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Abstract: The rapid leap in wireless communication systems incorporated a plethora of new fea-
tures and challenges that accompany the era of 6G and beyond being investigated and developed.
Recently, machine learning techniques were widely deployed in many fields, especially wireless
communications. It was used to improve network traffic performance regarding resource man-
agement, frequency spectrum optimization, latency, and security. The studies of modern wireless
communications and anticipated features of ultra-densified ubiquitous wireless networks exposed a
risky vulnerability and showed a necessity for developing a trustworthy intrusion detection system
(IDS) with certain efficiency/standards that have not yet been achieved by current systems. IDSs lack
acceptable immunity against repetitive, updatable, and intelligent attacks on wireless communication
networks, significantly concerning the modern infrastructure of 6G communications, resulting in
low accuracies/detection rates and high false-alarm/false-negative rates. For this objective princi-
ple, IDS system complexity was reduced by applying a unique meta-machine learning model for
anomaly detection networks was developed in this paper. The five main stages of the proposed
meta-model are as follows: the accumulated datasets (NSL KDD, UNSW NB15, CIC IDS17, and
SCE CIC IDS18) comprise the initial stage. The second stage is preprocessing and feature selection,
where preprocessing involves replacing missing values and eliminating duplicate values, leading to
dimensionality minimization. The best-affected subset feature from datasets is selected using feature
selection (i.e., Chi-Square). The third step is represented by the meta-model. In the training dataset,
many classifiers are utilized (i.e., random forest, AdaBoosting, GradientBoost, XGBoost, CATBoost,
and LightGBM). All the classifiers undergo the meta-model classifier (i.e., decision tree as the voting
technique classifier) to select the best-predicted result. Finally, the classification and evaluation stage
involves the experimental results of testing the meta-model on different datasets using binary-class
and multi-class forms for classification. The results proved the proposed work’s high efficiency and
outperformance compared to existing IDSs.

Keywords: 6G wireless communications; chi-square; cybersecurity; intrusion detection system;
machine learning techniques; meta-model; stacking ensemble learning; voting techniques

1. Introduction

The advancement of modernized wireless communication networks with their ac-
companying features, technologies, heterogeneously connected networks/gadgets, service
demands, and the huge amount of data traffic has brought more complexity and sophis-
tication to communication systems [1]. The 6G revolution and internet of everything
(IoE) technology drive artificial intelligence (AI)-based incorporations (e.g., machine learn-
ing (ML)) in the ubiquitous connection of billions of sub-networks, users, and devices.
Furthermore, the new features of 6G and beyond wireless communications, movable infras-
tructure, and the potential intelligent services add critical security risks to the network’s
core, edge, and associated devices [1–4]. Modern networks benefit significantly from AI
and ML in various ways, such as intelligent communications, network optimization, and
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big data analytics. However, the threats of renewable intelligent attacks on the networks
increase proportionally with the complexity increase (caused by heterogeneity, enormous
scale, and variety of applications these networks serve) [5–10]. The difficulty of creating
adequate security procedures to defend the network increases due to the possibility of
attackers discovering network vulnerabilities utilizing AI techniques. Thus, it is highly
necessary to build a robust intelligent intrusion detection system (IDS) to comply with the
evolution of intelligent attacks and to secure future networks [11–15]. The new networks
connect a variety of billions of users/devices to serve people, providing a plethora of
services/applications via the network’s main components, e.g., the base station (BS) using
the edge of technologies, e.g., terahertz communications, non-orthogonal multiple access,
and IoE [12,15,16]. In risk-sensitive systems safety, the realization of a zero-day attack
is not an easy process, especially with the proliferation of numerous malicious activities.
Figure 1 demonstrates a sample of the 6G general expected infrastructure with a number of
nominated applications and media over different areas [17].
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IDSs send out notifications when discovering an unexpected activity or identified
hazards. Any destructive behavior that interferes with the information system is considered
an intrusion [18]. IDSs scan computers for unusual activities a conventional packet filter
may fail. IDSs note any indicator for potentially dangerous action of network packets, as
well as signals for highly resilient cyber defenses against disruptive activities and non-
authorized access to a computer system. IDSs use two methods to detect intrusions (i.e.,
misuse and anomaly). A new IDS that includes these two methods was presented to
overcome these limitations to increase accuracy and decrease FAR [11,19–25]. Furthermore;
feature selection (FS) is a useful approach for IDSs to specify the significant features
and cancel the useless features with less performance degradation [26–28]. IDSs require
classifier methods to detect the final results and there are different AI methods for this
task, e.g., ensemble learning (EL). EL techniques were used as building blocks for more
complicated models by integrating many weak learners in EL methods, e.g., Bagging,
boosting, AdaBoosting, and stacking (meta-model). These models of classifiers are used
to reduce variance when using the bagging method, manipulated high bias to achieve
strong classifiers inside these models when using the boosting, and the main session of the
stacking (meta-model) is to combine the strengths of several effective models to provide
predictions that perform better than any one model in EL [29].
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However; IDSs still do not achieve the needed optimization for detection rate (DR),
false alarm rate (FAR), or running time because of the high-dimensional dataset and
abundant Zero-day attacks. Despite having a direct influence on resources, time complexity
was not given as a significant consideration. Besides, the technological realm is envisioning
IoE and 6G networks depending on the equipment that is programmed using lightweight
algorithms.

