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Abstract—Video sentiment analysis can effectively establish the 

relationship between the emotion state and the multimodal 

information, while still suffer from intensive computation and low 

efficiency, due to the von Neumann computing architecture. Here, 

we present a brain-inspired hierarchical interactive in-memory 

computing (IMC) system, which can efficiently solve ‘von 

Neumann bottleneck’, enabling cross-modal interactions and 

semantic gap elimination. First, a 1T1M synapse array is 

fabricated using cost-effective, highly stable, flexible, and 

eco-friendly carbon materials, offering efficient analog 

multiply-accumulate operations. To illustrate the complexity of 

the proposed brain-inspired hierarchical interactive IMC system, 

three modules are proposed: 1) unimodal extraction module, 2) 

hierarchical interactive module, 3) output module. Furthermore, 

the proposed system is validated by applying it to video sentiment 

analysis. The experimental results demonstrate that the proposed 

system outperforms the existing state-of-the-art methods with 

high computational efficiency and good robustness. This work 

opens up a new way to achieve the deep integration of 

nanomaterials, deep learning, and modern electronics into IMC. 

Index Terms—Brain-inspired, hierarchical interactive, 

in-memory computing (IMC), sentiment analysis 

I. INTRODUCTION

ith the fast-paced development of video acquisition

technology, the amount of video data is increasing 

rapidly over the recent years [1]. Video has been an important 

information carrier, providing a new path for daily 

communication and socialization [2]. Emotion information in 

video is closely related to the human health and well-being.  As 
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a result, video sentiment analysis is now attracting increasing 

interest [3].  

Recent researches of video sentiment analysis are mainly 

based on machine learning methods and deep learning methods, 

which have achieved state-of-the-art performance in terms of 

recognition accuracy [4-6]. However, these methods also have 

certain limitations in providing real-time information 

processing with relatively low energy consumption, making 

them unable to compete with biological neural systems 

especially in computational efficiency. This is because they are 

mostly built on von Neumann computing system with separate 

processing and memory units (called the ‘von Neumann 

bottleneck’) [7]. Meanwhile, these traditional systems usually 

rely on the complementary metal oxide semiconductors 

(CMOS) integrated circuit design inevitably limited by 

‘memory wall’, leading to low efficiency and instability, 

particularly when in situ learning and biological interpretability 

are required [8-10].  

In-memory computing (IMC) has recently started to 

revolutionize conventional methods because of its capacity to 

continue running computations and caching big data [11]. IMC 

systems are built on numerous upcoming nanotechnologies and 

beyond-CMOS devices, making lower power consumption and 

higher speed possible [12]. Memristor is a two-terminal 

electronic device that provides functional relationship between 

charge and flux. It was invented by L. O. Chua in 1971 [13] and 

was applied to physical devices by researchers in Hewlett 

Packard Labs [14]. It is a perfect choice for synapses in IMC 

systems because of its inherent dynamics, analog behaviors, 

non-volatility, high-speed, low-energy, and high-density 

features [15]. Memristive synapse arrays exhibit high levels of 

parallel computing capability, enabling multiply-accumulate 

(MAC) operations, the major calculation method in 

information processing. By using analog IMC, significant 

energy and time overheads incurred by data shuttling in von 

Neumann system can be avoided [16].  

IMC systems are equipped with machine learning algorithms 

and the ability to perceive and process video data in different 

modalities, such as visual [17], tactile [18], auditory [19], 

olfactory [20], and gustatory data [21], drawing lessons from 

human sensory processing and perceptual learning mechanisms. 

However, the current IMC systems still have some limitations. 

At the device level, the cycle-to-cycle (C2C) and 

device-to-device (D2D) variations may cause inaccurate 
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encoding of network weights in IMC because of the 

non-uniformity of the switching function layers and electrodes 

[22]. Therefore, computing devices that are more reliable and 

environment-friendly are required. At the system level, almost 

all existing IMC systems concentrate on a single mode of 

sensory processing. A lack of hierarchical interactive systems 

that combine numerous senses based on cross-modal learning 

mechanisms make information across various sensory 

modalities hard to handle.  

Thus, this work aims to investigate a brain-inspired 

hierarchical interactive IMC system. For verification purposes, 

the proposed system was applied to video sentiment analysis. 

For clarity, the systemic comparison of different computing 

systems for video analysis is provided in Fig. 1. The main 

contributions of this work are summarized as follows. 

1) Different with existing IMC systems, we present a

brain-inspired hierarchical interactive IMC system that can 

effectively capture cross-modal interactions and eliminate the 

semantic gap between multi-modal signals. 

2) The circuit design of the entire system is developed after

the fabrication of a cost-effective, highly stable, and 

eco-friendly carbon-based memristor, enabling a 

parallel-computed and highly integrated IMC system. 

3) A hardware implementation of video sentiment analysis is

developed, which provides the benefits of less computational 

overhead and time consumption, to solve computationally 

difficult problems with unattainable energy efficiencies for von 

Neumann architectures. 

The rest of this paper is structured as follows. Section II 

presents the hierarchical architecture of the proposed 

brain-inspired interactive IMC system. Section III describes the 

fabrication of the carbon-based memristor and memristive 

synapse array. Section IV demonstrates the detailed circuit 

design of the entire system from the perspectives of unimodal 

extraction, hierarchical interaction, and output modules. In 

Section V, the proposed system is applied to sentiment analysis 

for verification. Finally, Section VI includes the conclusion 

drawn from the study. 

II. BRAIN-INSPIRED HIERARCHICAL INTERACTIVE COMPUTING 

SYSTEM ARCHITECTURE 

In human brain, sensing, transmitting, and processing of 

information relies on distributed and hierarchical neural 

networks consisting of receptors, nerve pathways, and cerebral 

cortex [23], which are compact and efficient for solving 

complex and unstructured real-world problems, as shown in Fig. 

2(a). Specifically, sensory receptors (the retina and cochlea) 

convert environmental inputs into spike trains in the cells. The 

nerve pathways then carry spike trains from the receptors to the 

brain’s cerebral cortex, where information is further processed. 

Notably, the biological intelligence of the brain results from 

synapses connections, among nearly a hundred billion neurons, 

which enable the brain to perform intelligent tasks with high 

performance [24]. Therefore, we develop a brain-inspired 

hierarchical interactive computing system that can synthesize 

and process multimodal information, as shown in Fig. 2(b). 

