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Abstract: Deep unrolling networks (DUNs) have emerged as a promising approach for solving com-
pressed sensing (CS) problems due to their superior explainability, speed, and performance compared
to classical deep network models. However, the CS performance in terms of efficiency and accuracy
remains a principal challenge for approaching further improvements. In this paper, we propose a
novel deep unrolling model, SALSA-Net, to solve the image CS problem. The network architecture
of SALSA-Net is inspired by unrolling and truncating the split augmented Lagrangian shrinkage
algorithm (SALSA) which is used to solve sparsity-induced CS reconstruction problems. SALSA-Net
inherits the interpretability of the SALSA algorithm while incorporating the learning ability and
fast reconstruction speed of deep neural networks. By converting the SALSA algorithm into a deep
network structure, SALSA-Net consists of a gradient update module, a threshold denoising module,
and an auxiliary update module. All parameters, including the shrinkage thresholds and gradient
steps, are optimized through end-to-end learning and are subject to forward constraints to ensure
faster convergence. Furthermore, we introduce learned sampling to replace traditional sampling
methods so that the sampling matrix can better preserve the feature information of the original
signal and improve sampling efficiency. Experimental results demonstrate that SALSA-Net achieves
significant reconstruction performance compared to state-of-the-art methods while inheriting the
advantages of explainable recovery and high speed from the DUNs paradigm.

Keywords: compressed sensing; SALSA; deep unrolling; explainable networks; neural networks;
image reconstruction

1. Introduction

Compressed sensing (CS) [1,2] theory exhibits a novel signal acquisition strategy
where a signal can be recovered with overwhelming probability from far fewer acquired
measurements than when resolved by the Nyquist sampling theory. This novel signal
acquisition paradigm is much more hardware friendly and empowers image capturing
with a sub-Nyquist sampling rate [3]. The core idea of CS is to sample and compress at
the same time when the recovered signals have sparse representation in some transform
domains. Applying CS theory to signal processing can reduce sampling time and cost
while ensuring high signal reconstruction accuracy, which is of great significance for
many practical applications such as remote sensing [4], single-pixel imaging [5], magnetic
resonance imaging (MRI) [6], wireless sensor networks [7], radar imaging [8], spectral
compressed imaging [9], computer vision, and pattern recognition [10].

The process of obtaining linear measurements in the theory of CS can be expressed as

y = Ax, (1)
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where y ∈ Rm is the compressed linear measurement, x ∈ Rn is the original k-sparse
(i.e., only k nonzero components in x) signal to be recovered, and A ∈ Rm×n is the sampling
matrix. The CS sampling rate is defined as r = m/n. In this paper, we adopt a typical
block-based image CS problem [11] which splits the high-dimensional natural image into
non-overlapped B × B blocks and obtains linear measurements block by block with a
relative smaller fixed sampling matrix for the subsequent reconstruction. Since m � n,
this inverse problem belongs to an underdetermined linear equation. When the sensing
matrix A satisfies the constraint of isometry principle [12], the CS reconstruction problem
is equivalent to

min
x
‖x‖0, s.t. y = Ax. (2)

The l0-norm minimization problem is typically relaxed to the corresponding l1-norm
minimization problem, which is a convex optimization problem [13]:

min
x
‖x‖1, s.t. y = Ax. (3)

By appropriately choosing the regularization parameter λ > 0, this problem can be
further reformulated as an unconstrained optimization problem:

x̂ = arg min
x

1
2
‖y−Ax‖2

2 + λ‖x‖1. (4)

The compressed sensing theory is dedicated to two main subproblems: signal acquisi-
tion and signal reconstruction. The signal acquisition problem focuses on designing efficient
sampling matrices to reduce sampling complexity and sampling rate while ensuring re-
construction accuracy. The signal reconstruction problem is concerned with recovering the
original signal from the undersampled measurements while satisfying fidelity and stability
requirements. We divide existing CS signal reconstruction methods into traditional iterative
solutions and deep neural network methods. In this section, we will briefly introduce both
of them but focus on the network-based methods most relevant to our own.