This work targets initiating more sufficient/robust ML techniques-based attack-resistant
detection to increase the IDSs’ stability and accuracy by reducing the amount of compu-
tation/time needed by using four different datasets. The proposed model trains the FS
method and ML algorithms to realize accurate/efficient IDs. Utilizing AI systems, the ori-
entation of wireless communications must be thought about. Therefore; the contributions
of this work are:

• In the context of FS and preprocessing, we used the Chi-square method for clean-
ing and preparing four different unbalanced datasets (NSL_KDD, UNSW _NB15,
CIC_IDS17, and SCE_CIC_IDS18) to select the best subset features. Furthermore; en-
hancing the effectiveness of the training and testing stages is much more advantageous.
These datasets undergo the cleansing and selection processes to select only the affected
features to reduce time and achieve the best accuracy result.

• We enhance the performed effectiveness of the multiclass and binary class forms
used with the four imbalanced datasets. Hence, the proposed work presents a novel
meta-model that uses different ML techniques (i.e., random forest RF, Gradient Boost,
AdaBoosting, LightGBM, XGBoosting, and CatBoosting) to work as a base classifier
and then applies the meta-model technique using decision tree (DT) to select the
best-affected result (prediction). The meta-model works as a prediction method to
select only the classifiers with high accuracy and then enter the results into the testing
part to achieve the final result.

The remaining sections of this paper are organized as follows:
Section 2 implies several similar works, while Section 3 provides a detailed definition of

the proposed system’s methodology and addresses the experimental findings. Furthermore,
it illustrates how the proposed method was implemented with the applied datasets and
addresses the technical constraints. Finally, the conclusions are stated in Section 4, which
summarizes the results, directions for further investigation, and future suggestions.

2. Literature Review

In this section, the authors study the other related similar studies and demonstrate
them in Table 1 for better understandable readability. Furthermore, to distinguish each of
those related studies the main FS method with the number of FSs, type of the classification
method, experimental results, and disadvantages.

Table 1. Similar related studies.

References/Authors FS Methods and Number
of Features Classifiers Methods Experimental Results Cons

[11], Oleiwi et. al.

They used correlation FS
combined with RF EL. This
system selected 30, 35, and

40 FSs for (NSL, UNSW_NB,
AND CIC_IDS) respectively.

Adopting two modified
classifiers (RF and SVM) and

applying the classifiers as
AdaBoosting and bagging EL;

then aggregating these
classifiers by the voting average

technique.

The experimental results are
99.6% accuracy with 0.004 FAR
for NSL_KDD, 99.1% accuracy

with 0.008 FAR for
UNSW_NB2015, and 99.4%

accuracy with 0.0012 FAR for
CIC_IDS2017.

Complexity time measurement
took too much time, due to the
merging of two methods of EL

techniques for splitting and
disseminating normal or

suspicious network traffic
attacks.

[30], Gaikwad, D. and
Thool, R. N/A DT and rule learner-based EL.

It shows that the classifiers
methods of IDS exhibit the

lowest false positive rate (FPR)
with higher classification

accuracy (i.e., 80%, 81%, 15.1%)
for (accuracy, DR, FAR).

Not accurate results and
undetected several attacks.

Furthermore; A long time for
searching with the lowest

accuracy and false negative rate
(FNR).

[31], Pajouh et. al.
linear discriminant analysis

(They have chosen
16 features).

Two-tier anomaly-detection
model using K-Nearest

Neighbor KNN.

