘𝑘 with the traditional scores 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 were applied in the uncertainty assessment 
of forecast products for each category. The larger 𝐴𝐴 NMI𝑘𝑘 or the smaller 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 , the better performance of 
forecasts in the 𝐴𝐴 𝐴𝐴 th category. Figure 6 shows the 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 𝐴𝐴 Std𝑘𝑘 of four forecast products in category L1. 
Among the four products, the NMIL1 of ECMWF is the largest while the IQRL1 and StdL1 of ECMWF are the 
least for most of the lead times and precipitation stations. Therefore, for the three verification methods, ECMWF 
almost performs best at all the precipitation stations and lead times. Similarly, NCEP and UKMO perform worst 
as judged by NMIL1 and IQRL1, respectively. However, no product performs worst according to StdL1 at all the 
precipitation stations and lead times. Therefore, the NMIL1 and IQRL1 show a slight advantage over StdL1 in 
distinguishing the forecasting performance among different forecast products.

In addition, we can find that the NMIL1 of the four products basically shows an obvious linear decreasing trend 
while both IQRL1 and StdL1 basically show an apparent increasing trend. However, there are some nearly horizon-
tal segments in IQRL1. The reason may be that IQRL1 cannot capture the change of the samples smaller than 25th 
percentile or larger than 75th percentile. The fluctuation of StdL1 may be caused by the large bias, which will be 
interpreted in Figure 9. Therefore, the NMIL1 shows a slight advantage over the IQRL1 and StdL1 on capturing the 
changing patterns of uncertainties with lead times.

The verification results show similarities for comprehensive uncertainty of all categories and uncertainty of 
category L1. For example, both the NMI and the NMIL1 show that ECMWF performs best and NCEP performs 
worst and the performance of forecasts decreases with the increase of lead times. It is explained in Table 4 that the 

Figure 5.  (a) Normalized mutual information (NMI) and (b) Gerrity score (GS) for the four forecast products China Meteorological Administration (CMA), European 
Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom Meteorological Office (UKMO) 
at the six precipitation stations. The proposed score NMI and the traditional score GS were used to assess the comprehensive uncertainty of all categories.
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number of observations in category L1 (0–9.9 mm including no rain and light rain events) takes account of about 
89% of all samples. Therefore, the similarities also verify the linkage between NMI and 𝐴𝐴 NMI𝑘𝑘 in Equation 3.

Similarly, Figures 7 and 8 show the three verification methods in categories L2 and L3, respectively. The points 
E1 in Figure 7c and E2 in Figure 8b are the examples randomly selected from the outliers of 𝐴𝐴 Std𝑘𝑘 and 𝐴𝐴 IQR𝑘𝑘 , 
respectively. The NMIL2 and NMIL3 of four products basically show an increasing trend. The IQRL2 and IQRL3 
basically show a decreasing trend and fluctuate larger than the NMIL2 and NMIL3. However, the StdL2 and StdL3 
fluctuate largest with lead times and show no obvious trend. Therefore, the 𝐴𝐴 NMI𝑘𝑘 is better than the 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 
on capturing the changing patterns of uncertainties with lead times in categories L2 and L3.

In addition, we can find from NMIL2 and NMIL3 that CMA performs best in most of the seven lead times at the 
six precipitation stations. However, due to large fluctuations, it is hard to find the best products by using IQRL2, 

Figure 6.  (a) NMIL1, (b) IQRL1, and (c) StdL1 for the four forecast products China Meteorological Administration (CMA), European Centre for Medium-Range Weather 
Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom Meteorological Office (UKMO) at the six precipitation stations. 
The proposed score NMIL1 with the traditional scores IQRL1 and StdL1 were applied in the uncertainty assessment of forecast products for category L1.
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IQRL3, StdL2, and StdL3 (especially for StdL2 and StdL3). Therefore, the 𝐴𝐴 NMI𝑘𝑘 is better than the 𝐴𝐴 IQR𝑘𝑘 and 𝐴𝐴 Std𝑘𝑘 in 
distinguishing the forecasting performance among different forecast products in categories L2 and L3.