1.1. Traditional Methods

In the past decades, various methods [13–15] have been developed to solve the
problem (4), such as greedy-like algorithms [16], approximate message passing (AMP) [17],
proximal gradient descent (PGD) [18], and alternating direction method of multipliers
(ADMM) [19]. Greedy-like algorithms iteratively reconstruct a sequence of sparse sig-
nals based on support detection and signal recovering using truncated least squares op-
timization, such as Compressive Sampling Matching Pursuit (CoSaMP) [20], Subspace
Pursuit (SP) [21], etc. The most representative PGD-based algorithms include the Itera-
tive Soft Thresholding Algorithm (ISTA) [22], Fast Iterative Soft Thresholding Algorithm
(FISTA) [23], and Non-Convex Evolutionary Sparse Target Algorithm (NESTA) [24]. ISTA
is a simple iterative thresholding algorithm that uses prior information, such as the sparsity
of a signal, to iteratively optimize and reconstruct the signal. FISTA improves upon ISTA by
adding an acceleration term, resulting in better reconstruction quality in the same number of
iterations. NESTA is a non-convex CS reconstruction algorithm that uses non-convex prior
information and has shown good performance in high-dimensional sparse signal recon-
struction. ADMM is an optimization method that solves sparse optimization problems by
decomposing them into smaller subproblems each of which are then easier to solve. As an
instance of ADMM, split augmented Lagrangian shrinkage algorithm (SALSA) [25,26]
recasts the CS reconstruction problem into small-scale subproblems that are solved using
soft thresholding operators. By iteratively solving the subproblems, SALSA converges
significantly faster than ADMM. With well-studied signal formations, these approaches
often take the advantage of strong convergence and theoretical analysis. However, they
usually give rise to high computational complexity and suffer from choosing optimal prior
and tuning parameters.
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1.2. Network-Based Methods

Driven by the powerful learning ability of deep neural networks, deep-network-based
compressed sensing reconstruction methods have been widely investigated. The core idea
of these methods is to learn inverse mapping from compressed measurements simply to
map a low-dimensional measurement vector to a high-dimensional image. These methods
are usually divided into two categories: one is to train the reconstruction network as a
black box classical deep model, and the other is an interpretable deep unrolling model [27]
(algorithm unrolling [28] or model-based L2O [29]). In the first category of algorithms,
Mousavi et al. [30] proposed a stacked denoising autoencoder (SDA) to solve statistical
dependencies between signal elements. However, the fully connected network (FCN) used
in SDA produces a large number of learnable parameters. Kulkarni et al. [31] proposed
ReconNet, a deep learning model based on convolutional neural networks that captures
local image information by directly learning the mapping relationship between compressed
sensing measurements and image blocks and then assembling the reconstruction results of
each block to achieve image reconstruction. In addition, ReconNet adopts the BM3D [32]
algorithm as a denoiser to eliminate block artifacts in the output image. Yao et al. [33]
proposed a method called DR2-Net, which improves ReconNet by adding residual learning
to reconstructed images, achieving better results than ReconNet. Shi et al. [34] proposed a
new algorithm called CSNet which learned the compressed sensing reconstruction process
through convolutional neural networks while avoiding the problem of manually designing
sampling matrices in traditional algorithms, reducing computation and improving recon-
struction quality. However, this algorithm has a high-level requirement for training data
and is weak in robustness to interference in the case of noisy data. Cui et al. [35] presented
NLR-CSNet which aimed to learn a network that can reconstruct images from measurement
vectors without pre-training and can achieve good results in low- and high-noise situa-
tions. Its non-local adaptive dictionary learning algorithm can learn more representative
dictionaries, thus improving the robustness of the network. However, compared with other
deep learning models, NLR-CSNet’s model is larger and requires a longer training time.
Chen et al. [36] developed CASNet, which uses the adaptive sparse coding (ASC) method
to obtain the sparse representation of input data and further improve the effect of sparse
representation by using an adaptive threshold mechanism. Zhou et al. [37] proposed BCS-
Net, which uses multiple channels to encode different frequency information of the image
to improve reconstruction quality. You et al. [38] proposed COAST, which uses a multi-
layer convolutional neural network (CNN) to reconstruct measurement values, including
an encoder and a decoder. The encoder maps measurement values to a low-dimensional
latent space, and the decoder reconstructs the information in the latent space into a com-
plete image. However, the reconstruction speed of the COAST network is relatively slow
and is not suitable for real-time applications. These deep models have the advantage of
automatically learning features, avoiding the tedious process of manual feature design,
and achieving a certain reconstruction effect. However, because they are black box models,
they often cannot provide clear predictive explanations, making their use and debugging
more difficult. At the same time, they are prone to overfitting when the dataset is small or
the model is too complex, leading to training becoming more challenging.