Specifically, memristive synapse array is used to perform 

efficient MAC operation, which acts as the synapse in 

brain-inspired computing architectures. Unimodal extraction 

module and hierarchical interaction module are used to 

simulate the sensory processing and perceptual learning 

mechanism of human brain. Output module is used to simulate 

the cognitive analysis mechanism in the cerebral cortex.  

Memristive synapse array: The huge parameters and 

complex calculations of brain inspired computing system 

necessitate basic components possess ‘big data’ transmission 

capabilities and enormous processing units. Memristors with 

unique qualities, such as high storage density, low power 

consumption, fast programming and erasing speed, have been 

proposed as promising artificial synaptic candidates for 

realizing brain-inspired computing systems. Due to the 

exceptional physical properties of carbon materials, including 

electrical tunability, sustainability, and eco-environment, 

carbon materials have attracted much attention from academia 

and industry [25]. Therefore, a carbon material-based 

memristor is fabricated using frame method and magnetron 

sputtering method. Meanwhile, a parallel connection is made 

by constructing a transistor (1T) and an Ag/a-Carbon/Ag 

memristor (1M) synapse array, lowering the system complexity 

and cost. 

Unimodal extraction module: Different sensory perceptions 

are responsible for receiving and extracting various stimulus 

inputs, with visual and auditory perceptions being the two main 

types [26]. Moreover, it has been estimated that these pathways 
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achieve over 90% of the processed information. We propose a 

unimodal extraction module that fully extracts features from 

the input text, audio, and images to simulate the signal 

extraction process of sensory perceptions. Specifically, to 

acquire the underlying semantic and contextual meanings of the 

text, bidirectional encoder representations from transformers 

(BERT) [27] are employed for textual feature extraction, 

denoted by VFT=BERT(vT). To extract features that characterize 

the complex nature of the audio, the long short-term memory 

(LSTM) network [28] is adopted, which is presented as 

VFA=LSTM(vA). While considering the hidden representation 

of images, we chose a convolutional neural network (CNN) [29] 

for object-level visual features, which is indicated by 

VFI=CNN(vI). 

Hierarchical interaction module: Considering human brain 

information interaction mechanism [23], we propose a 

hierarchical interaction module containing two levels of 

interactions: (1) low-level interactions between audio and text 

(or image), and (2) high-level interactions between text and 

image. The cross-modal transformer layer is used for the 

audio-text feature representation (VA→T) and the audio-image 

feature representation (VA→I) to model these two types of 

interactions. In particular, as illustrated in the right portion of 

Fig. 2(b), a multi-head cross-attention [30] is employed, taking 

audio feature representation VFA as queries and text feature 

representation VFT (or image feature representation VFI) as keys 

and values, and then followed by a feed-forward network. 

Furthermore, to understand the intermodal interaction between 

text and image feature representations, we propose a 

multimodal fusion transformer above the cross-modal 

transformer, where VA→T is treated as queries and VA→I as keys 

and values. Moreover, VA→T→I stands for the final 

multimodal-fused image feature representation. Similarly, 

VA→I→T indicates the multimodal-fused text feature 

representation obtained with the same structure by treating 

VA→I as queries and VA→T as keys and values. Finally, the 

multimodal-fused image feature representation VA→T→I and the 

multimodal-fused text feature representation VA→I→T are the 

output of the hierarchical interaction module. 

Output module: This module integrated multimodal-fused 

text and image feature representations using the 

self-attention-based transformer architecture [31], followed by 

a softmax layer for multimodal signal processing. 

III. MEMRISTIVE SYNAPSE ARRAY

A. Memristor Fabrication and Performance Testing

Considering the environmental protection and fabrication

cost, an Ag/a-Carbon/Ag memristor is prepared using the frame 

method and magnetron sputtering method. The former method 

is used to prepare the switching functional layer, and the latter 

method is used to synthesize Ag electrodes. The specific 

preparation process (shown in Fig. 3) can be summarized as 

follows. 

Step 1: The quartz plate substrate is cleaned with ethyl 

alcohol, acetone, and deionized water to remove any possible 
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Fig. 2. (a) Schematic of information sensing, transmitting, and processing in human brain; (b) Schematic of brain-inspired hierarchical interactive IMC system. 
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contaminants, then dried in an oven at 65°C in an ambient 

atmosphere. 

Step 2: Magnetron sputtering method is used to fabricate the 

bottom silver (Ag) electrode (thickness= 120 nm) on the 

cleaned quartz plate substrate. 

Step 3: 0.05 g a-Carbon nano-powder obtained by frame 

method is added to 2 mL of n-methyl pyrrolidone solution and 

continuously stirred for 3 hours to fabricate the precursor 

solution. 

Step 4: The quartz plate substrate is transferred on a spin 

coater. The precursor solution is spin-coated onto the quartz 

plate substrate at 2,000 rpm for 40 seconds. 

Step 5: The quartz plate substrate is placed to an oven and 

annealed at 85°C. This leads to the formation of an 

a-Carbon-coating layer on the substrate.

Step 6: The top silver (Ag) electrodes are deposited on the

surface of the a-Carbon coating layer, further developing the 

Ag/a-Carbon/Ag memristor. 
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Fig. 3. Flow chart for the preparation of Ag/a-Carbon/Ag memristor. 

The performance of the Ag/a-Carbon/Ag memristor is tested 

using an electrochemical workstation (CHI-600D). The 

electrical characteristics are measured with ± 2 V scanning 

voltages at a scan rate of 0.5 V/s, as shown in Fig. 4.  

The memristor exhibits typical resistance switching (RS) 

behavior, as shown by the current-voltage (I-V) curves in Fig. 

4(a). In the 1st phase (0 V→2 V), the current builds steadily, 

reaching its maximum. Meanwhile, the memristor is in a 

high-resistance state (HRS). When the scanning voltages 

sweeps from 2 V to 0 V, the memristor moves into the 2nd phase 

and the current decreases and the memristor remains in a 

low-resistance state (LRS). In the 3rd phase (0 V to −2 V), the 

current steadily increases until it reaches its maximum value. 