From Figures 7 and 8, we can find that the outliers contribute significantly to the fluctuation of 𝐴𝐴 Std𝑘𝑘 and 𝐴𝐴 IQR𝑘𝑘 . 
The outlier E1 in Figure 7c is used to explain the fluctuation of 𝐴𝐴 Std𝑘𝑘 . The value of the point E1 is abnormal and 
obviously larger than the values of other points in Figure 7c. The explanation can be found in Figure 9a, which 
shows the observed precipitation when the corresponding forecasts from ECMWF with a lead time of +4 days 
at Yujiapuzi belong to category L2. In Figure 9a, the point F is an outlier with an extreme value of 311.5 mm. If 
the point F is removed, the StdL2 will decrease significantly from 26.8 to 15.7 mm. Thus, being very sensitive to 
extreme bias is one of the critical reasons for the significant fluctuation of 𝐴𝐴 Std𝑘𝑘 . In addition, the fluctuation of 

Figure 7.  (a) NMIL2, (b) IQRL2, and (c) StdL2 for the four forecast products China Meteorological Administration (CMA), European Centre for Medium-Range Weather 
Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom Meteorological Office (UKMO) at the six precipitation stations. 
The proposed score NMIL2 with the traditional scores IQRL2 and StdL2 were applied in the uncertainty assessment of forecast products for category L2. E1 is an example 
of outlier in panel (c).
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StdL1 is smaller than that of StdL2 and StdL3. One reason is that the extreme values of the observations are easier to 
occur when the corresponding forecasts belong to the high categories (L2 and L3) than those in the low category 
(L1). Another reason can be found by Equation 14. The larger the sample size 𝐴𝐴 𝐴𝐴 , the more stable the 𝐴𝐴 Std𝑘𝑘 . In 
Table 4, the sample size of observed precipitation in category L1 is much larger than that in categories L2 and 
L3. Thus, the fluctuation of StdL1 is smaller than that of StdL2 and StdL3.

Similarly, we can use the outlier E2 in Figure 8b to explain the fluctuation of 𝐴𝐴 IQR𝑘𝑘 . The value of the point E2 is 
abnormal and obviously larger than most values of the other points in Figure 8b. The explanation can be found by 
Figure 9b, which shows the cumulative frequency of the observed precipitation when the corresponding forecasts 
from NCEP with a lead time of +2 days at Yingpan belong to category L3. In Figure 9b, points C and D are the 
75th and 25th percentiles of the values of the observed precipitation, respectively. Using the linear interpretation 

Figure 8.  (a) NMIL3, (b) IQRL3, and (c) StdL3 for the four forecast products China Meteorological Administration (CMA), European Centre for Medium-Range Weather 
Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom Meteorological Office (UKMO) at the six precipitation stations. 
The proposed score NMIL3 with the traditional scores IQRL3 and StdL3 were applied in the uncertainty assessment of forecast products for category L3. E2 is an example 
of outlier in panel (b).
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method, the coordinate of C can be calculated by the coordinates of A and B, which are the nearest left and right 
points of C, respectively. To test the stability of 𝐴𝐴 IQR𝑘𝑘 , we can change the value of the observation at B by moving 
B to a random position Bʹ. Then, the position of C will change to Cʹ. The coordinates of these points are: A (36.8, 
0.745), B (47.1,0.766), Bʹ (37.5,0.766), C (44.5, 0.750), Cʹ (37.3, 0.750), and D (8.2, 0.250). It means that if only 
one of these values of observed precipitation changes from 47.1 to 37.5 mm, IQRL3 will change significantly 
from 36.3 mm (44.5 minus 8.2) to 29.1 mm (37.3 minus 8.2). From Figure 9b, we can also find that the IQRL3 
would be less stable if the points around C are sparser. Therefore, the smaller the sample size, the less accurate the 

𝐴𝐴 IQR𝑘𝑘 and the higher fluctuation of 𝐴𝐴 IQR𝑘𝑘 with lead times. From Table 4, we find that the sample size of observed 
precipitation in categories L1, L2, and L3 are around 2,000, 160, and 100, respectively. Therefore, among these 
three categories, 𝐴𝐴 IQR𝑘𝑘 fluctuate largest in category L3 and least in category L1.