The second type of deep unrolling model combines deep networks with iterative opti-
mization algorithms and exhibits good interpretability. Gregor and LeCun [39] proposed
the LISTA deep unrolling model in 2010, which adopts a multi-layer network structure
to unroll the ISTA algorithm and uses neural networks to replace the threshold function
in the ISTA algorithm for compressed sensing reconstruction of images. Following this
seminal work, there has been a surge of efforts [40–45] that strive to propose deep unrolling
networks by unfolding optimization-based algorithms. These deep unrolling models
achieve explainable recovery and high accuracy, which have attracted increasing attention
and have become the mainstream for image CS problems. However, these deep learning
schemes adopt completely physics-free manners to directly unroll the optimization-based
algorithm to learn recovery mapping from the measurements without explicitly making use
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of sampling processing and physical knowledge. To address these issues, physics-inspired
methods incorporate both physical knowledge and sampling processing for further explo-
ration. Zhang et al. [46] proposed the ISTA-Net model with trainable network modules
to replace classic ISTA optimization and optimize all network modules through end-to-
end learning. This introduced the independent learnable sparsifying/inverse transform
with two convolutional layers separated by a Rectified Linear Unit (ReLU). Building on
ISTA-Net, You et al. [47] proposed ISTA-Net++, which introduces feature enhancement
modules to capture signal features and adds skip connection modules to accelerate net-
work convergence. FISTA-Net [48] directly replaces the general nonorthogonal or even
non-linear transform with four convolution layers separated by a ReLU, but no reasonable
explanation is given. Yang et al. [49] presented ADMM-CSNet for CS-complex-valued
MR imaging problems. The idea behind ADMM-CSNet is to replace the variable splitting
and alternating optimization part in the ADMM algorithm with a deep neural network to
fully utilize the non-linear mapping ability of neural networks. Liu et al. [50] proposed the
RARE model, which uses unsupervised learning to obtain deep prior knowledge for image
reconstruction. AMP-Net [51] trains the network using estimation errors generated during
the iterative denoising process of the AMP algorithm, resulting in strong generalization
performance. MAC-Net [52] introduces memory units in the network and uses double-
threshold non-linear mapping and adaptive batch normalization to improve image quality
and sparsity. Recently, more flexible backbone networks have emerged. CSformer [53]
and TransCS [54] integrate Transformer self-attention-based hybrid architectures to obtain
high-quality image recovery.

Interpretable deep unrolling models provide a way to solve image CS problems by
incorporating physical knowledge into the model and making the training process more
transparent. By absorbing the merits of both physics-free and physics-inspired image
CS deep unrolling networks, we propose a novel optimization-based explainable deep
unrolling network, coined SALSA-Net. The core idea of the SALSA-Net network is to
truncate and unfold the iterations of the SALSA optimization algorithm and map or
transform all the steps of each iteration into the end-to-end learning stage; then, all the
stages will be concatenated to obtain a unified network. All the parameters involved in
SALSA-Net, such as sparsifying/inverse transform, shrinkage threshold, and gradient steps
are learned end-to-end. As a result, SALSA-Net takes the advantage of faster convergence
and accurate recovery with well-defined explainability.

In summary, the main contributions of this paper are three-fold: (1) A novel deep
unrolling model dubbed SALSA-Net is proposed for faster convergence of sparse re-
construction of image CS by mapping the updated steps of SALSA to deep networks.
(2) Different from the traditional SALSA algorithm that requires manual tuning of gra-
dient step size and regularization parameters, SALSA-Net learns all the parameters and
applies physics-inspired constraints to ensure faster convergence. Furthermore, the sparsi-
fying/inverse transformation in the residual domain is adopted to further improve image
reconstruction accuracy. (3) Experimental results show that the proposed method achieves
favorable performance against the state-of-the-art approaches in terms of both quantitative
measure and visual quality.