The experimental evaluation of
83.24% accuracy, 4.83% FAR,
82% true positive rate (TPR),

and 5.43 FPR.

needed more execution time.
Insufficient dealing with the

network imbalance of anomaly
datasets.



Electronics 2023, 12, 643 4 of 15

Table 1. Cont.

References/Authors FS Methods and Number
of Features Classifiers Methods Experimental Results Cons

[32], Kanakarajan, N.K.
and Muniasamy, K.

Information gain adopts
32 features for binary class

and with 10-features for
multiclass.

Hybrid RF with Adaptive
Greedy randomized.

Accuracy is 85.0559% with
information gain reaching an

accuracy of 78.9035%.
Less accuracy and high FAR.

[33], Mittal, M. et. al. DT for FS.

ML techniques for energy
efficiency and anomaly

detection in hybrid wireless
sensor networks.

The experimental results
showed that accuracy is 95%,
where the precision is 94.00%,

recall is 98.00%, and F1-Score is
96.00%.

Long time for searching and
A high FAR.

[34], Jaw, E. and
Wang, X.

The wrapper method is based
on a genetic algorithm to

select (11, 8, and 13) features.

Different classifiers are used for
classification.

The results showed 98.99% for
CIC_IDS17, 98.73% for
NSL_KDD, 97.997% for

UNSW_NB15 accuracy, with
98.75%, 96.64%, 98.93% DRs.

Not accurate results and
undetected several attacks.
A long time for searching.

Furthermore; low FNR.

[35], Gupta, N. et. al.

RF was adopted to select the
best subset features.
By used NSL_KDD,

CIDDS-001, and
CIC_IDS2017.

The extreme gradient Boosting
algorithm is used as a classifier

with deep learning.

The experimental results are
99% for NSL, 96% for

CICIDS-001%, and 92% for
CIC_IDS2017.

Complexity time measurement
has taken several hours, due to

the deep learning techniques for
splitting and disseminating

normal or suspicious network
traffic attacks.

[23], Mhawi. et. al.
Hybrid of Correlation FS

coupled with Forest
Panelized Attributes.

They used four different
classifiers (i.e., SVM, RF, Naïve

Bayes NB, and
K-Nearest-Neighbor).

The experimental results are
99.7% for CIC_IDS17 of

accuracy with 0.0053 FNR, and
0.004 FAR.

Complexity system in the FS
stage and classification stage.

It takes high time in the training
part.

To the researchers’ knowledge, the provided system outperforms the earlier systems
in terms of performance and outcomes. Using numerous datasets, it considerably excels in
literature performance and delivers the highest results.

3. Methodology

IDSs observe malicious or suspicious activities in the traffic across the whole commu-
nication network. They were presented to wireless communication networks to examine
for any abnormal activity occurring throughout control/data communication. The hacker
attempts to penetrate networks to stop communications or capture important data. By
breaching networks’ security and affecting the behaviors of sensors/networks, the attacker
inserts bugs into a network. To solve this sensitive issue and protect the system from
malicious actors, a properly secured framework is required. The proposal’s main structure
is shown in Figure 2.

Figure 2 shows different stages to detect suspicious/malicious activities (anomalies)
over the communication network undergoing preprocessing. Before these stages, collecting
different types of datasets and detecting the missing values are required, replacing the null
values with some values, while average values are considered. After that, duplicate values
are deleted from datasets (NSL_KDD, UNSW_NB15, CICI_IDS17, and SCE_CIC_IDS18).

Next step, data normalization and encoding processes are performed. Encoded data
undergoes a dimensionality decrease to aid data handling. Accordingly, features are
optimized to attain the optimal features out of the entire data. This is helpful to detect
anomalies within data. After preprocessing, the cleansed data will transfer to the next level
to utilize impacted features only to the finalized results by applying Chi-square. Ultimately,
the proposed system uses meta-ML models as a classifier to detect and predict malicious
activities in the network traffic. It includes a number of stages that include several steps
with a dedicated task each. Each stage’s outcome represents an input to its next stage. The
stages are described in detail successively.