4.4.  Experiments for Evaluating the Resistivity of Verification Methods to Extreme Bias

In Section 4.3, through the example, we only showed the resistivity of 𝐴𝐴 Std𝑘𝑘 to extreme biases. Here, we set up 
more experiments to evaluate the resistivity of all verification methods, namely GS, NMI, 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 

𝐴𝐴 Std𝑘𝑘 . The observed precipitation data used for the resistivity experiments are obtained from the Muqi station. 
The corresponding forecasts are obtained from ECMWF with a lead time +1 day. We randomly selected 1 day 
for these experiments, such as 13 August 2017. The values of observation and forecast on that day are 26.5 and 
2.3 mm, respectively. The value of the forecast (2.3 mm) belongs to category L1. Therefore, we took category L1 
as an example to compare the resistivity of 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 𝐴𝐴 Std𝑘𝑘 . The variation of the five verification methods 
can be analyzed by changing the bias from −24.2 mm (2.3 minus 26.5) to different extreme values in different 
experiments. To make it easier to compare the verification results between different experiments and the orig-
inal, the value of the forecast on that day in different experiments is set to the same value as the original, that 
is, 2.3 mm. In these experiments, thus, the value of the hypothetic observation on that day varies with the bias. 
The parameters and corresponding results of these experiments are shown in Table 8. GS-p, NMI-p, NMIL1-p, 
IQRL1-p and StdL1-p represent the corresponding percentage changes of GS, NMI, NMIL1, IQRL1, and StdL1, 
respectively.

Figure 9.  Interpretation for the outliers of (a) E1 (in Figure 7) and (b) E2 (in Figure 8), respectively. (a) The observed precipitation when the corresponding forecasts 
from European Centre for Medium-Range Weather Forecasts (ECMWF) with a lead time of +4 days at Yujiapuzi belong to category L2; and (b) the cumulative 
frequency of the observed precipitation when the corresponding forecasts from National Centers for Environmental Prediction (NCEP) with a lead time of +2 days at 
Yingpan belong to category L3. A and B are the nearest left and right points of C, respectively. C and D are the 75th and 25th percentiles of the values of the observed 
precipitation, respectively. B moves horizontally a random distance to Bʹ. Cʹ is the intersection of line ABʹ and horizontal line CCʹ. F is an outlier.
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4.4.1.  Resistivity Analyses of GS and NMI

It is noted that the GS keeps unchanged. The reason is that the normalized contingency table (as shown in Data 
Availability Statement) to calculate the GS keeps unchanged in the four experiments. Therefore, the GS nearly 
brings no information about the change of the extreme bias. The NMI increases slightly with the increase of the 
absolute value of the extreme bias. According to the binning method M1 in Table 6, the bin width is calculated 
by the 𝐴𝐴 𝐴𝐴 of the sample, which is affected by the bias. Therefore, the change of bias indirectly leads to the change 
of NMI.

4.4.2.  Resistivity Analyses of  ,  , and 

The NMIL1 changes no more than 0.001 in the first three experiments and only increases 3% in Experiment 4. The 
reason for the change of NMIL1 is the same as NMI. However, the NMIL1 is less sensitive than NMI to extreme 
bias and nearly keeps unchanged in the first three experiments. IQRL1 stays unchanged in the four experiments. 
The reason is shown as follows. IQRL1 is only affected by the 75th and 25th percentiles of observed precipita-
tion when corresponding forecasts belong to category L1. However, the 75th and 25th percentiles of observed 
precipitation keep unchanged because the extreme values of the hypothetic observed precipitation in the four 
experiments are larger than the 75th percentile of observed precipitation when forecasts belong to category L1. 
Similar to GS, the IQRL1 nearly brings no information about the extreme bias. In comparison, the StdL1 changes 
much with the increase of the extreme biases, which is up to 57% in Experiment 4. Thus, the StdL1 is the most 
sensitive to extreme biases among the three verification methods.

The access to the details, including the data and MATLAB code, for the experiments are shown in Data Availa-
bility Statement.

5.  Discussion
5.1.  The Comparison of Verification Results at Different Precipitation Stations

The comprehensive uncertainty and uncertainty of a certain category of precipitation forecasts in DRDB were 
assessed in the study. We compared the performance of forecasts at different precipitation stations by the five 
scores, namely NMI, GS, 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 𝐴𝐴 Std𝑘𝑘 . As indicated in the results, the climatologies for the six precipi-
tation stations in the DRDB differ slightly given their spatial scale, which is consistent with Figure 2a. In particu-
lar, the five scores at Muqi and Zhaojiapuzi, two precipitation stations with close locations (shown in Figure 1a), 
have presented similar results.