2. Method
2.1. SALSA

This section examines the traditional reconstruction algorithm SALSA, which serves as
the foundation for SALSA-Net. SALSA is an iterative algorithm designed to solve optimiza-
tion problems involving both smooth and non-smooth convex functions. The algorithm’s
fundamental concept is to divide the objective function into two components: a smooth por-
tion and a non-smooth portion. During the iterative process, the smooth and non-smooth
portions are updated separately using gradient descent or conjugate gradient methods,
while the Lagrangian multiplier is updated using the augmented Lagrangian multiplier
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method. More specifically, to solve the problem (4), SALSA recasts it as the following
two subproblems:

x̂ = arg min
x
‖y−Ax‖2

2 + µ‖x− v + m‖2
2, (5)

v̂ = arg min
v

µ

2
‖x− v + m‖2

2 + β‖x‖1, (6)

where v is a vector with the same dimension as x, m is the Augmented Lagrange multiplier,
and µ is a non-negative parameter used to control the weight of the Lagrange term. β is a
non-negative parameter used to control the constraint of the L1 norm. By alternately solving
the above two subproblems and updating the Lagrange multiplier m, the reconstruction
result of the sparse signal can be iteratively obtained. Specifically, each iteration can be
performed according to the following steps:

1. Augmented Lagrangian term minimization:

v̂ = Soft(x + m; β/µ), (7)

where Soft is a threshold function used to shrink the value of x to a nonzero value or
zero. Its definition is

Soft(x, t) = sign(x) ∗max(|x| − t, 0). (8)

2. Data term minimization:

x̂ = (µI + ATA)−1(ATy + µ(v−m)), (9)

where I is the identity matrix.

3. Updated the Lagrange multiplier:

m̂ = m− v + x, (10)

where x are the results obtained by data term minimization.

Since SALSA decomposes problems into subproblems that handle only a part of the data
at each iteration, it effectively handles large-scale problems. Moreover, SALSA converges
faster than other classical algorithms such as ISTA and FISTA [25,26]. The SALSA algorithm
has been widely applied in various fields, including image processing, computer vision,
and signal processing.

2.2. SALSA-Net

The traditional optimization model SALSA has high computational complexity, and
current network models require improvement in restoring image details. To address these
issues, this paper proposes a CS image reconstruction network based on a segmentation
augmented Lagrangian algorithm. The network framework, shown in Figure 1, is divided
into three parts: sampling, initialization, and deep reconstruction. The core algorithm used
in this paper differs from ADMM-Net. Additionally, ADMM-Net uses random Gaussian
matrix sampling, while SALSA-Net uses convolutional sampling. The structure of the
reconstruction module also differs. ADMM-Net is divided into an encoder, decoder, and
alternating direction multiplier network, while the reconstruction part of SALSA-Net
is divided into a gradient update module, threshold denoising module, and auxiliary
update module. We will provide a detailed description of the proposed model in the
following subsections.
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Figure 1. Illustration of SALSA-Net framework.

2.2.1. Sampling

In block-based CS, the image is divided into non-overlapping blocks of size B× B× l,
where B× B represents the spatial size of the image block and l represents the number of
channels in the image. Each image block is considered an independent signal source, and a
sampling matrix AB of size NB × lB2 is utilized to measure the signals, where NB = rB2, r
represents the sampling rate. Specifically, the sampling design of CSNet is followed, where
each row of the sampling matrix A is treated as a convolution kernel, and a convolution
layer is employed to simulate the block-based CS process. This convolution-based sampling
method efficiently acquires CS measurements, avoiding the complexity and limitations of
traditional hand-designed sampling matrices. The measurement results of each image block
are represented as a feature map. This process can be represented using the convolution
operatorM(·)

y =M(x). (11)

The input image x is convolved with a non-overlapping convolution operation using a
B× B× l-sized convolution kernel with a stride of B× B, which results in the output image
y. In accordance with the block-based CS reconstruction method, B is set to 32. During
training, the sampling network adaptively learns the sampling matrix, effectively utilizing
the local structural features of the image to improve the accuracy and robustness of CS
image reconstruction.