When a reverse bias sweep is applied, the memristor enters the 

4th phase (−2 V→0 V), and the current naturally drops to a very 

low value. The device restitches from the LRS (3rd phase) to the 

HRS (4th phase). Notably, the C2C and D2D stability are 

crucial for hardware design and implementation [22]. The I–V 

curves using 120 different memristors are individually 

measured, and the RS behavior exhibited negligible variation, 

demonstrating that the Ag/a-Carbon/Ag memristors have good 

D2D stability (Fig. 4(b)). To investigate the stability of the 

memristor, the I–V curves are measured for the 1st, 10th, 50th, 

200th, and 500th cycles, as shown in Fig. 4(c). The RS behavior 

is well maintained, which implies good C2C stability of the 

Ag/a-Carbon/Ag memristor. A resistance ratio between the 

HRS and LRS of approximately 100 can be observed and well 

maintained for 104 seconds at a reading voltage (0.5 V), 

indicating the good stability of the fabricated memristor (Fig. 

4(d)).  
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Fig. 4. (a) I-V curve of Ag/a-Carbon/Ag memristor; (b) D2D analysis; (c) C2C 

analysis; (d) The stability of HRS and LRS of the prepared memristor over time 

at 0.5V. 

B. Memristive Synapse Array

Considering the proposed brain-inspired hierarchical

interactive computing system has large weight parameters and 

matrix calculations, memristive synapse arrays are adopted to 

represent weights and perform an analog MAC operation based 

on Ohm’s and Kirchhoff’s laws [22]. However, the sneak path 

issue still affects the memristive synapse array, interfering with 

write or read operations and considerably increasing the power 

consumption.  

In this study, a transistor (1T) and an Ag/a-Carbon/Ag 

memristor (1M) connected in series consists a memory cell in 

the memristive synapse array, as shown in Fig. 5(a). 

Operational amplifier A1 converts current to voltage. The 

constructed synapse array is demonstrated as an effective 

manner to avoid the sneak path issue. When transistors in ith 

row are turned off, the output voltage of the corresponding row 

can be denoted as Vout,i=0. In contrast, when the transistors in ith 

row are turned on, the output voltage of the corresponding row 

can be expressed as: 
,

, ,

, 1

row col

out i f i j j

i j

V R W V
=

=   (1) 

where row and col are the number of rows and columns in the 

memristive synapse array, respectively, Rf denotes the feedback 

resistance, and Wi, j is the conductance of the memory device. 

Fig. 5(b) demonstrates the conductance response of the 

selected memory device and the adjacent devices during the 

RESET operation. After 100 cycles, the conductance of the 
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selected device is changed from LRS to HRS, and the 

conductance of the adjacent devices can be maintained well. 
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Fig. 5. (a) 1T1M synapse array; (b) conductance response of the selected 

memory device and the adjacent devices during the RESET operation. 
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Fig.6. (a) A digital image of a fabricated 1T1M synapse array (top view); 

optical microscopy images in (b) normal view and (c) magnified view; (d-e) 

FESEM image of amorphous a-Carbon switching layer at different scales. 

Furthermore, for the structural and materials 

characterizations of the fabricated 1T1M synapse array, optical 

microscopy and field emission scanning electron microscopy 

(FESEM) are used to visualize the perfect synapse array 

structure and amorphous nature of the deposited thin film as a 

switching layer. Fig. 6(a) demonstrates the fabricated crossbar 

array while Fig. 6(b) and Fig. 6(c) show the optical microscopy 

images at different scales. As seen in Fig. 6(c), the fabricated 

1T1M synapse array has a perfect crossbar structure. The 

FESEM results reveal the morphological analysis of the 

resistive switching layer of a-Carbon, which confirms the 

amorphous nature of the deposited thin film, as shown in Fig. 

6(d) and Fig. 6(e). 

IV. CIRCUIT DESIGN SCHEME FOR BRAIN-INSPIRED 

HIERARCHICAL INTERACTIVE IMC SYSTEM

Brain-inspired computing could help us further explore 

neuronal functionalities and its operating mechanisms [1]. Our 

motivation is to design a brain-inspired hierarchical interactive 

IMC system via prepared memristive synapse arrays, which is 

capable of dealing with the computationally challenging issues 

involved in energy efficiencies unattainable for von Neumann 

architectures.  

A. Unimodal Extraction Module

Various types of information can be perceived by the human

sensory system despite complex surroundings. Inspired by the 

human brain sensory mechanism, we demonstrated a unimodal 

extraction module to capture features from the input text, audio, 

and image. Specifically, this module is consisted of three parts: 

memristor-based BERT, memristor-based LSTM, and 

memristor-based CNN. 

1) Memristor-based BERT

BERT, the mainstream bidirectional pre-trained language

model, can generate feature representations from unsupervised 

larger corpora. BERT backbone is a stack of transformer blocks 

[26], each of which is composed by the multi-head attention 

and feed-forward network, as shown in Fig. 7. 
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The multi-head attention can be denoted by: 

( )Attention , , softmax
 

=  
 

TQK
Q K V V

d
(2) 

( ) ( )1 2Multihead , , Concat , ,...,= O

nhQ K V h h h W (3) 

Attention( , , )= Q K V

n n n nh QW KW VW       (4) 

where x∈R denotes the input matrix. T is termed as the 

transpose operation. The weight matrixes (Wn
Q, Wn

K, Wn
V and 

WO) ∈R are all learnable parameters. Following the weight 

matrixes (Wn
Q, Wn

K, and Wn
V), the input matrix x is transformed 

into the attention query Qn, attention key Kn and attention value 

Vn. Each head hn is a component of complete attention. 

The multi-head attention block consists of two multiplying 

circuits, a softmax circuit, and a number of prepared 

memristive synapse arrays. The multiplying circuit consists of 

multipliers and summation circuits that can obtain the results of 

the matrix weights. The softmax circuit is developed by 

exponential, summation, and division circuits connected in a 

cascaded configuration, which can convert input voltage into a 

probability distribution. The prepared memristive synapse 

array is utilized to store and compute attention query Qn, 

attention key Kn and attention value Vn.  

The feed-forward network is composed of two-layer 

normalization with a ReLU activation function in between: 

( ) ( )max 0,= + +A A B BFFN x xW b W b (5) 

where weight matrixes (WA, WB, bA and bB) are learnable 

parameters, FFN refers to the feed-forward network. 