Index Original Experiment 1 Experiment 2 Experiment 3 Experiment 4

Bias (mm) −24.2 −50.0 −100.0 −150.0 −200.0

Forecast (mm) 2.3 2.3 2.3 2.3 2.3

Observation (mm) 26.5 52.3 102.3 152.3 202.3

GS 0.582 0.582 0.582 0.582 0.582

GS-p (%) – 0 0 0 0

NMI 0.168 0.169 0.172 0.173 0.178

NMI-p (%) – 0 2 3 6

NMIL1 0.433 0.433 0.434 0.434 0.445

NMIL1-p (%) – 0 0 0 3

IQRL1 (mm) 0.1 0.1 0.1 0.1 0.1

IQRL1-p (%) – 0 0 0 0

StdL1 (mm) 3.8 3.9 4.4 5.1 5.9

StdL1-p (%) – 4 16 35 57

Note. GS-p, NMI-p, NMIL1-p, IQRL1-p, and StdL1-p represent the corresponding percentage changes of GS, NMI, NMIL1, 
IQRL1, and StdL1, respectively.

Table 8 
Parameters and Results of Resistivity Experiments of Verification Methods to Extreme Bias
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5.2.  Interpretation for the Changing Patterns of Uncertainties With Lead Times in Each Category

According to 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 𝐴𝐴 Std𝑘𝑘 for categories L2 and L3, the uncertainty of forecasts decreases with the 
increase of lead times, which is different from the results of NMI, GS and the three verification methods for 
category L1. However, as mentioned in the introduction, the uncertainty assessed in the study is only one of the 
attributes of the performance of forecasts. Therefore, we cannot draw the conclusion from Figures 7 and 8 that the 
overall performance of forecasts in categories L2 and L3 decreases with the increase in lead times, which can be 
explained by Figure 10. The three subfigures in Figure 10a (denoted as 𝐴𝐴 SubFa

L1
 , 𝐴𝐴 SubFa

L2
 , and 𝐴𝐴 SubFa

L3
 , respectively) 

are the box and whisker plots for observed precipitation when the corresponding forecasts from CMA with seven 
lead times at Muqi belong to category L1, L2, and L3, respectively. It should be noted that the values of the points 
in 𝐴𝐴 SubFa

L1
 , that is, the values of observed precipitation, may not belong to category L1 because forecast errors 

are inevitable. For example, the values of observed precipitation belong to category L3 when the corresponding 
points are above 25 mm. Likewise, the values of the points in 𝐴𝐴 SubFa

L2
 and 𝐴𝐴 SubFa

L3
 do not necessarily belong to 

categories L2 and L3, respectively. Figure 10b is the box and whisker plot for all observed precipitation at Muqi, 
which shows the empirical distribution function of observable precipitation based on a sample of past observa-
tions at Muqi, that is, sample climatology. The three subfigures in Figure 10c (denoted as 𝐴𝐴 SubFc

L1
 , 𝐴𝐴 SubFc

L2
 , and 

𝐴𝐴 SubFc

L3
 , respectively) show the ME of forecasts corresponding to Figure 10a. In Figure 10a, most of the samples 

are smaller than 10 mm and concentrated near 0 mm. In addition, the ME in 𝐴𝐴 SubFc

L1
 are close to 0 mm. There-

fore, no obvious bias exists in category L1. However, most of the samples are smaller than 10 mm in 𝐴𝐴 SubFa

L2
 and 

smaller than 25 mm in 𝐴𝐴 SubFa

L3
 . In addition, the ME in 𝐴𝐴 SubFc

L2
 and 𝐴𝐴 SubFc

L3
 are obviously larger than 0 mm. There-

fore, most of the forecasts in categories L2 and L3 are larger than the observed precipitation. What is more, the 
biases increase with the increase of lead times. With the increase of lead times, the samples in 𝐴𝐴 SubFa