2.2.2. Initial Reconstruction

Block-based CS methods use the pseudo-inverse matrix of the sampling matrix to
obtain the initial reconstruction of the image, denoted as x = A†

B(y) where A†
B is the size

1× 1× NB. In this paper, a convolution layer and a recombination concatenation layer are
used to achieve the initial reconstruction, defined as follows:

x0 = M̃(y), (12)

where the CS measurements y serve as the input, which undergoes a convolution operation
and pixel shuffle operation M̃(·) to obtain the initial reconstructed image x0. Since the
output of the sampling network is a 1× 1× NB vector, the convolutional kernel size of the
initial reconstruction layer is set to 1× 1× NB, with a stride of 1× 1, to reconstruct each
image block independently. Each image block is represented by a vector obtained through
a convolutional layer and then recombined through concatenation to form the initial
reconstruction image. The initial reconstruction network optimizes the entire reconstruction
image, not just individual independent image blocks, thereby leveraging intra-block and
inter-block information to better optimize the reconstruction. The sampling network and
initial reconstruction network are depicted in the Figure 2.
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Figure 2. Illustration of the sampling and initial reconstruction process.

2.2.3. Deep Reconstruction

The core of the entire SALSA-Net is deep reconstruction, which is composed of
multiple cascaded modules. Each module consists of a gradient update module (GUM),
a thresholding denoising module (TDM), and an auxiliary update module (AUM).

1. The thresholding denoising module v is designed to map the first iteration of the
traditional SALSA algorithm onto the deep network architecture, aiming to eliminate
the artifact noise in x + m using convolutional neural networks and the thresholding
functions. The process can be expressed as:

v̂ = x + m +F (x + m), (13)

where F (·) is designed as a sequence of convolutional operations, which are specifi-
cally defined as:

F (·) = B(H̃(Lsoft(H(C(·)))). (14)

The implementation of this module is illustrated in Figure 3, where C(·)is a one-
shot convolutional operation that performs a linear transformation to increase the
dimensionality of the input using 32 3× 3 convolutional kernels;H(·)is designed to
consist of two convolutional layers and a ReLU non-linear transformation layer to
transform the output of C(·) into the desired domain and then perform denoising
using a soft thresholding function Lsoft(·). The output is then transformed back to the
original domain using the transformation H̃(·), satisfyingH ∗ H̃ = I. Finally, a series
of convolutional operations B(·) are used to achieve dimensionality reduction and
obtain the final output u. The reconstructed results of C(·) and B(·) are stacked with
the previous image residual information to obtain the updated reconstruction results.
Unlike ISTA-Net, our B(·) is a deep network that learns the sparse representation of
the input image using multiple convolutional layers and ReLU activation functions.
Thus, B(·) becomes a trainable module that can adapt to different image scenes and
tasks to improve the CS reconstruction performance.

2. The gradient update module is utilized in the SALSA algorithm to map the update
process of x to the neural network. This module enables the learned M(·) from
the sampling network to replace the sampling matrix A in the SALSA algorithm
and the learned M̃(·) from the initial reconstruction network to replace AT . This
approach eliminates the need for manual design of the sampling matrix in traditional
algorithms and allows for sharing of the convolutional kernel parameters with those
of the sampling and initial reconstruction, thereby improving network performance.
Moreover, the module utilizes the network training parameter step size µ to avoid
manual parameter tuning. The process can be expressed as:

x̂ = (µI +M(M̃(x)))−1(M̃(y) + µ(v−m)). (15)

3. The auxiliary update module is a linear combination of the previous two modules.
Its main purpose is to accelerate the convergence speed of the algorithm, enabling a
faster search for the optimal solution. Moreover, this module utilizes the computed m
value as the initial value for the next iteration, which is integrated into the iterative
computation. The process can be expressed as:
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m̂ = m− v + x. (16)

Conv Conv+ReLU+ConvConv+ReLU+Conv Conv+ReLU+ConvSoft(·)

ℬ  ℋ ℋ ∁

Input Output

Figure 3. Illustration of the thresholding denoising module.