3.1. First Stage: Datasets Collection

The researchers’ main problem is finding an appropriate dataset for evaluating IDSs.
Therefore; there are different collected datasets used with different features (NSL_KDD,
UNSW_NB15, CIC_IDS17, and SCE_CIC_IDS18). They were collected from different sites
and contained different types of attacks. These datasets are used for experiments, and each
dataset is briefly described as follows:
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3.1.1. First: NSL_KDD Dataset

NSL-KDD is a dataset suggested to solve some of the inherent problems of the KDD’99
dataset. Because of the scarcity of freely available datasets for networking-built IDSs, the
new dataset’s version is still in service as a high-impact benchmark dataset to help the
researchers in comparison of multiple ID strategies, although they have technical issues
noted by McHugh. NSL-KDD training set and testing set have a notable quantity of records.
The achieved gain enables cost-effective experimentation on the entire set without arbitrary
selection of a limited subset.

3.1.2. Second: UNSW_NB15 Dataset

It is a network intrusion dataset that is collected by the university of the new southern
western network base in 2015. It contains nine types of attacks. Raw network packets are
included in the dataset. There are 175,341 records in the train set and 82,332 records from
various types of activities in the test set (attacks and normal activities).

3.1.3. Third: CIC_IDS17 Dataset

The CIC_IDS17 dataset (compiled in 2017) was released by the Canadian Institute for
Cybersecurity (CIC). It offers positive information and the most current widespread attacks.
The outcomes of the network traffic analysis using the CIC flow meter are also presented.
Time-stamped flows exist for protocols, source/destination IPs, ports, and attacks. One
of the most recent datasets is this one. Updated DDoS, Brute Force, XSS, SQL Injection,
Infiltration, Port Scan, and Botnet assaults are among the things it contains. There are
2,830,743 records total in this dataset, which is divided into eight files. Each record comes
with 78 unique characteristics and labels. In order to maintain the same magnitude order
for each dataset when multi-classification is required.

3.1.4. Fourth: SCE_CIC_IDS18 Dataset

The University of New Brunswick created this dataset for analyzing DDoS data. It was
sourced completely from 2018 and stopped updates. The dataset was built depending on
the university’s servers’ logs, which have observed a variety of DoS attacks during the free
availability era. When writing the dataset, ML notebooks observed that the label column is
the precious portion, as it determines if the transmitted packets are malicious or benign.
Data is divided into various files based on date. Each file is unbalanced, and it is up to the
notebook creator to divide the dataset into a balanced form for higher-quality predictions.
It has eighty columns, each of which corresponds to an entry in the IDS logging system
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the University of New Brunswick has. Given the system divides traffic into forward and
backward. The most important columns within this dataset (i.e., Destination port, Protocol,
Flow Duration, total forward packets (Tot Fwd Pkts), total backward packets (Tot Bwd
Pkts), and label (Label).

3.2. Second stage: Preprocessing and FS

The datasets collected in the first stage undergo preprocessing and FS steps. The
processing of these steps is demonstrated in Algorithm 1.

Algorithm 1. Preprocessing and FS.

Input: Reading Four different Datasets [] = [D1, D2, D3, and D4], N = sample size.
Output: BestFeature.
Begin
LOOP:
Repeat from 1 to N
1. Preprocessing steps:
(Filteration process):
Reading Datasets [i]
Repeat

If Datasets [i] = np. information or -np. information then
Datasets [i] = NAN */np,-np are negative, positive infinity */
If Datasets [i] = Missing_values and duplicated_values then
Datasets [i] = dropping values.

(Transformation process):
If the Datasets [i] = nonnumerical_values then
Call One_Hot_encoding function then return new datasets [i].

Normalization (Computing MinMax Scal function):
Check Call Min_value [i] function for each dataset [i].
Check Call Max_value [i] function for each dataset [i].
XiValue[i] = XiValue−Min_value[i]

Maxvalue[i]−Min
Until Datasets [i] greater than N;
Return XiValue[i].
End Loop
2. Feature_Selection steps:
For each dataset [i] split XiValue[i] into two parts Training_part [i] and Testing_part [i]. */
70%training_part and 30% testing_part */.
Repeat
DF = N − 1. (Freedom degrees (DF)) */It refers to the maximum number of logically independent
values that can vary*/.

Compute each part Chi-square as follows: xc
2 = ∑

(Oi−Ci)2

Ei
End Loop
Return the best features Xi for each dataset [i].
End

In Algorithm 1, raw data in each dataset is passed into two main steps. Firstly,
preprocessing to clean and prepared data (filtration process) then non-numerical values are
converted into numerical using the one-hot encoding (transformation process) and then
converted into the binary form using the Minimax scaling function (normalization). The
outcome of this algorithm is to return the best subset features of each dataset. Therefore;
the best subset features are (20, 30, 35, and 38) for NSL_KDD, UNSW_NB15, CIC_IDS17,
and SCE_CIC_IDS18 datasets, respectively.