L1
 tend to be 

Figure 10.  Interpretation for the changing patterns of uncertainties with lead times in each category. (a) The box and whisker plots for observed precipitation when the 
corresponding forecasts from China Meteorological Administration (CMA) with seven lead times at Muqi belong to one certain category; (b) the box and whisker plot 
for observed precipitation at Muqi (sample climatology); and (c) the mean error of forecasts corresponding to panel (a).
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sparser while the samples in 𝐴𝐴 SubFa

L2
 and 𝐴𝐴 SubFa

L3
 tend to be more concentrated. The more concentrated the sample, 

the smaller the uncertainty. Therefore, the uncertainty of forecasts increases with the increase of lead times in 
forecast category L1 and decreases with the increase of lead times in forecast categories L2 and L3, which is 
consistent with the results of 𝐴𝐴 NMI𝑘𝑘 , 𝐴𝐴 IQR𝑘𝑘 , and 𝐴𝐴 Std𝑘𝑘 in these three categories (Figures 6–8). Compared with the 
sample climatology in Figure 10b, the samples in 𝐴𝐴 SubFa

L1
 are more concentrated while the samples in 𝐴𝐴 SubFa

L2
 and 

𝐴𝐴 SubFa

L3
 are less concentrated. According to entropy theory (Singh, 2013, p. 126), the concentration of samples 

in Figures 10a and 10b can be assessed by �(�|��) and 𝐴𝐴 𝐴𝐴(𝑂𝑂) in Equation 4, respectively. Thus, �(�|��1) is 
smaller than 𝐴𝐴 𝐴𝐴(𝑂𝑂) while �(�|��2) and 𝐴𝐴 𝐴𝐴 (𝑂𝑂|𝐹𝐹𝐿𝐿3) are larger than 𝐴𝐴 𝐴𝐴(𝑂𝑂) . Therefore, by Equation 4, NMIL1 is 
larger than 0 while NMIL2 and NMIL3 are smaller than 0, which is consistent with the results of Figures 6a, 7a 
and 8a, respectively. With the increase of lead times, the distribution of the samples in Figure 10a tends to be that 
in Figure 10b. Thus, 𝐴𝐴 NMI𝑘𝑘 in all categories tend to be 0 and the forecasts tend to be independent from observed 
precipitation which is also in line with common sense.

Based on the analysis shown above, we can also find that bias analysis is necessary before verifying the uncer-
tainties in precipitation forecasts.

5.3.  Binning Method Comparison and Selection for the Proposed Approach

As shown in Section 3, we introduced five fixed width binning methods and one non-fixed binning method. 
Binning method selection is important because an inappropriate method would bring extra errors. Therefore, it is 
necessary to carefully compare the bin width and the verification results by different binning methods.

5.3.1.  Comparison of Bin Width by Using Different Binning Methods

With Table 6, Equation 5 and the data of 𝐴𝐴 𝐴𝐴 at each station, the bin width by five fixed width binning methods can 
be obtained, as shown in Table 9.

From Table  9, we can find that the bin widths from different binning methods follow this order: 
M5 < M1 < M4 < M2 < M3. The bin width from M5 at different precipitation stations are all equal to 0.1 mm, 
which is the resolution of observed precipitation. The bin widths from M1 are similar to that of M4 and the bin 
widths from M2 are similar to that of M3. The difference of bin widths at different precipitation stations from M1 
are smaller than that from M2, M3, and M4. As shown in Table 6, the bin width by M1, M2, M3, and M4 can 
be calculated by certain equations while M5 is based on maximum a posteriori estimation and Bayes' theorem. 
Therefore, it is hard to analyze the relationship between M5 and other four binning methods. In this section, we 
analyzed the factors affecting the order of the bin width calculated by M1, M2, M3, and M4 in Table 6, shown 
as follows.

According to Table 6 and Equation 5, we can obtain

𝑊𝑊M1 = 3.49 × 𝜎𝜎 × 𝑆𝑆
−

1

3� (15)

�M2 =
�

Int
(

1 + log2 �
)� (16)

Binning method ID

Precipitation station

Bianwaipuzi Muqi Yingemen Yingpan Yujiapuzi Zhaojiapuzi

M1 2.7 2.8 2.4 2.7 3.2 2.8

M2 10.2 14.6 9.5 14.6 24.0 11.2

M3 11.0 15.9 10.3 15.8 26.0 12.2

M4 2.8 4.1 2.6 4.0 6.6 3.1

M5 0.1 0.1 0.1 0.1 0.1 0.1

Note. The details of the binning methods M1 to M5 is shown in Table 6.