2.2.4. Parameter and Loss Function Design

1. Parameters: The set of learnable parameters in our model comprises the transformation
parametersM(·), M̃(·), C(·), H(·), H̃(·), and B(·). In addition, the step size µ and
the shrinkage threshold β are also learnable, without the need for manual tuning.
These parameters are shared across all steps of the reconstruction stage and are part of
the deep neural network.
To ensure the correct convergence of the parameters µ and β, we introduce some
constraints in the following manner:

βk = ϕ(a1k + b1), a1 < 0,

µk = ϕ(a2k + b2), a2 < 0.
(17)

Considering the decreasing noise variance during the iterative process, the shrink-
age threshold is gradually decreased, and the step size should decrease smoothly
during iterations. We enforce this constraint using the soft thresholding function
ϕ(·) = ln(1 + exp(·)). Since the network is fully shared and {a1, a2, b1, b2} is indepen-
dent of iterations, we can use a different number of iterations for image reconstruction,
as described in Section 3.

2. The design of the loss function: we define the original training set as {xi}
Kb
i=1 and the

recovered images as {x̃i}
Kp
i=1, where Kb is the number of images in the training set and

Kp is the total number of stages in the reconstruction network.

To facilitate comparative experiments, we quantify the difference between the original
and reconstructed images using mean squared error. Inspired by sparse auto-encoders
and block-based image reconstruction, we aim to minimize the difference between the
reconstructed and original images. Therefore, we design the loss functions to include
three parts:

Ltotal = Lmse + λ1Lsym + λ2Linit, (18)

where

Lmse =
1

KbKB
2

Kb

∑
i=1
‖x̃i − xi‖2

F, (19)

Lsym =
1

Ku

Kb

∑
i=1

Kp

∑
i=1

∥∥∥H̃(H(ui))− ui

∥∥∥2

F
, (20)

Linit =
1

Kb

Kp

∑
i=1

∥∥∥M̃(M(xi))− xi

∥∥∥2

F
. (21)

The loss function of SALSA-Net consists of three parts: Lmse aims to minimize the
difference between the original and reconstructed images, where ‖.‖2

F represents the Frobe-
nius norm of a matrix or tensor. Lsym aims to ensure symmetry by making the inverse
transform of H̃(·) as close as possible toH(·), where ui = C(x + m), Ku is the number of
elements in ui, and KB is the size of the image block. Linit is the constraint imposed on
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the initial reconstruction. Regularization parameters λ1 and λ2 are set to 0.01 and 0.001
by default.

3. Results
3.1. Training Configuration

This study utilized the widely used Train91 dataset to train the models, extracting a
total of 88,912 randomly cropped image patches of size 33 × 33 as the training set to ensure
a fair comparison of experimental results. The performance of the proposed approach was
assessed on three benchmark datasets: Set5 [55], Set11 [52], and BSD68 [56]. Set5 comprises
5 color images, Set11 comprises 11 grayscale images, and BSD68 comprises 68 natural
color images.

This study trained the model using six different sampling rates, 10%, 20%, 25%, 30%,
40%, and 50%, and evaluated reconstruction quality using the peak signal-to-noise ratio
(PSNR) metric. Higher PSNR values indicate better reconstructed image quality. All models
were trained for 160 epochs with a batch size of 64, a learning rate of 0.0001, and an initial
bias value of 0. The initial values of {a1, a2, b1, b2} are set to −0.4, −0.2, −2, and −1. The
experiments were conducted on a platform equipped with a Quadro RTX 6000 GPU.

3.2. Analysis of Experimental Results

In this section, we compared our proposed method with several benchmark algorithms,
including TVAL3, ReconNet, ISTA-Net+, AMP-Net, NL-CSNet, MAC-Net, and ISTA-Net++.
TVAL3 is a model-based method, ReconNet is a classic deep network method, and ISTA-
Net+, AMP-Net, NL-CSNet, MAC-Net, and ISTA-Net++ are all deep unrolling methods.
We made uniform modifications to all methods to address the block-based image problem.