3.3. Third and Fourth Stages: ML Techniques for NIDS (Training Set) and Voting Techniques
(Meta-Model) for the Testing Set

For the training stage, many different classifiers are used (i.e., XGBoosting, random
forest (RF), AdaBoosting, GradientBoosting, LightGBM, and CatBoost) each of them con-
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sidered as a base classifier. Each of these classifiers manipulates the training data inde-
pendently by taking the Di of each dataset. Afterby, the results of each base classifier
(predictions) are aggregated into the meta-model (DT), Figure 3 demonstrates the main idea
of meta-model classifiers. Furthermore, the testing stage begins in the meta-model to get
the prediction results to check the evaluation and performance of the proposed meta-model.
Algorithm 2 illustrates this stage.
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The meta-model working mechanism are demonstrated in detail in the following
subsections.

3.3.1. The Datasets Partitioning Mechanism

It is necessary to aggregate the result of each classifier through the composite model
and then send them to the stacking model to select the best result for voting. Furthermore,
the voting technique is a type of EL methods that combines the predictions of several
different models (classifiers) and selects the best prediction with the most votes.

As shown in Figure 3, the meta-model system has four traffic datasets, it uses three
datasets as source datasets to train the meta-model, whereas the fourth dataset is used as a
target to fine-tune it and then test the model performance. Each source dataset requires
splitting into training and validation partitions. During training, it randomly selects two
batches of samples from the training datasets, using one batch to compute the task-specific
parameters and the other batch to compute the loss. Then repeat the same process with
the validation dataset to be able to select the best prediction model. After the training, it is
essential to fine-tune the model upon the target dataset.

3.3.2. Classifiers Work and Aggregation Techniques

In Algorithm 2 there are different classifiers, each of which performs a specific process
and manipulates problems precisely. RF is a meta-estimator that fits several DT classifiers
on different datasets’ sub-samples, applying averaging to enhance predictive accuracy
and controlling overfitting. Subsample and original input sample sizes are usually the
same, however, samples are drawn with replacement if bootstrap = True. While XGBoost
optimized gradient boosted DT. This classifier does not need normalized features and works
well if the data is nonlinear, non-monotonic, or with segregated clusters. Whereas the
AdaBoosting classifier is to fit a sequence of weak-learners (e.g., models that are better than
stochastic guessing, like small DTs) on repetitively modifying data versions. Consequently,
the predictions get integrated by a weighted majority vote (or sum) to generate the final
prediction. Data modifications at each so-called boosting iteration include applying weights
ω1, ω2, ω3, . . . . . . , ωN to every training sample.
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Algorithm 2. ML and meta-model techniques.

Input: Xi for each dataset [i] from Algorithm 1;
K /* is the number of classifiers*/;
Learning_Rate (LR);
Random_state (RS);
Mi; /* Error rate of each classifier*/; (i.e., (Mi) = ∑d

j=1 wj × err(Xj));
Number of Estimators (NS); /* subset number*/;
Criterion; /* type of measure*/;
Machin learning classifiers (Bse classifiers); (i.e.,
RandomForest (C1),

XGBoosting (C2),
AdaBoost (C3),
GradientBoosting (C4),
LightGBM (C5),
and CatBoosting (C6)).

Meta-model classifier (i.e., DT (C8))
Output: A composite model.
Begin
1. ML techniques (base-classifiers):
Read a number of K.
Loop: from 1 to k
RandomForest (C1) Determine attribute:

RS = 1, NS = 10, LR = 0.01, max_features [integer] /*The number of features to consider
when looking for the best split*/.

XGBoosting classifiers (C2) Determine attribute:
Determine attribute: LR = 0.01, RS = 1.

AdaBoosting classifiers (C3) Determine attribute:
Determine attribute: RS = 1, and NS = 10, wi = 1/N.

GradientBoosting (C4) Determine attribute: (Loss = ’deviance’, LR = 0.1, number of
estimators = 100, minimum split samples = 2, maximum depth = 3, fraction of validation = 0.1).
LightGBM (C5) Determine attribute:

RS = 1, and NS = 10.
CatBoosting (C6) Determine attribute:

RS = 1, and NS = 10.
Repeat
For i = 1 to 6 do
Mi for the prediction by applying:

Mi= ∑d
j=1 wj × err(Xj).