Table 9 
Bin Width to Calculate the Entropy of Each Precipitation Station by Five Fixed Width Binning Methods M1 to M5 (mm)
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�M3 =
�

Int
(

1 + 1.33 × log��
)� (17)

𝑊𝑊M4 =
𝑅𝑅

Int(
√
𝑆𝑆)

� (18)

where 𝐴𝐴 𝐴𝐴M1 , 𝐴𝐴 𝐴𝐴M2 , 𝐴𝐴 𝐴𝐴M3 , and 𝐴𝐴 𝐴𝐴M4 are the bin width of the binning methods M1, M2, M3, and M4, respectively.

5.3.1.1.  The Relationship of the Bin Width Between M1 and M4

With Equations 15 and 18, the ratio between 𝐴𝐴 𝐴𝐴M1 and 𝐴𝐴 𝐴𝐴M4 are shown as follows

𝑊𝑊M1

𝑊𝑊M4

=
3.49 × 𝜎𝜎 × 𝑆𝑆

−
1

3

𝑅𝑅

Int(
√
𝑆𝑆)

≈
3.49 × 𝜎𝜎 × 𝑆𝑆

1

6

𝑅𝑅
� (19)

In Equation 19, we can find that 𝐴𝐴
𝑊𝑊M1

𝑊𝑊M4

 is affected by 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 . In the study, 𝐴𝐴 𝐴𝐴 equals to 2,208, that is the same 
for the six rainfall stations, as shown in Table 4. 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 differ in different precipitation stations. Therefore, it is 
necessary to calculate 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 to obtain 𝐴𝐴

𝑊𝑊M1

𝑊𝑊M4

 , as shown in Table 10. In Table 10, we can find that 𝐴𝐴
𝑊𝑊M1

𝑊𝑊M4

 calculated 
by Equation 19 (approximate values) is similar to that by Table 9 (accurate values). In Table 10, We can also find 
that 𝐴𝐴

𝑊𝑊M1

𝑊𝑊M4

< 1 at the six precipitation stations. Thus, we can obtain

𝑊𝑊M1 < 𝑊𝑊M4� (20)

which is tenable at the six precipitation stations.

5.3.1.2.  The Relationship of the Bin Width Between M2 and M3

With Equations 16 and 17, the ratio between 𝐴𝐴 𝐴𝐴M2 and 𝐴𝐴 𝐴𝐴M3 are shown as follows

𝑊𝑊M2

𝑊𝑊M3

=

𝑅𝑅

Int(1+log2 𝑆𝑆)

𝑅𝑅

Int(1+1.33×log𝑒𝑒𝑆𝑆)

≈
1 + 0.92 × log2 𝑆𝑆

1 + log2 𝑆𝑆
� (21)

At the six precipitation stations, 𝐴𝐴
𝑊𝑊M2

𝑊𝑊M3

≈
1+0.92×log22,208

1+log22,208
= 0.93 (the accurate value of 𝐴𝐴

𝑊𝑊M2

𝑊𝑊M3

 can also be calculated by 

Table 9). Therefore, 𝐴𝐴 𝐴𝐴M2 is a little smaller than 𝐴𝐴 𝐴𝐴M3 at the six precipitation stations, as shown in Table 9.

In Equation 21, we can find that 𝐴𝐴
𝑊𝑊M2

𝑊𝑊M3

 is only affected by 𝐴𝐴 𝐴𝐴 . Therefore, with Equation 21, we can get two Equa-
tions 22 and 23, which are also tenable in other basins.