Firstly, to investigate the effect of the number of cascades in the network model on
the reconstruction quality, we conducted a comparative analysis of our proposed method
with ISTA-Net and ISTA-Net+ on the Set11 dataset with a 25% sampling rate. As depicted
in Figure 4, the reconstruction quality of all methods improves as the number of cascades
increases. Moreover, our proposed method outperforms ISTA-Net and ISTA-Net+ in terms
of PSNR when the number of cascades is 7, 9, 11, 13, and 15. When the number of cascades
exceeds 9, the improvement in reconstruction quality becomes insignificant. Therefore,
to strike a balance between computational complexity and restoration performance, we set
the number of cascades to 9 in the experiments conducted in this section.

Figure 4. Comparison of average PSNR among ISTA-Net, ISTA-Net+, and SALSA-Net with
different phases.
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We conducted a performance comparison of three loss functions, namely, Lmse, Lsym,
and Linit, during the iterative process of SALSA-Net on the Set11 dataset with a sampling rate
of 25%. Figure 5 illustrates that SALSA-Net demonstrates a consistent and rapid convergence
towards zero on all three loss functions, indicating its excellent convergence properties.

Figure 5. Updated diagrams of Lmse, Lsym, and Linit during the iteration process.

To validate the convergence of our proposed method, experiments were conducted
on the Set11 dataset with a sampling rate of 25% and N = 9. The proposed method was
compared with ISTA-Net and ISTA-Net+ and the experimental results are presented in
Figure 6. The experimental findings indicate that the proposed method outperforms ISTA-
Net and ISTA-Net+ at different epochs. Notably, the proposed method exhibits superior
performance after 40 epochs, while the three methods show a slow improvement in the
subsequent epochs and slightly decrease after around 160 epochs. To balance computational
complexity and reconstruction performance, we set the number of epochs to 160 in the
subsequent experiments.

Figure 6. Comparisons of the average PSNR among ISTA-Net, ISTA-Net+, and SALSA-Net with
different epochs .



Sensors 2023, 23, 5142 11 of 16

Table 1 presents the average PSNR of eight different algorithm models on the Set11
dataset under different sampling rates of 10%, 20%, 30%, 40%, and 50%. Bold numbers high-
light the best reconstruction quality results at each sampling rate. The findings reveal that
TVAL3 performs poorly at low sampling rates, while ReconNet exhibits poor performance
at high sampling rates. The deep unrolling models (ISTA-Net+, AMP-Net+, NL-CSNet,
MAC-Net, and ISTA-Net++) outperform classical compressive sensing models (TVAL3
and ReconNet) in terms of reconstruction results. Although the proposed SALSA-Net has
slightly lower average PSNR than AMP-Net and ISTA-Net++ at sampling rates of 10%
and 25%, respectively, it outperforms other reconstruction methods as the sampling rate
increases, indicating its effectiveness in CS image reconstruction.

Tables 2 and 3 present the comparison of the experimental results of SALSA-Net and
other models on the BSD68 and Set5 datasets, respectively, to evaluate the generalization
ability of SALSA-Net. The tables highlight the best results in bold. The findings of both
tables indicate that SALSA-Net outperforms other algorithms at low sampling rates, ex-
hibiting the highest average PSNR. Specifically, in BSD68, SALSA-Net achieves an average
improvement of 0.67 dB over ISTA-Net++, 1.51 dB over MAC-Net, and 4.14 dB over Re-
conNet. In Set5, SALSA-Net achieves an average improvement of 0.13dB over AMP-Net,
0.67 dB over ISTA-Net++, and 6.37 dB over TVAL3. Moreover, SALSA-Net exhibits better
performance than NL-CSNet, ISTA-Net+, and other algorithms at various sampling rates.
These results demonstrate the good generalization ability and high performance levels of
SALSA-Net.

Table 1. PSNR performance comparisons between SALSA-Net and seven other algorithms on Set11.