If Mi is larger than half then
[log (1 − (Mi))/(Mi)].
End if

Until the results of 6 Ci
End for
Return all Ci with minimum Mi.
2. Meta-model (DT) and compute (Voting techniques):
Repeat
Compute average weighting techniques for all Ci by 1

mj = l∑l
i=1 pci(wi

x ).
Measurements of the binary and multi-class forms:

DR, FNR, FPR, TPR, TNR, accuracy, FAR, precision, and recall.
Until the result is the best.
Return composite-model.
End

Since all weights are initially set to ωi = 1/N, the initial step trains a learning algorithm
using initial data. The sample weights are individually adjusted for each further iteration,
and the learning process is then performed once more on the reweighted data. Furthermore;
to compute and adjust weight, it undergoes the following steps:
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• Assigning equal weights to all the data points to find the stump that does the best job,
classifying the new collection of samples by finding their Gini Index and selecting the
sample’s weight with the lowest Gini index.

• Calculating the “Amount of Say” and “Total error” to update the previous sample
weights.

• Normalizing the new sample weights.

The consequences of training examples at a particular stage are changed to reflect
whether or not the boosted model that was induced in the preceding step accurately
predicted those training examples. Examples that are challenging to foresee get growing
importance during the iterative process. As a result, each weak learner after them in the
chain is compelled to focus on the instances that they missed before. Using gradient-
boosting tree strategies has numerous benefits, which include:

• Generally, more accurate compared to other classifiers models.
• Train faster, especially on larger datasets.
• Most of them provide support handling categorical features.
• Some of them handle missing values natively.
• Often provides unbeatable predictive accuracy.
• Plenty of flexibility could optimize various loss functions.
• Provides multiple hyper-parameter setting options, making the function fit very

flexibly.

LightGBM is a fast-distributed high-performance gradient-boosting framework based
on DT algorithms, it is used for ranking, classification, and many other ML tasks. The
CatBoost classifier is an algorithm for gradient boosting on DTs. It is used for search,
recommendation systems, personal assistants, self-driving cars, weather prediction, and
many other tasks in different companies.

3.4. Fifth Stage: Implementation and Evaluation
3.4.1. Implementation

It is carried out by applying four datasets (NSL_KDD, UNSW_NB15, CIC_IDS17, and
SCI_CIC_IDS18). The train portion is 70% while the test portion is 30% to evaluate the
proposal.

System Performance is evaluated by implementing the proposal using four various fea-
tures selected using chi-square. The intrusion is detected by using different ML techniques
with multiclass and binary-class forms of confusion matrices. Ultimately, performance
evaluation is done by using multiple measurements; recall, precision, DR, FAR, and FNR.
It is carried out by anaconda python 3.9 software and colab platform with Sklearn, Kearse,
and Tensor Flow libraries with laptop hardware with the: CPU Core i7, generation 10th,
and 11 windows operating system with 64-bit.

3.4.2. Evaluation and Experimental Results

1 Binary-Class and Multi-Class Confusion-Matrix forms

The experiment is conducted at this stage of the ML and meta-model (voting tech-
niques) using four different datasets. Confusion-matrix is adopted in each class, which
includes benign and attack network traffic. Furthermore, four Features are applied to
detect suspicious activities on the network traffic. The proposed system uses binary and
multi-class forms confusion matrices.

The distribution of the four states of true-positive (TP), false-positive (FP), true-
negative (TN), and false-negative (FN) with different numbers of FSs and computing
accuracy and FNR are explained in Table 2.

Table 2 explains the best features and results of accuracy and FNR (i.e., false nega-
tive detections are classified into FN and TP detections in the experiment) when using
NSL_KDD, UNSW_NB15, CIC_IDS17, and SCE_CIC_IDS18 are (20, 30, 35, and 38), respec-
tively. This measurement is significant to measure the efficiency and professionalism of the
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proposal due to calculating the total number of errors found in every attack diagnosed as
normal. additionally, applying other features leads to an insufficiency of FNR and accuracy
measures.

Table 2. Accuracy and FNR for (NSL_KDD, UNSW_NB15, CIC_IDS17, and SCE_CIC_IDS18) datasets
when applied to different FSs.