The feed-forward block comprises a two-layer normalization 

circuit, ReLU circuit, and two prepared memristive synapse 

arrays. The layer normalization circuit consisted of an 

averaging circuit, normalization circuit, and standard deviation 

circuit. The ReLU circuit is used to perform nonlinear mapping 

operation. Using the prepared memristive synapse arrays, the 

learnable parameters of each row in matrices WA and bA and 

matrices WB and bB can be computed and stored. 

Notably, the above-mentioned sub-circuits have been 

developed in our previous work [17]. 

It is noted that the input and output signals of transformer 

blocks are voltages, which guarantees that all these blocks can 

be connected in stack configuration. Based on this, the 

memristor-based BERT can be obtained, as shown in Fig. 8. 
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Fig. 8. The circuit design of memristor-based BERT. 

2) Memristor-based LSTM

LSTM is a type of recurrent neural network for modelling

long-term sequence dependencies, effectively preventing 

vanishing and exploding gradients [27]. The input, forget, and 

output gates are the three gates that constitute a typical LSTM 

cell. In particular, the input gate it controls the storage of input 

xt, the forget gate ft decides which information from the 

previous cell state ct-1 is to be abandoned, and the output gate ot 

controls the cell output ht from the current cell state ct. The 

mathematical expression of LSTM is given by: 

1

1

−

   
    
    
    
      

   

t a a a

t

t i i i

t

t f f f

t o o o

a W U b
x

i W U b
= h

f W U b

o W U b

 (6) 

( ) ( ) ( ) 1tanh −= +t t t t tc i a f c    (7) 

( ) ( )tanh=t t tch o  (8) 

where the weight, recurrent weight, and bias of the LSTM are 

denoted as W (Wa, Wi, Wf, Wo), U (Ua, Ui, Uf, Uo), and b (ba, bi, 

bf, bo), respectively. Symbol σ is the logistic sigmoid, and ʘ is 

the Hadamard product. 

According to (6) ~ (8), the linear matrix operation and gated 

nonlinear activation are the two main stages that define an 

LSTM cell. Correspondingly, the linear matrix operation circuit 

and nonlinear activation circuit are the two parts of the specific 

hardware implementation of LSTM, as illustrated in Fig. 9.  
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Fig. 9. The circuit design of memristor-based LSTM. 
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The linear matrix operation circuit: the matrix operation 

circuit comprises the memristive synapse array, the biasing 

circuit, and the auxiliary circuit to perform the linear matrix 

operation. The memristive synapse array is used to realize the 

MAC operation in the LSTM. The conductances of the 

memristors (Gw,ij and Gu,ij) are used to present the weights in 

LSTM.  

Commonly, the input vector xt of size Nx×1 is neither a 

voltage nor a current, and the necessary normalization should 

be performed before the injection of xt. In this study, the 

min-max normalization was applied using [32]: 

 min

max min

, 1,
−

= 
−

ti t

xi x

t t

x x
V i N

x x
(9) 

where xtmin and xtmax are the minimum and maximum values of 

xt, respectively. Vx is the normalized voltage of size Nx×1 within 

the range [0, 1]. 

Assuming Ra1=Ra2=Ra3=Ra4 and Rb1=Rb2=Rb3=Rb4=0.5Rb5, 

the output of the matrix operation circuit Vob can be written by: 

o =  +  +b x h bV V W V U V (10) 

where the outcomes of W= Gw,ij+- Gw,ij- and U= Gu,ij+- Gu,ij- are 

the weights and recurrent weights, respectively. Vb represents 

the bias parameter in LSTM.  

Nonlinear activation circuit: We created a general design 

scheme for the nonlinear activation function in LSTM. The 

input voltage Vob was attached to one side of an N-metal oxide 

semiconductors (NMOS) source-coupled pair and biased by the 

current Imax. The output of this circuit Iout can be expressed as: 

max= out nI I I (11) 

where In is the normalized current, which can be described in 

piecewise form: 

2 2

2
1,
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= + 4 ,
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 −


ob

ob

n ob ob

ob

V
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I c V c V
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c

(12) 

where c=ε/Imax represents a constant, and ε denotes a gain 

coefficient. 

The output voltage Vout can be obtained by: 

max SS+=  out n outV I I R V (13) 

where Rout =1Ω indicates a constant resistor. 

Next, two representative case studies are provided to verify 

that the activation function circuit can be used to approximate 

the logistic sigmoid function and hyperbolic tangent function, 

respectively. The specific parameter setting and experiment 

results are exhibited in Fig. 10. From Fig. 10, the two brown 

dotted lines are the input-output curves of the proposed 

activation circuit under different parameter pairs, and the two 

navy solid lines denote the logistic sigmoid function and the 

hyperbolic tangent function, respectively. It is clear that the 

proposed activation circuit is able to approximate the logistic 

sigmoid function and hyperbolic tangent function with a high 

degree of accuracy. Actually, the proposed circuit can be 

regarded as a general activation circuit, it can be used to realize 

almost all the activation functions by tuning circuit parameters 

(i.e., the parameter pair VSS and c). 
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Fig. 10. Analog implementation of the activation function. (a) The logistic 

sigmoid function; (b) The hyperbolic tangent function 

3) Memristor-based CNN

CNN, a class of deep neural networks, has become the most

established class with remarkable achievements in performing 

tasks related to image processing, such as image recognition, 

image segmentation, and object detection [28]. The general 

architecture of LeNet-5 [33] is depicted in Fig. 11(a), it is 

composed of one convolutional layer and one max-pooling 

layer, of which the structure repeats once, followed by three 

fully connected layers. Accordingly, the detailed hardware 

implementation of the CNN can also be divided into three 

components: the convolutional operation circuit, max-pooling 

circuit, and fully connected circuit. 
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Fig. 11. (a) The general architecture of LeNet-5; (b) The circuit design of 

memristor-based CNN. 

The convolutional operation circuit uses sliding operations 

with different kernels to achieve convolutional operations. 

Memristive synapse arrays play a significant role in realizing 

parallel MACs with the same input for various kernels. Fig. 

11(b) demonstrates the typical convolution at a certain slipping 

step and the events realized by the memristive synapse arrays. 