Methods 10% 20% 30% 40% 50% Avg

PSNR(dB)

TVAL3 22.99 27.92 29.23 31.46 33.55 29.03
ReconNet 24.11 25.52 28.71 30.77 31.59 28.14
ISTA-Net+ 26.54 30.67 33.72 36.01 38.01 32.99
AMP-Net 28.65 31.05 32.91 35.31 37.45 33.07
NL-CSNet 28.11 31.43 33.82 35.60 37.13 33.22
MAC-Net 27.83 31.54 33.82 36.10 37.78 33.41

ISTA-
Net++ 28.34 32.33 34.86 36.51 38.73 34.15

SALSA-
Net 28.49 32.25 35.20 36.97 39.39 34.46

Table 2. PSNR performance comparisons between SALSA-Net and seven other algorithms on BSD68.

Methods 10% 20% 30% 40% 50% Avg

PSNR(dB)

TVAL3 19.26 21.25 22.34 25.39 29.59 23.57
ReconNet 23.76 25.29 27.40 28.58 30.64 27.13
ISTA-Net+ 25.29 27.23 30.03 32.23 33.56 29.67
AMP-Net 25.32 27.37 30.56 32.11 32.78 29.63
NL-CSNet 25.18 27.53 29.61 31.32 32.48 29.22
MAC-Net 25.34 28.43 30.11 31.37 33.58 29.76

ISTA-
Net++ 26.01 28.56 30.94 32.72 34.92 30.63

SALSA-
Net 26.96 29.12 31.55 31.55 35.60 31.27
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Table 3. PSNR performance comparisons between SALSA-Net and six other algorithms on Set5.

Methods 10% 20% 30% 40% 50% Avg

PSNR(dB)

TVAL3 27.12 30.35 32.49 34.77 36.63 32.27
ReconNet 26.99 29.34 31.44 33.62 35.41 31.36
ISTA-Net+ 28.84 32.62 35.47 38.45 40.15 35.10
AMP-Net 33.31 36.92 39.14 41.12 42.07 38.51
MAC-Net 32.54 36.06 38.48 40.37 42.11 37.91

ISTA-
Net++ 33.04 36.41 38.86 39.92 41.64 37.97

SALSA-
Net 33.78 36.63 39.21 41.35 42.24 38.64

This study conducted a comparative analysis of the proposed SALSA-Net method
against four other methods using partial reconstruction images at a 25% sampling rate.
The partial reconstruction results of Set11, BSD68, and Set5 are presented in Figures 7–9,
respectively. The reconstruction results of ReconNet were found to be blurry, while the
other methods achieved effective reconstruction to a certain extent. Furthermore, to assess
the scalability of SALSA-Net, a set of medical brain images was used to evaluate its
performance on the CS-MRI reconstruction problem. As shown in Figure 10, the proposed
method achieves CS-MRI reconstruction. The experimental results indicate that the SALSA-
Net method can reconstruct texture structures clearly, exhibiting clear visual performance
and signal reconstruction accuracy.

Figure 7. Visual comparisons of original image and reconstructions by ReconNet, ISTA-Net+, AMP-
Net, and SALSA-Net on Set11 with a sampling rate of 25% after 160 epochs, arranged from left
to right.

Figure 8. Visual comparisons of original image and reconstructions by ReconNet, ISTA-Net+, AMP-
Net, and SALSA-Net on BSD68 with a sampling rate of 25% after 160 epochs, arranged from left
to right.
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Figure 9. Visual comparisons of original image and reconstructions by ReconNet, ISTA-Net+, AMP-
Net, and SALSA-Net on Set5 with a sampling rate of 25% after 160 epochs, arranged from left
to right.

Figure 10. Visual comparisons of original brain images (top) and reconstructions by SALSA-Net
(bottom) with a sampling rate of 25%.

4. Conclusions and Future Work

In this paper, we proposed SALSA-Net, a deep unrolling network designed to ad-
dress the compressed sensing problem with images. By combining the interpretability
of SALSA with the powerful learning ability of deep networks, SALSA-Net incorporates
learnable sampling and residual modules to achieve superior denoising and detail restora-
tion performance. Extensive experiments on large datasets demonstrate the effectiveness
of SALSA-Net’s sampling training and reconstruction strategy, which outperforms other
state-of-the-art algorithms. In the future, we intend to introduce cross-area modules to
further enhance the model’s performance and increase its flexibility. To expedite the study
of deep unrolling networks, we will release the source codes and dataset of this paper to
the public at https://github.com/songhp/SALSANet (accessed on 25 May 2023).
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