Datasets FS TP TN FP FN Accuracy FNR

NSL_KDD

10 9000 2280 715 605 9000 + 2280/12,600 = 0.89 605/(605 + 9000) = 0.06
20 9714 2885 1 0 9714 + 2885/12,600 = 0.99 0/(0 + 9714)= 0
30 9500 2480 215 405 9500 + 2480/12,600 = 0.95 405/(405 + 9500) = 0.04
all 1525 630 144 201 1525 + 630/2470 = 0.87 201/201 + 1525 = 0

UNSW_NB15

10 1500 400 226 344 1500 + 400/2470 = 0.76 344/344 + 1500 = 0.19
20 1525 630 144 201 1525 + 630/2470 = 0.87 201/201 + 1525 = 0.11
30 1701 744 0 25 1701 + 744/2470 = 0.99 25/25 + 1701 = 0
all 1000 400 226 844 1000 + 400/2470 = 0.56 844/844 + 1000 = 0.45

CIC_IDS17

10 443,615 48,561 10,650 62,736 492,176/565,562 = 0.87 62,736/443,615 + 62,736 = 0.123
20 437,550 86,556 16,715 24,741 524,106/565,562 = 0.92 24,741/24,741 + 437,550 = 0.053
30 453,916 10,928 1349 369 453,916/565,562 = 0.99 369/1369 + 453,916 = 0.0008
35 453,916 110,928 349 369 564,844/565,562 = 0.99 369/369 + 453,916 = 0
40 453,890 111,048 249 357 564,938/565,562 = 0.98 249/454,247 = 0.0005
50 437,550 86,556 16,715 24,741 524,106/565,562 = 0.92 24,741/24,741 + 437,550 = 0.053
all 443,615 48,561 10,650 62,736 492,176/565,562 = 0.87 62,736/443,615 + 62,736 = 0.123

SCE_CIC_IDS18

10 100,000 142,945 42,439 27,971 242,945/313,426 = 0.77 27,971/(100,000 + 27,971) = 0.218
20 127,945 142,439 42,000 971 270,384/313,426 = 0.86 971/137,655 = 0.0705
30 127,945 152,539 32,000 871 280,484/313,426 = 0.89 871/871 + 127,945 = 0.006,76,158
38 142,439 170,916 0 71 313,355/313,426 = 0.99 71/(71 + 142,439) = 0.000,02,1821
40 127,945 152,539 32,000 871 280,484/313,426 = 0.89 871/871 + 127,945 = 0.006,76,158
50 127,945 142,439 42,000 971 270,384/313,426 = 0.86 971/137,655 = 0.0705
60 100,000 142,945 42,439 27,971 242,945/313,426 = 0.77 27,971/(100,000 + 27,971) = 0.218
all 100,045 102,000 43,339 67,971 202,045/313,426 = 0.64 67,971/(100,045 + 67,971) = 0.40

The core objective of utilizing different datasets is to train the proposed system for
different types of attacks and make it more robust against suspicious traffic activities.
Figures 4 and 5 demonstrate the final results of the binary form and multiclass form of the
confusion matrix.
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Figure 4 shows that the proposed system achieves the best prediction results, it
distinguishes benign activities and attacks precisely, and it can be noticed that only one
percent of the benign activities is predicted as an attack; this result does not affect the final
results.
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In Figure 5, irrespective of the individual class’s accuracy, the accuracy of the entire
system (i.e., 99%) depends on the average accuracy of all the classes.

Furthermore; Figures 6 and 7 demonstrate the training and testing confusion matrix
with the final measurements’ results.
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2 BIG O Notation Measures

The complexity time of this proposed system is measured by applying the Big O
notation (i.e., O (N2)). It contains the calculations of complexity time. However, Figure 8
illustrates datasets classes with the required running time. Noticed the running time is
increasing proportionally with input increase.

Figure 8 explains system complexity with respect to the applied datasets. The proposed
meta-model reduces the number of features by selecting only the affected and sufficient
features. In addition, in the training phase, the meta-model system selects the results of the
best-predicted classifiers to be used in the testing phase.
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3 Analysis Results and Comparison with Other Related Studies

The first stage is very important to clear the datasets and process them from all
problems, then pass to the FS stage (chi-square). In this stage, each dataset’s class passes
through an analysis procedure to check and choose the best effective features’ subset to the
final results and find the suitable subset feature of NSL_KDD is 20 features, 30 features of
the UNSW_NB15, 35-features in CIC_IDS17, and 38-features in SCE_CIC_IDS18. Afterby,
the ML and voting techniques stages begin to make each classifier work independently
and aggregated applying the voting average technique to return the best result for the
classifiers.