Based on the conductance difference of two memristors, the 

signed kernel weight is first mapped, and all kernel weights are 

mapped to two conductance rows for positive weights gi+ with 

positive inputs xi+, and for negative weights gi- with negative 

inputs xi-. While mapping different kernels to different pairs of 
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rows, the memristive synapse array performs MACs in parallel 

under the shared inputs, and in the meantime, we can get the 

desired weighted-sum results. The output of the convolutional 

operation circuit yk is denoted as: 

( ) - -

1

m

k i i i i b b b b

i

y f x g x g x g x g+ + − − + +

=

 
= − + − 

 
 (14) 

where k is the size of the convolution kernel. f is the ReLU 

function. Voltage xb represents the additional input of the 

memristive synapse array. Here, the fully connected circuit 

could be a convolutional operation circuit with a 1×1 kernel. 

Because the design is the same for both types of circuits, we 

will not go into all specifics again. 

Max-pooling circuit: max-pooling operation reduces the 

spatial size and the number of parameters, which can 

effectively prevent overfitting. As illustrated in Fig. 11(b), we 

adopted the voltage selector to simulate this operation and do 

not need consider whether the input is positive or negative. 

At the beginning, all memristors installed at the intersections 

of the weight matrices can be set to an appropriate conductance 

value. Following the training voltages vT, vA, and vI and based 

on the stochastic gradient descent approach, the conductances 

were updated to the desired values. When the training phase 

was completed, feature voltages were provided, symbolized by 

VFT=BERT(vT), VFA=LSTM(vA),and VFI=CNN(vI). 

B. Hierarchical Interaction Module

The cross-modal semantic gap results from the fact that the

text, audio, and image feature voltages are acquired in different 

representation spaces via the aforementioned three pre-trained 

unimodal extraction modules (memristor-based BERT, 

memristor-based LSTM, and memristor-based CNN). In this 

section, the hierarchical interaction module aims at eliminating 

the semantic gap of the three unimodal feature voltages while 

effectively capturing the cross-modal interactions, as shown in 

Fig. 12. 
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Fig. 12. The circuit design of hierarchical interaction module. 

In the cross-modal transformer block, we consider two 

distinct modalities: VFA and VFT (acoustic and textual modalities, 

respectively). Considering WQA, WKT, and WVT are all weight 

matrices, we specified the queries as QA= VFA×WQA, the keys 

as KT= VFT×WKT, and the values as VT= VFT×WVT. The 

cross-modal transformer block has a multi-head version of 

cross-modal attention and a feed-forward network. The output 

of the cross-modal transformer block can be achieved using: 

( )( )A T FT FT FA,V LN V CMA V V= +→ (15) 

( )( )A T A TA TV LN FFN V V= +→ →→ (16) 

where CMA is the multi-head cross-modal attention from audio 

to text, LN denotes layer normalization. A TV → is the output of a 

layer in the cross-modal attention block. After the cross-modal 

transformer block, VA→T is obtained as a representation of the 

textual modality. Similarly, the visual modality is subjected to 

the cross-modal transformer block, and VA→I is obtained for the 

visual modality. 

In the multimodal fusion transformer block, we firstly used a 

cross-modal transformer block for intermodal interactions. 

Queries are defined as QA→T= VA→T×WQA→T, keys as KA→I= 

VA→I×WKA→I, and values as VA→I= VA→I×WVA→I, where 

WQA→T, WKA→I, and WVA→I are weight matrices. After the 

cross-modal transformer block, VA→T→I was obtained. To 

combine VA→T→I with VA→T, we fed VA→T→I to a feed-forward 

network first, the corresponding output and VA→T are jointly 

injected to the layer normalization. The output of the 

multimodal fusion transformer block A T IV →→  is denoted as: 

( )A T I A I A T,→ → →=V CMT V V→   (17) 

( )( )A T I A T I A T→ →= +V LN FFN V V→ → →   (18) 

where CMT denotes the cross-modal transformer operation. 

Notably, the multimodal-fused text representation, 

represented by A I TV →→ , uses the same structure as the final 

multimodal-fused image representation A T IV →→ . Meanwhile, 

all the functional circuits embedded in the hierarchical 

interaction module have been described in Section IV-A, we 

will not go into all specifics again. 

C. Output Module

Finally, we considered the hidden representation A T IV →→  as

the final image feature representation, and concatenated it with 

the multimodal-fused text feature representation A I TV →→ . After 

that the concatenated result is fed to a self-attention-based 

transformer layer: 

( )A T I A I TM ,V Transformer V V→ →= → → (19) 

where VM is the final multimodal feature representation 

produced by the transformer layer. 

Subsequently, we fed the final hidden representation VM to a 

softmax circuit for multimodal signal processing. 

V. APPLICATION IN VIDEO SENTIMENT ANALYSIS

To verify the effectiveness and validity of the proposed 
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hierarchical interactive IMC system, a series of experiments are 

carried out by comparing the proposed system with the 

state-of-the-art methods [34-47] for video sentiment analysis. 

Notably, the references are selected according to the following 

four criteria, i.e., content relevance, total cited times, journal 

academic impact, and timeliness. Furthermore, the main 

hyperparameters used for the proposed system (including 

neural network and circuit parameters) are shown in Table I.  

TABLE I 
LIST OF THE HYPERPARAMETERS USED FOR THE PROPOSED SYSTEM 

Hyperparameters 

Neural 

network 

parameters 

Learning rate 10−2 

Momentum 0 

Decay 0.9 
Maximum error 10-4

Circuit 

parameters 

Vmin 0V 

Vmax 2.0V 
RatioHRS/LRS 10 

Read voltage 0.5V 

VWL 1.5V 
VBL 1.0V 

Scan voltage 0.5V/s 

In order to ensure the classification performance, the 

selection of neural network hyperparameters are based on 

[34-47]. The circuit hyperparameters mainly rely on the 

prepared memristor, they are set up to keep the proposed 

system proper functioning and have no effect on the 

classification performance.  

A. Database and Evaluation Metrics

Two benchmark video clip datasets (i.e., the IEMOCAP

dataset and the MELD dataset), containing textual, acoustic, 

and visual information of each utterance, are applied to 

evaluate the proposed system.  

IEMOCAP dataset is recorded as video clips of multimodal 

dyadic conversations between actors of opposite gender. 