0.92 <
𝑊𝑊M2

𝑊𝑊M3

< 1� (22)

Precipitation station Bianwaipuzi Muqi Yingemen Yingpan Yujiapuzi Zhaojiapuzi

𝐴𝐴 𝐴𝐴 (mm) 10.1 10.7 9.0 10.2 12.1 10.6

𝐴𝐴 𝐴𝐴 (mm) 132.0 190.4 123.5 189.6 311.5 145.8

𝐴𝐴
𝑊𝑊M1

𝑊𝑊M4

 (by Equation 19) 0.96 0.70 0.92 0.68 0.49 0.91

𝐴𝐴
𝑊𝑊M1

𝑊𝑊M4

 (by Table 9) 0.96 0.68 0.92 0.68 0.48 0.90

Note. 𝐴𝐴 𝐴𝐴 : the standard deviation of the distribution of the observed precipitation; 𝐴𝐴 𝐴𝐴 : the range of distribution of the observed 
precipitation; 𝐴𝐴 𝐴𝐴M1 : the bin width of the binning methods M1; 𝐴𝐴 𝐴𝐴M4 : the bin width of the binning methods M4.

Table 10 
The Ratio of the Bin Width by Binning Methods M1 and M4 at Each Precipitation Station
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𝑊𝑊M2 < 𝑊𝑊M3� (23)

5.3.1.3.  The Relationship of the Bin Width Between M4 and M2

With Equations 18 and 16, the ratio between 𝐴𝐴 𝐴𝐴M4 and 𝐴𝐴 𝐴𝐴M2 are shown as follows

𝑊𝑊M4

𝑊𝑊M2

=

𝑅𝑅

Int(
√
𝑆𝑆)

𝑅𝑅

Int(1+log2 𝑆𝑆)

≈
1 + log2 𝑆𝑆

√
𝑆𝑆

� (24)

At the six precipitation stations, 𝐴𝐴
𝑊𝑊M4

𝑊𝑊M2

≈
1+log22,208√

2,208
= 0.26 (the accurate value of 𝐴𝐴

𝑊𝑊M4

𝑊𝑊M2

 can also be calculated by 
Table 9). Therefore, 𝐴𝐴 𝐴𝐴M4 is much smaller than 𝐴𝐴 𝐴𝐴M2 at the six precipitations, as shown in Table 9.

In Equation 24, we can find that 𝐴𝐴
𝑊𝑊M4

𝑊𝑊M2

 is also only affected by 𝐴𝐴 𝐴𝐴 , which should be large enough to be representative. 
Therefore, we can get Equations 25 and 26, which are also tenable in other basins.

lim
𝑆𝑆→+∞

𝑊𝑊M4

𝑊𝑊M2

= 0� (25)

𝑊𝑊M4 < 𝑊𝑊M2� (26)

Finally, according to Equations 20, 23 and 26, we can get

𝑊𝑊M1 < 𝑊𝑊M4 < 𝑊𝑊M2 < 𝑊𝑊M3� (27)

which are tenable at the six precipitation stations.

5.3.2.  Binning Method Selection for the Proposed Approach

The bin width may show much difference if taking different binning methods and it is necessary to find which one 
is suitable for the study. In the following, we will use the first two criteria (shown at the beginning of Section 4) 
to select a proper binning method.

With the bin width, NMI and 𝐴𝐴 NMI𝑘𝑘 by different binning methods at Muqi can be calculated as one example and 
are shown in Figure 11.

The range of NMI or 𝐴𝐴 NMI𝑘𝑘 with different lead times follows this order: (M1 𝐴𝐴 ≈ M4 𝐴𝐴 ≈ M5) < (M0 𝐴𝐴 ≈ M2 𝐴𝐴 ≈ M3) 
except that the range of NMIL3 by M0 is similar to that of M1, M4, and M5. The width of three bins by M0 are 
10 mm (10 minus 0), 15 mm (25 minus 10) and 𝐴𝐴 +∞ (𝐴𝐴 ≥ 25). With the order of the bin width by using different 
binning methods, we can find that the range of NMI or 𝐴𝐴 NMI𝑘𝑘 with different lead times tends to increase with the 
increase of bin width. The larger the range of NMI or 𝐴𝐴 NMI𝑘𝑘 , the easier to distinguish the forecast performance 
with different lead times. However, a large range of bin width also brings significant fluctuation to NMI and 

𝐴𝐴 NMI𝑘𝑘 which makes it hard to capture the changing patterns of uncertainties with lead times and distinguish the 
forecasting performance among different forecast products.

