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The ongoing transition from a linear to a circular, low-carbon bioeconomy is crucial
for reducing the consumption of global natural resources, minimizing waste generation,
reducing carbon emissions, and creating more sustainable growth and jobs, the prerequi-
sites necessary to achieve climate neutrality targets and stop biodiversity loss. In recent
years, the wood-based panel industry has faced significantly increasing demands for its
various products due to the rising worldwide population, shifts in land use, and growing
economies. Using wood more efficiently, the optimization of natural raw material use, and
sustainably converting waste into value-added products to meet projected demands for
the development of wood-based composites all represent key circular economy principles
requiring the reuse, recycling, or upcycling of materials.

Conventional wood composites are produced with synthetic, formaldehyde-based
adhesives, commonly created from fossil-derived constituents, such as urea, phenol,
melamine, etc. [1–10]. Along with their undisputable advantages, these adhesives are
characterized by specific problems connected to the emission of hazardous volatile organic
compounds (VOCs), including free formaldehyde emissions from finished wood-based
composites, which have been linked to several major environmental issues, as well as
negative effects on human health, including irritation to skin and eyes, respiratory prob-
lems, and cancer [11–17]. The shift towards a circular, low-carbon bioeconomy, growing
environmental concerns, and stringent legislation related to the emission of harmful VOCs
have resulted in novel requirements related to the development of sustainable and environ-
mentally friendly wood-based composites [18–25]. In this respect, novel requirements con-
cerning free formaldehyde emissions from wood composites have posed novel challenges
for both researchers and industrial practices related to the development of sustainable and
ecofriendly wood composites, the optimization of available lignocellulosic raw materials,
and the use of alternative natural and renewable feedstocks [26–38]. The harmful formalde-
hyde released from wood composites can be reduced by adding formaldehyde scavengers
to conventional adhesive systems, through the surface treatment of finished wood compos-
ites, or by using novel biobased wood adhesives as environmentally friendly alternatives
to traditional thermosetting resins [39–43]. Another alternative to formaldehyde-based
adhesives is the manufacture of binderless wood-based panels, since wood represents
a natural polymeric material abundant in lignocellulosic constituents, such as cellulose,
hemicelluloses, and lignin [44–53].

This Special Issue presents a collection of 10 high-quality original research and review
papers providing examples of the most recent advances and technological developments in
the fabrication, design, characteristics, and applications of ecofriendly wood and wood-
based composites.

In their paper, Taghiyari et al. investigated the effects of nanosilver and heat treatment
on the pull-off strength of sealer-clear finish in solid wood species [54]. They found a
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positive correlation between the density and pull-off adhesion strength in three common
solid wood species, i.e., common beech, silver fir, and black poplar. A heat treatment at
145 ◦C increased the pull-off adhesion strength in all three species due to the formation of
novel bonds in the cell walls of the polymers. The thermal degradation of the polymers
at 185 ◦C weakened the formation of the novel bonds’ positive effect, resulting in an
unchanged pull-off strength compared with the control specimens. Markedly, the authors
reported that the impregnation with a silver nanosuspension decreased the pull-off strength
in beech specimens. It was concluded that the density was the decisive factor in determining
the pull-off strength, having a significant positive correlation.

In the study by Ghozali et al., a novel in situ modification method for thermoplastic
starch preparation (TPS) based on Arenga pinnata palm starch was proposed [55]. It was
found that TPS properties could be improved with the starch modification, adding rein-
forcements and blending with other polymers. In this research, to prepare the modified
TPS, the starch modification was carried out through an in situ modification. The modified
TPS was obtained by adding Arenga pinnata palm starch (APPS), glycerol, and benzoyl
peroxide simultaneously in a twin-screw extruder. The morphology analysis of the TPS
revealed that the starch granules were damaged and gelatinized in the extrusion process.
No phase separation was observed in the TPS, showing that starch granules with and
without benzoyl peroxide were uniformly dispersed in the matrix. In addition, the thermal
analysis showed that the addition of benzoyl peroxide increased the thermal stability of
the TPS and extended the temperature range of the thermal degradation.

Another piece of research, conducted by Iswanto et al., studied the chemical, physical,
and mechanical properties of belangke bamboo (Gigantochloa pruriens) and its application
as a reinforcing material in particleboard manufacturing [56]. The results showed that
this bamboo had average lignin, holocellulose, and alpha-cellulose contents of 29.78%,
65.13%, and 41.48%, respectively, with a crystallinity of 33.54%. The physical properties
of bamboo, including its specific gravity, inner and outer diameter shrinkage, and linear
shrinkage, were 0.59%, 2.18%, 2.26%, and 0.18%, respectively. Meanwhile, the bamboo’ s
mechanical properties, including compressive strength, shear strength, and tensile strength,
were 42.19 MPa, 7.63 MPa, and 163.8 MPa, respectively. Despite the inferior dimensional
stability, i.e., higher water absorption and thickness swelling, compared to the uncoated
particleboards, the panels reinforced with bamboo strands exhibited acceptable mechanical
strength. Markedly, the addition of belangke bamboo strands as a reinforcement (surface
coating) in particleboards significantly improved the mechanical properties of the panels,
increasing the modulus of elasticity (MOE) and bending strength (MOR) values of the
fabricated composites 16 and 3 times, respectively.