Following the previous studies [34-47], 80% data is distributed 

in training dataset and the remaining 20% is distributed in 

testing dataset. Each utterance has a certain emotion label 

including six categories, i.e., “exited,” “happy,” “neural,” “sad,” 

“angry,” and “frustrated”. MELD dataset contains 1433 

dialogues and 13708 utterances, in which 1039 dialogues with 

9989 utterances are distributed in training dataset, 114 

dialogues with 1109 utterances are distributed in validation 

dataset, and the remaining dialogues are distributed in testing 

dataset. Each utterance has a certain emotion label including 

seven categories, i.e., “neutral,” “surprise,” “fear,” “sad,” 

“angry,” “disgust” and “joy”.  Specifically, the sample 

distribution of different emotions in IEMOCAP dataset and 

MELD dataset is shown in Table II and Table III. 
TABLE II 

SAMPLE DISTRIBUTION OF DIFFERENT EMOTIONS IN IEMOCAP DATASET (%) 

Dataset Exited Happy Neural Sad Angry Frustrated 

Training 8.8% 7.2% 13.6% 11.2% 19.2% 20% 
Testing 2.2% 1.8% 3.4% 2.8% 4.8% 5% 

TABLE III 
SAMPLE DISTRIBUTION OF DIFFERENT EMOTIONS IN MELD DATASET 

(SAMPLES) 

Dataset Neutral Surprise Fear Sad Angry Disgust Joy 

Training 4710 1205 268 683 1109 271 1743 
Validation 470 150 40 111 153 22 163 

Testing 1256 281 50 208 345 68 402 

Then, two common performance metrics F1-score and 

accuracy [35] are used to evaluate the overall performance. 

B. Hardware-friendly Training Method

The hardware friendly training method of the network,

containing the forward pass, error backpropagation, and weight 

update, is implemented in the proposed hierarchical interactive 

IMC system and PyTorch platform, as illustrated in Fig. 13. 
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Fig. 13. The flow chart of hardware-friendly training phase. 

Step 1. Initialization: At the beginning, the resistances of all 

the electronic devices in the memristive synapse array can be 

initialized to an intermediate value between LRS and HRS. 

Step 2. Data pre-processing: The multimodal information in 

the training dataset is converted to voltage signal v (vT, vA, and 

vI) within the range of [−2, 2] via digital to analog converter. 

Step 3. Forward pass: The voltage signals vT, vA, and vI are 

injected into the proposed circuit system, and then the 

corresponding output VM can be achieved. 

Step 4. Error backpropagation: The error backpropagation is 

implemented in the PyTorch-based GPU platform based on the 

stochastic gradient descent approach by a factor of 10−2, and the 

desired weights can be obtained immediately. 

Step 5. Weight update: the prepared memristors are 

programed to the desired weights by tuning the gate of the 

memory cell. 

Step 6. Completion: until the entire hierarchical interactive 

IMC system settles, the training process is completed, 

otherwise, return to Step 3. 

This hardware-friendly training method combines the 

advantages of the energy efficiency of the 1T1M synapse array 

in performing the analog MAC operation and digital logic for 

realizing the rest of the training process. 

C. Classification Results

Two conversations classified by the proposed hierarchical

interactive IMC system on IEMOCAP dataset and MELD 

dataset are illustrated in Fig. 14 and Fig. 15, respectively. In 

each conversation, the input multimodal information is 

converted to voltage signal vT (blue solid line), vA (purple solid 

line), and vI (brown solid line). The voltage signals vT, vA, and vI 
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are injected into the proposed circuit system. Following the 

training voltages vT, vA, and vI and based on the stochastic 

gradient descent approach, the conductances are updated to 

the desired values. When the training phase is completed, the 

softmax circuit will output a set of voltage signals VM with 

six/seven states (assigned to six/seven emotion states) 

representing a probability distribution. The classification result 

is determined by the largest output voltage in each period. 

Specifically, in Fig. 14, person A is in a frustrated emotion (red 

solid line) at the beginning. In the contrast, person B is in 

excited emotion (green solid line) all the time and tries to help 

person A out of the frustrated emotion. As a result, person A is 

in neutral emotion in the end. In Fig. 15, person A is in joy 

emotion (orange solid line), while person B is in disgust 

emotion (green solid line) in the initial state. As a neutral 

observer (yellow solid line), person C changes his emotion and 

becomes angry (purple solid line) after talking with person B. 

After that, person B gradually clams down (i.e., neutral 

emotion). The results demonstrate that the interaction between 

speakers can change the emotion state. 

Then, the proposed IMC system is compared with the 

state-of-the-art methods on the IEMOCAP dataset and the 

MELD dataset, as shown in Table IV and Table V, respectively. 

We report two common performance metrics F1-score and 

accuracy for each emotion category. For the IEMOCAP dataset, 

Table IV demonstrates that the proposed IMC system achieves 

the improvements on F1-score and accuracy in sad and excited 

emotion recognition tasks over state-of-the-art methods. 

Meanwhile, the classification performance of happy, neutral, 

and frustrated emotions also achieves the top three rankings, 

slightly outperforming other competitors. Notably, the average 

F1-score and accuracy win the second place over currently 

advanced approaches. For the MELD dataset, experimental 

results in Table V demonstrate that the proposed IMC system 

also outperforms other competitors (top three rankings in 

F1-score and accuracy), especially for the two minority classes 

fear (+0.6% Acc., +0.4% F1) and disgust (+0.8% Acc., +0.6% 

F1). Except for [44-46], the proposed method is superior to the 

other competitors [34-43, 47] in terms of the average F1-score 

and accuracy.  

The main reason may be that: 1) compared with [34, 36-43, 

47] there is a significant drop in classification performance

when the unimodal extraction module is not considered. It is

concluded that unimodal feature representation is crucial for

multimodal sentiment analysis. 2) comparing with the results of

removing hierarchical interaction module [34, 35, 39, 41, 42], it

also leads to the reduction of classification accuracy. This

observation also proves that the inter-modal interaction

information is necessary for video sentiment analysis,

especially for the complex fine-grained tasks. 3) Although

[44-46] slightly outperforms the proposed method (within an

acceptable range), these methods bring more computational
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Fig. 14. (a) Illustration of a conversation from IEMOCAP dataset; (b) The 

corresponding results obtained by the proposed system.