In Figure 11c, it is difficult to distinguish the performance of different products by applying the binning methods 
M2 and M3. In Figure 11d, it is hard to capture the changing patterns of uncertainties with lead times by using 
the binning method M0. Therefore, binning methods M1, M4, and M5 show similar performance and are better 
than M0, M2, and M3. In addition, among these five binning methods, M1, which was proposed by Scott (1979), 
is most frequently used (Loritz et al., 2019). Because M1 performs well, it is applied in the study. It should be 
noted that the most proper binning method may vary in other basins.

Extreme precipitation forecasts are vital for water resource management (e.g., flood control). Due to the small 
sample size, however, the forecasting precipitation greater than the medium precipitation as defined by the CMA 
are merged into category L3 in this study. Therefore, the uncertainty verification for the extreme precipitation 
forecasts is conjectural as represented in this study. For future work, it is expected that the proposed method 
would be implemented in different climate zones with more case studies (e.g., large basins) for comparing the 
performance of precipitation forecasting. In addition, more research work should be focused on the applicability 
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of the proposed scores in other hydrometeorological forecasts, such as deterministic multi-category forecasts of 
temperature and streamflow.

6.  Conclusions
Verification for the deterministic multi-category precipitation forecasts is important for end-users. This study 
proposed a new approach using two mutual information theory-based scores, namely NMI and 𝐴𝐴 NMI𝑘𝑘 (the decom-
position of NMI in the 𝐴𝐴 𝐴𝐴 th category), for assessing the comprehensive uncertainty and the uncertainty for a 
certain category, respectively in deterministic multi-category precipitation forecasting. The purpose of these 
two scores is for the verification of forecasting products. Specifically, the comprehensive uncertainty is defined 
as the average reduction in uncertainty about the observations resulting from the use of a predictive model to 

Figure 11.  (a) Normalized mutual information (NMI), (b) NMIL1, (c) NMIL2, and (d) NMIL3 for the four forecast products China Meteorological Administration 
(CMA), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and United Kingdom 
Meteorological Office (UKMO) by six binning methods at Muqi.
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provide all categories forecasts; the uncertainty of a certain category is defined as the reduction in uncertainty 
about the observations resulting from the use of a predictive model to provide a certain category forecast. These 
two proposed scores can make full use of the forecasting and observed data information, which are resistant to 
extreme biases and suitable for comparing the performance of forecasts under different climatologies. In addi-
tion, the proposed approach establishes the linkage between the comprehensive performance of all categories of 
forecast (NMI) and the forecast performance for a certain category (𝐴𝐴 NMI𝑘𝑘 ).

By applying the mutual information theory-based approach and traditional verification methods in the DRDB, 
we conclude the following:

1.	 �In terms of capturing the changing patterns of uncertainties with lead times and distinguishing the forecast-
ing performance among different forecast products, the 𝐴𝐴 NMI𝑘𝑘 shows a better performance than the other two 
reference verification methods 𝐴𝐴 IQR𝑘𝑘 (the IQR in the 𝐴𝐴 𝐴𝐴 th category) and 𝐴𝐴 Std𝑘𝑘 (the Std in the 𝐴𝐴 𝐴𝐴 th category), while 
NMI shows a similar performance with the reference verification method GS.

2.	 �The NMI and 𝐴𝐴 NMI𝑘𝑘 are resistant to extreme biases.
3.	 �The difference between the NMI and 𝐴𝐴 NMI𝑘𝑘 using different binning methods indicates that a careful choice of 

bin width is needed.
4.	 �The large anomalies of forecasting performance in categories L2 and L3 show that a bias analysis is necessary 

before verifying the uncertainties in precipitation forecasts.

Acronyms
BR	 bias ratio
CMA	 China Meteorological Administration
DRDB	 Dahuofang Reservoir Drainage Basin
DS	 divergence score
ECMWF	 European Centre for Medium-Range Weather Forecasts
GS	 Gerrity score
IQR	 interquartile range
ME	 mean error
NCEP	 National Centers for Environmental Prediction
NMI	 normalized mutual information
NWP	 numerical weather prediction
ORGG	 octahedral reduced Gaussian grid
PC	 proportion correct
POD	 probability of detection
Std	 standard deviation
TIGGE	 Interactive Grand Global Ensemble
UKMO	 United Kingdom Meteorological Office
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