The proposal is assessed and compared to other previous systems by accuracy, FAR,
DR, and a number of FS, Table 3 demonstrates the outperform of the meta-model is 99% for
training and 90.1% for testing, as compared with other similar studies.

4 Challenges

Experimental results indicate that IDS based on a new NIDS is proposed using a
meta-model (ML) with DT as a voting technique. The main objective is to build a secure
system which able to distinguish malicious/suspicious traffic activities. The proposed
meta-model proves sufficiency and effectiveness to detect intrusions and suspicious traffic
activities, however, some limitations have come into view to be recommended to other
researchers. It includes the following constraints:
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• The accuracy of the entire system depends on the average accuracy of all the classes.
Hence, for more efficient and accurate results, it is recommended to compute the
accuracy of each class a side and accordingly the system average accuracy of all the
classes for optimal performance.

• The meta-model system outperforms excellent performance when testing the system
by four different datasets, however, it does not consider further attacks sourced by
external networks.

• Analyzing data connections aids in the detection of non-detectable attacks throughout
the application of IDS to each connection record separately. Thus, it always requires
updated preprocessing and FS for accurate analyses.

• Deploying the proposed NIDS to the classified information servers of security estab-
lishments. Hence, this requires constant development for up-to-date NIDSs.

Table 3. Results comparison with other studies.

References/
Published Year Dataset FS Method Number

of FS Classification Method Accuracy % DR
%

FAR
%

[30], 2016

NSL_KDD

DT N/A EL Methods (Rule base) 80 81 N/A
[31], 2017 KNN 16 NB 83 82 4.83

[32], 2021

symmetrical
uncertainty,

Information Gain
and CFS

32 Gradient Adaptive Rate 85 N/A 15.00

10 78 N/A 1.00
[33], 2021 Entropy 42 SVM 95 96 5.11

[34], 2021 Wrapper based
GA

13 logistic regression as an
EL algorithm

97.99 96.64 N/A
UNSW_NB2015 8 98.73 98.93 N/A

CIC_ID17 11 98.99 98.75 N/A
[35], 2022 NSL_KDD Deep NN N/A Gradient Boosting

algorithm
99 N/A N/A

[35], 2022 CIC_ID17 N/A 92 N/A N/A

[11], 2022
NSL_KDD

CFS-RF
30

Voting (RF, and SVM)
99.4 99.9 0.004

UNSW_NB15 35 99.8 99.6 0.008
CIC_ID17 40 99.7 99.4 0.0012

Meta-model

NSL_KDD

Chi-square

20
ML with meta-model

classifiers (i.e., XGB (C1),
Random Forest (C2), DT

(C3), AdaBoost (C4),
GradientBoosting (C5),

LightGBM (C6), and
CatBoost (C7)).

99.9 99 0.002

UNSW_NB15 30 99.5 99 0.004
CIC_ID17 35 99.8 99 0.0013

SCE_CIC_IDS18 38 99.3 99 0.0021

4. Conclusions

In nutshell, it was discovered that the existing IDSs are still ineffectual despite having
intentionally utilized a range of ML techniques to increase their performance, principally as
a result susceptibility of to the anticipated 6G wireless paradigm and the rapidly evolving
sophisticated threats. The meta-model system initiated a new IDS mechanism to apply
to unbalanced/high dimensional network traffic having a low DR given the needed ML
classifiers and voting mechanisms. The proposed meta-model system complexity was
reduced while applying Chi-Square to present (20, 30, 35, and 38) features for NSL KDD,
UNSW NB15, CIC IDS17, and SCI CIC IDS18, respectively to acquire the ideal subset of
the best FS and dimensionality reduction. For each dataset, the experiment’s results of the
meta-model achieve high accuracies for all datasets reach 0.99% and low FAR values for
NSL KDD, UNSW NB15, CIC IDS17, and SCI CIC IDS18 were 0.002, 0.004, 0.0013, and
0.0021, respectively. Other findings are concisely displayed within the results comparison
table. The suggested method also outperformed current classification methods. As can be
observed, this method significantly increased the IDS market’s competitive edge over other
strategies. Despite the system’s benefits, further work is still required to make it capable of
handling potential threats from future infrequent traffic.
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