A study by Makars et al. aimed to utilize suberinic acids containing residues as
adhesives for particleboard manufacturing [57]. The authors investigated the chemical
and thermal properties of four different adhesives obtained in different solvents (ethanol,
methanol, isopropanol, and 1-butanol), as well as their performance in bonding particle-
boards. Based on the results of the mechanical characteristics, ethanol was chosen as the
most suitable depolymerization medium. The following optimal hot-pressing parameters
for manufacturing particleboards were reported: adhesive content 20 wt%; hot-pressing
temperature 248 ◦C; hot-pressing time of 6.55 min.

In their paper, Savov et al. investigated the effect of the adhesive system on the
properties of fiberboard panels bonded with hydrolysis lignin and phenol-formaldehyde
(PF) resin [58]. The study proposed an alternative technological solution for manufacturing
fiberboard panels using a modified hot-pressing regime with hydrolysis lignin as the
main adhesive. Markedly, the main novelty of the research was the optimized adhesive
system composed of unmodified hydrolysis lignin and a reduced PF resin content. It was
concluded that the proposed technology was suitable for manufacturing fiberboard panels,
fulfilling the strictest EN standards. Markedly, it was shown that to produce this type of
panels, the minimum total content of binders should be 10.6%, and the PF resin content
should be at least 14% of the adhesive system.
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In another paper, Shahavi et al. investigated the feasibility of using wood leachate
(WL) as an inexpensive filler in novel biodegradable poly (lactic acid)/WL composites [59].
In this research, the antibacterial, mechanical, morphological, and thermal properties of the
composites were evaluated. The scanning electron microscopy (SEM) results indicated a
proper filler dispersion in the polymer matrix, and WL powder improved the hydrophobic
nature in the adjusted sample’s contact angle experiment. Markedly, the results showed
that adding WL filler improved the mechanical properties of the fabricated biocomposites.
The PLA–WL biocomposites exhibited antibacterial activity according to the inhibition
zone for Escherichia coli bacteria. The authors concluded that the developed poly (lactic
acid)–WL biocomposites could be successfully used in a variety of value-added industrial
applications, such as functional biopolymer materials.

The paper by Solihat et al. investigated the physical and chemical properties of Acacia
mangium lignin isolated from pulp mill byproduct for potential applications in wood
composites [60]. This research demonstrated that the lower insoluble acid content of lignin
derived from a fractionated step (69.94%) rather than a single step (77.45%) correlated
to the lignin yield, total phenolic content, solubility, thermal stability, and molecular
distribution. It contradicted the syringyl/guaiacyl (S/G) units’ ratio, where the ethanol
fractionation slightly increased the syringyl unit content, increasing the S/G ratio. Hence,
the fractionation step resulted in more ruptures and pores on the lignin morphological
surface than the ethanol-fractionated step. The results obtained could increase the industrial
valorization of lignin in manufacturing wood-based panels with improved properties and
a lower environmental footprint.

In their review paper, Sydor et al. performed a comprehensive overview of the
recent developments, possibilities, and challenges surrounding the efficient utilization
of mycelium-based composites (MBCs) in art, architecture, and interior design applica-
tions [61]. It was found that MBCs attracted growing attention due to their role in the
development of ecodesign methods. Following the synthesis of these sources of knowledge,
it was concluded that MBCs are inexpensive in production, ecological, biodegradable, and
offer a high artistic value. The main drawbacks of this natural material are related to its
insufficient load capacity, unfavorable water affinity, and unknown durability.

Another interesting paper by Miran Merhar investigated the application of the max-
imum stress, Tsai–Hill, Tsai–Wu, Puck, Hoffman, and Hashin criteria to beech (Fagus
sylvatica) plywood manufactured from differently oriented veneer sheets [62]. Specimens
were cut from the manufactured panels at various angles and loaded by bending to failure.
The mechanical properties of the beech veneer were also evaluated. The samples were
modelled using the finite element method with a composite modulus and considering
the different failure criteria, where the failure forces were calculated and compared with
the measured values. The authors reported that the calculated forces based on all failure
criteria were lower than those measured experimentally. The forces determined using
the maximum stress criterion showed the best agreement between the calculated and
measured forces.

Last, but not least, a comprehensive review of the latest advancements in the devel-
opment of fire-resistant biocomposites, including a critical analysis of the flammability
of wood and natural fibers as raw materials for the production of biocomposites, was
conducted by Madyaratri et al. [63]. In addition, the authors investigated and discussed the
feasibility of using lignin as an environmentally friendly and inexpensive flame retardant
additive in the production of high-performance biocomposites with enhanced technologi-
cal and fire properties. The authors concluded that the increased utilization of renewable
natural feedstocks represented a prospective and viable approach to manufacturing novel
biocomposite materials with engineered properties, improved fire resistance, and a lower
environmental footprint.

Author Contributions: Conceptualization, P.B., P.A., Y.Z. and V.S.; Writing and editing P.B., P.A. and
V.S. All authors have read and agreed to the published version of the manuscript.
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34. Antov, P.; Savov, V.; Trichkov, N.; Krišt’ák, Ĺ.; Réh, R.; Papadopoulos, A.N.; Taghiyari, H.R.; Pizzi, A.; Kunecová, D.; Pachikova, M.
Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based
Additive. Polymers 2021, 13, 2775. [CrossRef]
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