Fig. 15. (a) Illustration of a conversation from MELD dataset; (b) The corresponding results 

obtained by the proposed system.
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cost and energy consumption. Notably, since the forward 

calculation is implemented in proposed hierarchical interactive 

IMC system, the proposed method is faster than other 

competitors, indicating that the proposed system achieves a 

good trade-off between classification accuracy and 

computational efficiency. It is noted that some effective tricks 

and sub-modules (e.g., Tensor-based Multimodal Transformer) 

hardware implementations can be considered to add into the 

proposed scheme to increase the classification performance, 

which is our future work. 

Furthermore, we visualize the confusion matrixes of the 

proposed system on the IEMOCAP testing dataset and the 

MELD testing dataset in Fig. 16.  
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Fig. 16. Confusion matrix of the testing dataset (a) IEMOCAP dataset; (b) 

MELD dataset 

In Fig. 16(a), we find neutral and angry emotions are 

confused with the frustrated emotion in some cases. The reason 

maybe that the majority of the utterances are labeled as the 

frustrated emotion in the IEMOCAP dataset. Similarly, it can 

be observed that the happy emotion is confused with the excited 

emotion in some times. The phenomenon is related to that 

excited and happy emotions are really close in the valence and 

activation domains. In Fig. 16(b), we find fear and disgust 

emotions are confused with other emotions in some cases, 

leading to lower accuracies. The main reason maybe that the 

number of utterances labelled as these two negative emotions is 

relatively less in the MELD dataset, and the proposed system 

inevitably tends to learn less compared with other emotion 

categories. As a result, how to deal with the imbalanced class 

distribution issue is our future work. 

To explore the hierarchical interactive effect among different 

modalities, we use different modality combinations on the two 

benchmark video clip datasets, as shown in Table VI.  

From Table VI, it can be observed that the textual modality is 

the dominant information source for video sentiment analysis. 

The audio and visual modalities perform poorly when used 

alone or in combination. The audio or visual modality is used 

interactively with the textual modality, the average F1-score 

and accuracy slightly outperforming the textual modality. The 

result demonstrating that the audio and visual modalities 

TABLE IV 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS ON IEMOCAP 

Ref. 

IEMOCAP: 6-way Emotion Categories 

Happy Sad Neutral Angry Excited Frustrated Average 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

[34] 24.0 34.1 65.6 70.5 55.5 52.1 72.33 66.83 64.3 62.1 67.93 62.53 60.1 59.9 

[35] 25.7 33.2 75.1 78.8 58.6 59.2 64.7 65.3 80.3 71.9 61.2 58.9 63.4 62.8 

[36] 43.1 50.6 69.4 76.8 63.0 62.92 63.5 56.5 88.32 77.93 53.3 55.7 64.6 64.3 

[37] 44.8 40.0 79.23 82.43 60.8 61.9 73.51 68.11 63.0 69.3 64.2 59.7 65.0 64.5 

[38] 47.9 51.3 78.0 79.9 69.01 65.81 72.92 67.22 85.33 78.72 52.2 58.5 68.03 67.53 

[39] 55.43 31.6 80.22 84.12 64.7 59.7 69.1 65.3 63.2 74.3 61.1 61.5 66.13 64.63 

[40] 55.1 55.81 70.8 73.3 66.82 61.9 62.1 66.0 65.3 69.5 65.7 64.23 65.3 65.4 

[41] / / / / / / / / / / / / 65.7 64.2 

[42] 62.11 54.52 66.6 72.7 63.9 59.4 58.4 61.0 58.5 66.6 64.8 61.6 62.8 63.0 

[43] 43.6 40.3 72.5 70.7 52.5 52.5 66.2 61.6 69.2 65.1 55.5 61.1 59.5 59.5 

[44] / / / / / / / / / / / / 73.91 74.21 

[46] / / / / / / / / / / / / 69.4 69.6 

[47] 24.3 30.2 64.5 74.2 57.3 59.0 61.8 62.7 81.3 72.5 75.91 66.61 64.7 64.1 

This work 55.82 51.43 80.51 84.41 64.23 62.03 65.2 64.2 88.51 78.91 68.22 64.52 70.62 67.92 

TABLE V 

COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS ON MELD 

Ref. 

MELD: 7-way Emotion Categories 

Neutral Surprise Fear Sad Joy Disgust Angry Average 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

[34] 79.1 76.2 43.7 40.7 2.8 2.2 13.2 13.7 47.5 46.7 1.8 1.6 41.43 40.8 55.8 54.7 

[35] 72.1 73.5 54.4 49.4 1.6 1.2 23.93 23.8 52.0 50.7 1.5 1.7 41.92 41.5 56.1 55.9 

[36] 80.1 78.91 56.91 55.41 7.4 8.6 22.6 24.9 55.31 57.41 2.8 3.5 40.2 41.0 61.4 60.4 

[38] 79.6 77.43 54.6 52.7 8.43 10.03 28.31 32.51 52.1 56.03 10.3 11.2 37.0 44.62 59.7 60.5 

[39] / / / / / / / / / / / / / / 60.9 / 

[40] 83.51 76.7 55.43 53.23 8.63 11.72 16.1 21.8 52.9 53.6 16.52 21.92 38.9 42.63 61.3 59.0 

[41] / / / / / / / / / / / / / / 61.4 58.6 

[42] 80.7 75.4 50.7 47.9 7.2 10.03 20.9 26.33 53.93 52.1 10.43 12.83 33.9 38.1 59.2 57.1 

[43] 71.7 76.5 49.6 47.5 7.7 8.9 16.1 12.5 51.82 52.4 10.2 11.9 42.8 46.7 60.5 57.9 

[44] / / / / / / / / / / / / / / 65.63 64.53 

[45] / / / / / / / / / / / / / / 67.41 67.21 

[46] / / / / / / / / / / / / / / 66.62 66.32 

[47] 82.32 76.0 47.3 46.9 9.71 8.8 3.8 4.6 53.2 52.3 7.6 6.7 53.01 47.61 60.6 58.6 

This work 81.73 78.12 56.22 54.52 9.22 12.11 25.92 27.62 54.22 56.52 17.61 22.51 40.9 43.8 61.7 60.8 

Note: the subscript 1, 2, 3 represent the corresponding ranking results. 
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provide supplementary information with the textual modality. 

Notably, the best performance is achieved when all modalities 

are used interactively and hierarchically. 

TABLE VI 
 PERFORMANCE OF THE PROPOSED SYSTEM USING DIFFERENT MODALITY 

COMBINATIONS ON BENCHMARK VIDEO CLIP DATASETS 

Modality 
IEMOCAP MELD 

Acc. F1 Acc. F1 

T 68.8 66.1 59.8 59.1 
A 42.3 39.5 37.0 53.4 

V 48.4 45.5 42.4 40.7 

T+A 69.7 66.6 60.9 59.6 
T+V 70.1 67.0 61.2 59.9 

A+V 52.1 49.6 47.2 44.9 

T+A+V 70.6 67.9 61.7 60.8 

Note: T, A, V represent the textual, audio and visual modalities, respectively. 

D. Computational Efficiency

The computational efficiency in terms of time, power, and

area can be estimated based on the state-of-the-art components 

available at the 180 nm CMOS node. We analyze the time 

consumption of the proposed hierarchical interactive IMC 

system by comparing it with state-of-the-art methods on the 

IEMOCAP dataset and the MELD dataset. Considering the 

back-propagation calculation of all methods is based on 

software implementation, we only compare the time 

consumption of forward propagation with the state-of-the-art 

methods, as shown in Fig. 17. 
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Fig. 17. The time consumption of forward propagation (a)IEMOCAP dataset; 

(b)MELD dataset

The results demonstrate that the proposed system takes less 

time (approximately 8~15 times) than other competitors. The 

reason is related to the efficient analog MAC operations via 

memristive synapse array. 

Table VII shows the power consumption of each circuit 

module and the entire proposed hierarchical interactive IMC 

system. Commonly, the dimensions of memory devices, 

transistors, and resistors are all micron order. The energy and 

the power consumption for 1-bit computing are 2231.34 pJ and 

44.63mW with 0.5V, 50ns read voltage, respectively. The 

circuit is implemented using a 180-nm CMOS technology. The 

total area of the proposed system is about 64.73μm2. The 

proposed system has advantages in terms of time, power, and 

area, which indicates that the proposed system is cost saving 

and energy-efficient. 
TABLE VII 

THE ENERGY CONSUMPTION OF THE PROPOSED SYSTEM 

Module Power consumption/pJ 

1T1M Synapse Array 30.32 

DAC  326.4 
Multiplying circuit 8.22 

ReLU circuit 0.45 

Softmax circuit 0.66 
Layer normalization circuit 1.62 

Max-pooling circuit 0.27 

Total 2231.34 

E. Non-idealities Analysis

Here, the non-idealities analysis mainly refers to the

anti-noise analysis and the device failure analysis, the specific 

description is provided below:  

1) Anti-noise analysis: considering the multimodal

information perception and transmission may be inevitably 

affected by the noise, we added the read noise to these three 

multimodal signals (Text signal, audio signal, and image 

signal), and the classification accuracy on the IEMOCAP 

dataset and the MELD dataset are demonstrated in Fig. 18(a) 

and Fig. 18(b), respectively. It can be seen that the 

classification accuracy can be maintained at a high level even 

though all the three multimodal signals are polluted by read 

noise. In other words, the read noise has little influence on the 

classification accuracy, indicating that the proposed system has 

good anti-noise ability (especially for the textual modality). 

2) Device failure analysis: considering the device failure

phenomenon may occur, this work sets a ratio range (0-50%) of 

failed memristors. As shown in Fig. 18(c), when the memristor 

is in LRS and the failure ratio reaches about 20%, the 

classification accuracy can be kept over 70% and 60% on the 

IEMOCAP dataset and the MELD dataset, respectively. Once 

the memristor failure ratio exceeds 20%, the accuracy 

decreases sharply to about 20% on the two benchmark video 

clip datasets. When the memristor is in HRS, the accuracy 

deceases smoothly with the increase of device failure ratio. 

When the device failure ratio reaches about 25%, the 

classification accuracy can be maintained in an acceptable level 

(~67% on the IEMOCAP dataset and ~58% the MELD dataset). 

Based on this, we can conclude that the proposed system has a 

better tolerance to the failed memristor in HRS. The reason 

related to this phenomenon may be that LRS failure always 

produce large error current, and the output of the weighted 
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summation may be affected significantly. While HRS failure 

does not generate large error current, thus keeping a good 

classification performance despite the large failure rate of the 

memristors. 
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Fig. 18. Non-idealises analysis of the proposed system (a) anti-noise analysis 

on IEMOCAP dataset; (b) anti-noise analysis on MELD dataset; (c) device 

failure analysis 

A comparison between different IMC computing systems is 

provided in Table VIII. From Table VIII, much of the work in 

IMC has focused on hardware development of neural networks 

based on specific structures (e.g., convolutional neural 

networks (CNNs) [48, 49], long short-term memory (LSTM) 

networks [50, 51], transformer networks [52, 17], and binary 

neural network (BNN) [53])). Almost all existing IMC systems 

concentrate on a single mode of sensory processing. A lack of 

hierarchical interactive systems that combine numerous senses 

based on cross-modal learning mechanisms make information 

across various sensory modalities hard to handle. In this paper, 

a brain-inspired hierarchical interactive IMC system is 

proposed, which can efficiently solve ‘von Neumann 

bottleneck’, enabling cross-modal interactions and semantic 

gap elimination. 

VI. CONCLUSION 

This paper mainly focuses on the investigation of a 

brain-inspired hierarchical interactive IMC system for video 

sentiment analysis. Specifically, the Ag/a-Carbon/Ag 

memristor is prepared based on frame method and magnetron 

sputtering method, and the corresponding performance testing 

demonstrates its high stability. Then, the Ag/a-Carbon/Ag 

memristor circuit with the 1T1M configuration is realized, 

which enables parallel MAC operations. Meanwhile, a 

brain-inspired hierarchical interactive IMC system mainly 

consisted of unimodal extraction module, hierarchical 

interactive module, and output module is designed. For 

verification, the brain-inspired hierarchical interactive IMC 

system is applied to realize the video sentiment analysis and the 

experimental results demonstrate the proposed system has good 

performance in terms of classification accuracy, computational 

efficiency, and robustness. The future direction of research 

includes the development of brain-inspired IMC systems and 

investigation of new techniques for the deep integration of 

nanotechnology and energy-efficient integrated circuits. 
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